Science.gov

Sample records for electron-electron spin interaction

  1. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    NASA Astrophysics Data System (ADS)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  2. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  3. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    SciTech Connect

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  4. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  5. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    PubMed

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-16

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  6. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  7. Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences

    PubMed Central

    Goldozian, Bahareh; Damtie, Fikeraddis A.; Kiršanskas, Gediminas; Wacker, Andreas

    2016-01-01

    Quantum dots are nanoscopic systems, where carriers are confined in all three spatial directions. Such nanoscopic systems are suitable for fundamental studies of quantum mechanics and are candidates for applications such as quantum information processing. It was also proposed that linear arrangements of quantum dots could be used as quantum cascade laser. In this work we study the impact of electron-electron interactions on transport in a spinful serial triple quantum dot system weakly coupled to two leads. We find that due to electron-electron scattering processes the transport is enabled beyond the common single-particle transmission channels. This shows that the scenario in the serial quantum dots intrinsically deviates from layered structures such as quantum cascade lasers, where the presence of well-defined single-particle resonances between neighboring levels are crucial for device operation. Additionally, we check the validity of the Pauli master equation by comparing it with the first-order von Neumann approach. Here we demonstrate that coherences are of relevance if the energy spacing of the eigenstates is smaller than the lead transition rate multiplied by ħ. PMID:26948933

  8. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: analysis of basic electronic effects.

    PubMed

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-22

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. (1)J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas (2)J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of (1)J(C,H) and (2)J(H,H), respectively, for hydrocarbons.

  9. Magnetization and susceptibility of a parabolic InAs quantum dot with electron-electron and spin-orbit interactions in the presence of a magnetic field at finite temperature

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron-electron and spin-orbit interactions as a function of magnetic field and temperature. The spin-orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron-electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron-electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin-orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin-orbit interaction shifts it to the lower magnetic field side. Spin-orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  10. Electron-electron Interactions in Highly Doped Heterojunction

    NASA Astrophysics Data System (ADS)

    Bukhenskyy, K. V.; Dubois, A. B.; Gordova, T. V.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.

    We report results from calculations of temperature-dependent intra and intersubband electron-electron scattering rates in two subbands in a two-dimentional (2D) quantum structure in Random Phase Approximations (RPA). Electron-electron interactions in a single highly doped heterojunction are considered taking into account both intra- and intersubband transitions. Expressions are derived for the time of electron-electron interaction, matrix elements of the full screening potential and dynamic dielectric function in a 2D electron system with the fine structure of the energy spectrum, and for the electron density spatial distribution. The theoretical dependences provide a good description of the experimental times of Landau levels collisional broadening.

  11. Spin relaxation in bilayer graphene: the role of electron-electron scattering

    NASA Astrophysics Data System (ADS)

    Katiyar, Saurabh; Ghosh, Bahniman; Salimath, Akshay Kumar

    2016-02-01

    This paper investigates the influence of electron-electron scattering on spin relaxation length in bilayer graphene using semiclassical Monte Carlo simulation. Both D'yakonov-P'erel and Elliot-Yafet mechanisms are considered for spin relaxation. It is shown that spin relaxation length decreases by 17 % at 300 K on including electron-electron scattering. The reason of this variation in spin relaxation length is that the ensemble spin is modified upon an e-e collision, and also e-e scattering rate is greater than phonon scattering rate which causes change in spin transport profile.

  12. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2011-08-01

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.053001 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  13. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    SciTech Connect

    Zhou Yueming; Huang Cheng; Lu Peixiang

    2011-08-15

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  14. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  15. Effect of electron-electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok

    2016-11-01

    The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .

  16. Determination of nitrogen spin concentration in diamond using double electron-electron resonance

    NASA Astrophysics Data System (ADS)

    Stepanov, Viktor; Takahashi, Susumu

    2016-07-01

    Diamond has been extensively investigated recently due to a wide range of potential applications of nitrogen-vacancy (NV) defect centers existing in a diamond lattice. The applications include magnetometry and quantum information technologies, and long decoherence time (T2) of NV centers is critical for those applications. Although it has been known that T2 highly depends on the concentration of paramagnetic impurities in diamond, precise measurement of the impurity concentration remains challenging. In the present work we show a method to determine a wide range of the nitrogen concentration (n ) in diamond using a wide-band high-frequency electron spin resonance and double electron-electron resonance spectrometer. Moreover, we investigate T2 of the nitrogen impurities and show the relationship between T2 and n . The method developed here is applicable for various spin systems in solid and implementable in nanoscale magnetic resonance spectroscopy with NV centers to characterize the concentration of the paramagnetic spins within a microscopic volume.

  17. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.

    PubMed

    Casey, Thomas M; Fanucci, Gail E

    2015-01-01

    An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron-electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron-electron resonance (DEER). Data are processed with the software package "DeerAnalysis" (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications.

  18. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    SciTech Connect

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  19. Relaxation of orbitals and electron-electron interaction in crystals

    NASA Astrophysics Data System (ADS)

    Volkov, B. A.; Sharov, S. V.

    1991-08-01

    The atomic orbital relaxation effect associated with the intraatomic Coulomb interaction between valence electrons is analyzed. A 1D crystal with a pseudopotential in the form of a delta-function set is considered. The true magnitude is determined by the Hubbard matrix element and the overlapping integral, its sign coinciding with the sign for the amplitude of one-particle interatomic transitions. Several properties of the Hamiltonian are discussed.

  20. Manifestation of nonlocal electron-electron interaction in graphene

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Schüler, Malte; Bianchi, Marco; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Wehling, Tim; Hofmann, Philip

    2016-08-01

    Graphene is an ideal platform to study many-body effects due to its semimetallic character and the possibility to dope it over a wide range. Here we study the width of graphene's occupied π band as a function of doping using angle-resolved photoemission. Upon increasing electron doping, we observe the expected shift of the band to higher binding energies. However, this shift is not rigid and the bottom of the band moves less than the Dirac point. We show that the observed shift cannot be accounted for by single-particle effects and local self-energies alone, but that nonlocal many-body effects, in particular exchange interactions, must be taken into account.

  1. Weak localization and electron-electron interactions in few layer black phosphorus devices

    NASA Astrophysics Data System (ADS)

    Shi, Yanmeng; Gillgren, Nathaniel; Espiritu, Timothy; Tran, Son; Yang, Jiawei; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning

    2016-09-01

    Few layer phosphorene (FLP) devices are extensively studied due to their unique electronic properties and potential applications on nano-electronics. Here we present magnetotransport studies which reveal electron-electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (˜T -0.4). These results establish that the dominant scattering mechanism in FLP is electron-electron interactions.

  2. Spin decoherence in n-type GaAs: The effectiveness of the third-body rejection method for electron-electron scattering

    SciTech Connect

    Marchetti, Gionni Hodgson, Matthew D'Amico, Irene

    2014-10-28

    We study the spin decoherence in n-type bulk GaAs for moderate electronic densities at room temperature using the Ensemble Monte Carlo method. We demonstrate that a technique called “third-body rejection method” devised by B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977) can be successfully adapted to Ensemble Monte Carlo method and used to tackle the problem of the electron-electron contribution to spin decoherence in the parameter region under study, where the electron-electron interaction can be reasonably described by a Yukawa potential. This scattering technique is employed in a doping region where one can expect that multiple collisions may play a role in carrier dynamics. By this technique, we are able to calculate spin relaxation times which are in very good agreement with the experimental results found by Oertel et al., Appl. Phys. Lett. 93, 13 (2008). Through this method, we show that the electron-electron scattering is overestimated in Born approximation, in agreement with previous results obtained by C. A. Kukkonen and H. Smith, Phys. Rev. B 8, 4601 (1973).

  3. Spin decoherence in n-type GaAs: The effectiveness of the third-body rejection method for electron-electron scattering

    NASA Astrophysics Data System (ADS)

    Marchetti, Gionni; Hodgson, Matthew; D'Amico, Irene

    2014-10-01

    We study the spin decoherence in n-type bulk GaAs for moderate electronic densities at room temperature using the Ensemble Monte Carlo method. We demonstrate that a technique called "third-body rejection method" devised by B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977) can be successfully adapted to Ensemble Monte Carlo method and used to tackle the problem of the electron-electron contribution to spin decoherence in the parameter region under study, where the electron-electron interaction can be reasonably described by a Yukawa potential. This scattering technique is employed in a doping region where one can expect that multiple collisions may play a role in carrier dynamics. By this technique, we are able to calculate spin relaxation times which are in very good agreement with the experimental results found by Oertel et al., Appl. Phys. Lett. 93, 13 (2008). Through this method, we show that the electron-electron scattering is overestimated in Born approximation, in agreement with previous results obtained by C. A. Kukkonen and H. Smith, Phys. Rev. B 8, 4601 (1973).

  4. Electron-electron double resonance in electron spin echo: Model biradical systems and the sensitized photolysis of decalin

    NASA Astrophysics Data System (ADS)

    Milov, A. D.; Ponomarev, A. B.; Tsvetkov, Yu. D.

    1984-09-01

    Model systems, comprising frozen glassy solutions of stabilized radicals and biradicals of the nitroxyl type, have been used to test the applicability of electron-electron double resonance in electron spin echo (ELDOR ESE) in studies of the spatial distributions of free radicals arranged in groups in solids. The method was used to investigate the spatial distribution of alkyl radicals generated by the sensitized photolysis of glassy naphthalene solutions in decalin at 77 K. and detected radical pairs.

  5. Optical study of electron-electron exchange interaction in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Kazimierczuk, T.; Smoleński, T.; Kobak, J.; Goryca, M.; Pacuski, W.; Golnik, A.; Fronc, K.; Kłopotowski, Ł.; Wojnar, P.; Kossacki, P.

    2013-05-01

    We present an experimental study of electron-electron exchange interaction in self-assembled CdTe/ZnTe quantum dots based on the photoluminescence measurements. The character and strength of this interaction are obtained by simultaneous observation of various recombination channels of a doubly negatively charged exciton X2-, including previously unrecognized emission lines related to the electron-singlet configuration in the final state. A typical value of the electron singlet-triplet splitting, which corresponds to the exchange integral of electron-electron interaction, has been determined as 20.4 meV with a spread of 1.4 meV across the wide population of quantum dots. We also evidence an unexpected decrease of energy difference between the singlet and triplet states under a magnetic field in Faraday geometry.

  6. van der Waals forces and electron-electron interactions in two strained graphene layers

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Harnish, Peter; Sylvester, Alexander; Kotov, Valeri N.; Neto, A. H. Castro

    2014-06-01

    We evaluate the van der Waals (vdW) interaction energy at zero temperature between two undoped strained graphene layers separated by a finite distance. We consider the following three models for the anisotropic case: (a) where one of the two layers is uniaxially strained, (b) the two layers are strained in the same direction, and (c) one of the layers is strained in the perpendicular direction with respect to the other. We find that for all three models and given value of the electron-electron interaction coupling, the vdW interaction energy increases with increasing anisotropy. The effect is most striking for the case when both layers are strained in the same direction where we observe up to an order of magnitude increase in the strained relative to the unstrained case. We also investigate the effect of electron-electron interaction renormalization in the region of large separation between the strained graphene layers. We find that the many-body renormalization contributions to the correlation energy are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the layers due to renormalization of the Fermi velocity, the anisotropy, and the effective interaction. Our analysis can be useful in designing graphene-based vdW heterostructures which, in recent times, has seen an upsurge in research activity.

  7. Tunable Electron-Electron Interactions in LaAlO3/SrTiO3 Nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; Lee, Hyungwoo; Lu, Shicheng; Veazey, Josh P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Daley, Andrew; Pekker, David; Levy, Jeremy

    2016-10-01

    The interface between the two complex oxides LaAlO3 and SrTiO3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of "sketched" quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the dx z and dy z bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.

  8. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  9. Interaction of triarylmethyl radicals with DNA termini revealed by orientation-selective W-band double electron-electron resonance spectroscopy.

    PubMed

    Fedin, Matvey V; Shevelev, Georgiy Yu; Pyshnyi, Dmitrii V; Tormyshev, Victor M; Jeschke, Gunnar; Yulikov, Maxim; Bagryanskaya, Elena G

    2016-10-26

    Spin labels selectively attached to biomolecules allow high-accuracy nanoscale distance measurements using pulsed electron paramagnetic resonance (EPR), in many cases providing the only access to the structure of complex biosystems. Triarylmethyl (TAM) radicals have recently emerged as a new class of spin labels expanding the applicability of the method to physiological temperatures. Along with other factors, the accuracy of the obtained distances crucially relies on the understanding of interactions between biomolecules and spin labels. In this work, we consider such crucial interactions and their impact on pulsed EPR distance measurements in TAM-labeled DNAs. Using orientation-selective high-frequency (94 GHz) double electron-electron resonance (DEER) we demonstrate strong specific interactions between DNA termini and TAM labels, leading to a significant restriction of their conformational mobility. An understanding of such interactions guides the way to select optimum TAM-labeling strategies, thus refining nanoscale EPR distance measurements in nucleic acids and their complexes under physiological conditions.

  10. Effect of electron-electron interactions in thermoelectric power in graphene

    NASA Astrophysics Data System (ADS)

    Ghahari, Fereshte; Zuev, Yuri; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    2012-02-01

    Thermoelectric power (TEP) of graphene is previously measured in the disorder limited transport regime where the semiclassical Mott relation agrees with experimental data. In this presentation, we report the TEP measurement on graphene samples deposited on hexa boron nitride substrates where drastic suppression of disorder is achieved. Our results show that at high temperatures where the inelastic scattering rate due to electron-electron (e-e) interactions is higher than the elastic scattering rate by disorders, the measured TEP exhibit a large enhancement compared to the expected TEP from the Mott relation. We also investigated TEP in the quantum Hall regime at a high magnetic fields, where we observed symmetry broken integer quantum Hall and fractional quantum Hall states due to the strong e-e interactions.

  11. Van der Waals forces and electron-electron interactions in two strained graphene layers

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Harnish, Peter; Sylvester, Alexander; Kotov, Valeri N.

    2014-03-01

    We evaluate the van der Waals (vdW) interaction energy at T=0 between two undoped graphene layers which are separated by a finite distance. Our study is carried out within the Random Phase Approximation and the interaction energy is obtained for variation in the strength of effective Coulomb interaction and anisotropy due to applied uniaxial strain. We consider the following three models for the anisotropic case: a) where one of the two layers is uniaxially strained, b) the two layers are strained in the same direction, and c) one of the layers is strained in the perpendicular direction. We find that for all the three models and any given value of the coupling, the vdW interaction energy increases with increasing anisotropy. The effect is most striking for the case when both the layers are strained in the parallel direction where we observe up to an order of magnitude increase in the strained graphene relative to the unstrained case. We also investigate the effect of intra-layer electron-electron interactions in the region of large separation between the strained graphene layers. We conclude that the many-body contributions to the correlation energy are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the layers. Alexander Sylvester acknowledges financial assistance from the Research Experiences for Undergraduates (REU) Program of the National Science Foundation (NSF) focussing on complex materials.

  12. Two-dimensional electron-electron double resonance and electron spin-echo study of solute dynamics in smectics

    NASA Astrophysics Data System (ADS)

    Gorcester, Jeff; Rananavare, Shankar B.; Freed, Jack H.

    1989-05-01

    Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin-probe PD-tempone(2×10-3 M). Over the entire temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman-dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.

  13. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Vladisavljevic, Milos; Korkusinski, Marek; Hawrylak, Pawel

    2015-12-01

    We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show that the maximally spin-polarized (S =5 /2 ) and maximally spin-depolarized (S =1 /2 ) states are the lowest energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S =1 /2 . We present a theory of optical absorption spectra and show that the evolution of the ground and excited states, level crossings, and presence of artificial gauge can be detected optically.

  14. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease

    PubMed Central

    Casey, Thomas M.; Fanucci, Gail E.

    2016-01-01

    An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron–electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron–electron resonance (DEER). Data are processed with the software package “DeerAnalysis” (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications. PMID:26477251

  15. Percolation and the electron-electron interaction in an array of antidots

    NASA Astrophysics Data System (ADS)

    Tkachenko, V. A.; Tkachenko, O. A.; Minkov, G. M.; Sherstobitov, A. A.

    2016-10-01

    A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ( V g ) = ( V g - V g * ( T))β with β = 4. The saturation of σ( T) at low temperatures is absent because of the electron-electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ( T, V g ) and makes it possible to determine the fraction of microcontacts x( V g , T) with conductances higher than σ. It is found that the dependence x( V g ) is nonlinear and the critical exponent in the formula σ ∝ - ( x - 1/2) t in the range 1.3 < t( T, V g ) < β.

  16. Electron-electron interactions and lattice distortions in the perovskite titanates

    NASA Astrophysics Data System (ADS)

    Bjaalie, Lars

    A two-dimensional electron gas (2DEG) with the unprecedented high density of 3x1014 (corresponding to 1/2 electron per interface unit cell area) can be formed at the interface between SrTiO3 and a rare-earth titanate (RTiO3). The 2DEG resides in the SrTiO3, and arises from a polar discontinuity at the interface. The formation of this 2DEG has led us to study these perovskite titanates in detail. Some of these compounds are Mott insulators, where a Mott-Hubbard gap opens up between partially filled Ti 3 d bands. This talk focuses on the importance of the interplay between electron-electron interactions and lattice distortions in these complex oxides, which we study with density functional theory using a hybrid functional, capable of correctly describing electron localization and Mott-insulating behavior. These effects are crucial to understanding the metal-to-insulator transition as a function of electron density. Indeed, very thin SrTiO3 layers inserted in GdTiO3 show insulating behavior, in contrast to the metallic character of thicker layers in which the electrons form a 2DEG. The same physics is observed in bulk SrTiO3 when doped with 1/2 electron per Ti atom. Charge localization and lattice distortions also govern the formation of small hole polarons in the rare-earth titanates. We demonstrate that these polarons impact the optical absorption measurements commonly used to determine the value of the Mott-Hubbard gap. Work performed in collaboration with Anderson Janotti, Burak Himmetoglu, and Chris G. Van de Walle, and supported by NSF and ARO.

  17. Crossover of electron-electron interaction effect in Sn-doped indium oxide films

    SciTech Connect

    Zhang, Yu-Jie; Gao, Kuang-Hong; Li, Zhi-Qing

    2015-03-09

    We systematically study the structures and electrical transport properties of a series of Sn-doped indium oxide (ITO) films with thickness t ranging from ∼5 to ∼53 nm. Scanning electron microscopy and x-ray diffraction results indicate that the t ≲ 16.8 nm films are polycrystalline, while those t ≳ 26.7 nm films are epitaxially grown along [100] direction. For the epitaxial films, the Altshuler and Aronov electron-electron interaction (EEI) effect governs the temperature behaviors of the sheet conductance σ{sub □} at low temperatures, and the ratios of relative change of Hall coefficient ΔR{sub H}/R{sub H} to relative change of sheet resistance ΔR{sub □}/R{sub □} are ≈2, which is quantitatively consistent with Altshuler and Aronov EEI theory and seldom observed in other systems. For those polycrystalline films, both the sheet conductance and Hall coefficient vary linearly with logarithm of temperature below several tens Kelvin, which can be well described by the current EEI theories in granular metals. We extract the intergranular tunneling conductance of each film by comparing the σ{sub □}(T) data with the predication of EEI theories in granular metals. It is found that when the tunneling conductance is less than the conductance of a single indium tin oxide (ITO) grain, the ITO film reveals granular metal characteristics in transport properties; conversely, the film shows transport properties of homogeneous disordered conductors. Our results indicate that electrical transport measurement can not only reveal the underlying charge transport properties of the film but also be a powerful tool to detect the subtle homogeneity of the film.

  18. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  19. Electron-Electron Interaction in Ion-Atom Collisions Studied by Projectile State-Resolved Auger Electron Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lee, Do-Hyung

    1990-01-01

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KLL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O^{q+} and F^ {q+} incident on H_2 and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionized by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180^circ Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross sections of the electron -electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron -electron ionization (eeI) were determined. Projectile 2l capture with 1s to 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory. Projectile 1s to 2p excitation by a target electron was observed an an eeE process with Li-like projectiles. Projectile 1s ionization by a target electron was observed as an eeI process with Be-like projectiles

  20. Effect of connecting wires on the decoherence due to electron-electron interaction in a metallic ring

    NASA Astrophysics Data System (ADS)

    Texier, Christophe

    2007-10-01

    We consider the weak localization in a ring connected to reservoirs through leads of finite length and submitted to a magnetic field. The effect of decoherence due to electron-electron interaction on the harmonics of Al’tshuler-Aronov-Spivak [JETP Lett. 33, 94 (1981)] oscillations is studied, and more specifically the effect of the leads. Two results are obtained for short and long lead regimes. The scale at which the crossover occurs is discussed. The long lead regime is shown to be more realistic experimentally.

  1. Method for estimating spin-spin interactions from magnetization curves

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Hukushima, Koji

    2017-02-01

    We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.

  2. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    DOE PAGES

    Liu, Liang; Niu, Jiasen; Xiang, Li; ...

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states,more » while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.« less

  3. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    SciTech Connect

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. -F.; Han, X. -F.; Zhang, X. -G.; Coey, J. M. D.

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states, while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.

  4. Optically induced spin gates in coupled quantum dots using the electron-hole exchange interaction

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Reinecke, T. L.

    2008-09-01

    We propose a fast optically induced two-qubit C-PHASE gate between two resident spins in a pair of coupled quantum dots. An excited bound state which extends over the two dots provides an effective electron-electron exchange interaction. The gate is made possible by the electron-hole exchange interaction, which isolates a single transition in the system. When combined with appropriate single-qubit rotations, this gate generates an entangled state of the two spins.

  5. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    SciTech Connect

    Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  6. Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe

    NASA Astrophysics Data System (ADS)

    Watson, Matthew D.; Backes, Steffen; Haghighirad, Amir A.; Hoesch, Moritz; Kim, Timur K.; Coldea, Amalia I.; Valentí, Roser

    2017-02-01

    We use angle-resolved photoemission spectroscopy (ARPES) to explore the electronic structure of single crystals of FeSe over a wide range of binding energies and study the effects of strong electron-electron correlations. We provide evidence for the existence of "Hubbard-like bands" at high binding energies consisting of incoherent many-body excitations originating from Fe 3 d states in addition to the renormalized quasiparticle bands near the Fermi level. Many high-energy features of the observed ARPES data can be accounted for when incorporating the effects of strong local Coulomb interactions in calculations of the spectral function via dynamical mean-field theory, including the formation of a Hubbard-like band. This shows that over the energy scale of several eV, local correlations arising from the on-site Coulomb repulsion and Hund's coupling are essential for a proper understanding of the electronic structure of FeSe and other related iron-based superconductors.

  7. Intrinsic Damping of Collective Spin Modes in a Two-Dimensional Fermi Liquid with Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Maslov, Dmitrii; Maiti, Saurabh

    2015-03-01

    We address the issue damping of spin collective modes in systems with spin orbit coupling in 2D. We show that these modes exist for arbitrary nature of spin-orbit coupling and are intrinsically damped even in the long wavelength limit. This damping is driven by electron-electron interactions and is unique to spin orbit coupled systems. Its origin is linked to an imperfect cancellation of the self energy and vertex contributions of the interaction. In the Fermi-liquid language, this is an effect arising from residual interaction between quasiparticles. This damping mechanism exists already at T=0 and without impurities and/or phonons. We also discuss the consequences of this damping for the experiment. This work was supported by the National Science Foundation via Grant NSF DMR-1308972.

  8. Electron spin from self interaction

    SciTech Connect

    Spavieri, G. |

    1992-06-01

    The author explores the possibility that the electron self-interaction is the origin of the spin and of the radiative effects of QED. The electron is conceived as a charged, massless, point particle with a quantum or stochastic, internal motion about its center of mass and bound by a self-interaction potential. The hydrodynamic equations of motion describing the electron in its center of mass frame are related to non-Markovian stochastic equations recently used to derive the Schroedinger equation. By averaging over this stochastic internal motion and identifying the energy with the rest mass energy, the angular momentum exhibits properties characteristic of spin. The electromagnetic self-interactions added to the Hamiltonian of the particle correct the g factor to yield the anomalous value (g{minus}2)/2 {approx} 1159.7(2.3) X 10{sup {minus}6} in agreement with experiment. Calculations of other {open_quotes}radiative{close_quotes} effects including the Lamb shift are presented. The results obtained are finite and suggest that the QED corrections attributed to radiative effects could be obtained classically, i.e., without second quantization and renormalization, by complementing the Dirac theory with this self-interaction mechanism. The g factor dependence on the external magnetic field of this and other spin models is compared with that of QED, showing that these theories can be tested by the present precision measurements of the g factor. 33 refs., 2 tabs.

  9. Magnetization of interacting electrons in anisotropic quantum dots with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Avetisyan, Siranush; Chakraborty, Tapash; Pietiläinen, Pekka

    2016-07-01

    Magnetization of anisotropic quantum dots in the presence of the Rashba spin-orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin-orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron-electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin-orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin-orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin-orbit interaction strength.

  10. Trace formula for interacting spins

    NASA Astrophysics Data System (ADS)

    Waltner, Daniel; Braun, Petr; Akila, Maram; Guhr, Thomas

    2017-02-01

    While detailed information about the semiclassics for single-particle systems is available, much less is known about the connection between quantum and classical dynamics for many-body systems. As an example, we focus on interacting spins, which are of considerable conceptual and practical importance. We derive a trace formula for coupled spin j particles which relates the quantum energy levels to the classical dynamics. Our derivation is valid in the limit j\\to ∞ with j\\hbar =\\text{const}. and applies to time-continuous as well as to periodically driven dynamics. We provide a simple explanation why the Solari-Kochetov phase can be omitted if the correct classical Hamiltonian is chosen.

  11. Universal increase in the superconducting critical temperature of two-dimensional semiconductors at low doping by the electron-electron interaction.

    PubMed

    Calandra, Matteo; Zoccante, Paolo; Mauri, Francesco

    2015-02-20

    In two-dimensional multivalley semiconductors, at low doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. By performing first-principles calculations beyond density functional theory, we prove that this effect accounts for the unconventional doping dependence of the superconducting transition temperature (T(c)) and of the magnetic susceptibility measured in Li(x)ZrNCI. Finally, we discuss what are the conditions for a maximal T(c) enhancement in weakly doped two-dimensional semiconductors.

  12. Novel effects of spin-orbit interaction in interacting electronic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jianmin

    interesting interplay of Zeeman and spin-orbit terms, facilitated by the electron-electron interaction, results in the spin-density wave (SDW) state when the magnetic field and spin-orbit axes are orthogonal. In Chapter 3, I show that this instability is enhanced in a closely related problem of Heisenberg spin chain with asymmetric uniform Dzyaloshinskii-Moriya (DM) interaction. A magnetic field in the direction perpendicular to the DM anisotropy axis results in staggered long-range magnetic order along the orthogonal to the applied field direction. I explore consequences of the uniform DM interaction for the electron spin resonance (ESR) measurements, and point out that they provide way to probe right- and left-moving excitations of the spin chain separately. In Chapter 4, I investigate interactions between spins of strongly correlated electrons subject to the spin-orbit interaction. My main finding is that of a novel, spin-orbit mediated anisotropic spin-spin coupling of the van der Waals type. Unlike the standard exchange, this interaction does not require the wave functions to overlap. I argue that this ferromagnetic interaction is important in the Wigner crystal state where the exchange processes are severely suppressed. I also comment on the anisotropy of the exchange between spins mediated by the spin-orbital coupling.

  13. Spin-string interaction in QCD strings

    SciTech Connect

    Vyas, Vikram

    2008-08-15

    I consider the question of the interaction between a QCD string and the spin of a quark or an antiquark on whose worldline the string terminates. The problem is analyzed from the point of view of a string representation for the expectation value of a Wilson loop for a spin-half particle. A string representation of the super Wilson loop is obtained starting from an effective string representation of a Wilson Loop. The action obtained in this manner is invariant under a worldline supersymmetry and has a boundary term which contains the spin-string interaction. For rectangular loops the spin-string interaction vanishes and there is no spin-spin term in the resulting heavy quark potential. On the other hand if an allowance is made for the finite intrinsic thickness of the flux tube by assuming that the spin-string interaction takes place not just at the boundary of the string world sheet but extends to a distance of the order of the intrinsic thickness of the flux tube then we do obtain a spin-spin interaction which falls as the fifth power of the distance. Such a term was previously suggested by Kogut and Parisi in the context of a flux-tube model of confinement.

  14. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Tie, M.; Dhirani, A.-A.

    2016-09-01

    Strong electron-electron interactions experienced by electrons as they delocalize are widely believed to play a key role in a range of remarkable phenomena such as high Tc superconductivity, colossal magnetoresistance, and others. Strongly correlated electrons are often described by the Hubbard model, which is the simplest description of a correlated system and captures important gross features of phase diagrams of strongly correlated materials. However, open challenges in this field include experimentally mapping correlated electron phenomena beyond those captured by the Hubbard model, and extending the model accordingly. Here we use electrolyte gating to study a metal-insulator transition (MIT) in a new class of strongly correlated material, namely, nanostructured materials, using 1,4-butanedithiol-linked Au nanoparticle films (NPFs) as an example. Electrolyte gating provides a means for tuning the chemical potential of the materials over a wide range, without significantly modifying film morphology. On the insulating side of the transition, we observe Efros-Shklovskii variable range hopping and a soft Coulomb gap, evidencing the importance of Coulomb barriers. On the metallic side of the transition, we observe signatures of strong disorder mediated electron-electron correlations. Gating films near MIT also reveal a zero-bias conductance peak, which we attribute to a resonance at the Fermi level predicted by the Hubbard and Anderson impurity models when electrons delocalize and experience strong Coulomb electron-electron interactions. This study shows that by enabling large changes in carrier density, electrolyte gating of Au NPFs is a powerful means for tuning through the Hubbard MIT in NPFs. By revealing the range of behaviours that strongly correlated electrons can exhibit, this platform can guide the development of an improved understanding of correlated materials.

  15. Effective spin-spin interaction in neutron matter

    SciTech Connect

    Zverev, M.V.; Khafizov, R.U.; Khodel, V.A.; Shaginyan, V.R.

    1995-09-01

    A set of equations for calculating the effective-interaction matrix R{sup ik}(q, {omega}) and the response function X{sup ik}(q, {omega}) is derived. These equations take into account the spin degrees of freedom of infinite neutron matter. For isotropic neutron matter with the Bethe interaction, the effective spin-spin interaction g(k) is calculated in the local approximation of the functional approach in the density range from {rho} = 0.17 to 25 fm{sup -3}. It is shown that this interaction weakly depends on the density within the range under consideration and that neither ferromagnetic nor antiferromagnetic phase transitions occur in the system. 7 refs., 2 figs.

  16. Mesoscopic Rings with Spin-Orbit Interactions

    ERIC Educational Resources Information Center

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto

    2010-01-01

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin…

  17. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    NASA Astrophysics Data System (ADS)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  18. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The effect of electron-electron interaction and the Rashba and Dresselhaus spin-orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron-electron interaction term, the problem is solved exactly to second-order in the spin-orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  19. Thermoelectric properties of magnetic configurations of graphene-like nanoribbons in the presence of Rashba and spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Michal

    2017-03-01

    In this paper we investigate the influence of spin-orbit interaction and two types of Rashba interaction (intrinsic and extrinsic) on magnetic and thermoelectric properties of graphene-like zigzag nanoribbons based on the honeycomb lattice. We utilize the Kane-Mele model with additional Rashba interaction terms. Magnetic structure is described by the electron-electron Coulomb repulsion reduced to the on-site interaction (Hubbard term) in the mean field approximation. We consider four types of magnetic configurations: ferromagnetic and antiferromagnetic with in-plane and out-of plane direction of magnetization. Firstly, we analyze the influence of extrinsic Rashba coupling on systems with negligible spin-orbit interaction, e.g. graphene of an appropriate substrate. Secondly, we discuss the interplay between spin-orbit and intrinsic Rashba interactions. This part is relevant to materials with significant spin-orbit coupling such as silicene and stanene.

  20. Higher spins and open strings: Quartic interactions

    SciTech Connect

    Polyakov, Dimitri

    2011-02-15

    We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators constructed in our previous works and computing their 4-point amplitudes in superstring theory. The kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant 1-1-3-3 quartic interaction (two massless spin 3 particles interacting with two photons) and comment on more general 1-1-s-s cases, particularly pointing out the structure of 1-1-5-5 coupling.

  1. Measurement of noncommuting spin components using spin-orbit interaction

    SciTech Connect

    Sokolovski, D.; Sherman, E. Ya.

    2011-09-15

    We propose a possible experiment aimed at a joint measurement of two noncommuting spin-1/2 components and analyze its physical meaning. We demonstrate that switching of a strong spin-orbit interaction, e.g., in a solid-state or a cold-atom system, for a short time interval simulates a simultaneous von Neumann measurement of the operators {sigma}{sub x} and {sigma}{sub y}. With the spin dynamics mapped onto the quantum coordinate-space motion, such an experiment determines averages of {sigma}{sub x} and {sigma}{sub y} over the duration of the measurement, however short the latter may be. These time averages, unlike the instantaneous values of {sigma}{sub x} and {sigma}{sub y}, may be evaluated simultaneously to an arbitrary accuracy.

  2. Spin current source based on a quantum point contact with local spin-orbit interaction

    SciTech Connect

    Nowak, M. P.; Szafran, B.

    2013-11-11

    Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.

  3. Electron-Electron and Electron-Phonon interactions effects on the tunnel electronic spectrum of PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Mottaghizadeh, Alireza; Ulysse, Christian; Zimmers, Alexandre; Dubertret, Benoit; Aubin, Herve

    2015-03-01

    We present a tunnel spectroscopy study of the electronic spectrum of single PbS Quantum Dots (QDs) trapped between nanometer-spaced electrodes, measured at low temperature T=5 K. The carrier filling of the QD can be controlled either by the drain voltage in the shell filling regime or by a gate voltage. In the empty QD, the tunnel spectrum presents the expected signature of the 8x degenerated excited levels. In the drain controlled shell filling regime, the levels degeneracies are lifted by the global electrostatic Coulomb energy of the QD; in the gate controlled shell filling regime, the levels degeneracies are lifted by the intra-Coulomb interactions. In the charged quantum dot, electron-phonons interactions lead to the apparition of Franck-Condon side bands on the single excited levels and possibly Franck Condon blockade at low energy. The sharpening of excited levels at higher gate voltage suggests that the magnitude of electron-phonon interactions is decreased upon increasing the electron filling in the quantum dot. This work was supported by the French ANR Grants 10-BLAN-0409-01, 09-BLAN-0388-01, by the Region Ile-de-France in the framework of DIM Nano-K and by China Scholarship Council.

  4. Universal power-law decay of electron-electron interactions due to nonlinear screening in a Josephson junction array

    NASA Astrophysics Data System (ADS)

    Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.

  5. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    SciTech Connect

    Andreev, Pavel A.

    2016-01-15

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  6. Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme

    NASA Astrophysics Data System (ADS)

    Georgieva, Elka R.; Roy, Aritro S.; Grigoryants, Vladimir M.; Borbat, Petr P.; Earle, Keith A.; Scholes, Charles P.; Freed, Jack H.

    2012-03-01

    Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the conformation of biomacromolecule and/or spin-label. We studied in detail the effect of these experimental variables on the distance distributions obtained by DEER from a series of doubly spin-labeled T4 lysozyme mutants. We found that the rate of sample freezing affects mainly the ensemble of spin-label rotamers, but the distance maxima remain essentially unchanged. This suggests that proteins frozen in a regular manner in liquid nitrogen faithfully maintain the distance-dependent structural properties in solution. We compared the results from rapidly freeze-quenched (⩽100 μs) samples to those from commonly shock-frozen (slow freeze, 1 s or longer) samples. For all the mutants studied we obtained inter-spin distance distributions, which were broader for rapidly frozen samples than for slowly frozen ones. We infer that rapid freezing trapped a larger ensemble of spin label rotamers; whereas, on the time-scale of slower freezing the protein and spin-label achieve a population showing fewer low-energy conformers. We used glycerol as a cryoprotectant in concentrations of 10% and 30% by weight. With 10% glycerol and slow freezing, we observed an increased slope of background signals, which in DEER is related to increased local spin concentration, in this case due to insufficient solvent vitrification, and therefore protein aggregation. This effect was considerably suppressed in slowly frozen samples containing 30% glycerol and rapidly frozen samples containing 10% glycerol. The assignment of bimodal distributions to tether rotamers as opposed to protein conformations is aided by comparing results using MTSL and 4-Bromo MTSL spin-labels. The latter usually produce narrower distance distributions.

  7. Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme.

    PubMed

    Georgieva, Elka R; Roy, Aritro S; Grigoryants, Vladimir M; Borbat, Petr P; Earle, Keith A; Scholes, Charles P; Freed, Jack H

    2012-03-01

    Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the conformation of biomacromolecule and/or spin-label. We studied in detail the effect of these experimental variables on the distance distributions obtained by DEER from a series of doubly spin-labeled T4 lysozyme mutants. We found that the rate of sample freezing affects mainly the ensemble of spin-label rotamers, but the distance maxima remain essentially unchanged. This suggests that proteins frozen in a regular manner in liquid nitrogen faithfully maintain the distance-dependent structural properties in solution. We compared the results from rapidly freeze-quenched (≤100 μs) samples to those from commonly shock-frozen (slow freeze, 1 s or longer) samples. For all the mutants studied we obtained inter-spin distance distributions, which were broader for rapidly frozen samples than for slowly frozen ones. We infer that rapid freezing trapped a larger ensemble of spin label rotamers; whereas, on the time-scale of slower freezing the protein and spin-label achieve a population showing fewer low-energy conformers. We used glycerol as a cryoprotectant in concentrations of 10% and 30% by weight. With 10% glycerol and slow freezing, we observed an increased slope of background signals, which in DEER is related to increased local spin concentration, in this case due to insufficient solvent vitrification, and therefore protein aggregation. This effect was considerably suppressed in slowly frozen samples containing 30% glycerol and rapidly frozen samples containing 10% glycerol. The assignment of bimodal distributions to tether rotamers as opposed to protein conformations is aided by comparing results using MTSL and 4-Bromo MTSL spin-labels. The latter usually produce narrower distance distributions.

  8. Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.

    PubMed

    Perumal, S; Minaev, B; Ågren, H

    2012-03-14

    The relativistic behavior of graphene structures, starting from the fundamental building blocks--the poly-aromatic hydrocarbons (PAHs) along with other PAH nanographenes--is studied to quantify any associated intrinsic magnetism in the triplet (T) state and subsequently in the ground singlet (S) state with account of possible S-T mixture induced by spin-orbit coupling (SOC). We employ a first principle quantum chemical-based approach and density functional theory (DFT) for a systematic treatment of the spin-Hamiltonian by considering both the spin-orbit and spin-spin interactions as dependent on different numbers of benzene rings. We assess these relativistic spin-coupling phenomena in terms of splitting parameters which cause magnetic anisotropy in absence of external perturbations. Possible routes for changes in the couplings in terms of doping and defects are also simulated and discussed. Accounting for the artificial character of the broken-symmetry solutions for strong spin polarization of the so-called "singlet open-shell" ground state in zigzag graphene nanoribbons predicted by spin-unrestricted DFT approaches, we interpolate results from more sophisticated methods for the S-T gaps and spin-orbit coupling (SOC) integrals and find that these spin interactions become weak as function of size and increasing decoupling of electrons at the edges. This leads to reduced electron spin-spin interaction and hence almost negligible intrinsic magnetism in the carbon-based PAHs and carbon nanographene fragments. Our results are in agreement with the fact that direct experimental evidence of edge magnetism in pristine graphene has been reported so far. We support the notion that magnetism in graphene only can be ascribed to structural defects or impurities.

  9. Electron-electron correlations in square-well quantum dots: direct energy minimization approach.

    PubMed

    Goto, Hidekazu; Hirose, Kikuji

    2011-04-01

    Electron-electron correlations in two-dimensional square-well quantum dots are investigated using the direct energy minimization scheme. Searches for groundstate charges and spin configurations are performed with varying the sizes of dots and the number of electrons. For a two-electron system, a standout difference between the configurations with and without counting correlation energy is demonstrated. The emergence and melting of Wigner-molecule-like structures arising from the interplay between the kinetic energy and Coulombic interaction energy are described. Electron-electron correlation energies and addition energy spectra are calculated, and special electron numbers related to peculiar effects of the square well are extracted.

  10. Manipulating Spin-Orbit Interaction in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kohda, Makoto; Bergsten, Tobias; Nitta, Junsaku

    2008-03-01

    Spin-orbit interaction (SOI), where the orbital motion of electrons is coupled with the orientation of electron spins, originates from a relativistic effect. Generally, in nonrelativistic momentum, p = \\hbar k≪ m0c, the SOI is negligible. However, in a semiconductor heterostructure, the small energy-band gap (Eg ≪ m0c2) and the electron wave modulated by the atomic core potential markedly enhance the SOI. Since the SOI acts as an effective magnetic field, it may offer novel functionalities for controlling the spin degree of freedom such as the electrical spin generation and the electrical control of the spin precession in a semiconductor heterojunction. Here, we review recent experimental studies on the manipulation of the SOI in a semiconductor two-dimensional electron gas. We first present a theoretical overview of the Rashba SOI, which lifts the spin degeneracy due to structural inversion asymmetry. We then present experimental results on the quantum well (QW) thickness dependences of the Rashba SOI in InP/InGaAs/InAlAs asymmetric QWs by analyzing the weak antilocalization. Finally, we show quantum interference effects due to the spin precession in a small array of mesoscopic InGaAs rings, which is an experimental demonstration of the time-reversal Aharonov-Casher effect and the electromagnetic dual to the Al’tshuler-Aronov-Spivak effect.

  11. Parallel spin-orbit coupled configuration interaction

    NASA Astrophysics Data System (ADS)

    Tilson, J. L.; Ermler, W. C.; Pitzer, R. M.

    2000-06-01

    A parallel spin-orbit configuration interaction (SOCI) code has been developed. This code, named P-SOCI, is an extension of an existing sequential SOCI program and permits solution to heavy-element systems requiring both explicit spin-orbit (SO) effects and significant electron correlation. The relativistic procedure adopted here is an ab initio conventional configuration interaction (CI) method that constructs a Hamiltonian matrix in a double-group-adapted basis. P-SOCI enables solutions to problems far larger than possible with the original code by exploiting the resources of large massively parallel processing computers (MPP). This increase in capability permits not only the continued inclusion of explicit spin-orbit effects but now also a significant amount of non-dynamic and dynamic correlation as is necessary for a good description of heavy-element systems.

  12. Effects of the electron-electron interaction on electronic transport through the antibonding orbital of a longitudinally embedded double quantum dot

    NASA Astrophysics Data System (ADS)

    Aguiar-Hualde, J. M.; Chiappe, G.; Louis, E.

    2007-08-01

    The effects of the on-site electron-electron (e-e) interaction U on the electronic transport across two longitudinally embedded quantum dots in the regime in which the antibonding (AB) state of the isolated composite system is aligned with the Fermi level at the leads are investigated. This regime occurs when the dot orbital energy γd is negative and equal in magnitude to the hopping probability between the orbitals on the two dots. In the noninteracting case, the conductance approaches asymptotically the conductance quantum G0=2e2/h as γd decreases; in addition, the contribution of the AB channel to the conductance tends to 1. As shown here, this picture is substantially modified by the e-e interaction. For finite U , the conductance versus γd shows a maximum at which the value G0 is reached, being supported in this case by the two channels (bonding and antibonding); the relative weight of each channel depends on the actual value of the e-e interaction. In the limit γd=-∞ , the conductance is supported only by the AB channel (as in the noninteracting case), but it is always smaller than G0 . While the mechanism underlying these results is mainly one body for small U , the Kondo effect and quantum interference come into play at large U . The effects of the e-e interaction increase significantly as the leads-dots coupling decreases, in particular, the range over which the conductance is non-negligible is significantly narrowed. The possible implications on a physically related system, a hydrogen molecule longitudinally bridging two Pt electrodes, are discussed.

  13. [Spin-spin interaction upon introduction of a spin label into immunoglobulins M and G at the carbohydrate moiety].

    PubMed

    Timofeev, V P; Nikol'skiĭ, D O; Lapuk, V A; Aleshkin, V A

    2002-01-01

    By spin labeling the monoclonal IgM and normal IgG at the carbohydrate moiety with 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl, preparations were obtained whose ESR spectra indicate rapid exchange spin-spin interactions between two spin labels. It was shown that, in the case of spin-labeled IgM, this spectrum is determined by a glycopeptide noncovalently bound to IgM, which incorporates two spin labels.

  14. Structures in multiple spin-2 interactions

    NASA Astrophysics Data System (ADS)

    Baldacchino, Oliver; Schmidt-May, Angnis

    2017-04-01

    We study generalisations of ghost-free bimetric theory which involve more than two spin-2 fields. The consistent interactions can enter in the form of two different couplings and in the majority of this work we concentrate on the simpler one. The corresponding action involves one metric coupled to N tensor fields which do not interact with each other. We derive maximally symmetric solutions to the multimetric equations of motion and identify the mass eigenstates in the linearised theory around these backgrounds. Our results are then applied to the problem of singling out multimetric models which possess certain additional structures. In particular, we look for a relation between scale invariant background solutions, the perturbative emergence of Weyl invariance and the presence of partially massless spin-2 fields in the linear theory. Our findings generalise known results in bimetric theory and allow us to point out similarities and differences between the bi- and multimetric models.

  15. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-01

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  16. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  17. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  18. Nuclear spin squeezing via electric quadrupole interaction

    NASA Astrophysics Data System (ADS)

    Aksu Korkmaz, Yaǧmur; Bulutay, Ceyhun

    2016-01-01

    Control over nuclear-spin fluctuations is essential for processes that rely on preserving the quantum state of an embedded system. For this purpose, squeezing is a viable alternative, so far that has not been properly exploited for the nuclear spins. Of particular relevance in solids is the electric quadrupole interaction (QI), which operates on nuclei having spin higher than 1/2. In its general form, QI involves an electric-field gradient (EFG) biaxiality term. Here, we show that as this EFG biaxiality increases, it enables continuous tuning of single-particle squeezing from the one-axis twisting to the two-axis countertwisting limits. A detailed analysis of QI squeezing is provided, exhibiting the intricate consequences of EFG biaxiality. The initial states over the Bloch sphere are mapped out to identify those favorable for fast initial squeezing, or for prolonged squeezings. Furthermore, the evolution of squeezing in the presence of a phase-damping channel and an external magnetic field are investigated. We observe that dephasing drives toward an antisqueezed terminal state, the degree of which increases with the spin angular momentum. Finally, QI squeezing in the limiting case of a two-dimensional EFG with a perpendicular magnetic field is discussed, which is of importance for two-dimensional materials, and the associated beat patterns in squeezing are revealed.

  19. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  20. Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.

    PubMed

    Agnihotri, Pratik; Bandyopadhyay, Supriyo

    2012-05-30

    Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.

  1. Superconductors with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yu. N.

    2016-09-01

    The effect of spin-orbit (SO) interaction on the formation of the critical states in thin superconducting films in magnetic field oriented along the film is investigated. Hereby, the case of interband pairing is considered. It was found that eight branches exist in the plane of two parameters (γ1,γ2) determined by the value of magnetic field and SO interaction. Six modes leads to inhomogeneous states with different values of the impulse Q. Each state is doubly degenerate over direction of impulse Q. The parameter values at critical point are found for all eight branches in explicit form for zero temperature. The optimal two branches are estimated, corresponding to largest critical magnetic field value for given SO interaction.

  2. The cosmology of interacting spin-2 fields

    SciTech Connect

    Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S. E-mail: Emmanuel_Saridakis@baylor.edu

    2014-02-01

    We investigate the cosmology of interacting spin-2 particles, formulating the multi-gravitational theory in terms of vierbeins and without imposing any Deser-van Nieuwen-huizen-like constraint. The resulting multi-vierbein theory represents a wider class of gravitational theories if compared to the corresponding multi-metric models. Moreover, as opposed to its metric counterpart which in general seems to contain ghosts, it has already been proved to be ghost-free. We outline a discussion about the possible matter couplings and we focus on the study of cosmological scenarios in the case of three and four interacting vierbeins. We find rich behavior, including de Sitter solutions with an effective cosmological constant arising from the multi-vierbein interaction, dark-energy solutions and nonsingular bouncing behavior.

  3. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    SciTech Connect

    Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-08-15

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects next to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10–2 m.

  4. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    DOE PAGES

    Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-08-15

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects nextmore » to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10–2 m.« less

  5. Thermoelectric transport and spin density of graphene nanoribbons with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Xinjun; Sun, Guo-Ya

    2017-03-01

    In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin-orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin-orbit interaction. We have also studied spin split and spin density induced by Rashba spin-orbit interaction in the graphene nanoribbons.

  6. Dynamics of Interacting Fermions in Spin-Dependent Potentials.

    PubMed

    Koller, Andrew P; Wall, Michael L; Mundinger, Josh; Rey, Ana Maria

    2016-11-04

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  7. Dynamics of Interacting Fermions in Spin-Dependent Potentials

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Wall, Michael L.; Mundinger, Josh; Rey, Ana Maria

    2016-11-01

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  8. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    SciTech Connect

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

  9. Spin dynamics in relativistic light-matter interaction

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2015-05-01

    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.

  10. Spin Interactions and Spin Dynamics in Electronic Nanostructures

    DTIC Science & Technology

    2007-11-02

    of technological importance, and the spectroscopic study of the spin transport properties of nanoscale systems, the demonstration of terahertz spin...dynamics at near- terahertz frequencies in magnetically doped quantum wells,” R. C. Myers. K. C. Ku, X. Li, N. Samarth, and D. D. Awschalom, Phys. Rev. B 72...dynamics at near- terahertz frequencies in magnetically doped quantum wells,” R. C. Myers. K. C. Ku, X. Li, N. Samarth, and D. D. Awschalom, Phys. Rev

  11. QCD SPIN PHYSICS IN HADRONIC INTERACTIONS.

    SciTech Connect

    VOGELSANG,W.

    2007-06-19

    We discuss spin phenomena in high-energy hadronic scattering, with a particular emphasis on the spin physics program now underway at the first polarized proton-proton collider, RHIC. Experiments at RHIC unravel the spin structure of the nucleon in new ways. Prime goals are to determine the contribution of gluon spins to the proton spin, to elucidate the flavor structure of quark and antiquark polarizations in the nucleon, and to help clarify the origin of transverse-spin phenomena in QCD. These lectures describe some aspects of this program and of the associated physics.

  12. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGES

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; ...

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  13. Spin polarization in one dimensional ring with Rashba spin-orbit interaction

    SciTech Connect

    Liu, Duan-Yang; Xia, Jian-Bai

    2014-01-28

    We investigate theoretically spin polarization in a square AB ring and in a circular AB ring with the Rashba spin-orbit interaction (RSOI) and the magnetic flux. It is shown that in the presence of both the RSOI and the perpendicular magnetic field, the AB rings can work as a spin polarizer, and the spin polarization transport can be modulated by the values of the system parameters. In addition, we find that the square ring is more suitable for a spin polarizer due to its higher stability.

  14. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  15. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  16. Time evolution of a single spin inhomogeneously coupled to an interacting spin environment.

    PubMed

    Huang, Zhen; Sadiek, Gehad; Kais, Sabre

    2006-04-14

    We study the time evolution of a single spin coupled by exchange interaction to an environment of interacting spin bath modeled by the XY Hamiltonian. By evaluating the spin correlator of the single spin, we observed that the decay rate of the spin oscillations strongly depends on the relative magnitude of the exchange coupling between the single spin and its nearest neighbor J(') and coupling among the spins in the environment J. The decoherence time varies significantly based on the relative coupling magnitudes of J and J('). The decay rate law has a Gaussian profile when the two exchange couplings are of the same order J(') approximately J but converts to exponential and then a power law as we move to the regimes of J(')>J and J(')spin oscillations propagate from the single spin to the environmental spins with a certain speed. The effect of varying the anisotropic parameter, external magnetic field, and temperature on the decaying rate of the spin state is also discussed.

  17. RKKY interaction in spin polarized armchair graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Azizi, Farshad

    2016-11-01

    We present the Ruderman-Kittle-Kasuya-Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction.

  18. Self-consistent linear response for the spin-orbit interaction related properties

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.

    2014-07-01

    In many cases, the relativistic spin-orbit (SO) interaction can be regarded as a small perturbation to the electronic structure of solids and treated using regular perturbation theory. The major obstacle on this route comes from the fact that the SO interaction can also polarize the electron system and produce some additional contributions to the perturbation theory expansion, which arise from the electron-electron interactions in the same order of the SO coupling. In electronic structure calculations, it may even lead to the necessity of abandoning the perturbation theory and returning to the original self-consistent solution of Kohn-Sham-like equations with the effective potential v̂, incorporating simultaneously the effects of the electron-electron interactions and the SO coupling, even though the latter is small. In this work, we present the theory of self-consistent linear response (SCLR), which allows us to get rid of numerical self-consistency and formulate the last step fully analytically in the first order of the SO coupling. This strategy is applied to the unrestricted Hartree-Fock solution of an effective Hubbard-type model, derived from the first-principles electronic structure calculations in the basis of Wannier functions for the magnetically active states. We show that by using v̂, obtained in SCLR, one can successfully reproduce results of ordinary self-consistent calculations for the orbital magnetization and other properties, which emerge in the first order of the SO coupling. Particularly, SCLR appears to be an extremely useful approach for calculations of antisymmetric Dzyaloshinskii-Moriya (DM) interactions based on the magnetic force theorem, where only by using the total perturbation one can make a reliable estimate for the DM parameters. Furthermore, due to the powerful 2n+1 theorem, the SCLR theory allows us to obtain the total energy change up to the third order of the SO coupling, which can be used in calculations of magnetic anisotropy

  19. Generating non-classical states from spin coherent states via interaction with ancillary spins

    NASA Astrophysics Data System (ADS)

    Dooley, Shane; Joo, Jaewoo; Proctor, Timothy; Spiller, Timothy P.

    2015-02-01

    The generation of non-classical states of large quantum systems has attracted much interest from a foundational perspective, but also because of the significant potential of such states in emerging quantum technologies. In this paper we consider the possibility of generating non-classical states of a system of spins by interaction with an ancillary system, starting from an easily prepared initial state. We extend previous results for an ancillary system comprising a single spin to bigger ancillary systems and the interaction strength is enhanced by a factor of the number of ancillary spins. Depending on initial conditions, we find - by a combination of approximation and numerics - that the system of spins can evolve to spin cat states, spin squeezed states or to multiple cat states. We also discuss some candidate systems for implementation of the Hamiltonian necessary to generate these non-classical states.

  20. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  1. Cosmology with three interacting spin-2 fields

    NASA Astrophysics Data System (ADS)

    Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R.

    2016-08-01

    Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally viable cosmological solutions that are distinguishable from Λ cold dark matter (CDM). We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with Λ CDM . For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-Λ CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.

  2. Interaction driven quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, Jedediah; Natu, Stefan; Cole, William; Rizzi, Matteo; Spielman, Ian

    2016-05-01

    We study the interplay of spin orbit coupling and strong correlations present for ultra cold spin-1 bosons on a square optical lattice. In addition to the conventional spinful Mott and superfluid phases contained in the spin-1 Bose-Hubbard model, we find new lattice symmetry breaking phases. For weak interactions, the interplay between the lattice momentum and the spin-orbit wave-vector induces a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone. This state is characterized by spin density wave order, which arises from the spin-1 nature of the system. Interactions suppress this spin density wave order, and for sufficiently strong interactions the system becomes a Mott insulator. Inside the Mott lobes with an odd-integer filling we derive the effective low energy magnetic Hamiltonian. Focusing on the quasi-one-dimensional limit we solve the strongly coupled magnetic model in three ways: in its classical limit, with a spin-wave analysis, and using the density matrix renormalization group.

  3. Syntheses and spin-spin exchange interactions of calix[4]arene biradicals.

    PubMed

    Hu, Xiaojun; Yang, Haijun; Li, Yong

    2008-07-01

    Three novel paramagnetic calix[4]arenes (2, 3 and 4) with two opposite nitroxide radicals on the upper rims were synthesized and characterized. The through-space spin-spin exchange interactions of these calixarene biradicals were investigated, and found to be affected by many factors, such as molecular conformational flexibility, steric hindrance, temperature, solvent effect and complexation of silver ion.

  4. Spin thermopower in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Rejec, Tomaž; Žitko, Rok; Mravlje, Jernej; Ramšak, Anton

    2012-02-01

    Using analytical arguments and the numerical renormalization group method, we investigate the spin thermopower of a quantum dot in a magnetic field. In the particle-hole-symmetric situation, the temperature difference applied across the dot drives a pure spin current without accompanying charge current. For temperatures and fields at or above the Kondo temperature, but of the same order of magnitude, the spin-Seebeck coefficient is large, of the order of kB/|e|. Via a mapping, we relate the spin-Seebeck coefficient to the charge-Seebeck coefficient of a negative-U quantum dot where the corresponding result was recently reported by Andergassen [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.241107 84, 241107 (2011)]. For several regimes, we provide simplified analytical expressions. In the Kondo regime, the dependence of the spin-Seebeck coefficient on the temperature and the magnetic field is explained in terms of the shift of the Kondo resonance due to the field and its broadening with the temperature and the field. We also consider the influence of breaking the particle-hole symmetry and show that a pure spin current can still be realized, provided a suitable electric voltage is applied across the dot. Then, except for large asymmetries, the behavior of the spin-Seebeck coefficient remains similar to that found in the particle-hole-symmetric point.

  5. Universal spin transport in a strongly interacting Fermi gas.

    PubMed

    Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W

    2011-04-14

    Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.

  6. Interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    2016-02-01

    The recent experimental realization of spin-orbit (SO) coupling for spin-1 ultracold atoms opens an interesting avenue for exploring SO-coupling-related physics in large-spin systems, which is generally unattainable in electronic materials. In this paper, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 Bose-Einstein condensates (BECs) in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting in-phase or out-of-phase modulating patterns between spin-tensor and zero-spin-component density waves. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a double maxon-roton structure in the Bogoliubov-excitation spectrum, attributed to the three band minima of the SO-coupled spin-1 BEC.

  7. Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin

    NASA Astrophysics Data System (ADS)

    Giavaras, G.

    2017-03-01

    Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.

  8. Spin Relaxation in Kondo Lattice Systems with Anisotropic Kondo Interaction

    NASA Astrophysics Data System (ADS)

    Belov, S. I.; Kutuzov, A. S.

    2016-12-01

    We study the influence of the Kondo effect on the spin relaxation in systems with anisotropic Kondo interaction at temperatures both high and low as compared with the static magnetic field. In the absence of the Kondo effect, the electron spin resonance linewidth is not narrowed in the whole temperature range due to the high anisotropy of the Kondo interaction. The Kondo effect leads to the universal energy scale, which regulates the temperature and magnetic field dependence of different kinetic coefficients and results in a mutual cancelation of their singular parts in a collective spin mode.

  9. Note on spin orbit interactions in nuclei and hypernuclei

    NASA Astrophysics Data System (ADS)

    Kaiser, N.; Weise, W.

    2008-05-01

    A detailed comparison is made between the spin-orbit interactions in Λ hypernuclei and ordinary nuclei. We argue that there are three major contributions to the spin-orbit interaction: (1) a short-range component involving scalar and vector mean fields; (2) a "wrong-sign" spin-orbit term generated by the pion exchange tensor force in second order; and (3) a three-body term induced by two-pion exchange with excitation of virtual Δ (1232)-isobars (à la Fujita-Miyazawa). For nucleons in nuclei the long-range pieces related to the pion-exchange dynamics tend to cancel, leaving room dominantly for spin-orbit mechanisms of short-range origin (parametrized, e.g., in terms of relativistic scalar and vector mean fields terms). In contrast, the absence of an analogous 2π-exchange three-body contribution for Λ hyperons in hypernuclei leads to an almost complete cancellation between the short-range (relativistic mean-field) component and the "wrong-sign" spin-orbit interaction generated by second order π-exchange with an intermediate Σ hyperon. These different balancing mechanisms between short- and long-range components are able to explain simultaneously the very strong spin-orbit interaction in ordinary nuclei and the remarkably weak spin-orbit splitting in Λ hypernuclei.

  10. Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Nie, Yi-Hang

    2016-11-01

    We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spin-orbital interaction (RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green’s function method in the linear response regime. Under the appropriate configuration of magnetic flux phase and RSOI phase, the spin figure of merit can be enhanced and is even larger than the charge figure of merit. In particular, the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs. For some specific configuration of the two phases, the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero, which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274208 and 11447170).

  11. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    2015-03-01

    A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.

  12. Interactions of massless higher spin fields from string theory

    SciTech Connect

    Polyakov, Dimitri

    2010-09-15

    We construct vertex operators for massless higher spin fields in Ramond-Neveu-Schwarz superstring theory and compute some of their three-point correlators, describing gauge-invariant cubic interactions of the massless higher spins. The Fierz-Pauli on-shell conditions for the higher spins (including tracelessness and vanishing divergence) follow from the Becchi-Rouet-Stora-Tyutin-invariance conditions for the vertex operators constructed in this paper. The gauge symmetries of the massless higher spins emerge as a result of the Becchi-Rouet-Stora-Tyutin-nontriviality conditions for these operators, being equivalent to transformations with the traceless gauge parameter in the Fronsdal's approach. The gauge invariance of the interaction terms of the higher spins is therefore ensured automatically by that of the vertex operators in string theory. We develop a general algorithm to compute the cubic interactions of the massless higher spins and use it to explicitly describe the gauge-invariant interaction of two s=3 and one s=4 massless particles.

  13. Decoherence of a single spin coupled to an interacting spin bath

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Fröhling, Nina; Xing, Xi; Hackmann, Johannes; Nanduri, Arun; Anders, Frithjof B.; Rabitz, Herschel

    2016-01-01

    Decoherence of a central spin coupled to an interacting spin bath via inhomogeneous Heisenberg coupling is studied by two different approaches, namely an exact equations of motion (EOMs) method and a Chebyshev expansion technique (CET). By assuming a wheel topology of the bath spins with uniform nearest-neighbor X X -type intrabath coupling, we examine the central spin dynamics with the bath prepared in two different types of bath initial conditions. For fully polarized baths in strong magnetic fields, the polarization dynamics of the central spin exhibits a collapse-revival behavior in the intermediate-time regime. Under an antiferromagnetic bath initial condition, the two methods give excellently consistent central spin decoherence dynamics for finite-size baths of N ≤14 bath spins. The decoherence factor is found to drop off abruptly on a short time scale and approach a finite plateau value which depends on the intrabath coupling strength nonmonotonically. In the ultrastrong intrabath coupling regime, the plateau values show an oscillatory behavior depending on whether N /2 is even or odd. The observed results are interpreted qualitatively within the framework of the EOM and perturbation analysis. The effects of anisotropic spin-bath coupling and inhomogeneous intrabath bath couplings are briefly discussed. Possible experimental realization of the model in a modified quantum corral setup is suggested.

  14. Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements

    NASA Astrophysics Data System (ADS)

    Wagemans, W.; Schellekens, A. J.; Kemper, M.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B.

    2011-05-01

    The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.

  15. Coulomb interaction on spin-1 particles

    NASA Astrophysics Data System (ADS)

    Owen, D. A.; Barrett, R. C.

    2003-11-01

    Using the electro-weak theory, we find the lowest order perturbative correction to a spin-1 particle in an external Coulomb field. We show this leads to a correction of order (Zα)4 and is independent of the mass of the external field. Previous work with Duffin-Kemmer-Petiau (see Nedjadi and Barrett [J. Math. Phys. 35 (1994) 4517]) and the Proca equation has failed to produce this correction.

  16. Optical Nanoprobing via Spin-Orbit Interaction of Light

    NASA Astrophysics Data System (ADS)

    Rodríguez-Herrera, Oscar G.; Lara, David; Bliokh, Konstantin Y.; Ostrovskaya, Elena A.; Dainty, Chris

    2010-06-01

    We show, both theoretically and experimentally, that high-numerical-aperture (NA) optical microscopy is accompanied by strong spin-orbit interaction of light, which translates fine information about the specimen to the polarization degrees of freedom of light. An 80 nm gold nanoparticle scattering the light in the focus of a high-NA objective generates angular momentum conversion, which is seen as a nonuniform polarization distribution at the exit pupil. We demonstrate remarkable sensitivity of the effect to the position of the nanoparticle: Its subwavelength displacement produces the giant spin-Hall effect, i.e., macroseparation of spins in the outgoing light. This brings forth a far-field optical nanoprobing technique based on the spin-orbit interaction of light.

  17. Spin response of a normal Fermi liquid with noncentral interactions

    SciTech Connect

    Pethick, C. J.; Schwenk, A.

    2009-11-15

    We consider the spin response of a normal Fermi liquid with noncentral interactions under conditions intermediate between the collisionless and hydrodynamic regimes. This problem is of importance for calculations of neutrino properties in dense matter. By expressing the deviation of the quasiparticle distribution function from equilibrium in terms of eigenfunctions of the transport equation under the combined influence of collisions and an external field, we derive a closed expression for the spin-density-spin-density response function and compare its predictions with that of a relaxation-time approximation. Our results indicate that the relaxation-time approximation is reliable for neutrino properties under astrophysically relevant conditions.

  18. Hole-Nuclear Spin Interaction in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eble, B.; Testelin, C.; Desfonds, P.; Bernardot, F.; Balocchi, A.; Amand, T.; Miard, A.; Lemaître, A.; Marie, X.; Chamarro, M.

    2009-04-01

    We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe and time-resolved photoluminescence experiments. We obtained experimental evidence of the hyperfine interaction between hole and nuclear spins. In the absence of an external magnetic field, our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei lead to a hole-spin dephasing time for an ensemble of dots of 14 ns, in close agreement with experiments.

  19. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  20. Thomas precession and spin interaction energy in very special relativity

    NASA Astrophysics Data System (ADS)

    Ganjitabar, Hassan; Shojai, Ali

    2014-08-01

    Very Special Relativity (VSR), proposed by Cohen and Glashow, considers one of the subgroups of Poincaré group as the symmetry of spacetime. This paper investigates the transformations of electromagnetic fields under boosts of VSR, and by the aid of them studies the interaction energy between spin of an electron and external electromagnetic fields. Here, we argue that Thomas precession, one of the consequences of Special Relativity (SR), does not exist in HOM(2) avatar of VSR. The predictions of SR and VSR about the spin interaction energy in a certain case are compared, and despite the absence of Thomas precession in VSR, no noticeable departure is seen.

  1. Thermoelectric effects in graphene with local spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Alomar, M. I.; Sánchez, David

    2014-03-01

    We investigate the transport properties of a graphene layer in the presence of Rashba spin-orbit interaction. Quite generally, spin-orbit interactions induce spin splittings and modifications of the graphene band structure. We calculate within the scattering approach the linear electric and thermoelectric responses of a clean sample when the Rashba coupling is localized around a finite region. We find that the thermoelectric conductance, unlike its electric counterpart, is quite sensitive to external modulations of the Fermi energy. Therefore, our results suggest that thermocurrent measurements may serve as a useful tool to detect nonhomogeneous spin-orbit interactions present in a graphene-based device. Furthermore, we find that the junction thermopower is largely dominated by an intrinsic term independently of the spin-orbit potential scattering. We discuss the possibility of canceling the intrinsic thermopower by resolving the Seebeck coefficient in the subband space. This causes unbalanced populations of electronic modes which can be tuned with external gate voltages or applied temperature biases.

  2. Progressive freezing of interacting spins in isolated finite magnetic ensembles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Dupuis, Veronique; Le-Roy, Damien; Deb, Pritam

    2017-02-01

    Self-organization of magnetic nanoparticles into secondary nanostructures provides an innovative way for designing functional nanomaterials with novel properties, different from the constituent primary nanoparticles as well as their bulk counterparts. Collective magnetic properties of such complex closed packing of magnetic nanoparticles makes them more appealing than the individual magnetic nanoparticles in many technological applications. This work reports the collective magnetic behaviour of magnetic ensembles comprising of single domain Fe3O4 nanoparticles. The present work reveals that the ensemble formation is based on the re-orientation and attachment of the nanoparticles in an iso-oriented fashion at the mesoscale regime. Comprehensive dc magnetic measurements show the prevalence of strong interparticle interactions in the ensembles. Due to the close range organization of primary Fe3O4 nanoparticles in the ensemble, the spins of the individual nanoparticles interact through dipolar interactions as realized from remnant magnetization measurements. Signature of super spin glass like behaviour in the ensembles is observed in the memory studies carried out in field cooled conditions. Progressive freezing of spins in the ensembles is corroborated from the Vogel-Fulcher fit of the susceptibility data. Dynamic scaling of relaxation reasserted slow spin dynamics substantiating cluster spin glass like behaviour in the ensembles.

  3. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3

  4. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  5. Nonlinear wave interaction and spin models in the magnetohydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Lundin, J.; Zamanian, J.; Stefan, M.

    2011-08-01

    Here we consider the influence on the electron spin in the magnetohydrodynamic (MHD) regime. Recently developed models that include spin-velocity correlations are taken as the starting point. A theoretical argument is presented, suggesting that in the MHD regime a single-fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three-wave interaction of two shear Alfvén waves and a compressional Alfvén wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, because the predictions of the two models agree completely. Furthermore, the three-wave coupling coefficients obey the Manley-Rowe relations, which further support the soundness of the models and the validity of the assumptions made in the derivation. Finally, we point out that the proposed two-fluid model can be incorporated in standard particle-in-cell schemes with only minor modifications.

  6. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  7. Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

    NASA Astrophysics Data System (ADS)

    Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji

    2013-10-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi

  8. Character of matter in holography: Spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Seo, Yunseok; Kim, Keun-Young; Kim, Kyung Kiu; Sin, Sang-Jin

    2016-08-01

    Gauge/Gravity duality as a theory of matter needs a systematic way to characterise a system. We suggest a 'dimensional lifting' of the least irrelevant interaction to the bulk theory. As an example, we consider the spin-orbit interaction, which causes magneto-electric interaction term. We show that its lifting is an axionic coupling. We present an exact and analytic solution describing diamagnetic response. Experimental data on annealed graphite shows a remarkable similarity to our theoretical result. We also find an analytic formulas of DC transport coefficients, according to which, the anomalous Hall coefficient interpolates between the coherent metallic regime with ρxx2 and incoherent metallic regime with ρxx as we increase the disorder parameter β. The strength of the spin-orbit interaction also interpolates between the two scaling regimes.

  9. Magnetoelectric effects in the spin 1/2 XX chain with three spin interactions and Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Durganandini, P.

    We consider the spin 1/2 XX chain with three spin interactions of the XZX+YXY and XZY-YZX types in an external magnetic field and with Dzyaloshinskii-Moriya (D-M) interaction. Interpreting the D-M interaction as a local electric polarization, we study the magnetoelectric effects in the system by using the exact solution of the problem. We obtain the ground state phase diagram by calculating the electric polarization, magnetization and isentropes. There are various regimes of magnetic and electric polarization depending on the relative strengths of the three spin interaction as well as that of the external fields. For a certain range of three spin interaction strengths, the system shows the existence of finite magnetization and electric polarization even in the absence of any external fields. The external electric and magnetic fields modify the ground state phases and can be used to tune the various regimes. We also calculate the entropy and analyze the electrocaloric and magnetocaloric effects. We show that the electrocaloric and magnetocaloric effects can be used to obtain information about the magnetoelectric effects in the system. I thank DST, India for financial support through research grant.

  10. Frequent Spin Reorientation of Galaxies due to Local Interactions

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2014-04-01

    We study the evolution of angular momenta of M * = 1010-1012 M ⊙ galaxies utilizing large-scale ultra-high resolution cosmological hydrodynamic simulations and find that the spin of the stellar component changes direction frequently because of interactions with nearby systems, such as major mergers, minor mergers, significant gas inflows, and torques. The rate and nature of change of spin direction cannot be accounted for by large-scale tidal torques, because the rates of the latter fall short by orders of magnitude and because the apparent random swings of the spin direction are inconsistent with the alignment by linear density field. The implications for galaxy formation as well as the intrinsic alignment of galaxies are profound. Assuming the large-scale tidal field is the sole alignment agent, a new picture emerging is that intrinsic alignment of galaxies would be a balance between slow large-scale coherent torquing and fast spin reorientation by local interactions. What is still open is whether other processes, such as feeding galaxies with gas and stars along filaments or sheets, introduce coherence for spin directions of galaxies along the respective structures.

  11. Effects of interaction and polarization on spin-charge separation: A time-dependent spin-density-functional theory study

    NASA Astrophysics Data System (ADS)

    Xianlong, Gao

    2010-03-01

    We calculate the nonequilibrium dynamic evolution of a one-dimensional system of two-component fermionic atoms after a strong local quench by using a time-dependent spin-density-functional theory. The interaction quench is also considered to see its influence on the spin-charge separation. It is shown that the charge velocity is larger than the spin velocity for the system of on-site repulsive interaction (Luttinger liquid), and vise versa for the system of on-site attractive interaction (Luther-Emery liquid). We find that both the interaction quench and polarization suppress the spin-charge separation.

  12. Spin-dependent Seebeck effect in Aharonov-Bohm rings with Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Li, Yunyun; Zhou, Jun; Nakayama, Tsuneyoshi; Li, Baowen

    2016-06-01

    We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.

  13. Interplay between spin-orbit coupling and Hubbard interaction in SrIrO3 and related Pbnm perovskite oxides

    NASA Astrophysics Data System (ADS)

    Zeb, M. Ahsan; Kee, Hae-Young

    2012-08-01

    There has been a rapidly growing interest in the interplay between spin-orbit coupling (SOC) and the Hubbard interaction U in correlated materials. A current consensus is that the stronger the SOC, the smaller is the critical interaction Uc required for a spin-orbit Mott insulator, because the atomic SOC splits a band into different total angular momentum bands, narrowing the effective bandwidth. It was further claimed that at large enough SOC, the stronger the SOC, the weaker the Uc, because in general the effective SOC is enhanced with increasing electron-electron interaction strength. Contrary to this expectation, we find that, in orthorhombic perovskite oxides (Pbnm), the stronger the SOC, the bigger the Uc. This originates from a line of Dirac nodes in Jeff=1/2 bands near the Fermi level, inherited from a combination of the lattice structure and a large SOC. Due to this protected line of nodes, there are small hole and electron pockets in SrIrO3, and such a small density of states makes the Hubbard interaction less efficient in building a magnetic insulator. The full phase diagram in U vs SOC is obtained, where nonmagnetic semimetal, magnetic metal, and magnetic insulator are found. Magnetic ordering patterns beyond Uc are also presented. We further discuss implications of our finding in relation to other perovskites such as SrRhO3 and SrRuO3.

  14. Spin effects in the weak interaction

    SciTech Connect

    Freedman, S.J. Chicago Univ., IL . Dept. of Physics Chicago Univ., IL . Enrico Fermi Inst.)

    1990-01-01

    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.

  15. Enhanced optical spin current injection in the hexagonal lattice with intrinsic and Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Zou, Jianfei; Tang, Chunmei; Zhang, Aimei

    2017-04-01

    We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin-orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency.

  16. Synchronization of spin torque nano-oscillators through dipolar interactions

    SciTech Connect

    Chen, Hao-Hsuan Wu, Jong-Ching Horng, Lance; Lee, Ching-Ming; Chang, Ching-Ray Chang, Jui-Hang

    2014-04-07

    In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory.

  17. Competing exotic quantum phases of spin- 12 ultracold lattice bosons with extended spin interactions

    DOE PAGES

    Chang, Chia-Chen; Rousseau, Valéry G.; Scalettar, Richard T.; ...

    2015-08-12

    Advances in pure optical trapping techniques now allow the creation of degenerate Bose gases with internal degrees of freedom. Systems such as 87Rb, 39K or 23Na in the F = 1 hyperfine state offer an ideal platform for studying the interplay of super fluidity and quantum magnetism. Motivated by the experimental developments, we study ground state phases of a two-component Bose gas loaded on an optical lattice. We describe this effectively by the Bose-Hubbard Hamiltonian with onsite and near neighbor spin-spin interactions. One important feature of our investigation is the inclusion of interconversion (spin-flip) terms between the two species, whichmore » has been observed in optical lattice experiments. Furthermore, using mean-field theory and quantum Monte Carlo simulations, we map out the phase diagram of the system. A rich variety of phases is identified, including antiferromagnetic (AF) Mott insulators, ferromagnetic and AF super fluids.« less

  18. Energy levels and exchange interactions of spin clusters

    NASA Astrophysics Data System (ADS)

    Belorizky, E.

    1993-02-01

    We first describe a simple method for diagonalizing the isotropic exchange Hamiltonian of a cluster of N spins in the most general case where all the exchange constants are different. The technique, based on the rotation invariance of the system, leads to a considerable reduction of the total matrix. Simple expressions of the magnetization and susceptibility are provided and an example of the determination of the exchange constants of a complex with five Cu^{2+} ions is given. It is also shown that for a large variety of spin configurations occuring in metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian in a straightforward way by using recoupling techniques. This allows to solve problems up to a nine spin cluster with spins having different g values. This survey is pursued by the theoretical approach of the magnetic properties of interacting spins on a finite ring with a detailed study of an oligonuclear metal nitroxide complex formed by six Mn^{2+}(S = 5/2) and six free radicals (s = 1/2). The temperature behaviour of the susceptibility is interpreted with a semi-classical model of a cyclic alternate finite chain. Finally we give a procedure for determining the three exchange constants of three spin 1/2 coupled by isotropic exchange constants in the unsolved case where these constants are all dilferent. Nous décrivons d'abord une méthode simple pour diagonaliser l'Hamiltonien d'échange isotrope d'un cluster de N spins dans le cas le plus général où toutes les constantes d'échange sont différentes. La technique, basée sur l'invariance rotationnelle du système, conduit à une réduction considérable de la matrice totale. On donne des expressions simples de l'aimantation et de la susceptibilité et la méthode est appliquée à la détermination des interactions d'échange d'un complexe comprenant cinq ions Cu^{2+}. On montre également que pour une assez grande variété de configurations de spins pr

  19. All spin logic: Modeling multi-magnet networks interacting via spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    The increasing level of power dissipation in today's transistors, due to their continued downscaling, has led to an interest in alternatives to charge-based electronics for information processing. All-spin logic (ASL) represents one such new approach where the roles of charges and capacitors in CMOS are now played by spins and magnets. Available experiments utilizing this principle show operating voltages of the order of few tens of milli-volts, far below today's transistors. However, before an alternative logic scheme — like ASL — can be employed to build logic circuits, certain characteristics have to first be exhibited at the device level such as directionality of information transfer, implementing universal logic gates, cascading and fan-out. In order to devise and analyze ASL based strategies that can incorporate these device characteristics, this report first introduces a novel 4-component Spin-Circuit formalism, which is then coupled to an existing model for magnetization dynamics. This coupled model can simultaneously describe two distinct physical phenomena: (1) spin torque switching of magnets and (2) generation and transport of non-collinear spin currents in spin diffusive channels. The model is first benchmarked against available experimental data and is then used to provide key insights at the ASL device level, such as how to incorporate inbuilt directionality of information transfer and to propose scaling laws. Towards the end of this report, the model is extended to simulate multi-magnet ASL networks interacting via spin currents. In particular, examples of an ASL ring oscillator and a universal NAND gate are presented, which form the basis for designing large scale ASL circuits.

  20. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  1. The spin-flip extended single excitation configuration interaction method

    NASA Astrophysics Data System (ADS)

    Casanova, David; Head-Gordon, Martin

    2008-08-01

    An extension of the spin-flip single excitation configuration interaction (SF-CIS) method is introduced. The extension, abbreviated as SF-XCIS, includes all configurations in which no more than one virtual level of the high spin triplet reference becomes occupied and no more than one doubly occupied level becomes vacant. The number of such configurations is quadratic with molecule size, and the method is implemented in a direct algorithm whose cost scales in the same way with molecule size as CIS itself, thus permitting applications to large systems. Starting from a spin restricted triplet determinant, SF-XCIS yields spin-pure singlet, triplet, and quintet states, and treats both half-occupied reference orbitals in a fully balanced way to allow application to strongly correlated problems. Tests on bond dissociation in the HF molecule, the torsional potential of ethylene, and excited states of polyenes show encouraging improvements using SF-XCIS compared to SF-CIS and a previously suggested extension, the spin-complete CIS model.

  2. Visualization of Distance Distribution from Pulsed Double Electron-Electron Resonance Data

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.; Kim, Nak-Kyoon; DeRose, Victoria J.

    2004-01-01

    Double electron-electron resonance (DEER), also known as pulsed electron-electron double resonance (PELDOR), is a time-domain electron paramagnetic resonance method that can measure the weak dipole-dipole interactions between unpaired electrons. DEER has been applied to discrete pairs of free radicals in biological macromolecules and to clusters containing small numbers of free radicals in polymers and irradiated materials. The goal of such work is to determine the distance or distribution of distances between radicals, which is an underdetermined problem. That is, the spectrum of dipolar interactions can be readily calculated for any distribution of free radicals, but there are many, quite different distributions of radicals that could produce the same experimental dipolar spectrum. This paper describes two methods that are useful for approximating the distance distributions for the large subset of cases in which the mutual orientations of the free radicals are uncorrelated and the width of the distribution is more than a few percent of its mean. The first method relies on a coordinate transformation and is parameter free, while the second is based on iterative least-squares with Tikhonov regularization. Both methods are useful in DEER studies of spin labeled biomolecules containing more than two labels.

  3. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    PubMed Central

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  4. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  5. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-11-12

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  6. Energy spectra of a spin-½ XY spin molecule interacting with a single mode field cavity: Numerical study

    NASA Astrophysics Data System (ADS)

    Tonchev, H.; Donkov, A. A.; Chamati, H.

    2016-10-01

    In a previous paper [J.Phys.: Conf. Ser. 682 (2016) 012032] we studied analytically the energy spectra of a finite-size spin ½ XY chain (molecule) coupled at an arbitrary spin site to a single mode of an electromagnetic field via the Jaynes-Cummings model. We considered spin rings and open spin molecules with up to 4 spins and an interaction restricted to nearest-neighbours. Here we extend our investigation, addressing numerically the energy spectra of molecules of up to 10 spins with nearest-neighbour or long- range interaction. Furthermore we analyze the behaviour of an invariant operator, constructed by combining the magnetization of the spin-chain and the total number of photons in the system. We found a strong dependence on the number (even or odd) of sites in the molecules. This study is aimed at finding the appropriate combination of the physical parameters that could make the system suitable for use in quantum computations.

  7. Interactions of spins and electrons in highly correlated systems

    NASA Astrophysics Data System (ADS)

    Husmann, Anke

    In this thesis, we have been interested in two particular systems. NiSsb2 is a Mott-Hubbard system in which strong electron-electron interactions split the half-filled conduction band and open up a gap, which can be suppressed by substituting Se for S and/or by applying hydrostatic pressure. At finite temperature, it is well established that the metal-insulator transition in Mott-Hubbard systems is of first order, as can be seen in many systems. However, when the transition temperature is suppressed to zero (the so-called quantum phase transition), the nature of the phase transition as a function of the electron-electron interactions is not known. The challenge in characterising this quantum phase transition lies in the difficulty of finding a suitable experimental system. The constraints on the system are rather stringent, and Ni(S,Se)sb2 is (to date) the only known Mott-Hubbard system which can be used for the study of critical behaviour. The perovskite manganites, such as LaMnOsb3, are the prototype of materials where the double exchange mechanism couples the conduction electrons strongly to the magnetic ordering of the background lattice. This leads to a variety of differently ordered ground states, such as ferromagnetic metals and insulators, antiferromagnetic insulators, and also charge ordered antiferromagnets. These materials can be tuned in many ways. We are interested in only a small subset of this rich phase space. Prsb{0.5}Srsb{0.5}MnOsb3 and Ndsb{0.5}Srsb{0.5}MnOsb3 undergo two magnetic phase transitions as a function of decreasing temperature: the second order Curie (ferromagnetic ordering) temperature, TsbC, is followed by the first order Neel (antiferromagnetic ordering) temperature, TsbN, which coincides in Ndsb{0.5}Srsb{0.5}MnOsb3 with the charge ordering temperature, TsbCO. The peculiarity in these two materials is that TsbN can be suppressed to zero by applying a magnetic field. The nature of the charge degrees of freedom at low temperatures as

  8. Theoretical Study of Interaction between Photons and Single Spins

    NASA Astrophysics Data System (ADS)

    Chen, Ting

    Spin is a promising candidate for new resources of information technology. The major applications of spin-based technology are quantum computation, quantum communication and high-sensitive magnetometry. Optical control and detection of spin coherence are important techniques for such applications. In quantum communication and distributed quantum computing, quantum networks consisting of local nodes which are connected by quantum channels are essential. They provide platforms for transmission of flying qubits from one node to another. Within physical implementation of such networks, local nodes consist of clusters of stationary qubits. A single photon can form the flying qubit. The quantum information carried by the flying qubits can be conducted between local nodes through waveguides. Therefore quantum interfacing is the key element for the scalability in the quantum network. In the first two chapters of the thesis, we focus on the strong coupling region of the quantum interfacing. Solid-state systems have the advantages of stability and integratability. In solid-state systems, one-dimensional waveguides serve as an outstanding medium for transporting photons. Waveguides provide suitable circumstance for the strong interaction between photons and atoms for the small interaction section. This strong coupling between the atom and waveguide allows the photons to be directionally emitted into one optical channel connecting different quantum nodes. First, we follow the control scheme of the interplay between a stationary qubit and a flying qubit at an interface, which is composed of a Λ-type system coupled to a one-dimensional waveguide. It shows that the sending and receiving process can be independently controlled by changing the driving laser pulses. We extend a general control scheme of a spin-photon quantum interface. Our scheme removes the constraints of Markovian process and therefore can be applied to the atom-waveguide devices for quantum network applications

  9. Enhanced spin orbit interaction of graphene by Ir cluster decoration

    NASA Astrophysics Data System (ADS)

    Song, Fengqi; Qin, Yuyuan; Li, Zhaoguo; Wang, Siqi; Wang, Baigeng; Collaborative Innovation Center of Advanced Microstructures Team

    2015-03-01

    Enhancing the strength of the intrinsic spin orbit (SO) coupling in graphene is a critical issue in achieving the quantum spin Hall effect predicted by Haldane et al. Here we report the measurements of the weak localizations in graphene, which has been decorated by Ir clusters. The SO scattering rate (τEM) is extracted by fitting the curves using the formula of E. MacCan. It is found that τEM is monotonically dependent on the electronic relaxation time. Further analysis points that it obeys an Elliot-Yafet relaxation, which can be attributed to the dominance of Kane-Mele τEM interaction. The SO interaction strength can be extracted by fitting the τEM data dependent on the gate voltage. After considering the temperature effect, an SO strength value of 5 ~ 7meV is achieved, which has been greatly enhanced as compared to that of pristine graphene.

  10. Giant spin-Hall effect induced by the Zeeman interaction in graphene.

    PubMed

    Abanin, D A; Gorbachev, R V; Novoselov, K S; Geim, A K; Levitov, L S

    2011-08-26

    We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of an external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by the Zeeman interaction, and do not involve a spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications.

  11. Numerical simulations of a ballistic spin interferometer with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyue; Sun, Qing-Feng; Chen, Bin; Xie, X. C.

    2006-08-01

    We numerically investigate the transport behavior of a quasi-one-dimensional (1D) square loop device containing the Rashba spin-orbital interaction in the presence of a magnetic flux. The conductance versus the magnetic field shows the Al’tshuler-Aronov-Spivak (AAS) and Aharonov-Bohm (AB) oscillations. We focus on the oscillatory amplitudes, and find that both of them are strongly dependent on the spin precession angle (i.e., the strength of the spin-orbit interaction) and exhibit no periodic oscillations, in good agreement with a recent experiment by Koga [cond-mat/0504743 (unpublished)]. However, our numerical results for the ideal 1D square loop device for the node positions of the amplitudes of the AB and AAS oscillations are found to show some discrepancies with the results for quasi-1D square loops with a finite width. In the presence of disorder and taking the disorder ensemble average, the AB oscillation in the conductance disappears, while the time-reversal symmetric AAS oscillation still remains. Furthermore, the node positions of the AAS oscillatory amplitude remain the same.

  12. Stripe phase and double-roton excitations in interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    Spin-orbit (SO) coupling plays a major role in many important phenomena in condensed matter physics. However, the SO coupling physics in high-spin systems, especially with superfluids, has not been well explored because of the spin half of electrons in solids. In this context, the recent experimental realization of spin-orbit coupling in spin-1 Bose-Einstein condensates (BECs) has opened a completely new avenue for exploring SO-coupled high-spin superfluids. Nevertheless, the experiment has only revealed the single-particle physics of the system. Here, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 BECs in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting two modulating patterns. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC. Our work could motivate further theoretical and experimental study along this direction.

  13. Effect of Spin-Orbit Coupling to Interacting Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoling

    2013-05-01

    The recent realization of spin-orbit (SO) coupling in neutral atoms has opened up new directions to explore novel SO effects in a diversity of new physical settings. In this talk, I shall discuss two important effects of SO coupling to interacting ultracold atoms. First, the presence of SO coupling will inevitably induce mixed scatterings and interference between different partial-waves, and as a result it could significantly affect the validity of widely-used pseudo-potentials. Explicitly, the s-wave pseudo-potential alone is approximately valid under more stringent conditions, while the p-wave pseudo-potential alone can no longer be used even near p-wave resonance. These results indicate a fundamental change of short-range physics for interacting atoms in high orbits, due to destructive interference with lower ones. Second, the presence of SO coupling will induce exotic scattering between spin-1/2 bosons confined in a quasi-one-dimensional waveguide, and lead to a Tonks gas with unique properties that have not been unveiled before. Explicitly, SO coupling will break the magnetization conservation during the scattering process, and also induce a sequence of scattering resonances (or Tonks limit) simultaneously in all scattering channels. Unlike the usual Tonks gas of identical bosons, the Tonks gas here, with strong spin-orbit entanglement, exhibits rich textures in spin and density distributions. These features can be directly observed in current cold atom experiment. This work is supported by Tsinghua University Initiative Scientific Research Program and National Natural Science Foundation of China Grant No. 11104158.

  14. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toru; Koretsune, Takashi; Arita, Ryotaro; Tatara, Gen

    2016-06-01

    We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn1 -xFexGe and Fe1 -xCoxGe .

  15. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current.

    PubMed

    Kikuchi, Toru; Koretsune, Takashi; Arita, Ryotaro; Tatara, Gen

    2016-06-17

    We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn_{1-x}Fe_{x}Ge and Fe_{1-x}Co_{x}Ge.

  16. Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe2Se3

    DOE PAGES

    Wang, Meng; Yi, Ming; Jin, Shangjian; ...

    2016-07-20

    In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe2Se3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.

  17. Spin-chirality decoupling in the one-dimensional Heisenberg spin glass with long-range power-law interactions.

    PubMed

    Viet, Dao Xuan; Kawamura, Hikaru

    2010-08-27

    We study the issue of the spin-chirality decoupling or coupling in the ordering of the Heisenberg spin glass by performing large-scale Monte Carlo simulations on a one-dimensional Heisenberg spin-glass model with a long-range power-law interaction up to large system sizes. We find that the spin-chirality decoupling occurs for an intermediate range of the power-law exponent. Implications to the corresponding d-dimensional short-range model are discussed.

  18. Spin torque and interactions in ferromagnetic semiconductor domain walls

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth Ann

    The motion of domain walls due to the spin torque generated by coherent carrier transport is of considerable interest for the development of spintronic devices. We model the charge and spin transport through domain walls in ferromagnetic semiconductors for various systems. With an appropriate model Hamiltonian for the spin-dependent potential, we calculate wavefunctions inside the domain walls which are then used to calculate transmission and reflection coefficients, which are then in turn used to calculate current and spin torque. Starting with a simple approximation for the change in magnetization inside the domain wall, and ending with a sophisticated transfer matrix method, we model the common pi wall, the less-studied 2pi wall, and a system of two pi walls separated by a variable distance. We uncover an interesting width dependence on the transport properties of the domain wall. 2pi walls in particular, have definitive maximums in resistance and spin torque for certain domain wall widths that can be seen as a function of the spin mistracking in the system---when the spins are either passing straight through the domain wall (narrow walls) or adiabatically following the magnetization (wide walls), the resistance is low as transmission is high. In the intermediate region, there is room for the spins to rotate their magnetization, but not necessarily all the way through a 360 degree rotation, leading to reflection and resistance. We also calculate that there are widths for which the total velocity of a 2pi wall is greater than that of a same-sized pi wall. In the double-wall system, we model how the system reacts to changes in the separation of the domain walls. When the domain walls are far apart, they act as a spin-selective resonant double barrier, with sharp resonance peaks in the transmission profile. Brought closer and closer together, the number and sharpness of the peaks decrease, the spectrum smooths out, and the domain walls brought together have a

  19. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  20. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Takashi

    2015-10-01

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  1. Theory of coupled spin-charge transport due to spin-orbit interaction in inhomogeneous two-dimensional electron liquids

    NASA Astrophysics Data System (ADS)

    Shen, Ka; Raimondi, R.; Vignale, G.

    2014-12-01

    Spin-orbit interactions in two-dimensional electron liquids are responsible for many interesting transport phenomena in which particle currents are converted to spin polarizations and spin currents and vice versa. Prime examples are the spin Hall effect, the Edelstein effect, and their inverses. By similar mechanisms, it is also possible to partially convert an optically induced electron-hole density wave to a spin density wave and vice versa. In this paper, we present a unified theoretical treatment of these effects based on quantum kinetic equations that include not only the intrinsic spin-orbit coupling from the band structure of the host material, but also the spin-orbit coupling due to an external electric field and a random impurity potential. The drift-diffusion equations we derive in the diffusive regime are applicable to a broad variety of experimental situations, both homogeneous and nonhomogeneous, and include on equal footing "skew scattering" and "side jump" from electron-impurity collisions. As a demonstration of the strength and usefulness of the theory we apply it to the study of several effects of current experimental interest: the inverse Edelstein effect, the spin-current swapping effect, and the partial conversion of an electron-hole density wave to a spin density wave in a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, subject to an electric field.

  2. Spin-resolved Andreev transport through a double quantum-dot system: Role of the Rashba spin-orbit interaction

    SciTech Connect

    Nian, L. L.; Zhang, Lei; Tang, Fu-Rong; Xue, L. P.; Zhang, Rong; Bai, Long

    2014-06-07

    Using the nonequilibrium Green's function technique, spin-related Andreev tunneling through a double quantum-dot device attached to a ferromagnetic and a superconducting leads in the presence of the Rashba spin-orbit interaction is explored. We derive the general formulas of spin-related currents, which provide an insight into the Andreev reflection. Our study demonstrates that the spin-polarized Andreev reflection can be achieved, even the pure spin injection may be realized via the spin-orbit coupling and the Zeeman field. The currents show the interesting step-like behaviors and the pronounced rectification effect in the Andreev reflection regime, and the magnitude of currents can be enhanced with increasing the spin polarization of the ferromagnetic electrode. The strong Zemann field and the relative temperature are not favor of the spin-related Andreev transport; moreover, the existence of negative differential conductance of the spin-polarized current under certain conditions is observed and analyzed. These results provide the new ways to manipulate the spin-dependent transport.

  3. Interaction induced staggered spin-orbit order in two-dimensional electron gas

    SciTech Connect

    Das, Tanmoy

    2012-06-05

    Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.

  4. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    SciTech Connect

    Li, Jia

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

  5. Peptide-membrane Interactions by Spin-labeling EPR

    PubMed Central

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  6. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  7. Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices

    PubMed Central

    Gong, Ming; Qian, Yinyin; Yan, Mi; Scarola, V. W.; Zhang, Chuanwei

    2015-01-01

    We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations. PMID:26014458

  8. Investigating hard sphere interactions through spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  9. Ballistic spin interferometer based on the Rashba and Dresselhaus spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Ni, Jiating; Chen, Bin; Koga, T.

    2008-09-01

    By using the Al'tshuler-Aronov-Spivak (AAS) model, we give the amplitude changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI strength. In the first idea 1D square loop (SL), Rashba SOI acts on two sides while Dresselhaus SOI acts on the other two sides. In the second SL, we consume Rashba SOI and Dresselhaus SOI act on four sides simultaneously. This model can be replaced by another one that Rashba SOI and Dresselhaus SOI act on every side independently, and each side is twice long. We theoretically illustrate the influence of the Dresselhaus SOI on node position and number. To explain the “half oscillation” phenomenon found in experiment, we apply Dresselhaus SOI to the ideal 1D SL. The conclusion is that the Dresselhaus SOI has a strong effect on the emergence of “half oscillation”.

  10. Electromagnetic Confinement via Spin-Orbit Interaction in Anisotropic Dielectrics.

    PubMed

    Alberucci, Alessandro; Jisha, Chandroth P; Marrucci, Lorenzo; Assanto, Gaetano

    2016-12-21

    We investigate electromagnetic propagation in uniaxial dielectrics with a transversely varying orientation of the optic axis, the latter staying orthogonal everywhere in the propagation direction. In such a geometry, the field experiences no refractive index gradients, yet it acquires a transversely modulated Pancharatnam-Berry phase, that is, a geometric phase originating from a spin-orbit interaction. We show that the periodic evolution of the geometric phase versus propagation gives rise to a longitudinally invariant effective potential. In certain configurations, this geometric phase can provide transverse confinement and waveguiding. The theoretical findings are tested and validated against numerical simulations of the complete Maxwell's equations. Our results introduce and illustrate the role of geometric phases on electromagnetic propagation over distances well exceeding the diffraction length, paving the way to a whole new family of guided waves and waveguides that do not rely on refractive index tailoring.

  11. Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Kessel, Pan; Skvortsov, Evgeny; Taronna, Massimo

    2016-03-01

    We consider four-dimensional higher-spin (HS) theory at the first nontrivial order corresponding to the cubic action. All HS interaction vertices are explicitly obtained from Vasiliev’s equations. In particular, we obtain the vertices that are not determined solely by the HS algebra structure constants. The dictionary between the Fronsdal fields and HS connections is found and the corrections to the Fronsdal equations are derived. These corrections turn out to involve derivatives of arbitrary order. We observe that the vertices not determined by the HS algebra produce naked infinities, when decomposed into the minimal derivative vertices and improvements. Therefore, standard methods can only be used to check a rather limited number of correlation functions within the HS AdS/CFT duality. A possible resolution of the puzzle is discussed.

  12. Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Hua; Jin, Ren-Chao; Li, Jia-Qi; Zhong, Fan; Liu, Hui; Kim, Inki; Jo, Yongjoon; Rho, Junsuk; Dong, Zheng-Gao

    2017-03-01

    The metasurface with elliptical nano-structures containing doubly degenerate geometrical charge is designed to investigate the enhanced spin-orbit optical interactions, numerically as well as experimentally. It is found that localized surface plasmon (LSP) resonance with orbital angular momentum (i.e., rotating SP vortex mode carrying extrinsic orbital angular momentum) can be induced under linearly polarized illumination. On the contrary, the LSP resonance without orbital angular momentum is formed under circularly polarized illumination. Moreover, based on the different LSP modes as results of spin-orbit interaction with alternative geometrical charge, directional propagations of surface plasmon polariton in two orthogonal trajectories depending on spin states of the incident light are presented with experimental demonstration, a phenomenon called photonic spin Hall effect.

  13. Real-time dynamics of a spin chain with Dzyaloshinskii-Moriya interactions: Spiral formation and quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2011-08-01

    We studied the nonequilibrium short-time dynamics of a spin-1/2 chain with Dzyaloshinskii-Moriya interactions after a sudden quench by a transverse field. We found that inhomogeneous spin spirals with opposite chiralities propagate from the edges toward the center of the chain. This propagation is accompanied by quantum spin oscillations which decay asymptotically with time. A theoretical description of this phenomenon is given to a good accuracy with the help of numerical calculations with the adaptive time-dependent density matrix renormalization group algorithm.

  14. Spin-orbit interactions in a helical Luttinger liquid with a Kondo impurity

    NASA Astrophysics Data System (ADS)

    Eriksson, Erik

    2013-03-01

    We study the transport properties of a helical Luttinger liquid with a Kondo impurity and spin-orbit interactions. Such a system, which may be realized at the edge of a quantum spin Hall insulator with a gate-induced electric field, provides a mechanism to electrically control the conductance. A Rashba spin-orbit interaction may even change the nature of the Kondo screening [Eriksson et al., Phys. Rev. B 86, 161103(R) (2012)]. Considering other types of spin-orbit interactions, together with an extended non-equilibrium analysis, we further improve the understanding of these phenomena.

  15. Hyperfine interaction, spin polarization, and spin delocalization as probes of donor-bridge-acceptor interactions in exchange-coupled biradicals.

    PubMed

    Kirk, Martin L; Shultz, David A; Habel-Rodriguez, Diana; Schmidt, Robert D; Sullivan, Ubie

    2010-11-18

    Computations and EPR spectroscopy are used to probe the spin distribution of donor-bridge-acceptor (D-B-A) biradical complexes: Tp(Cum,Me)Zn(SQ-NN) (1), Tp(Cum,Me)Zn(SQ-1,4-Ph-NN) (2), Tp(Cum,Me)Zn(SQ-2,5-TP-NN) (3), and Tp(Cum,Me)Zn(SQ-2,5-Xyl-NN) (4) (SQ = orthosemiquinone and NN = nitronylnitroxide). These complexes are ground-state analogs of the charge-separated excited states formed in photoinduced electron transfer reactions. The intraligand magnetic exchange interaction (J) in these complexes is mediated by the bridges and has been found to stabilize the triplet ground states of 1 and 2. Detailed spectroscopic and bonding calculations have been used to elucidate the role of the bridge fragment (B) and its conformation relative to donor (SQ) and acceptor (NN) on spin density distributions. The computed results correlate well with experimental nitrogen hyperfine coupling constants.

  16. Measuring central-spin interaction with a spin-bath by pulsed ENDOR: Towards suppression of spin diffusion decoherence

    PubMed Central

    Balian, S. J.; Kunze, M. B. A.; Mohammady, M. H.; Morley, G. W.; Witzel, W. M.; Kay, C. W. M.; Monteiro, T. S.

    2012-01-01

    We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to characterize the coupling between bismuth donor spin-qubits in Si and the surrounding spin-bath of 29Si impurities which provides the dominant decoherence mechanism (nuclear spin diffusion) at low temperatures (< 16 K). Decoupling from the spin-bath is predicted and cluster correlation expansion simulations show near-complete suppression of spin diffusion, at optimal working points. The suppression takes the form of sharply peaked divergences of the spin diffusion coherence time, in contrast with previously identified broader regions of insensitivity to classical fluctuations. ENDOR data shows anisotropic contributions are comparatively weak, so the form of the divergences is independent of crystal orientation. PMID:23082071

  17. Effective magnetic interactions in spin-orbit coupled d4 Mott insulators

    NASA Astrophysics Data System (ADS)

    Svoboda, Christopher; Randeria, Mohit; Trivedi, Nandini

    2017-01-01

    Transition metal compounds with the (t2g) 4 electronic configuration are expected to be nonmagnetic atomic singlets both in the weakly interacting regime due to spin-orbit coupling, as well as in the Coulomb dominated regime with oppositely aligned L =1 and S =1 angular momenta. However, starting with the full multiorbital electronic Hamiltonian, we show the low-energy effective magnetic Hamiltonian contains isotropic superexchange spin interactions but anisotropic orbital interactions. By tuning the ratio of superexchange to spin-orbit coupling JSE/λ , we obtain a phase transition from nonmagnetic atomic singlets to novel magnetic phases depending on the strength of Hund's coupling, the crystal structure and the number of active orbitals. Spin-orbit coupling plays a non-trivial role in generating a triplon condensate of weakly interacting excitations at antiferromagnetic ordering vector k ⃗=π ⃗ , regardless of whether the local spin interactions are ferromagnetic or antiferromagnetic. In the large JSE/λ regime, the localized spin and orbital moments produce anisotropic orbital interactions that are frustrated or constrained even in the absence of geometric frustration. Orbital frustration leads to frustration in the spin channel opening up the possibility of spin-orbital liquids with both spin and orbital entanglement.

  18. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  19. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  20. Quantum spin dynamics with pairwise-tunable, long-range interactions

    PubMed Central

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-01-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  1. Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory

    2014-05-07

    Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  2. Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg

    2014-01-01

    Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  3. Spin noise of localized electrons: Interplay of hopping and hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.

    2015-05-01

    The theory of spin fluctuations is developed for an ensemble of localized electrons, taking into account both the hyperfine interaction of electron and nuclear spins and electron hopping between the sites. The analytical expression for the spin noise spectrum is derived for an arbitrary relation between the electron spin precession frequency in a field of nuclear fluctuations and the hopping rate. An increase in the hopping rate results in a drastic change in the spin noise spectrum. The effect of an external magnetic field is briefly addressed.

  4. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  5. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction.

    PubMed

    Bulgakov, Evgeny N; Sadreev, Almas F

    2016-07-06

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  6. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  7. Spin transport in intermediate-energy heavy-ion collisions as a probe of in-medium spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-11-01

    The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin-orbit interaction is investigated within a spin- and isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin-orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100-200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin-orbit interactions once the spin-dependent observables proposed in this work can be measured.

  8. Quantum Cavity for Spin due to Spin-Orbit Interaction at a Metal Boundary

    NASA Astrophysics Data System (ADS)

    Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Gudat, W.; Eberhardt, W.; Rader, O.

    2008-12-01

    A quantum cavity for spin is created using a tungsten crystal as substrate of high nuclear charge and breaking the structural inversion symmetry through deposition of a gold quantum film. Spin- and angle-resolved photoelectron spectroscopy shows directly that quantum-well states and the “matrioshka” or Russian nested doll Fermi surface of the gold film are spin polarized and spin-orbit split up to a thickness of at least nine atomic layers. Ferromagnetic materials or external magnetic fields are not required, and the quantum film does not need to possess a high atomic number as analogous results with silver show.

  9. Exciton-plasmon and spin-plasmon interactions in hybrid semiconductor-metal nanostructures

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander

    2011-03-01

    Coulomb and electromagnetic interactions between excitons and plasmons in nanocrystals cause several effects: energy transfer between nanoparticles, plasmon enhancement, Lamb shifts of exciton lines, Fano interference. In a complex composed of semiconductor quantum dot and metal nanoparticle, plasmons interact with spin-polarized excitons. This interaction leads to the formation of coupled spin-plasmon excitations and to spin-dependent Fano resonances. If an exciton-plasmon system includes chiral elements (chiral molecules or nanocrystals), the exciton-plasmon interaction is able to create new plasmonic lines in circular dichroism spectra.

  10. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Molavi, Mohamad; Faizabadi, Edris

    2017-04-01

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter.

  11. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  12. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  13. Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects

    NASA Astrophysics Data System (ADS)

    Matityahu, Shlomi; Utsumi, Yasuhiro; Aharony, Amnon; Entin-Wohlman, Ora; Balseiro, Carlos A.

    2016-02-01

    Recent experiments have demonstrated the efficacy of chiral helically shaped molecules in polarizing the scattered electron spin, an effect termed chiral-induced spin selectivity. Here we solve a simple tight-binding model for electron transport through a single helical molecule, with spin-orbit interactions on the bonds along the helix. Quantum interference is introduced via additional electron hopping between neighboring sites in the direction of the helix axis. When the helix is connected to two one-dimensional single-mode leads, time-reversal symmetry prevents spin polarization of the outgoing electrons. One possible way to retrieve such a polarization is to allow leakage of electrons from the helix to the environment, via additional outgoing leads. Technically, the leakage generates complex site self-energies, which break unitarity. As a result, the electron waves in the helix become evanescent, with different decay lengths for different spin polarizations, yielding a net spin polarization of the outgoing electrons, which increases with the length of the helix (as observed experimentally). A maximal polarization can be measured at a finite angle away from the helix axis.

  14. Spin Wave Power Flow and Caustics in Ultrathin Ferromagnets with the Dzyaloshinskii-Moriya Interaction.

    PubMed

    Kim, Joo-Von; Stamps, Robert L; Camley, Robert E

    2016-11-04

    The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-Eshbach geometry. Morever, self-generated interface patterns can also be induced from a point-source excitation.

  15. Spin Wave Power Flow and Caustics in Ultrathin Ferromagnets with the Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Von; Stamps, Robert L.; Camley, Robert E.

    2016-11-01

    The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-Eshbach geometry. Morever, self-generated interface patterns can also be induced from a point-source excitation.

  16. Non-linear mode interaction between spin torque driven and damped modes in spin torque nano-oscillators

    SciTech Connect

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U.; Delaët, B.

    2015-05-11

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.

  17. Geometric Quantum Discord in the Heisenberg XX Model with Three-Spin Interactions

    NASA Astrophysics Data System (ADS)

    Xie, Yu-Xia; Liu, Jing; Sun, Yu-Hang

    2017-02-01

    Quantum discord is a resource for quantum information processing tasks, and seeking flexible ways to control it is of practical significance. We investigate the trace distance, Bures distance, and Hellinger distance geometric quantum discords (GQDs) for thermal states of the Heisenberg XX chain with three-spin interactions. The results show that both the XZX + YZY and XZY - YZX types of three-spin interactions can be used to enhance evidently the GQDs for the boundary spins of the chain. The optimal strengths of three-spin interactions for which the maximum enhancement of the GQDs are achieved are strongly dependent on the GQD measures we adopted and the number of spins in the chain.

  18. Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.

    2016-05-01

    We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.

  19. Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions

    SciTech Connect

    Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej

    2011-12-15

    We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.

  20. Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Choi, Soonwon; Kucsko, Georg; Maurer, Peter C.; Shields, Brendan J.; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Demler, Eugene; Jelezko, Fedor; Yao, Norman Y.; Lukin, Mikhail D.

    2017-03-01

    We study the depolarization dynamics of a dense ensemble of dipolar interacting spins, associated with nitrogen-vacancy centers in diamond. We observe anomalously fast, density-dependent, and nonexponential spin relaxation. To explain these observations, we propose a microscopic model where an interplay of long-range interactions, disorder, and dissipation leads to predictions that are in quantitative agreement with both current and prior experimental results. Our results pave the way for controlled many-body experiments with long-lived and strongly interacting ensembles of solid-state spins.

  1. Rashba spin orbit interaction effect on nonlinear optical properties of quantum dot with magnetic field

    NASA Astrophysics Data System (ADS)

    Jha, Pradip Kumar; Kumar, Manoj; Lahon, Siddhartha; Gumber, Sukirti; Mohan, Man

    2014-01-01

    Here we have investigated the influence of external magnetic field on the optical absorption and refractive index changes of a parabolically confined quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum confinement potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate the important influence of magnetic field on the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated.

  2. Shigella flexneri Spa15 Crystal Structure Verified in Solution by Double Electron Electron Resonance

    PubMed Central

    Lillington, James E.D.; Lovett, Janet E.; Johnson, Steven; Roversi, Pietro; Timmel, Christiane R.; Lea, Susan M.

    2011-01-01

    Shigella flexneri Spa15 is a chaperone of the type 3 secretion system, which binds a number of effectors to ensure their stabilization prior to secretion. One of these effectors is IpgB1, a mimic of the human Ras-like Rho guanosine triphosphatase RhoG. In this study, Spa15 alone and in complex with IpgB1 has been studied by double electron electron resonance, an experiment that gives distance information showing the spacial separation of attached spin labels. This distance is explained by determining the crystal structure of the spin-labeled Spa15 where labels are seen to be buried in hydrophobic pockets. The double electron electron resonance experiment on the Spa15 complex with IpgB1 shows that IpgB1 does not bind Spa15 in the same way as is seen in the homologous Salmonella sp. chaperone:effector complex InvB:SipA. PMID:21075116

  3. Interaction between spin-wave excitations and pure spin currents in magnetic structures

    NASA Astrophysics Data System (ADS)

    Azevedo, Antonio

    2012-02-01

    The generation of pure spin current (PSC) in magnetic structures has attracted much attention not only for its fundamental importance in spintronics, but also because it opens up potential applications. One of the most exciting aspects of this area is the interplay between spin-waves (SW) and PSC. Here we report experimental results in which the PSC, generated by both spin pumping (SPE) [1] and spin Seebeck (SSE) [2] effects, can exert a spin-transfer torque sufficient to compensate the SW relaxation in yttrium iron garnet (YIG)/non-magnetic structures. By measuring the propagation of SW packets in single-crystal YIG films we were able to observe the amplification of volume and magnetostatic modes (MSW) by both SSE and SHE [3,4]. The excitation and detection of the SW packets is carried out by using a MSW delay line device. In both cases the amplification is attributed to the spin-transfer torque due to PSC generated by SSE as well as SHE. It will also be presented new results in which PSC are simultaneously excited by SSE and SPE effects in YIG films. While the spin current generated by SPE is obtained by exciting the ferromagnetic resonance (FMR) of the YIG film, the spin current due to SSE is created by applying a temperature gradient along the film plane. The effect of the superposition of both spin currents is characterized by measuring the spin Hall voltage (VH) along thin strips of Pt deposited on top of the YIG films. Whereas VH corresponding to the uniform FMR is amplified due the SSE the voltages corresponding to the other magnetostatic spin-wave modes are attenuated [5]. [4pt] [1] Y. Tserkovnyak, et al., Rev. Mod. Phys. 77, 1375 (2005).[0pt] [2] K. Uchida, et al., Nature 455, 778 (2008).[0pt] [3] E. Padr'on-Hern'andez, A. Azevedo, and S. M. Rezende, Phys. Rev. Letts., 107, 197203 (2011).[0pt] [4] E. Padr'on-Hern'andez, A. Azevedo, and S. M. Rezende, Appl. Phys. Letts., 99 (2011) in press.[0pt] [5] G.L. da Silva, L.H. Vilela-Leão, S. M. Rezende and A

  4. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    SciTech Connect

    Verba, Roman; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processing devices.

  5. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    SciTech Connect

    Palii, Andrew E-mail: klokishner@yahoo.com; Ostrovsky, Serghei; Reu, Oleg; Klokishner, Sophia E-mail: klokishner@yahoo.com; Tsukerblat, Boris; Decurtins, Silvio; Liu, Shi-Xia

    2015-08-28

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz){sub 6}](BF{sub 4}){sub 2} crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  6. Spin inverter and polarizer curved nanowire driven by Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Baldo, C.; Villagonzalo, C.

    2016-09-01

    We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin-orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10-4 of its otherwise magnitude in other regimes.

  7. Effect of defects on phonons and the effective spin-spin interactions of an ultracold Penning-trap quantum simulator

    NASA Astrophysics Data System (ADS)

    McAneny, M.; Yoshimura, B.; Freericks, J. K.

    2013-10-01

    We generalize the analysis of the normal modes for a rotating ionic Coulomb crystal in a Penning trap to allow for inhomogeneities in the system. Our formal developments are completely general, but we choose to examine a crystal of Be+ ions with BeH+ defects to compare with current experimental efforts. We examine the classical phonon modes (both transverse and planar) and we determine the effective spin-spin interactions when the system is driven by an axial spin-dependent optical dipole force. We examine situations with up to approximately 15% defects. We find that most properties are not strongly influenced by the defects, indicating that the presence of a small number of defects will not significantly affect experiments.

  8. Spin-Orbit Interaction in Metals, Elementary Semiconductors, and Semisonductor Compounds

    NASA Astrophysics Data System (ADS)

    Mašović, D. R.; Vukajilović, F. R.

    1983-06-01

    The general analytic formulas for matrix elements of spin-orbit interaction in metals, elementary semiconductors, and binary semiconductor compounds which belongs to cubic crystal systems are obtained on the basis of Roothaan-Hartree-Fock atomic orbitals.

  9. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  10. Spin waves in the fcc lattice antiferromagnet: competing interactions, frustration, and instabilities in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Singh, Avinash; Mohapatra, Shubhajyoti; Ziman, Timothy; Chatterji, Tapan

    2017-02-01

    Spin waves in the type-III ordered antiferromagnetic state of the frustrated t- t ' Hubbard model on the face-centred-cubic (fcc) lattice are calculated to investigate finite-U-induced competing interaction and frustration effects on magnetic excitations and instabilities. Particularly strong competing interactions generated due to the interplay of fcc lattice geometry and magnetic order result in significant spin wave softening. The calculated spin wave dispersion is found to be in qualitative agreement with the measured spin wave dispersion in the pyrite mineral MnS2 obtained from inelastic neutron scattering experiments. Instabilities to other magnetic orders (type I, type II, spiral, non-collinear), as signalled by spin wave energies turning negative, are also discussed.

  11. Spin-orbit coupling and electron correlation in relativistic configuration interaction and coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Kim, Inkoo; Park, Young Choon; Kim, Hyungjun; Lee, Yoon Sup

    2012-02-01

    We studied convergence characteristics of relativistic effective core potential (RECP) based configuration interaction (CI) and coupled-cluster (CC) schemes in terms of spin-orbit coupling and electron correlation. The relativistic correlated methods can be divided into Kramers restricted (KR) and spin-orbit (SO) methods which differ by the stage of spin-orbit treatment: the KR method employs two-component Kramers restricted Hartree-Fock (HF) spinors as the one-electron basis in which spin-orbit coupling is included, whereas the SO method is based on one-component molecular orbitals generated from scalar relativistic HF and the spin-orbit interaction is then entered in post-HF step. The KR method is usually superior to the SO method for molecules containing heavy elements since spin-orbit coupling is included from the HF step. A performance calibration of the SO method against the KR method is performed by computations of the ground state energies and equilibrium bond lengths of MH (M = Tl, Pb, Bi, Po, and At). Spin-orbit coupling of each molecule was systematically increased by adjusting the spin-orbit operator of RECP to investigate its impact on the SO method. Although KRCI and SOCI converged to the same full-CI limit, for the strong spin-orbit coupling SOCI required higher levels of correlation compared to KRCI to account for the orbital relaxation effect. SOCC, in contrast, was able to recover both spin-orbit interaction and electron correlation in CC steps regardless of the spin-orbit strength, implying that SOCC could be the reliable and efficient relativistic ab initio method for moderate sized molecules containing heavy elements.

  12. Dynamic screening and electron electron scattering in low-dimensional metallic systems

    NASA Astrophysics Data System (ADS)

    Silkin, V. M.; Quijada, M.; Muiño, R. Díez; Chulkov, E. V.; Echenique, P. M.

    2007-09-01

    The modification of dynamic screening in the electron-electron interaction in systems with reduced dimensionality and tunable one-particle electronic structure is studied. Two examples of such systems are considered, namely, the adsorbate-induced quantum well states at the Na adlayer covered Cu(1 1 1) surface, and metal clusters of sizes up to few nanometers. The dependence of the electron-electron decay rates on the Na coverage in the former case and on the cluster size in the latter is investigated. The role played by the dynamical screened interaction in such processes is addressed as well.

  13. Emergent Interacting Spin Islands in a Depleted Strong-Leg Heisenberg Ladder

    NASA Astrophysics Data System (ADS)

    Schmidiger, D.; Povarov, K. Yu.; Galeski, S.; Reynolds, N.; Bewley, R.; Guidi, T.; Ollivier, J.; Zheludev, A.

    2016-06-01

    Properties of the depleted Heisenberg spin ladder material series (C7 H10 N )2Cu1 -zZnz Br4 have been studied by the combination of magnetic measurements and neutron spectroscopy. Disorder-induced degrees of freedom lead to a specific magnetic response, described in terms of emergent strongly interacting "spin island" objects. The structure and dynamics of the spin islands is studied by high-resolution inelastic neutron scattering. This allows us to determine their spatial shape and to observe their mutual interactions, manifested by strong spectral in-gap contributions.

  14. Electron spin echo modulation studies of doxylstearic acid spin probes in frozen vesicles: Interaction of the spin probe with D sub 2 O and effects of cholesterol addition

    SciTech Connect

    Hiff, T.; Kevan, L. )

    1989-02-23

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x = 5, 7, 10, 12 and 16) spin probes in frozen deuteriated aqueous solutions of phospholipid vesicles and cationic dioctadecyldimethylammonium chloride (DODAC) vesicles. Modulation effects due to interactions of the nitroxide group of the spin probes with D{sub 2}O give information about the conformations of the probes and the degree of hydration of the surfactant headgroups as well as about the degree of packing of the alkyl chain. We show that DODAC headgroups are more hydrated than choline headgroups and that the doxylstearic acid probes show a larger tendency for bending in DODAC vesicles than in phospholipid vesicles. Upon addition of cholesterol into phospholipid vesicles, the headgroups are separated and their degree of hydration increases.

  15. Improving fidelity of quantum cloning via the Dzyaloshinskii-Moriya interaction in a spin network

    SciTech Connect

    Chen Yuhan; Zhu Aidong; Shao Xiaoqiang; Yeon, Kyu-Hwang; Yu, Seong-Cho

    2010-03-15

    We investigate the effect of the Dzyaloshinskii-Moriya (DM) interaction on the fidelity of the 1{yields}M phase-covariant cloning machine (PCCM) in a spin star network. The results of numerical calculation show that the DM interaction can further improve the cloning fidelity to reach the optimal value. Furthermore, the physical mechanism is investigated by analyzing the effect of the DM interaction on the populations of the qubits. It is shown that the DM interaction leads to the populations of states |1>|S(M,k+1)> and |1>|S(M,k)>[or |0>|S(M,k)> and |0>|S(M,k-1)>] simultaneously reaching the maximum or minimum value periodically, where the first ket |i> ( is an element of 0,1) in |i>|S(M,k)> denotes the state of central spin with |0> and |1> representing the spin-up and spin-down states, respectively, while the second ket |S(M,k)> denotes the state of outer spins with M being the total number of outer spins and k the number of up spins. At these extreme overlapping points of two states, the fidelity of quantum cloning can reach optimal value. Finally the forms of these two different 1{yields}M optimal cloning transformations are presented.

  16. Hyperfine Interactions for Hole Spins in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Philippoppoulos, Pericles; Chesi, Sefano; Coish, William

    2014-03-01

    Due to the anisotropic nature of the hyperfine coupling for hole spins in semiconductor quantum dots, these systems may show significantly longer coherence times than electron spins given the correct quantum-dot geometry and magnetic field orientation. This advantage of hole spins relies on the hyperfine tensor taking-on an Ising-like form. This form of the hyperfine coupling has been recently called into question with experiments that have been interpreted to indicate a strong hybridization of p-like and d-like components in the valence band of III-V semiconductors. However, this interpretation relies on two assumptions: (1) That spin-orbit coupling is weak in these systems compared to the anisotropic crystal field, and (2) that higher-angular-momentum contributions are negligible. Assumption (1) may break down in light of the fact that the spin-orbit energy is even larger than the principle gap in InAs, and assumption (2) is difficult to justify in any crystal that breaks pure rotational symmetry. Using a generalization of the group-theoretic analysis in, we show here that relaxing either of these assumptions can restore the Ising-like nature of the hyperfine tensor, albeit for a particular choice of coupling constants.

  17. Energy- and momentum-resolved exchange and spin-orbit interaction in cobalt film by spin-polarized two-electron spectroscopy.

    PubMed

    Samarin, S; Artamonov, O M; Sergeant, A D; Stamps, R; Williams, J F

    2006-09-01

    Spontaneous ordering of electronic spins in ferromagnetic materials is one of the best known and most studied examples of quantum correlations. Exchange correlations are responsible for long range spin order and the spin-orbit interaction (SOI) can create preferred crystalline directions for the spins, i.e., magnetic anisotropy. Presented experimental data illustrate how novel spin-polarized two-electron spectroscopy in-reflection mode allows observation of the localization of spin-dependent interactions in energy-momentum space. Comparison of spin-orbit asymmetries in spectra of Co film and clean W(110) may indicate the presence of interface specific proximity effects providing important clues to the formation of preferred orientations for the magnetic moment of the Co film. These results may help to understand the microscopic origin of interface magnetic anisotropy.

  18. Dynamic consequences of optical spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Sukhov, Sergey; Kajorndejnukul, Veerachart; Naraghi, Roxana Rezvani; Dogariu, Aristide

    2015-12-01

    Field symmetries and conservation laws are closely associated through Noether's theorem. Light field inhomogeneities lead to changes in linear and angular momenta and, consequently, to radiation pressure, spin or rotation of objects. Here we discuss a new type of mechanical action originating in the exchange between spin and orbital angular momenta. We demonstrate theoretically and experimentally that, when mirror and central symmetries of scattering are broken, a force appears acting perpendicularly to the direction of propagation. This new force completes the set of non-conservative forces (radiation pressure and tractor beams) that can be generated with unstructured light beams.

  19. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    PubMed

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy.

  20. Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems

    SciTech Connect

    Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.

    2007-09-13

    Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.

  1. Spin motive force induced by Rashba interaction in the strong sd coupling regime

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Nakabayashi, Noriyuki; Lee, Kyun-Jin

    2013-02-01

    Spin motive force induced by the Rashba interaction in the presence of strong sd interaction between conduction electron and localized spin is theoretically studied. The motive force is calculated by evaluating the time derivative of the current density on the basis of microscopic formalism. It is shown that there are two motive forces, one proportional to ER×ṅ, the other, perpendicular component proportional to ER×(n×ṅ), where ER and n are the Rashba electric field and localized spin direction, respectively. The second type arises in the strong sd coupling regime from the spin relaxation. The appearance of perpendicular component from the spin relaxation is understood from the analogy with the current-induced torques. In the case of domain wall motion, the two contributions to the spin motive force are the same order of magnitude, while the first term dominates in the case of precession of uniform magnetization. Our result explains the appearance of the perpendicular component in the weak sd coupling limit, recently discussed in the context of spin damping monopole. Detection of ac voltage induced by the precession of uniform magnetization serves as a experimental evidence of the Rashba interaction in films and wires.

  2. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  3. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  4. The convergence of spin-orbit configuration interaction calculations for TlH and (113)H

    NASA Astrophysics Data System (ADS)

    Jeong Choi, Yoon; Han, Young-Ku; Lee, Yoon Sup

    2001-08-01

    To test the convergence of spin-orbit effects for molecules, the ground states of TlH and (113)H are calculated by configuration interaction(CI) calculations using relativistic effective core potentials with one-electron spin-orbit operators. The employed CI methods are the Kramers' restricted CI (KRCI) and the spin-orbit CI (SOCI) methods. The KRCI method includes the spin-orbit interactions in the generation of one-electron basis space through the use of the two-component molecular spinors obtained by the Kramers' restricted Hartree-Fock (KRHF) method, whereas the SOCI adds the spin-orbit term only at the CI level. For systems with heavy atoms, orbital relaxations due to the spin-orbit interaction could become sizable, resulting in slow convergences for the SOCI method. Spin-orbit effects on bond lengths and energies using single- and multireference CI calculations at the SOCI level of theory are evaluated and compared with KRCI results for TlH and (113)H. The spin-orbit effects on energies converge easily for TlH but slowly for (113)H. Especially, bond lengths do not converge for the seventh-row (113)H in our calculations. The present results imply that large-scale multireference SOCI calculations are necessary for some molecules to recover orbital relaxation effects due to large spin-orbit interactions in the SOCI scheme. In those cases, the KRCI scheme based upon two-component spinors will have advantages over SOCI and other one-component orbital based methods.

  5. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-02-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

  6. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    PubMed Central

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-01-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions. PMID:28181502

  7. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions.

    PubMed

    Lu, L; Song, M; Liu, W; Reyes, A P; Kuhns, P; Lee, H O; Fisher, I R; Mitrović, V F

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

  8. A model for massless higher spin field interacting with a geometrical background

    NASA Astrophysics Data System (ADS)

    Bandelloni, Giuseppe

    2015-04-01

    We study a very general four-dimensional field theory model describing the dynamics of a massless higher spin N symmetric tensor field particle interacting with a geometrical background. This model is invariant under the action of an extended linear diffeomorphism. We investigate the consistency of the equations of motion, and the highest spin degrees of freedom are extracted by means of a set of covariant constraints. Moreover, the highest spin equations of motions (and in general all the highest spin field 1-PI irreducible Green functions) are invariant under a chain of transformations induced by a set of N - 2 Ward operators, while the auxiliary fields equations of motion spoil this symmetry. The first steps to a quantum extension of the model are discussed on the basis of the algebraic field theory. Technical aspects are reported in Appendices, in particular, one of them is devoted to illustrate the spin-2 case.

  9. Self-organized criticality in glassy spin systems requires long-range interactions

    NASA Astrophysics Data System (ADS)

    Andresen, Juan Carlos; Andrist, Ruben S.; Katzgraber, Helmut G.; Dobrosavljevic, Vladimir; Zimanyi, Gergerly T.

    2013-03-01

    We investigate the conditions required for general spin systems with frustration and disorder to display self-organized criticality, a property which so far has been established in spin models only for the infinite-range Sherringtion-Kirkpatrick Ising spin-glass model [PRL 83, 1034 (1999)]. We study the avalanche and the magnetization jump distribution triggered by an external magnetic field in the short-range Edward-Anderson Ising spin glass for various space dimensions, between 2 and 8. Our numerical results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered only in the strict limit of infinite space dimensions (or equivalently of long-ranged interaction), and is not a generic property of spin-glass models in finite space dimensions.

  10. Evolution of ferromagnetic interactions from cluster spin glass state in Co-Ga alloy

    NASA Astrophysics Data System (ADS)

    Mohammad Yasin, Sk.; Saha, Ritwik; Srinivas, V.; Kasiviswanathan, S.; Nigam, A. K.

    2016-11-01

    Low temperature magnetic properties of binary CoxGa100-x (x=54-57) alloy have been investigated. Analysis of frequency dependence of ac susceptibility provided a conclusive evidence for the existence of cluster spin glass like behavior with the freezing temperature ~8, 14 K for x=54, 55.5 respectively. The parameters for conventional 'slowing down' of the spin dynamics have been extracted from the acs data, which confirm the presence of glassy phase. The magnitude of Mydosh parameter obtained from the fits is larger than that reported for typical canonical spin glasses and smaller than those for non-interacting ideal superparamagnetic systems but comparable to those of known cluster-glass systems. Memory phenomena using specific cooling protocols also support the spin-glass features in Co55.5Ga44.5 composition. Further the development of ferromagnetic clusters from the cluster spin glass state has been observed in x=57 composition.

  11. Floquet spin states in graphene under ac-driven spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    López, A.; Sun, Z. Z.; Schliemann, J.

    2012-05-01

    We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.

  12. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The hydrodynamics analysis of waves in a two-dimensional degenerate electron gas with a separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like media, the contribution of the transverse electric field is rather small, but it decreases the frequency of the extraordinary wave at small wave vectors. We show the decrease in the frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic waves have negative dispersion at the relatively large spin-polarization. The corresponding dispersion dependencies are presented and analyzed.

  13. Sakata-Taketani spin-0 theory with external field interactions - Lagrangian formalism and causal properties

    NASA Technical Reports Server (NTRS)

    Guertin, R. F.; Wilson, T. L.

    1977-01-01

    To illustrate that a relativistic field theory need not be manifestly covariant, Lorentz-invariant Lagrangian densities are constructed that yield the equation satisfied by an interacting (two-component) Sakata-Taketani spin-0 field. Six types of external field couplings are considered, two scalars, two vectors, an antisymmetric second-rank tensor, and a symmetric second-rank tensor, with the results specialized to electromagnetic interactions. For either of the two second-rank couplings, the equation is found to describe noncausal wave propagation, a property that is apparent from the dependence of the coefficients of the space derivatives on the external field; in contrast, the noncausality of the corresponding manifestly covariant Duffin-Kemmer-Petiau spin-0 equation is not so obvious. The possibilities for generalizing the results to higher spin theories involving only the essential 2(2J + 1) components for a particle with a definite spin J and mass m are discussed in considerable detail.

  14. Spin-wave propagation steered by electric field modulated exchange interaction

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-09-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications.

  15. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  16. All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics.

    PubMed

    Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon

    2016-01-13

    Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.

  17. Emerging bosons with three-body interactions from spin-1 atoms in optical lattices

    SciTech Connect

    Mazza, L.; Rizzi, M.; Cirac, J. I.; Lewenstein, M.

    2010-10-15

    We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave function. We propose to experimentally realize systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave function and list some open problems for reaching this goal.

  18. Aharonov-Bohm oscillations in the presence of strong spin-orbit interactions.

    PubMed

    Grbić, Boris; Leturcq, Renaud; Ihn, Thomas; Ensslin, Klaus; Reuter, Dirk; Wieck, Andreas D

    2007-10-26

    We have measured highly visible Aharonov-Bohm (AB) oscillations in a ring structure defined by local anodic oxidation on a p-type GaAs heterostructure with strong spin-orbit interactions. Clear beating patterns observed in the raw data can be interpreted in terms of a spin geometric phase. Besides h/e oscillations, we resolve the contributions from the second harmonic of AB oscillations and also find a beating in these h/2e oscillations. A resistance minimum at B=0 T, present in all gate configurations, is the signature of destructive interference of the spins propagating along time-reversed paths.

  19. Multi-Spin Interactions and Dynamics in Model Systems for Organic Molecular Materials

    NASA Astrophysics Data System (ADS)

    Gardner, Daniel M.

    This thesis presents results from the application of electron paramagnetic resonance (EPR) techniques to study the spin-spin interactions of novel organic compounds possessing one or more unpaired electron spins. The first two chapters focus on the use of steady-state techniques to probe the interaction of a single unpaired electron with its surrounding environment. The second part of this thesis expands on these studies by employing transient techniques to analyze and control the spin-spin interactions and dynamics of systems which undergo photoinduced charge separation to generate multiple unpaired electrons. In Chapter 2 a series of novel trifluoromethylated perylene and naphthalene imide and diimide compounds are chemically reduced to yield their respective radical anions. EPR spectroscopy at both X-band and W-band fields allows for characterization of the hyperfine coupling constants and g-tensors which are important for studying their role as intermediates in electron transfer reactions. In Chapter 3 continuous-wave electron-nuclear double resonance (ENDOR) spectroscopy is employed to study the sharing of an unpaired electron across oligomers of naphthalene-1,8:4,5-bis(dicarboximide) in several novel geometries. Transient EPR techniques are introduced in Chapter 4 to measure the spin-spin interactions in photogenerated radical pairs in a series of electron donor-acceptor systems designed to mimic the photosynthetic reaction center. Measurement of the dipolar interaction at X-band fields allows for the determination of the radical pair distance, while the enhanced spectral resolution at W-band fields allows for analysis of the anisotropy of the g-tensors thereby allowing for the determination of the geometry of the radical pair. In Chapter 5 a novel U-shaped electron donor-acceptor-radical system is introduced in which use of a xanthene spacer results in negligible magnetic exchange interactions between the acceptor radical anion and the appended stable

  20. Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect

    SciTech Connect

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2014-05-07

    This paper predicts the effect of the Dzyaloshinskii-Moriya interaction (DMI) and spin Hall effect in the spin-torque diode response of a Magnetic Tunnel Junction built over a Tantalum strip. Our results indicate that, for a microwave current large enough, the DMI can change qualitatively the resonant response by splitting the ferromagnetic resonance peak. We also find out that the two modes have a non-uniform spatial distribution.

  1. Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light

    NASA Astrophysics Data System (ADS)

    Vitullo, Dashiell L. P.; Leary, Cody C.; Gregg, Patrick; Smith, Roger A.; Reddy, Dileep V.; Ramachandran, Siddharth; Raymer, Michael G.

    2017-02-01

    The interaction of spin and intrinsic orbital angular momentum of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in a cylindrically symmetric isotropic optical fiber. Such rotations occur in a straight few-mode fiber when superpositions of two modes with parallel and antiparallel orientation of spin and intrinsic orbital angular momentum (IOAM =2 ℏ ) are excited, resulting from a degeneracy splitting of the propagation constants of the modes.

  2. Disordered spin dependent interactions in a spinor (S=1) Bose gas: A percolation analysis

    NASA Astrophysics Data System (ADS)

    Nabi, Sk. Noor; Basu, Saurabh

    2016-05-01

    We study the effect of disorder in the spin dependent interaction of a spinor Bose Hubbard model. We apply mean field theory and observe the presence of Bose glass phase by computing the superfluid order parameter and compressibility. The extent of different types of phase is computed via a percolation analysis for phase diagram corresponding to antiferromagnetic interactions.

  3. Exchange interaction and rashba spin splitting effects in electron spin resonance in narrow-gap quantum wells

    SciTech Connect

    Krishtopenko, S. S.; Malyzhenkov, A. V.; Kalinin, K. P.; Ikonnikov, A. V.; Maremyanin, K. V.; Gavrilenko, V. I.; Goiran, M.

    2013-12-04

    We report a study of electron spin resonance (ESR) in a perpendicular magnetic field in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation, based on the 8×8 k⋅p Hamiltonian, the many-body corrections to the ESR energy are found to be nonzero in symmetric and asymmetric narrow-gap QWs. We demonstrate a significant enhancement of the ESR energy in asymmetric QWs, induced by the Rashba spin splitting and exchange interaction, as well as the exchange-induced enhancement of the ESR energy in symmetric QWs. The ESR energies estimated for 2DEG in InAs/AlSb QWs are compared with experimental results in weak magnetic fields.

  4. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions.

    PubMed

    Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K; Martin, Jan M L; Sitbon, Einat; Waldeck, David H; Naaman, Ron

    2017-03-07

    Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm).

  5. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions

    PubMed Central

    Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K.; Martin, Jan M. L.; Sitbon, Einat; Waldeck, David H.; Naaman, Ron

    2017-01-01

    Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm). PMID:28228525

  6. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin-orbit interactions: Prediction of spin-orbit coupling and on-site energy

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2016-12-01

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin-orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin-orbit field which is responsible for the generation of spin current. The interplay between two spin-orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin-orbit couplings together with on-site energy, provided the other is known.

  7. Hyperfine interaction and its effects on spin dynamics in organic solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.; Ding, Feizhi; Wang, Haobin

    2013-05-01

    Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.

  8. Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Nikoofard, Hossein; Semiromi, Ebrahim Heidari

    2016-10-01

    We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.

  9. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine

    SciTech Connect

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  10. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.

    PubMed

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  11. Interplay Between Charge, Spin, and Phonons in Low Dimensional Strongly Interacting Systems

    NASA Astrophysics Data System (ADS)

    Soltanieh-ha, Mohammad

    Interacting one-dimensional electron systems are generally referred to as "Luttinger liquids", after the effective low-energy theory in which spin and charge behave as separate degrees of freedom with independent energy scales. The "spin-incoherent Luttinger liquid" describes a finite-temperature regime that is realized when the temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale, and it is realized for instance in the strongly interacting Hubbard chain (with large U). Similar physics can take place in the ground-state, when a Luttinger Liquid is coupled to a spin bath, which effectively introduces a "spin temperature" through its entanglement with the spin degree of freedom. We show that the spin-incoherent state can be exactly written as a factorized wave-function, with a spin wave-function that can be described within a valence bond formalism. This enables us to calculate exact expressions for the momentum distribution function and the entanglement entropy. This picture holds not only for two antiferromagnetically coupled t--J chains, but also for the t--J-Kondo chain with strongly interacting conduction electrons. In chapter 3 we argue that this theory is quite universal and may describe a family of problems that could be dubbed "spin-incoherent". This crossover to the spin-incoherent regime at finite temperatures can be understood by means of Ogata and Shiba's factorized wave-function, where charge and spin are totally decoupled, and assuming that the charge remains in the ground state, while the spin is thermally excited and at an effective "spin temperature". In chapter 4 we use the time-dependent density matrix renormalization group method (tDMRG) to calculate the dynamical contributions of the spin, to reconstruct the single-particle spectral function of the electrons. The crossover is characterized by a redistribution of spectral weight both in frequency and momentum, with an apparent shift by kF of

  12. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance.

    PubMed Central

    Snel, M M; Marsh, D

    1994-01-01

    Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers. Images FIGURE 1 PMID:7948687

  13. Final-State Interactions and Single-Spin Asymmetries in Semi-inclusive Deep Inelastic Scattering

    SciTech Connect

    Brodsky, Stanley J.; Hwang, Dae Sung; Schmidt, Ivan; /Santa Maria U., Valparaiso

    2007-11-14

    Recent measurements from the HERMES and SMC collaborations show a remarkably large azimuthal single-spin asymmetries A{sub UL} and A{sub UT} of the proton in semi-inclusive pion leptoproduction {gamma}*(q)p {yields} {pi}X. We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system leads to single-spin asymmetries in deep inelastic lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality q{sup 2} at fixed x{sub bj}. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with J{sup z}{sub p} = {+-}1/2 to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum L{sup z} of the proton's constituents and thus is distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of structure function and fragmentation function, and it is not related to the transversity distribution {delta}q(x;Q) which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon.

  14. Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions in (2 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Vasanthi, C. Christal; Latha, M. M.

    2015-11-01

    We study the nonlinear dynamics of (2 + 1) dimensional ferromagnetic (FM) spin system with bilinear and biquadratic interactions in the semiclassical limit and the dynamics is found to be governed by a new integrable fourth order nonlinear Schrödinger (NLS) equation in (2 + 1) dimensions. The integrability is identified by using Lax pair operators and soliton solutions are obtained using straightforward Darboux transformation (DT) technique. The model Hamiltonian representing (2 + 1) dimensional FM spin chain with varying bilinear and biquadratic interactions are also constructed and inhomogeneity effects are studied by performing a perturbation analysis. Moreover, the modulational instability (MI) aspects are discussed through analytical solutions and graphical illustrations.

  15. Elastic interaction among transition metals in one-dimensional spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Boukheddaden, K.; Miyashita, S.; Nishino, M.

    2007-03-01

    We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating

  16. Electron-electron double resonance (ELDOR) with a loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Hyde, James S.; Yin, Jun-Jie; Froncisz, W.; Feix, Jimmy B.

    Electron-electron double-resonance (ELDOR) experiments on nitroxide-radical-spin-labeled liposomes have been performed using a loop-gap resonator. The signal-to-noise ratio expressed on a molarity basis is 20-fold over the best that has been achieved using a bimodal cavity. This improvement permits ELDOR experiments on spin-labeled plasma membranes of intact cells, as illustrated by a prototype experiment on red blood cells labeled with stearic acid spin label. Moreover, 20 times greater pumping energy density at the sample is achievable for a given incident pump power, permitting ELDOR experiments on less readily saturated systems. Pump and observing frequencies are introduced directly into the loop-gap resonator, which has a relatively low Q, and the pump electron paramagnetic resonance signal is isolated from the receiver using a high Q trap microwave filter.

  17. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    NASA Astrophysics Data System (ADS)

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-10-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications.

  18. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves.

    PubMed

    Giordano, A; Verba, R; Zivieri, R; Laudani, A; Puliafito, V; Gubbiotti, G; Tomasello, R; Siracusano, G; Azzerboni, B; Carpentieri, M; Slavin, A; Finocchio, G

    2016-10-27

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as "free" layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications.

  19. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    PubMed Central

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  20. Effects of the Consistent Interaction on Kaon Photoproduction with Spin 5/2 Nucleon Resonances

    NASA Astrophysics Data System (ADS)

    Clymton, S.; Mart, T.

    2016-08-01

    Theoretical models for kaon photoproduction with spin 5/2 nucleon resonances have been plagued with the problem of interaction consistency. A number of studies predicted that a model with a consistent interaction leads to a better agreement with data. In this study a model with consistent interaction (model 2) is compared to the old model, which utilizes an inconsistent interaction (model 1), as well as to experimental data. The unknown parameters in scattering amplitude are extracted from fitting to 7400 experimental data points. This is performed by minimizing the X2/N value. It is found that model with a consistent interaction (model 2) is more suitable for explaining experimental data.

  1. Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.

    2016-05-01

    Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.

  2. (S)Pinning down protein interactions by NMR

    PubMed Central

    Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Abstract Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions. These types of analyses determine the amounts and proportions of individual constituents that participate in a reaction as well as their rates of reactions and their thermodynamics. Although many different methods are available, there is currently no single method able to quantitatively capture and describe all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates, and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative descriptions of protein interactions. In this review we provide an easy‐access approach to NMR for the non‐NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background and illustrate simple protein–ligand interactions as well as typical strategies for measuring binding constants using NMR spectroscopy. Finally, this review provides examples of caveats of the method as well as the options to improve the outcome of an NMR analysis of a protein interaction reaction. PMID:28019676

  3. Role of the electromagnetic momentum in the spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Spavieri, Gianfranco

    2016-12-01

    The role played by the linear and angular momentum of the electromagnetic fields in the understanding of several aspects of quantum mechanics is discussed. A non-relativistic semi-classical model of the spin-orbit interaction, where the electromagnetic interaction energy U is calculated in the frame of the nucleus, is presented. Taking into account the electron hidden momentum P h = c -1 μ × E, the spin-orbit energy splitting turns out to be Δℰ so = (1 / 2) U, the factor 1 / 2 emerging directly by requiring that the energy variation be a minimum. After quantization, the radius of the orbit is found to be spin-dependent, anticipating a feature of the Dirac equation. Finally, a test of the hidden momentum P h , which may corroborate the approaches based on the hidden momentum and related interpretations of electrodynamics, is proposed and shown to be viable with present technology.

  4. Electron interaction with the spin angular momentum of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    O’Connell, R. F.

    2017-02-01

    We give a simple derivation and expansion of a recently proposed new relativistic interaction between the electron and the spin angular momentum of the electromagnetic field in quantum electrodynamics (QED). Our derivation is based on the work of Møller, who pointed out that, in special relativity, a particle with spin must always have a finite extension. After generalizing Møller’s classical result to include both rotation and quantum effects, we show that it leads to a new contribution to the energy, which is the special relativistic interaction term. In addition, we show that all relativistic terms involving spin terms arising from the Dirac equation may be obtained by this method.

  5. Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shu-Wei, Song; Rui, Sun; Hong, Zhao; Xuan, Wang; Bao-Zhong, Han

    2016-04-01

    Starting from the Hamiltonian of the second quantization form, the weakly interacting Bose-Einstein condensate with spin-orbit coupling of Weyl type is investigated. It is found that the SU(2) nonsymmetric term, i.e., the spin-dependent interaction, can lift the degeneracy of the ground states with respect to the z component of the total angular momentum J z , casting the ground condensate state into a configuration of zero J z . This ground state density profile can also be affirmed by minimizing the full Gross-Pitaevskii energy functional. The spin texture of the zero J z state indicates that it is a knot structure, whose fundamental group is π 3(M) ≅ π 3(S 2) = Z. Project supported by the National Natural Science Foundation of China (Grant No. 11447178).

  6. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    NASA Astrophysics Data System (ADS)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  7. Spin-catalyzed hopping conductivity in disordered strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Parameswaran, S. A.; Gopalakrishnan, S.

    2017-01-01

    In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the "spin-incoherent Luttinger liquid" (SILL) regime] where charge excitations are "cold" (i.e., have low entropy) whereas spin excitations are "hot." We explore the effects of charge-sector disorder in the SILL regime in the absence of external sources of equilibration. We argue that the disorder localizes all charge-sector excitations; however, spin excitations are protected against full localization, and act as a heat bath facilitating charge and energy transport on asymptotically long time scales. The charge, spin, and energy conductivities are widely separated from one another. The dominant carriers of energy in much of the SILL regime are neither charge nor spin excitations, but neutral "phonon" modes, which undergo an unconventional form of hopping transport that we discuss. We comment on the applicability of these ideas to experiments and numerical simulations.

  8. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.

  9. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  10. Dynamic control of spin states in interacting magnetic elements

    DOEpatents

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  11. Notes on oscillator-like interactions of various spin relativistic particles

    NASA Technical Reports Server (NTRS)

    Dvoeglazov, Valeri V.; Delsolmesa, Antonio

    1995-01-01

    The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.

  12. Polarization Possibilities of Small Spin-Orbit Interaction in Strained-Superlattice Photocathodes

    SciTech Connect

    Not Available

    2010-08-25

    Strained-superlattice photocathodes based on InGaP/GaAs were investigated. The photocathode performance is found highly dependent on the superlattice parameters. The electron confinement energy in superlattice appears important. The strained-superlattice structure based on GaAsP/GaAs, with a maximum polarization as high as 90% and more than 1% quantum efficiency, is presently the prime candidate for the ILC polarized electron photocathodes. A recent systematic study shows, however, that the peak polarization seems saturated even though the heavy-hole (HH) and light-hole (LH) band splitting is increased significantly, indicating that there is a material specific spin relaxation mechanism. It is widely accepted that the D'yakonov-Perel mechanism is the dominant spin relaxation mechanism in the III-V compound superlattice structures with a low p-doping ({le} 10{sup 17} cm{sup -3}), and that the spin relaxation may be reduced by choosing a material with a smaller spin-orbit interaction. As the spin-orbit interaction in phosphides is much smaller than in arsenides, strained-superlattice structure based on InGaP/GaAs were investigated. The computer code SPECCODE developed by Subashiev and Gerchikov has been used for calculating the band structures in superlattice.

  13. Spin Orientation of Two-Dimensional Electrons Driven by Temperature-Tunable Competition of Spin-Orbit and Exchange-Magnetic Interactions.

    PubMed

    Generalov, Alexander; Otrokov, Mikhail M; Chikina, Alla; Kliemt, Kristin; Kummer, Kurt; Höppner, Marc; Güttler, Monika; Seiro, Silvia; Fedorov, Alexander; Schulz, Susanne; Danzenbächer, Steffen; Chulkov, Evgueni V; Geibel, Christoph; Laubschat, Clemens; Dudin, Pavel; Hoesch, Moritz; Kim, Timur; Radovic, Milan; Shi, Ming; Plumb, Nicholas C; Krellner, Cornelius; Vyalikh, Denis V

    2017-02-08

    Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.

  14. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction

    PubMed Central

    2012-01-01

    Using the nonequilibrium Green’s function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport. PMID:23228047

  15. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction.

    PubMed

    Bai, Long; Zhang, Rong; Duan, Chen-Long

    2012-12-10

    : Using the nonequilibrium Green's function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport.

  16. Effect of inter- and intra-subband spin-orbit interactions on the operation of a spin transistor with a double quantum well structure

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.

    2016-11-01

    We consider electron transport in a Datta-Das spin transistor within the two-subband model taking into account intra- and inter-subband spin-orbit (SO) interactions, and study the influence of inter-subband SO coupling on the spin transistor operation. Starting from the model in which the SO coupling constants are treated as parameters, we show that the inter-subband SO interaction strongly affects the ordinary conductance oscillations predicted for the transistor with single occupancy. Interestingly, we find that even in the absence of the intra-subband SO interaction, the conductance oscillates as a function of the inter-subband SO coupling constant. This phenomenon is explained as resulting from the inter-subband transition with spin flip. Next, we consider the realistic spin transistor model based on the gated Al{}0.48In{}0.52As/Ga{}0.47In{}0.53As double quantum well, for which the SO coupling constants are determined by the Schrödinger-Poisson approach. We show that the SO coupling constants rapidly change around V g = 0, which is desirable for spin transistor operation. We demonstrate that for high electron densities the inter-subband SO interaction starts to play the dominant role. The strong evidence of this interaction is the reduction of the conductance for gate voltage V g = 0, which leads to the reduction of the on/off conductance ratio.

  17. Ballistic magnetotransport and spin-orbit interaction in indium antimonide and indium arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Peters, John Archibald

    While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the

  18. On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions

    SciTech Connect

    Marcos, Cristina; Peiró, Miguel; Robles, Sandra E-mail: miguel.peiro@uam.es

    2016-03-01

    In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the upper limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.

  19. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  20. Precision control of charge coherence in parallel double dot systems through spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Tu, Matisse Wei-Yuan; Wang, Nien-En; Zhang, Wei-Min

    2013-08-01

    In terms of the exact quantum master equation solution for open electronic systems, the coherent dynamics of two charge states described by two parallel quantum dots with one fully polarized electron on either dot is investigated in the presence of spin-orbit interaction. We demonstrate that the double dot system can stay in a dynamically decoherence free space. The coherence between two double dot charge states can be precisely manipulated through a spin-orbit coupling. The effects of the temperature, the finite bandwidth of lead, and the energy deviations during the coherence manipulation are also explored.

  1. Chiral phase from three-spin interactions in an optical lattice

    SciTech Connect

    D'Cruz, Christian; Pachos, Jiannis K.

    2005-10-15

    A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.

  2. Degenerated ground-states in a spin chain with pair interactions: a characterization by symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Corona, L. A.; Salgado-García, R.

    2016-12-01

    In this paper we study a class of one-dimensional spin chain having a highly degenerated set of ground-state configurations. The model consists of spin chain having infinite-range pair interactions with a given structure. We show that the set of ground-state configurations of such a model can be fully characterized by means of symbolic dynamics. Particularly we found that the set ground-state configurations define what in symbolic dynamics is called sofic shift space. Finally we prove that this system has a non-vanishing residual entropy (the topological entropy of the shift space), which can be exactly calculated.

  3. Anti localization due to spin-orbit interaction in metal-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Haruyama, J.; Takesue, I.; Hasegawa, T.

    2002-10-01

    Electrode atoms are diffused, with only about 5% volume ratio, into the top end of multi-walled carbon nanotubes (MWNTs), standing in nanopores of porous alumina membranes. We find that diffusion of heavy materials leads to an anti-localization in the Altshuler-Aronov-Spivak oscillations in the MWNT bulk. This effect is only observable when electrons are injected through the diffusion region, and undergo a π-phase shift in their electron waves, caused by polarized injection of spin-flipped electrons due to spin-orbit interaction in the diffusion region.

  4. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar

    2017-01-01

    An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.

  5. Topological spin liquids in the ruby lattice with anisotropic Kitaev interactions

    NASA Astrophysics Data System (ADS)

    Jahromi, Saeed S.; Kargarian, Mehdi; Masoudi, S. Farhad; Langari, Abdollah

    2016-09-01

    The ruby lattice is a four-valent lattice interpolating between honeycomb and triangular lattices. In this work we investigate the topological spin-liquid phases of a spin Hamiltonian with Kitaev interactions on the ruby lattice using exact diagonalization and perturbative methods. The latter interactions combined with the structure of the lattice yield a model with Z2×Z2 gauge symmetry. We mapped out the phase diagram of the model and found gapped and gapless spin-liquid phases. While the low-energy sector of the gapped phase corresponds to the well-known topological color code model on a honeycomb lattice, the low-energy sector of the gapless phases is described by an effective spin model with three-body interactions on a triangular lattice. A gap is opened in the spectrum in small magnetic fields, where we showed that the ground state has a finite topological entanglement entropy. We argue that the gapped phases could be possibly described by exotic excitations, and their corresponding spectrum is richer than the Ising phase of the Kitaev model.

  6. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α-RuCl_{3}.

    PubMed

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J T; Deng, Guochu; Danilkin, S; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-10

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α-RuCl_{3}, we observe spin-wave spectra with a gap of ∼2  meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K=-6.8  meV and Γ=9.5  meV. These results demonstrate explicitly that Kitaev physics is realized in real materials.

  7. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3

    NASA Astrophysics Data System (ADS)

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-01

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.

  8. Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling.

    PubMed

    Li, Ziwei; Li, Yu; Han, Tianyang; Wang, Xingli; Yu, Ying; Tay, Bengkang; Liu, Zheng; Fang, Zheyu

    2017-02-28

    Molybdenum disulfide (MoS2) monolayer as one of the atomic thickness two-dimensional materials has remarkable electronic and optical properties, which is an ideal candidate for a wide range of optoelectronic applications. However, the atomic monolayer thickness poses a significant challenge in MoS2 photoluminescence emission due to weak light-matter interaction. Here, we investigate the MoS2 exciton-plasmon interaction with spin-orbit coupling of light. The plasmonic spiral rings with subwavelength dimensions are designed and fabricated on hybrid substrates. MoS2 photoluminescence enhancement can be actively controlled by changing the incident optical spin states, laser powers, and the nanospiral geometries, which is arising from the change of field enhancement at near-field region. Planar light-emitting devices based on spin-orbit coupling (SOC) effect were further realized and flexibly controlled by changing the polarization of light. The SOC effect is discussed by the accumulation of geometric and dynamic phases, which can be demonstrated and elaborated by the Majorana sphere model. Our results provide a way to manipulate MoS2 light-matter interaction actively and can be further applied in the spin-dependent light-emitting devices at the nanoscale.

  9. Effects of geometry and linearly polarized cavity photons on charge and spin currents in a quantum ring with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2014-05-01

    We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.

  10. Interacting spin-2 fields in the Stückelberg picture

    SciTech Connect

    Noller, Johannes; Ferreira, Pedro G.; Scargill, James H.C. E-mail: james.scargill@physics.ox.ac.uk

    2014-02-01

    We revisit and extend the 'Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  11. Interacting spin-2 fields in the Stückelberg picture

    NASA Astrophysics Data System (ADS)

    Noller, Johannes; Scargill, James H. C.; Ferreira, Pedro G.

    2014-02-01

    We revisit and extend the `Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  12. Exact solutions for a type of electron pairing model with spin-orbit interactions and Zeeman coupling.

    PubMed

    Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D

    2011-07-08

    A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.

  13. Communication: Configuration interaction combined with spin-projection for strongly correlated molecular electronic structures

    SciTech Connect

    Tsuchimochi, Takashi Ten-no, Seiichiro

    2016-01-07

    We present single and double particle-hole excitations in the recently revived spin-projected Hartree-Fock. Our motivation is to treat static correlation with spin-projection and recover the residual correlation, mostly dynamic in nature, with simple configuration interaction (CI). To this end, we introduce the Wick theorem for nonorthogonal determinants, which enables an efficient implementation in conjunction with the direct CI scheme. The proposed approach, termed spin-extended CI with singles and doubles, achieves a balanced treatment between dynamic and static correlations. To approximately account for the quadruple excitations, we also modify the well-known Davidson correction. We report that our approaches yield surprisingly accurate potential curves for HF, H{sub 2}O, N{sub 2}, and a hydrogen lattice, compared to traditional single reference wave function methods at the same computational scaling as regular CI.

  14. Interacting spin-wave dispersion relations of ferrimagnetic Heisenberg chains with crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.

    2010-11-01

    We study the effect of crystal-field anisotropy on the dispersion relations of mixed-spin (S,s) alternating chains by using the interacting spin-wave theory and the density-matrix renormalization group algorithm. For the easy-plane anisotropy case we find that the spin-wave results fail to describe the ground-state properties of the systems under consideration, whereas for the easy-axis anisotropy regime the method demonstrates a surprising efficiency showing, for example for the system (S,s)=(3/2,1/2), a discrepancy from the density-matrix renormalization group of about 0.0006% for the ground-state energy and of 2% for the sublattice magnetizations.

  15. First-principles study of the spin-orbit interaction in graphene induced by hydrogen adatoms

    NASA Astrophysics Data System (ADS)

    Gmitra, Martin; Kochan, Denis; Fabian, Jaroslav

    2013-03-01

    We have performed first principles calculations of the spin-orbit coupling effects in hydrogenated graphene structures, for varying hydrogen coverage densities, using the linearized augmented plane wave method as implemented in the FLEUR code. The covalent bonding between the hydrogen and carbon atoms leads to a local structural puckering of graphene sheets, giving rise to an overlap between the Dirac and sigma electrons and a giant enhancement (from roughly 0.01 to 1 meV) of the local spin-orbit interaction. The calculated effects on the band structure and the emerging spin patterns of the electronic states can be well explained by effective Hamiltonian models derived from group theoretical principles. This work is supported by the DFG SPP 1285, SFB 689, and GRK 1570

  16. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction.

    PubMed

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-05-04

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices.

  17. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  18. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  19. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction

    PubMed Central

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-01-01

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices. PMID:27143311

  20. Interface states in two-dimensional electron systems with spin-orbital interaction.

    PubMed

    Sukhanov, Aleksei A; Sablikov, Vladimir A

    2011-10-05

    Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.

  1. Spin transfer in a ferromagnet-quantum dot and tunnel-barrier-coupled Aharonov-Bohm ring system with Rashba spin-orbit interactions.

    PubMed

    Chen, Xi; Zheng, Qing-Rong; Su, Gang

    2010-05-12

    The spin transfer effect in a ferromagnet-quantum dot (insulator)-ferromagnet Aharonov-Bohm (AB) ring system with Rashba spin-orbit (SO) interactions is investigated by means of the Keldysh nonequilibrium Green function method. It is found that both the magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet electrode can be effectively controlled by changing the magnetic flux threading the AB ring or the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical current and spin current are uncovered to oscillate with the magnetic flux. The present results are expected to be useful for information storage in nanospintronics.

  2. Strong Spin-Orbit Interaction of Light in Plasmonic Nanostructures and Nanocircuits

    NASA Astrophysics Data System (ADS)

    Pan, Deng; Wei, Hong; Gao, Long; Xu, Hongxing

    2016-10-01

    The coupling between the spin and orbital degrees of freedom of photons is usually very weak, but recent studies have shown that this spin-orbit interaction (SOI) can be easily detected in metal structures. Here we show how the SOI of light is enhanced in plasmonic metal nanostructures, explore the underlying mechanism for this effect, and further demonstrate how it could potentially be harnessed for nanophotonic applications. Specifically, we show that the scattering of circularly polarized photons by a single metal nanosphere causes light to propagate along sharply twisted chiral trajectories near the nanosphere, thus revealing a strong SOI in the near field of surface plasmons. We find similar spin-dependent trajectories of light induced by a strong SOI also in the near field of surface plasmons generated on the tip of a metal nanowire. We utilize this strong SOI to for the first time experimentally realize spin sorting of photons in a compact plasmonic nanocircuit. The findings offer insights into how the SOI of light can be enhanced and explored for a new degree of freedom in plasmonic nanocircuits and future spin-controlled nanophotonic devices.

  3. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE PAGES

    Lu, L.; Song, M.; Liu, W.; ...

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin andmore » orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  4. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  5. Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Ficek, Filip; Kimball, Derek F. Jackson; Kozlov, Mikhail G.; Leefer, Nathan; Pustelny, Szymon; Budker, Dmitry

    2017-03-01

    Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles) with masses 10-2≲m ≲104eV are improved by a factor of ˜100 . The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

  6. Membrane-Sugar Interactions Probed by Pulsed Electron Paramagnetic Resonance of Spin Labels.

    PubMed

    Konov, Konstantin B; Leonov, Dmitry V; Isaev, Nikolay P; Fedotov, Kirill Yu; Voronkova, Violeta K; Dzuba, Sergei A

    2015-08-13

    Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The spin-labeled lipids were 1,2-dipalmitoyl-sn-glycero-3-phospho(TEMPO)choline (T-PCSL), with spin-label TEMPO at the lipid polar headgroup. The deuterium ESEEM amplitude was calibrated using known concentrations of glassy deuterated sugar solvents. The data obtained indicated that the sugar concentration near the membrane surface obeyed a simple Langmuir model of monolayer adsorption, which assumes direct sugar-molecule bonding to the bilayer surface.

  7. Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field

    NASA Astrophysics Data System (ADS)

    Magalhães, S. G.; Zimmer, F. M.; Kipper, C. J.; Calegari, E. J.

    2006-07-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.

  8. Effect of the intrinsic spin-orbit interaction on the tunnel magnetoresistance in graphenelike nanoflakes

    NASA Astrophysics Data System (ADS)

    Weymann, Ireneusz; Krompiewski, Stefan

    2016-12-01

    This paper is devoted to examining the effect of intrinsic spin-orbit interaction on the possible appearance of edge magnetic moments and spin-dependent transport in graphenelike nanoflakes. In the case of finite-size graphenelike nanostructures it is shown that, on one hand, energetically the most advantageous configuration corresponds to magnetic moments located at zigzag edges with the in-plane antiferromagnetic inter-edge coupling. On the other hand, the tunnel magnetoresistance and the shot noise also have thoroughly been tested both for the in-plane configuration as well as for the out-of-plane one (for comparison reasons). Transport properties are described in terms of the mean-field Kane-Mele-Hubbard model with spin mixing correlations, supplemented by additional terms describing external leads, charging energy, and lead-nanostructure tunneling. The results show that Coulomb blockade stability spectra of graphenelike nanoflakes with ferromagnetic contacts provide information on both the intrinsic spin-orbit interaction and the expected edge magnetism.

  9. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  10. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  11. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    PubMed

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  12. Manipulating energy and spin currents in non-equilibrium systems of interacting qubits

    NASA Astrophysics Data System (ADS)

    Popkov, V.; Livi, R.

    2013-02-01

    We consider a generic interacting chain of qubits, which are coupled at the edges to baths of fixed polarizations. We can determine the non-equilibrium steady states, described by the fixed point of the Lindblad master equation. Under rather general assumptions about local pumping and interactions, symmetries of the reduced density matrix are revealed. The symmetries drastically restrict the form of the steady density matrices in such a way that an exponentially large subset of one-point and many-point correlation functions are found to vanish. As an example we show how in a Heisenberg spin chain a suitable choice of the baths can completely switch off either the spin or the energy current, or both of them, despite the presence of large boundary gradients.

  13. Effect of spin-orbit interaction on the electronic structure of indium-antimonide d bands

    SciTech Connect

    Sobolev, V. V. Perevoshchikov, D. A.

    2015-05-15

    The bands and densities of states of d bands in indium antimonide (InSb) are determined taking into account and disregarding the spin-orbit interaction. It is established that taking into account the effect of spin-orbit interaction results also in a substantial change in the dispersion of the obtained bands instead of only in the doublet splitting of the band of core d levels at ∼(0.79–0.86) eV. It is established that it is indium 4d states with e{sub g} and t{sub 2g} symmetry that give the main contribution to the density of states. The calculations are carried out by the LAPW method with the exchange-correlation potential in the generalized gradient approximation (LAPW + GGA)

  14. Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Thakur, Pradeep; Durganandini, P.

    2015-06-24

    We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.

  15. Dynamic interactions between nematic point defects in the spinning extrusion duct of spiders.

    PubMed

    De Luca, Gino; Rey, Alejandro D

    2006-04-14

    Spider silk fibers have remarkable mechanical properties as a result of an ultraoptimized spinning process. Silk fibers are spun from a lyotropic nematic liquid crystalline anisotropic fluid phase which undergoes significant structural changes throughout the spinning pathway. In the silk extrusion duct, those structural changes are expected to be driven by elastic-mediated interactions between point defects. In this work, the interaction between two point defects of opposite topological charges located on the axis of a cylindrical cavity is studied using a tensor order parameter formalism. Distinct regimes leading to defect annihilation and structural transitions are described in detail. The driving force setting the defects into motion is also examined. The different results suggest that the tensorial approach is primordial in describing the complicated physics of the problem. The phenomenon described is important to the understanding of the process-induced structuring of silk fibers and to defect physics in a more general context.

  16. Monte Carlo study of the mixed Blume-Capel model with four-spin interactions

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Tahiri, N.; Jetto, K.; Bahmad, L.

    2017-04-01

    Using Monte Carlo simulations, we study the magnetic properties of a ferri-magnetic mixed spins (3/2,2) in a three-dimensional lattice with four-spin interactions. In one hand, we elaborated analytically the ground state phase diagrams in different planes. We found that the all 4 × 5 = 20 configurations are found to be stable. On the other hand, for non null temperature values, the magnetic properties and phase diagrams are deduced. The total and partial magnetizations/susceptibilities are also presented and discussed for different values of the reduced exchange interactions. The critical temperature is displaced towardslower temperatures. To complete this study, we examined the corresponding hysteresis loop behaviors, of the studied system, for different values of the physical parameters.

  17. Detrimental effect of interfacial Dzyaloshinskii-Moriya interaction on perpendicular spin-transfer-torque magnetic random access memory

    SciTech Connect

    Jang, Peong-Hwa; Lee, Seo-Won E-mail: kj-lee@korea.ac.kr; Song, Kyungmi; Lee, Seung-Jae; Lee, Kyung-Jin E-mail: kj-lee@korea.ac.kr

    2015-11-16

    Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performance of perpendicular spin transfer torque memory has not been explored yet. We show based on numerical studies that the interfacial Dzyaloshinskii-Moriya interaction decreases the thermal energy barrier while increases the switching current. As high thermal energy barrier as well as low switching current is required for the commercialization of spin torque memory, our results suggest that the interfacial Dzyaloshinskii-Moriya interaction should be minimized for spin torque memory applications.

  18. Investigations into light-front interactions for massless fields (I): non-constructibility of higher spin quartic amplitudes

    NASA Astrophysics Data System (ADS)

    Bengtsson, Anders K. H.

    2016-12-01

    The dynamical commutators of the light-front Poincaré algebra yield first order differential equations in the p + momenta for the interaction vertex operators. The homogeneous solution to the equation for the quartic vertex is studied. Consequences as regards the constructibility assumption of quartic higher spin amplitudes from cubic amplitudes are discussed. The existence of quartic contact interactions unrelated to cubic interactions by Poincaré symmetry indicates that the higher spin S-matrix is not constructible. Thus quartic amplitude based no-go results derived by BCFW recursion for Minkowski higher spin massless fields may be circumvented.

  19. Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions.

    PubMed

    Hayami, Shinya; Hiki, Kenji; Kawahara, Takayoshi; Maeda, Yonezo; Urakami, Daisuke; Inoue, Katsuya; Ohama, Mitsuo; Kawata, Satoshi; Sato, Osamu

    2009-01-01

    Iron(III) spin-crossover compounds [Fe(pap)(2)]ClO(4) (1), [Fe(pap)(2)]BF(4) (2), [Fe(pap)(2)]PF(6) (3), [Fe(qsal)(2)]NCS (4), and [Fe(qsal)(2)]NCSe (5) (Hpap=2-(2-pyridylmethyleneamino)phenol and Hqsal=2-[(8-quinolinylimino)methyl]phenol) were prepared and their spin-transition properties investigated by magnetic susceptibility and Mössbauer spectroscopy measurements. The iron(III) compounds exhibited spin transition with thermal hysteresis. Single crystals of the iron(III) compounds were obtained as suitable solvent adducts for X-ray analysis, and structures in high-spin (HS) and low-spin (LS) states were revealed. Light-induced excited-spin-state trapping (LIESST) effects of the iron(III) compounds were induced by light irradiation at 532 nm for 1-3 and at 800 nm for 4 and 5. The activation energy E(a) and the low-temperature tunneling rate k(HL)(T-->0) of iron(III) LIESST compound 1 were estimated to be 1079 cm(-1) and 2.4x10(-8) s(-1), respectively, by HS-->LS relaxation experiments. The Huang-Rhys factor S of 1 was also estimated to be 50, which was similar to that expected for iron(II) complexes. It is thought that the slow relaxation in iron(III) systems is achieved by the large structural distortion between HS and LS states. Introduction of strong intermolecular interactions, such as pi-pi stacking, can also play an important role in the relaxation behavior, because it can enhance the structural distortion of the LIESST complex.

  20. Origin and Magnitude of `Designer' Spin-Orbit Interaction in Graphene on Semiconducting Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Ki, Dong-Keun; Khoo, Jun Yong; Mauro, Diego; Berger, Helmuth; Levitov, Leonid S.; Morpurgo, Alberto F.

    2016-10-01

    We use a combination of experimental techniques to demonstrate a general occurrence of spin-orbit interaction (SOI) in graphene on transition metal dichalcogenide (TMD) substrates. Our measurements indicate that SOI is ultrastrong and extremely robust, despite it being merely interfacially induced, with neither graphene nor the TMD substrates changing their structure. This is found to be the case irrespective of the TMD material used, of the transport regime, of the carrier type in the graphene band, or of the thickness of the graphene multilayer. Specifically, we perform weak antilocalization (WAL) measurements as the simplest and most general diagnostic of SOI, and we show that the spin relaxation time is very short (approximately 0.2 ps or less) in all cases regardless of the elastic scattering time, whose value varies over nearly 2 orders of magnitude. Such a short spin-relaxation time strongly suggests that the SOI originates from a modification of graphene band structure. We confirmed this expectation by measuring a gate-dependent beating, and a corresponding frequency splitting, in the low-field Shubnikov-de Haas magnetoresistance oscillations in high-quality bilayer graphene devices on WSe2 . These measurements provide an unambiguous diagnostic of a SOI-induced splitting in the electronic band structure, and their analysis allows us to determine the SOI coupling constants for the Rashba term and the so-called spin-valley coupling term, i.e., the terms that were recently predicted theoretically for interface-induced SOI in graphene. The magnitude of the SOI splitting is found to be on the order of 10 meV, more than 100 times greater than the SOI intrinsic to graphene. Both the band character of the interfacially induced SOI and its robustness and large magnitude make graphene-on-TMD a promising system to realize and explore a variety of spin-dependent transport phenomena, such as, in particular, spin-Hall and valley-Hall topological insulating states.

  1. Spin-Orbit Interaction of a Photon in AN Inhomogeneous Medium

    NASA Astrophysics Data System (ADS)

    Liberman, V. S.; Zel'Dovich, B. Ya.

    The following sections are included: * Introduction * Transverse Shift of the Circularly Polarized Beam (CPB) due to Refraction * Differential Equations for a Trajectory and Polarization of the Ray. Hamilton's Form of the Equations * Optical Magnus Effect in a Graded-Index Waveguide * Optical Ping-Pong Effect in a Step-Like Index Waveguide * Paraxial Approximation for Maxwell's Equations * Spin-Orbit Corrections to the Paraxial Approximation: Hermitian Interaction Hamiltonian * The Wave Description of the Optical Magnus Effect * Conclusion * Acknowledgement * References

  2. Optical Control of One and Two Hole Spins in Interacting Quantum Dots

    DTIC Science & Technology

    2011-11-01

    extended the delay by one and then two laser rep - etition periods of 12.3 ns to measure the decay of the phase oscillations. Figure 3d shows the...fast, single-qubit gates using a sequence of short laser pulses. We then take the important next step towards scalability of quantum information by...optically controlling two interacting hole spins in separate dots. A semiconductor qubit offers powerful advantages for quantum information, including

  3. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  4. Digital Control of Exchange Interaction in a Spin-based Silicon Quantum Computer

    DTIC Science & Technology

    2013-05-19

    investigate dc and ac properties of single and double vertical Si quantum dots with 3D confinement. The dots constitute the main building blocks of a...quantum computing, quantyum dots, Majorana fermions Leonid P. Rokhinson, James C. Sturm Indiana University - Purdue University Fort Wayne Sponsored Programs...of Exchange Interaction in a Spin-based Silicon Quantum Computer Report Title ABSTRACT We propose to investigate dc and ac properties of single and

  5. Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide

    SciTech Connect

    Roszak, S.; Krauss, M.; Alekseyev, A.B.; Liebermann, H.P.; Buenker, R.J.

    2000-04-06

    An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component being the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.

  6. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V.

    2014-11-01

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

  7. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics.

    PubMed

    Eremeev, S V; Nechaev, I A; Echenique, P M; Chulkov, E V

    2014-11-04

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

  8. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    PubMed Central

    Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V.

    2014-01-01

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications. PMID:25365945

  9. Optical Measurement and Modeling of Interactions between Two Hole Spins or Two Electron Spins in Coupled InAs Quantum Dots

    DTIC Science & Technology

    2013-03-12

    approximately isotropic for both systems, but that significant asymmetric contributions, arising from spin-orbit and Zeeman interactions combined with...inhomogeneous Zeeman interactions, that is, differences in the g factor between the two QDs and also in the tunnel barrier, lead to additional energy splittings...B. The simplest Hamiltonian consists of isotropic exchange and an average Zeeman interaction, J1 2 þ ext ð1 þ 2Þ: (2) The Zeeman term ext

  10. Quantum spin dynamics and entanglement in systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rey, Ana M.

    One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.

  11. Inverse freezing in a cluster Ising spin-glass model with antiferromagnetic interactions.

    PubMed

    Silva, C F; Zimmer, F M; Magalhaes, S G; Lacroix, C

    2012-11-01

    Inverse freezing is analyzed in a cluster spin-glass (SG) model that considers infinite-range disordered interactions between magnetic moments of different clusters (intercluster interaction) and short-range antiferromagnetic coupling J(1) between Ising spins of the same cluster (intracluster interaction). The intercluster disorder J is treated within a mean-field theory by using a framework of one-step replica symmetry breaking. The effective model obtained by this treatment is computed by means of an exact diagonalization method. With the results we build phase diagrams of temperature T/J versus J(1)/J for several sizes of clusters n(s) (number of spins in the cluster). The phase diagrams show a second-order transition from the paramagnetic phase to the SG order at the freezing temperature T(f) when J(1)/J is small. The increase in J(1)/J can then destroy the SG phase. It decreases T(f)/J and introduces a first-order transition. In addition, inverse freezing can arise at a certain range of J(1)/J and large enough n(s). Therefore, the nontrivial frustration generated by disorder and short-range antiferromagnetic coupling can introduce inverse freezing spontaneously.

  12. Interaction of polyene antibiotics with sterols in phosphatidylcholine bilayer membranes as studied by spin probes.

    PubMed

    Ohki, K; Nozawa, Y; Ohnishi, S I

    1979-06-13

    Interaction of filipin and amphotericin B with sterols in phosphatidylcholine membranes has been studied using various spin probes; epiandrosterone, cholestanone, phosphatidylcholine with 12-nitroxide or 5-nitroxide stearate attached to 2 position and also with tempocholine at the head group. Filipin caused increase in the fluidity of cholesterol-containing phosphatidylcholine membranes near the center, while it rather decreased the fluidity near the polar surface. On the other hand, amphotericin B did not apparently affect the fluidity. In the electron spin resonance spectrum of steriod spin probes in the antibiotic-containing membranes, both bound and free signals were observed and the association constant was calculated from the siganal intensity. In the binding of steriods with filipin, both 3 and 17 positions were involved, while the 17 positions was less involved in the binding with amphotericin B. Phase change in the host membrane markedly affected the interaction of filipin with epiandrosterone probe. The bound fraction jumped from 0.4 to 0.8 on going to the crystalline state and increased further with decrease in temperature. The overall splitting of the bound signal also increased on lowering the temperature below phase transition. This change was attributed to aggregate formation of filipin-steriod complexes in the crystalline state. On the other hand, effect of phase transition was much smaller on the interaction of amphotericin B with the steriod probe.

  13. Quantum Monte Carlo Method for Heavy Atomic and Molecular Systems with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Melton, Cody; Mitas, Lubos

    We present a new quantum Monte Carlo (QMC) method that can treat spin-orbit and other types of spin-depentent interactions explicitly. It is based on generalization of the fixed-phase and projection of the nonlocal operators with spinor trial wave functions. For testing the method we calculate several atomic and molecular systems such as Bi, W, Pb, PbH and PbO, some of them with both large- and small-core pseudopotentials. We validate the quality of the results against other correlated methods such as configuration interaction in two-component formalism. We find excellent agreement with extrapolated values for the total energies and we are able to reliably reproduce experimental values of excitation energies, electron affinity and molecular binding. We show that in order to obtain the agreement with experimental values the explicit inclusion of the spin-orbit interactions is crucial. U.S. D.O.E. grant de-sc0012314 and NERSC Contract No. DE-AC02-05CH11231.

  14. Spin-density-functional theory for imbalanced interacting Fermi gases in highly elongated harmonic traps

    NASA Astrophysics Data System (ADS)

    Gao Xianlong; Asgari, Reza

    2008-03-01

    We numerically study imbalanced two component Fermi gases with attractive interactions in highly elongated harmonic traps. An accurate parametrization formula for the ground state energy is presented for a spin-polarized attractive Gaudin-Yang model. Our studies are based on an accurate microscopic spin-density-functional theory through the Kohn-Sham scheme which employs the one-dimensional homogeneous Gaudin-Yang model with a Luther-Emery-liquid ground-state correlation as a reference system. A Thomas-Fermi approximation is examined incorporating the exchange-correlation interaction. By studying the charge and spin density profiles of the system based on these methods, we gain a quantitative understanding of the role of attractive interactions and polarization on the formation of the two-shell structure, with the coexisted Fulde-Ferrell-Larkin-Ovchinnikov-type phase in the center of the trap and either the BCS superfluid phase or the normal phase at the edges of the trap. Our results are in good agreement with the recent theoretical consequences.

  15. Effect of long- and short-range interactions on the thermodynamics of dipolar spin ice

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yuriy; Makarov, Aleksandr; Nefedev, Konstantin

    2017-02-01

    The thermodynamic properties of dipolar spin ice on square, honeycomb and shakti lattices in the long-range and short-range dipole interaction models are studied. Exact solutions for the density of states, temperature dependencies of heat capacity, and entropy are obtained for these lattices with a finite number of point dipoles by means of complete enumeration. The magnetic susceptibility and average size of the largest low-energy cluster are calculated for square spin ice by means of Wang-Landau and Metropolis methods. We show that the long-range interaction leads to a blurring of the energy spectrum for all considered lattices. The inclusion of the long-range interaction leads to a significant change in the thermodynamic behaviour. An additional peak of heat capacity appears in the case of the honeycomb lattice. The critical temperature shifts in the direction of low or high temperatures; the direction depends on the lattice geometry. The critical temperature of the phase transition of square spin ice in the long-range model with frustrated ground states is obtained with the Wang-Landau and Metropolis methods independently.

  16. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    PubMed Central

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-01-01

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y PMID:26039222

  17. Strong interface-induced spin-orbit interaction in graphene on WS2.

    PubMed

    Wang, Zhe; Ki, Dong-Keun; Chen, Hua; Berger, Helmuth; MacDonald, Allan H; Morpurgo, Alberto F

    2015-09-22

    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in graphene on hexagonal boron nitride substrates. Ongoing research strives to explore interfacial interactions with other materials to engineer targeted electronic properties. Here we show that with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization effect and to a spin-relaxation time two to three orders of magnitude smaller than in graphene on conventional substrates. To interpret our findings we have performed first-principle electronic structure calculations, which confirm that carriers in graphene on WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.

  18. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    DOE PAGES

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  19. Anisotropic Heisenberg form of RKKY interaction in the one-dimensional spin-polarized electron gas

    NASA Astrophysics Data System (ADS)

    Valizadeh, M. M.

    2016-09-01

    We study the indirect exchange interaction between two localized magnetic moments, known as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, in a one-dimensional (1D) spin-polarized electron gas. We find explicit expressions for each term of this interaction, study their oscillatory behaviors as a function of the distance between two magnetic moments, R, and compare them with the known results for RKKY interaction in the case of 1D standard electron gas. We show this interaction can be written in an anisotropic Heisenberg form, E(R) = λ2χ xx(S1xS2x + S1yS2y) + λ2χ zzS1zS2z, coming from broken time-reversal symmetry of the host material.

  20. Spin-dependent electron-phonon interaction in SmFeAsO by low-temperature Raman spectroscopy.

    PubMed

    Zhang, L; Guan, P F; Feng, D L; Chen, X H; Xie, S S; Chen, M W

    2010-11-03

    The interplay between spin dynamics and lattice vibration has been suggested as an important part of the puzzle of high-temperature superconductivity. Here, we report the strong interaction between spin fluctuation and phonon in SmFeAsO, a parent compound of the iron arsenide family of superconductors, revealed by low-temperature Raman spectroscopy. Anomalous zone-boundary-phonon Raman scattering from spin superstructure was observed at temperatures below the antiferromagnetic ordering point, which offers compelling evidence on spin-dependent electron-phonon coupling in pnictides.

  1. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) Xmore » 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  2. Electron-Mediated Nuclear-Spin Interactions between Distant Nitrogen-Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Jelezko, F.; Plenio, M. B.; Retzker, A.

    2011-10-01

    We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum-information processor or quantum simulator based on solid-state technology.

  3. Critical and compensation points of a mixed spin-2-spin-5/2 Ising ferrimagnetic system with crystal field and nearest and next-nearest neighbors interactions

    NASA Astrophysics Data System (ADS)

    De La Espriella, N.; Mercado, C. A.; Buendía, G. M.

    2016-11-01

    We perform Monte Carlo simulations to analyze the magnetic properties of a mixed Ising model, where spins S that can take 5 values , 0 , ± 1 , ± 2 , alternate on a square lattice with spins σ that can take 6 values, ± 5 / 2 , ± 3 / 2 , ± 1 / 2 . The Hamiltonian of the model includes an antiferromagnetic interaction between the S and σ spins, nearest-neighbors on the lattice, a ferromagnetic interaction between the S spins, next-nearest neighbors on the lattice, and a crystal field. We found that the system presents compensation temperatures in a wide range of the parameters. At the compensation temperature the total magnetization is zero but, contrary to what happens at the critical temperature, the system remains ordered. These temperatures have important technological applications, particularly in the field of thermo-magnetical recording. We calculate the finite-temperature phase diagram of the model. We found that the presence of the compensation temperature is strongly dependent on the next-nearest neighbor interaction term between the S spins, while its value can be calibrated by changing the crystal field.

  4. Quantitative analysis of spin exchange interactions to identify β strand and turn regions in Ure2 prion domain fibrils with site-directed spin labeling.

    PubMed

    Ngo, Sam; Chiang, Vicky; Guo, Zhefeng

    2012-11-01

    Amyloid formation is associated with a range of debilitating human disorders including Alzheimer's and prion diseases. The amyloid structure is essential for understanding the role of amyloids in these diseases. Amyloid formation of Ure2 protein underlies the yeast prion [URE3]. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structure of amyloid fibrils formed by the Ure2 prion domain. The Ure2 prion domain under study contains a Sup35M domain at C-terminus as a solubilization element. We introduced spin labels at every residue from positions 2-15, and every 5th residue from positions 20-80 in Ure2 prion domain. EPR spectra at most labeling sites show strong spin exchange interactions, suggesting a parallel in-register β structure. With quantitative analysis of spin exchange interactions, we show that residues 8-12 form the first β strand, followed by a turn at residues 13-14, and then the second β strand from residue 15 to at least residue 20. Comparison of the spin exchange frequency for the fibrils formed under quiescent and agitated conditions also revealed differences in the fibril structures. Currently there is a lack of techniques for in-depth structural studies of amyloid fibrils. Detailed structural information is obtained almost exclusively from solid-state NMR. The identification of β-strand and turn regions in this work suggests that quantitative analysis of spin exchange interactions in spin-labeled amyloid fibrils is a powerful approach for identifying the β-strand and turn/loop residues and for studying structural differences of different fibril polymorphs.

  5. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  6. Real beards and real networks: a spin-glass model for interacting individuals

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    ''I want to be different, just like all the other different people'' sang the band King Missile. Whether they are the Beatniks of the 1950s, the punks of the 1970s, or the hipsters of today, non-conformists often tend to look the same, seemingly at odds with their goal of non-conformity. The spin-glass model, originally developed to describe the interaction of magnetic spins, and since applied to situations as diverse as the electrical activity of networks of neurons, to trades on a financial market, has recently been used in social science to study populations of interacting individuals comprised of a mix of both conformists and anti-conformists - or hipsters. Including delay effects for the interactions between individuals has been shown to give a system with non-trivial dynamics with a phase transition from stable behaviour to periodic switching between two states (let's call them bushy bearded and clean shaven). Analytic solutions to such a model are possible, but only for particular assumptions about the interaction and delay matrices. In this work we will show what happens when the interactions in the model are based on real-world networks with ''small-world'' effects and clustering.

  7. Spin-dependent electron emission from metals in the neutralization of He{sup +} ions

    SciTech Connect

    Alducin, M.; Roesler, M.; Juaristi, J.I.

    2005-08-15

    We calculate the spin-polarization of electrons emitted in the neutralization of He{sup +} ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He{sup +} ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He{sup +} ion neutralization process and on the electronic properties of the surface.

  8. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  9. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory.

    PubMed

    Zhang, Xing; Herbert, John M

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H3 near its D(3h) geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  10. Real-space multiple-scattering theory of XMCD including spin-orbit interaction in scattering process

    NASA Astrophysics Data System (ADS)

    Koide, Akihiro; Niki, Kaori; Sakai, Seiji; Fujikawa, Takashi

    2016-05-01

    The effects of the spin-orbit interaction on surrounding atoms for XMCD spectra are studied by a real-space multiple-scattering theory. The present numerical calculation for Fe K-edge XMCD spectra from BCC iron demonstrates the importance of the spin-orbit interaction on scattering atoms, which has been disregarded in previous works. These effects will be inevitable for K-edge XMCD analyses of light elements surrounded by heavy magnetic atoms.

  11. Spin transitions in graphene butterflies at an integer filling factor

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-03-01

    Recent experiments on the role of electron-electron interactions in fractal Dirac systems have revealed a host of interesting effects, in particular, the unique nature of the magnetic field dependence of butterfly gaps in graphene. The novel gap structure recently observed in the integer quantum Hall effect is quite intriguing [G. L. Yu et al., Nat. Phys. 10, 525 (2014), 10.1038/nphys2979], where one observes a suppression of the ferromagnetic state at one value of the commensurable flux but a reentrant ferromagnetic state at another. In our present work we introduce the magnetic translation symmetry in the integer quantum Hall effect regime and consider the interplay between the electron-electron interaction and the periodic potential. In this approach, we explain the underlying physical processes that can lead to such a unique behavior of the butterfly gaps as observed in that system where we invoke the spin-flip transitions in the ground state.

  12. Interaction effects in superconductor/quantum spin Hall devices: Universal transport signatures and fractional Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Aasen, David; Lee, Shu-Ping; Karzig, Torsten; Alicea, Jason

    2016-10-01

    Interfacing s -wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here, we predict e -periodic Coulomb-blockade peaks, as recently observed in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e /2 . These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.

  13. Drift transport of helical spin coherence with tailored spin–orbit interactions

    PubMed Central

    Kunihashi, Y.; Sanada, H.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Sogawa, T.

    2016-01-01

    Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. PMID:26952129

  14. First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors

    NASA Astrophysics Data System (ADS)

    Jakobsson, A.; Mavropoulos, P.; Şaşıoǧlu, E.; Blügel, S.; Ležaić, M.; Sanyal, B.; Galanakis, I.

    2015-05-01

    Employing first-principles electronic-structure calculations in conjunction with the frozen-magnon method, we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn2CoAl , Ti2MnAl , Cr2ZnSi , Ti2CoSi , and Ti2VAs . We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature Tc. All compounds, except Ti2CoSi , possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest- and next-nearest-neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3 d ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and Tc of the SGSs. We find that the Tc of all compounds is much above the room temperature. The calculated magnetization curve for Mn2CoAl as well as the Curie temperature are in very good agreement with available experimental data. This study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.

  15. Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple quantum evolution

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Bailly, A.; Lang, D. P.; Amoureux, J.-P.; Fernandez, C.

    1999-06-01

    A new technique for measurements of dipolar interactions in rotating solids is presented that combines the capabilities of multiple quantum magic angle spinning (MQMAS) with the rotational echo double resonance (REDOR). It employs the dipolar recoupling between spin-1/2 ( I) and quadrupolar ( S) nuclei by applying a series of π pulses to the I spins. In contrast to the previously reported MQ-REDOR method, the recoupling sequence is applied during the triple quantum, rather than single quantum evolution. As the dipolar effect is enhanced by the MQ coherence order, this new technique exhibits improved sensitivity toward weak dipolar interactions.

  16. Interaction of optical waveguide modes with spin waves in an yttrium iron garnet film

    SciTech Connect

    Rutkin, O.G.; Kovshikov, N.G.; Stashkevich, A.A.; Kalinkios, B.A.; Ageev, A.N.

    1985-08-01

    Experiments have been carried out in order to investigate the interaction of optical waveguide modes with spin waves in yttrium-iron-garnet films. The waves were excited using an array of copper wire antennas placed 4 mm apart. The light source for the experiments was a He + Ne laser operating at a wavelength of 1.15. In order to study the mode conversion of the optical waveguide, the excitation antenna was fed a microwave signal which was modulated in amplitude by a meander of 1 kHz. The output signal from the photodiode was measured as a function of the microwave input power for mode conversions TM(0) and TE(0). Over the range of microwave input powers investigated, the mode conversion behavior was found to be linear. The maximum conversion coefficient was 0.04 percent. The applications of iron-garnet films in integrated optics and spin-wave electronic devices are discussed. 5 references.

  17. Transport properties of low-dimensional semiconductor structures in the presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Krstajić, P. M.; Pagano, M.; Vasilopoulos, P.

    2011-02-01

    Transport properties of a two-dimensional electron gas (2DEG) and of quantum wires are theoretically studied in the presence of both Rashba and Dresselhaus terms of the spin-orbit interaction (SOI). Fully quantum mechanical expressions for the conductivity are evaluated for very low temperatures and the differences between them and previous semiclassical results are highlighted. Two kinds of confining potentials in quantum wires are considered, square-type and parabolic. Various cases depending on the relative strengths of two different SOI terms are discussed and the relaxation times for various impurity potentials are evaluated. In addition, the spin accumulation in a 2DEG and in a quantum wire (QW) is evaluated semiclassically and its dependence on the Fermi energy and the SOI strengths is discussed. A nearly saw-tooth dependence on the electron concentration is obtained for a QW with parabolic confinement.

  18. Thermodynamics of a spin-1/2 XYZ Heisenberg chain with a Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Xi, Bin; Hu, Shijie; Luo, Qiang; Zhao, Jize; Wang, Xiaoqun

    2017-01-01

    We study the thermodynamics of a spin-1/2 XYZ Heisenberg chain with a Dzyaloshinskii-Moriya interaction. This model describes the low-energy behaviors of a one-dimensional two-component bosonic model with a synthetic spin-orbit coupling in the deep insulating region. In the limit U'/U →∞ , where U is the strength of the onsite intracomponent repulsion and U' is the intercomponent one, we solve our model exactly by Jordan-Wigner transformation, and thus provide a benchmark for our following numerical approach. In other cases, we calculate the entropy and the specific heat numerically by the transfer-matrix renormalization-group method. Their low-temperature behaviors depend crucially on the properties of the zero-temperature phases. A refined ground-state phase diagram is then deduced from their low-temperature behaviors. Our findings offer an alternative way to detect those distinguishable phases experimentally.

  19. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  20. Frustration in an exactly solvable mixed-spin Ising model with bilinear and three-site four-spin interactions on a decorated square lattice

    NASA Astrophysics Data System (ADS)

    Jaščur, M.; Štubňa, V.; Szałowski, K.; Balcerzak, T.

    2016-11-01

    Competitive effects of so-called three-site four-spin interactions, single ion anisotropy and bilinear interactions is studied in the mixed spin-1/2 and spin-1 Ising model on a decorated square lattice. Exploring the decoration-iteration transformation, we have obtained exact closed-form expressions for the partition function and other thermodynamic quantities of the model. From these relations, we have numerically determined ground-state and finite-temperature phase diagrams of the system. We have also investigated temperature variations of the correlation functions, internal energy, entropy, specific heat and Helmholtz free energy of the system. From the physical point of view, the most interesting result represents our observation of a partially ordered ferromagnetic or phase in the system with zero bilinear interactions. It is remarkable, that due to strong frustrations disordered spins survive in the system even at zero temperature, so that the ground state of the system becomes macroscopically degenerate with non-zero entropy. Introduction of arbitrarily small bilinear interaction completely removes degeneracy and the entropy always goes to zero at the ground state.

  1. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  2. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions.

    PubMed

    Dzikovski, Boris; Livshits, Vsevolod; Freed, Jack

    2015-10-22

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole-dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface.

  3. Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance

    NASA Astrophysics Data System (ADS)

    Kattnig, Daniel R.; Hinderberger, Dariush

    2013-05-01

    Based on a simple geometrical approach, we derive analytical expression of the probability density functions (pdfs) of distance of probe molecules distributed homogeneously in spherical aggregates with shell structure. These distance distributions can be utilized in the investigation of double electron-electron resonance (DEER) data of disordered nanometer-sized spin clusters. Structural insights and geometrical parameters of the aggregates can be extracted by modeling the DEER time traces based on the analytical pdfs. This approach is efficient and avoids difficulties of the model-free solution of the inverse problem that are related to multi-spin effects, limited excitation bandwidth, bias introduced by the regularization scheme, or ambiguity resulting from broad distance distributions. The derived pdfs can serve as building blocks, from which the distance distributions in arbitrary spherically symmetric objects can be assembled. The scenario of the pumped species being chemically distinct from the observed species is covered as well as that of a single type of probe molecules. We demonstrate the merits of analytical distance distributions by studying the distribution of three different spin probes in SDS micelles. By simultaneously analyzing DEER data corresponding to different spin probe concentrations, the distribution of the spin probes over the micelle can be determined. Employing Bayesian inference it is found that for all probes studied, a spherical shell model is most appropriate among the studied models and by orders of magnitude more likely than a homogeneous distribution in a ball. This statement also applies to probes that are deemed nonpolar. We envisage that the spin probe distributions in disordered soft and hard matter systems can now be quantified using DEER spectroscopy with greater precision and reduced ambiguity.

  4. Anomalous magnetic response of a quasi-periodic mesoscopic ring in presence of Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2016-04-01

    We investigate the properties of persistent charge current driven by magnetic flux in a quasi-periodic mesoscopic Fibonacci ring with Rashba and Dresselhaus spin-orbit interactions. Within a tight-binding framework we work out individual state currents together with net current based on second-quantized approach. A significant enhancement of current is observed in presence of spin-orbit coupling and sometimes it becomes orders of magnitude higher compared to the spin-orbit interaction free Fibonacci ring. We also establish a scaling relation of persistent current with ring size, associated with the Fibonacci generation, from which one can directly estimate current for any arbitrary flux, even in presence of spin-orbit interaction, without doing numerical simulation. The present analysis indeed gives a unique opportunity of determining persistent current and has not been discussed so far.

  5. Double quantum coherence electron spin resonance on coupled Cu(II)-Cu(II) electron spins

    NASA Astrophysics Data System (ADS)

    Becker, James S.; Saxena, Sunil

    2005-10-01

    We demonstrate for the first time the ability to generate double quantum coherences (DQCs) for the case of Cu(II). We show that small splittings (˜7 MHz) from the Cu(II)-Cu(II) electron-electron magnetic dipolar interaction can be reliably resolved even though the inhomogeneously broadened Cu(II) linewidth is ˜2 GHz. A Cu(II)-Cu(II) distance of 2.0 nm was measured on a model peptide system, thus, demonstrating that distances on the nanometer scale may be measured using DQC electron spin resonance (ESR).

  6. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  7. Renormalized entanglement in Heisenberg-Ising spin-1/2 chain with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khan, Kalimullah

    2016-06-01

    The influence of the Dzyaloshinsky-Moriya (DM) interaction on entanglement in the one-dimensional spin-1/2 Heisenberg-Ising model is investigated via concurrence. The existence of two states, different in quantum properties and linked through a critical point by quantum phase transition, in the thermodynamic limit, are identified. The strong DM interaction delays quantum phase transition and hence shifts the boundary between the two phases to the region of the strong coupling constant. The increasing strength of the DM interaction strongly restores entanglement against its degradation arising from the increasing size of the system. The first derivative of the entanglement quantifier diverges to the critical point and is related directly to the divergence of the correlation length. The scaling behavior in the vicinity of the quantum critical point is also discussed.

  8. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    SciTech Connect

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli V.

    2013-12-04

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

  9. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.

    PubMed

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-10-03

    The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.

  10. Functional renormalization group analysis of Dzyaloshinsky-Moriya and Heisenberg spin interactions on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Hering, Max; Reuther, Johannes

    2017-02-01

    We investigate the effects of Dzyaloshinsky-Moriya (DM) interactions on the frustrated J1-J2 kagome-Heisenberg model using the pseudofermion functional renormalization group (PFFRG) technique. In order to treat the off-diagonal nature of DM interactions, we develop an extended PFFRG scheme. We benchmark this approach in parameter regimes that have previously been studied with other methods and find good agreement of the magnetic phase diagram. Particularly, finite DM interactions are found to stabilize all types of noncollinear magnetic orders of the J1-J2 Heisenberg model (q =0 , √{3 }×√{3 } , and cuboc orders) and shrink the extents of magnetically disordered phases. We discuss our results in the light of the mineral herbertsmithite which has been experimentally predicted to host a quantum spin liquid at low temperatures. Our PFFRG data indicate that this material lies in close proximity to a quantum critical point. In parts of the experimentally relevant parameter regime for herbertsmithite, the spin-correlation profile is found to be in good qualitative agreement with recent inelastic-neutron-scattering data.

  11. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang

    2016-03-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  12. Spin Correlations of Strongly Interacting Massive Fermion Pairs as a Test of Bell's Inequality

    SciTech Connect

    Sakai, H.; Saito, T.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Rangacharyulu, C.; Sekiguchi, K.; Tamii, A.

    2006-10-13

    We report the results of the first-time test of the local hidden variable theories (Bell-Clauser-Horne-Shimony-Holt) involving strongly interacting pairs of massive spin 1/2 hadrons from the decay of short-lived ({tau}<10{sup -21}sec) {sup 2}He spin-singlet state, populated in the nuclear reaction {sup 2}H+{sup 1}H{yields}{sup 2}He+n. The novel features of this experiment are (a) the use of an 'event body' detector of nearly 100% efficiency to prepare an unbiased sample and (b) a focal-plane polarimeter of full 2{pi} sr acceptance with a random 'post selection' of the reference axes. The spin-correlation function is deduced to be S{sub exp}({pi}/4)=2.83{+-}0.24{sub stat}{+-}0.07{sub sys}. This result is in agreement with nonlocal quantum mechanical prediction and it violates the Bell-CHSH inequality of vertical bar S vertical bar{<=}2 at a confidence level of 99.3%.

  13. Observation of Dipolar Spin-Exchange Interactions with Polar Molecules in a Lattice

    DTIC Science & Technology

    2013-01-01

    with about 1× 105 87Rb atoms and 2.5× 105 40K atoms in a far-off resonance dipole trap at 1064 nm. The trap frequencies are 25 Hz radially and 185 Hz...lattice We begin with about 1× 105 87Rb atoms and 2.5× 105 40K atoms in a far-off resonance dipole trap at 1064 nm. The trapping frequencies are 25...to realize lattice spin models3 for exploring quantum magnetism. In ordinruy atomic systems, where contact interactions require wavefunction

  14. Interactions between SAS-C spacecraft nutations and spin control system

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.; Thayer, D. L.

    1974-01-01

    The SAS-C spacecraft is stabilized by a momentum biased reaction wheel and passive nutation damper. A closed-loop low-speed spacecraft spin rate control system is included which uses a single-axis gyro and a variable speed range on the reaction wheel. Dynamic instability can result from interactions among the gyro, damper, and spacecraft dynamic unbalance. This instability may be aggravated by gyro angular misalignment, gyro error signals, and spacecraft nutations. Analytic eigenvector, and digital computer analyses of the coupled systems are presented. Mechanisms for instability are described as well as the effects that gyro error signal, tilt, and spacecraft dynamic unbalance produce on control system performance.

  15. High-Q filters with complete transports using quasiperiodic rings with spin-orbit interaction

    SciTech Connect

    Qiu, R. Z.; Chen, C. H.; Tsao, C. W.; Hsueh, W. J.

    2014-09-15

    A high Q filter with complete transports is achieved using a quasiperiodic Thue-Morse array of mesoscopic rings with spin-orbit interaction. As the generation order of the Thue-Morse array increases, not only does the Q factor of the resonance peak increase exponentially, but the number of sharp resonance peaks also increases. The maximum Q factor for the electronic filter of a Thue-Morse array is much greater than that in a periodic array, for the same number of the rings.

  16. Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories.

    PubMed

    Goodwin, D L; Kuprov, Ilya

    2015-08-28

    Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome, and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.

  17. Effect of exciton-spin-orbit-photon interaction in the performance of organic solar cells

    NASA Astrophysics Data System (ADS)

    Narayan, Monishka Rita; Singh, Jai

    2013-02-01

    Photon absorptions leading to singlet and triplet excitonic states in organic solar cells are presented in this study. Applying Fermi's golden rule, the rates of absorption of singlet and triplet excitons are derived using singlet exciton-photon and triplet exciton-spin-orbit-photon-interaction, respectively, as perturbation operators. The rate of triplet absorption depends on the square of the atomic number and hence heavier atoms play the dominant role. Incorporation of heavy metal atoms in the donor organic material enhances the absorption rate and hence absorption, leading of higher generation of excited charge carriers. This increases the conversion efficiency of organic solar cells. The results are compared with experimental studies.

  18. Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories

    SciTech Connect

    Goodwin, D. L.; Kuprov, Ilya

    2015-08-28

    Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome, and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.

  19. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    SciTech Connect

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; Callahan, Nathan Brannan; Clayton, Steven M.; Currie, Scott Allister; Ito, Takeyasu M.; Makela, Mark F.; Masuda, Yasuhiro; Morris, Christopher L.; Pattie, Robert Wayne; Ramsey, John Clinton; Salvat, Daniel J.; Saunders, Alexander; Young, Albert R.

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) X 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  20. Double electron-electron resonance with multiple non-selective chirp refocusing.

    PubMed

    Doll, Andrin; Jeschke, Gunnar

    2017-01-04

    A new approach to double electron-electron resonance (DEER) for distance determination involving nitroxide spin labels at dilute concentrations is presented. In general, DEER pulse sequences rely on double resonance between pump and observer spins excited by selective pulses at two distinct microwave frequencies. In the new approach abbreviated as nDEER, non-selective chirp pulses that refocus all relevant spin pairs are combined with DEER. This non-selective refocusing results in suppression of unmodulated contributions, such as the constant contribution as well as the background curvature due to inter-molecular spin partners in ordinary DEER data. Due to this dipolar attenuation effect, primary nDEER data are closer to the dipolar modulation of primary interest than ordinary DEER data. Restrictions of nDEER are that secondary information related to these unmodulated contributions becomes difficult to retrieve. Accordingly, incomplete deconvolution of the inter-molecular background prevents the application of nDEER to rigid spin pairs at high concentrations. A key advantage of nDEER is the high fidelity of the chirp refocusing pulses, which is important for nDEER schemes that incorporate dynamical decoupling to access longer distances. In this context, nDEER with Carr-Purcell (CP) pulse trains having N = 2 and N = 4 refocusing pulses are demonstrated. These CP nDEER sequences require a total of N + 2 pulses, which is less than the 2N + 1 pulses required for CP DEER schemes. The pump pulse position is incremented throughout the refocusing pulses, which restricts the minimum time increment to 96 ns on our spectrometer and therefore complicates application to distances below 3 nm. At Q-band frequencies, unwanted modulations related to pulse imperfections contribute only 3.5% relative to the principal nDEER modulation. Accordingly, there is no need for dedicated data reconstruction methods as in CP DEER methods.

  1. Three-photon interactions and spin exchange in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Cantu, Sergio; Liang, Qi-Yu; Thompson, Jeff; Nicholson, Travis; Venkatramani, Aditya; Gullans, Michael; Gorshkov, Alexey; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan

    2016-05-01

    Robust quantum gates for photonic qubits are a longstanding goal of quantum information science. One promising approach to achieve this goal requires strong nonlinear interactions between single photons, which is impossible with conventional optical media. We realize these interactions with electromagnetically induced transparency (EIT), and strongly interacting Rydberg states to mediate strong interactions between photons. Operating in the dispersive regime of EIT, we have recently shown that two photons propagating in our system can bind into a photonic molecule. Extending these two-photon experiments to many-body physics would lead to exotic phenomena like photon crystallization. To that end, we have scaled up our two-photon measurements to three-photon experiments. We are now able to discern signatures of three-photon molecules from a variety of two- and three-photon interactions. Three-photon bound states manifest as an increase in photon bunching in g (3) correlation measurements. We also present a recent observation of coherent spin exchange interactions in Rydberg EIT.

  2. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment.

    PubMed

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo

    2016-07-07

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  3. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure

    SciTech Connect

    Pirro, P.; Sebastian, T.; Leven, B.; Hillebrands, B.; Koyama, T.; Brächer, T.

    2015-06-08

    The interaction of propagating dipolar spin waves with magnetic domain walls is investigated in square-shaped microstructures patterned from the Heusler compound Co{sub 2}Mn{sub 0.6}Fe{sub 0.4}Si. Using magnetic force microscopy, the reversible preparation of a Landau state with four magnetic domains separated by Néel domain walls is confirmed. A local spin-wave excitation using a microstructured antenna is realized in one of the domains. It is shown by Brillouin light scattering microscopy that the domain structure in the remanence state has a strong influence on the spin-wave excitation and propagation. The domain walls strongly reflect the spin waves and can be used as spin-wave reflectors. A comparison with micromagnetic simulations shows that the strong reflection is due to the long-range dipolar interaction which has important implications for the use of these spin waves for exerting an all-magnonic spin-transfer torque.

  4. Spin-orbit interactions in inversion-asymmetric two-dimensional hole systems: A variational analysis

    NASA Astrophysics Data System (ADS)

    Marcellina, E.; Hamilton, A. R.; Winkler, R.; Culcer, Dimitrie

    2017-02-01

    We present an in-depth study of the spin-orbit (SO) interactions occurring in inversion-asymmetric two-dimensional hole gases at semiconductor heterointerfaces. We focus on common semiconductors such as GaAs, InAs, InSb, Ge, and Si. We develop a semianalytical variational method to quantify SO interactions, accounting for both structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). Under certain circumstances, using the Schrieffer-Wolff (SW) transformation, the dispersion of the ground state heavy hole subbands can be written as E (k ) =A k2-B k4±C k3 where A ,B , and C are material- and structure-dependent coefficients. We provide a simple method of calculating the parameters A ,B , and C , yet demonstrate that the simple SW approximation leading to a SIA (Rashba) spin splitting ∝k3 frequently breaks down. We determine the parameter regimes at which this happens for the materials above and discuss a convenient semianalytical method to obtain the correct spin splitting, effective masses, Fermi level, and subband occupancy, together with their dependence on the charge density, and dopant type, for both inversion and accumulation layers. Our results are in good agreement with fully numerical calculations as well as with experimental findings. They suggest that a naive application of the simple cubic Rashba model is of limited use in either common heterostructures or quantum dots. Finally, we find that for the single heterojunctions studied here the magnitudes of BIA terms are always much smaller than those of SIA terms.

  5. Weyl spin-orbit-coupling-induced interactions in uniform and trapped atomic quantum fluids

    NASA Astrophysics Data System (ADS)

    Gupta, Reena; Singh, G. S.; Bosse, Jürgen

    2013-11-01

    We establish through analytical and numerical studies of thermodynamic quantities for noninteracting atomic gases that the isotropic three-dimensional spin-orbit coupling, the Weyl coupling, induces interaction which counters “effective” attraction (repulsion) of the exchange symmetry present in zero-coupling Bose (Fermi) gas. The exact analytical expressions for the grand potential and hence for several thermodynamic quantities have been obtained for this purpose in both uniform and trapped cases. It is enunciated that many interesting features of spin-orbit-coupled systems revealed theoretically can be understood in terms of coupling-induced modifications in statistical interparticle potential. The temperature dependence of the chemical potential, specific heat, and isothermal compressibility for a uniform Bose gas is found to have signature of the incipient Bose-Einstein condensation in the very weak coupling regime although the system does not really go in the Bose-condensed phase. The transition temperature in the harmonically trapped case decreases with an increase of coupling strength consistent with the weakening of the statistical attractive interaction. Anomalous behavior of some thermodynamic quantities, partly akin to that in dimensions less than two, appears for uniform fermions as soon as the Fermi level goes down the Dirac point on increasing the coupling strength. It is suggested that the fluctuation-dissipation theorem can be utilized to verify anomalous behaviors from studies of long-wavelength fluctuations in bunching and antibunching effects.

  6. A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction

    PubMed Central

    Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2016-01-01

    Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426

  7. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    SciTech Connect

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun E-mail: koreasds@naver.com

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  8. Magnon-magnon interactions in O(3) ferromagnets and equations of motion for spin operators

    NASA Astrophysics Data System (ADS)

    Radošević, Slobodan M.

    2015-11-01

    The method of equations of motion for spin operators in the case of O(3) Heisenberg ferromagnet is systematically analyzed starting from the effective Lagrangian. It is shown that the random phase approximation and the Callen approximation can be understood in terms of perturbation theory for type B magnons. Also, the second order approximation of Kondo and Yamaji for one dimensional ferromagnet is reduced to the perturbation theory for type A magnons. An emphasis is put on the physical picture, i.e. on magnon-magnon interactions and symmetries of the Heisenberg model. Calculations demonstrate that all three approximations differ in manner in which the magnon-magnon interactions arising from the Wess-Zumino term are treated, from where specific features and limitations of each of them can be deduced.

  9. Effects of Spin-Orbit Coupling on the Spin-Rotation Interaction in the AsH2 Radical

    NASA Astrophysics Data System (ADS)

    Duxbury, Geoffrey; Alijah, Alexander

    2014-06-01

    The occurence of predissociation in the electronic spectrum of AsH2 is very dependent upon the magnitude of the spin-orbit coupling parameter of the central atom. Making use of Table 5.6 in "The Spectra and Dynamics of Diatomic Molecules, ELSEVIER" by H. Lefebvre-Brion and R.W. Field, it is possible to appreciate the rapid rate of increase of the spin-orbit constants associated with the heavy central atom in the di-hydrides NH2, PH2 and AsH2. The spin-orbit constants range from 42.7 cm-1 for NH2, to 191.3 cm-1 for PH2, and 1178 cm-1 for AsH2. The effects of spin-orbit coupling may be seen in a plot of the separation of the central RQ0,9 and PQ1,N sub-bands as the value of v2' increases from 0 to 5. As the value of v2' increases beyond 2 the spectrum becomes more and more fuzzy as the effects of predissociation become more obvious. This means that unlike the example of the behaviour of PH2, where the vibronic level pattern can be followed below and above the barrier to linearity, in AsH2 and AsD2 the absorption spectrum becomes completely diffuse below the barrier to linearity in the A 2A1 state. The change in the magnitude of the doublet splittings as v2' increases may be seen in the plots of the doublet splittings showing the spin-uncoupling as a result of the increase of overall rotation. In the absorption spectrum of SbH2, recorded in 1967 by T. Barrow in the Chemistry Department at Sheffield University, all the absorption features showed the effects of predissociation, consistent with a spin-orbit constant of 2834 cm-1 for the central atom of SbH2.

  10. Microscopic understanding of spin current probed by shot noise

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  11. Gate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Meyer, Carola

    2017-02-01

    We show that the engineering of tunnel barriers forming at the interfaces of a one-dimensional spin valve provides a viable path to a strong gate-voltage tunability of the magnetoresistance effect. Specifically, we investigate theoretically a carbon nanotube (CNT) spin valve in terms of the influence of the CNT-contact interface on the performance of the device. The focus is on the strength and the spin selectivity of the tunnel barriers that are modeled as Dirac-δ potentials. The scattering matrix approach is used to derive the transmission coefficient that yields the tunneling magnetoresistance (TMR). We find a strong nontrivial gate-voltage response of the TMR in the absence of spin-orbit coupling when the energy of the incident electrons matches the potential energy of the barrier. Analytic expressions for the TMR in various limiting cases are derived. These expressions are used to explain previous experimental results, and also to predict prospective ways for device optimization with respect to the size and tunability of the TMR effect in the ballistic transport regime by means of engineering the tunnel barriers at the CNT-contact interfaces.

  12. Configuration interaction studies on the spectroscopic properties of PbO including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan

    2016-07-01

    Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin-orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm-1, for instance, X1Σ+, 13Σ+, and 13Σ-, and their spin-orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  13. U(1) chiral symmetry in a one-dimensional interacting electron system with spin

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2016-11-01

    We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.

  14. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  15. Element-sensitive measurement of the hole-nuclear spin interaction in quantum dots

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Glazov, M. M.; Krysa, A. B.; Hopkinson, M.; Senellart, P.; Lemaître, A.; Skolnick, M. S.; Tartakovskii, A. I.

    2013-02-01

    It has been proposed that valence-band holes can form robust spin qubits owing to their weaker hyperfine coupling compared with electrons. However, it was demonstrated recently that the hole hyperfine interaction is not negligible, although a consistent picture of the mechanism controlling its magnitude is still lacking. Here we address this problem by measuring the hole hyperfine constant independently for each chemical element in InGaAs/GaAs, InP/GaInP and GaAs/AlGaAs quantum dots. Contrary to existing models we find that the hole hyperfine constant has opposite signs for cations and anions and ranges from -15% to +15% relative to that for electrons. We attribute such changes to the competing positive contributions of p-symmetry atomic orbitals and the negative contributions of d-orbitals. These findings yield information on the orbital composition of the valence band and enable a fundamentally new approach for verification of computed Bloch wavefunctions in semiconductor nanostructures. Furthermore, we show that the contribution of cationic d-orbitals leads to a new mechanism of hole spin decoherence.

  16. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film

    SciTech Connect

    Di, Kai; Zhang, Vanessa Li; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Qiu, Xuepeng; Yang, Hyunsoo

    2015-02-02

    Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignificant for the 0.8 nm-thick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic and spintronic applications.

  17. Microscopic origin of subthermal magnons and the spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Diniz, I.; Costa, A. T.

    2016-05-01

    Recent experimental evidence points to low-energy magnons as the primary contributors to the spin Seebeck effect. This spectral dependence is puzzling since it is not observed on other thermocurrents in the same material. Here, we argue that the physical origin of this behavior is the magnon-magnon scattering mediated by phonons, in a process which conserves the number of magnons. To assess the importance and features of this kind of scattering, we derive the effective magnon-phonon interaction from a microscopic model, including band energy, a screened electron-electron interaction and the electron-phonon interaction. Unlike higher order magnon-only scattering, we find that the coupling with phonons induce a scattering which is very small for low-energy (or subthermal) magnons but increases sharply above a certain energy—rendering magnons above this energy poor spin-current transporters.

  18. Magnetoelectric subbands and eigenstates in the presence of Rashba and Dresselhaus spin-orbit interactions in a quantum wire

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, S.; Pramanik, S.; Cahay, M.

    2004-01-01

    We derive the eigenenergies and spin-dependent eigenstates of electrons in a quantum wire subjected to an external magnetic field. These are calculated in the presence of spin-orbit interactions arising from the Rashba (structural inversion asymmetry) and Dresselhaus (bulk inversion asymmetry) effects. We consider three cases: the external magnetic field is oriented (i) along the axis of the wire, (ii) perpendicular to the axis but parallel to the electric field associated with structural inversion asymmetry (Rashba effect), and (iii) perpendicular to the axis as well as this electric field. In all cases, the dispersions of the eigenenergies are non-parabolic and the subbands do not have a fixed spin quantization axis (meaning that the spin polarization of the electron is wavevector dependent). Except in the second case, the dispersion diagrams are also, in general, asymmetric about the energy axis.

  19. Emergence of topological Hall effect from fanlike spin structure as modified by Dzyaloshinsky-Moriya interaction in MnP

    NASA Astrophysics Data System (ADS)

    Shiomi, Y.; Iguchi, S.; Tokura, Y.

    2012-11-01

    A nontrivial Hall effect has been observed as an anomaly of the Hall conductivity in the magnetization process in a typical itinerant helimagnet MnP. Since the Dzyaloshinsky-Moriya interaction slightly modulates the spin structure, the anomaly is identified only in the specific magnetic (fanlike) phase that can have finite scalar spin chirality. The decrease in the magnitude of the anomaly as observed by doping Co is well accounted for in terms of the topological Hall effect arising from the spin-chirality-induced Berry phase in real space. A fictitious magnetic flux in real space is estimated to be ˜1 T, which is consistent with the small modulation of the spin structure.

  20. Quantum phase transitions in a chain with two- and four-spin interactions in a transverse field

    NASA Astrophysics Data System (ADS)

    de Alcantara Bonfim, O. F.; Saguia, A.; Boechat, B.; Florencio, J.

    2014-09-01

    We use entanglement entropy and finite-size scaling methods to investigate the ground-state properties of a spin-1/2 Ising chain with two-spin (J2) and four-spin (J4) interactions in a transverse magnetic field (B ). We concentrate our study on the unexplored critical region B =1 and obtain the phase diagram of the model in the (J4-J2) plane. The phases found include ferromagnetic (F), antiferromagnetic (AF), as well as more complex phases involving spin configurations with multiple periodicity. The system presents both first- and second-order transitions separated by tricritical points. We find an unusual phase boundary on the semi-infinite segment (J4<-1,J2=0) separating the F and AF phases.

  1. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Boechat, B.; Florencio, J.; Saguia, A.; de Alcantara Bonfim, O. F.

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  2. Quantum criticality in a magnetic chain with two- and four-spin interactions in a transverse field

    NASA Astrophysics Data System (ADS)

    de Alcantara Bonfim, O. F.; Saguia, A.; Boechat, B.; Florencio, J.

    2015-03-01

    We use entanglement entropy and finite-size scaling methods to investigate the ground-state properties of a spin - 1 / 2 Ising chain with two-spin (J2) and four-spin (J4) interactions in a transverse magnetic field (B). We concentrate our study on the unexplored critical region B = 1 and obtain the phase diagram of the model in the (J4-J2) plane. The phases found include ferromagnetic (F), antiferromagnetic (AF), as well as more complex phases involving spin configurations with multiple periodicity. The system presents both first and second order transitions separated by tricritical points. We find an unusual phase boundary on the semi-infinite segment (J4 < - 1 , J2 =0) separating the F and AF phases.

  3. Phase transitions of a quantum chain with four-spin interactions in longitudinal and transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Boechat, B.; Florencio, J.; Saguia, A.; de Alcantara Bonfim, O. F.

    2015-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multi-critical points in the system. We identify phases with both ferromagnetic and anti-ferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like-spins followed by another cluster of opposite like-spins. The quantum phases in the model are found to be separated by either first or second order transition lines.

  4. The position of cytochrome b(559) relative to Q(A) in photosystem II studied by electron-electron double resonance (ELDOR).

    PubMed

    Kuroiwa, S; Tonaka, M; Kawamori, A; Akabori, K

    2000-11-20

    The electron-electron double resonance (ELDOR) method was applied to measure the dipole interaction between cytochrome (Cyt) b(+)(559) and the primary acceptor quinone (Q(-)(A)), observed at g=2.0045 with the peak to peak width of about 9 G, in Photosystem II (PS II) in which the non-heme Fe(2+) was substituted by Zn(2+). The paramagnetic centers of Cyt b(+)(559)Y(D)Q(-)(A) were trapped by illumination at 273 K for 8 min, followed by dark adaptation for 3 min and freezing into 77 K. The distance between the pair Cyt b(+)(559)-Q(-)(A) was estimated from the dipole interaction constant fitted to the observed ELDOR time profile to be 40+/-1 A. In the membrane oriented PS II particles the angle between the vector from Q(A) to Cyt b(559) and the membrane normal was determined to be 80+/-5 degrees. The position of Cyt b(559) relative to Q(A) suggests that the heme plane is located on the stromal side of the thylakoid membrane. ELDOR was not observed for Cyt b(+)(559) Y(D) spin pair, suggesting the distance between them is more than 50 A.

  5. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    NASA Astrophysics Data System (ADS)

    Smith, Anders; Nielsen, Kaspar K.; Bez, Henrique N.; Bahl, Christian R. H.

    2016-08-01

    We measure the magnetocaloric effect of the manganite series La0.67Ca0.33 -xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence. In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.

  6. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-09-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices.

  7. Spin-phonon interactions to control the thermal transport in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Du, S.; Stanek, C. R.; Lashley, J. C.; Liu, X.-Y.; Schulze, R. K.; Smith, J. L.; Safarik, D. J.; Byler, D. D.; McClellan, K. J.; Uberuaga, B. P.; Scott, B. L.; Andersson, D. A.

    2015-03-01

    Despite more than sixty years of intense research of uranium dioxide, a thorough understanding is lacking for the microscopic processes that control its transport and thermodynamic properties. In particular, it is not clear how different degrees of freedom and quasiparticle excitations interact and what is the relationship to the thermal behavior. We report our new experimental and theoretical studies on oriented and well characterized single crystals of uranium dioxide. Our results indicate that strong spin-phonon coupling and resonant scattering are important for understanding the general thermal behavior, and also explains the observed anisotropy in thermal conductivity by coupling to the applied temperature gradient and breaking cubic symmetry. We will discuss implications of these results.

  8. Constraints on a long-range spin-independent interaction from precision atomic physics

    SciTech Connect

    Karshenboim, S. G.

    2010-10-01

    Constraints on a spin-independent interaction by the exchange of a neutral light boson are derived from precision data on the electron anomalous magnetic moment and from atomic spectroscopy of hydrogen and deuterium atoms. The mass range from 1 eV/c{sup 2} to 1 MeV/c{sup 2} is studied, and the effective coupling constant {alpha}{sup '} is allowed below the level of 10{sup -11}-10{sup -13} depending on the value of the boson mass. The mass range corresponds to the Yukawa radius from 0.0002 nm to 20 nm, which covers the distances far above and far below the Bohr radius of the hydrogen atom.

  9. Self-interaction-corrected local-spin-density calculations for rare earth materials

    SciTech Connect

    Svane, A.; Temmerman, W.M.; Szotek, Z.; Laegsgaard, J.; Winter, H.

    2000-04-20

    The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. In Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.

  10. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    SciTech Connect

    Korenev, V. L.

    2014-03-03

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10{sup 4} A/cm{sup 2} in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  11. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    PubMed Central

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices. PMID:27601317

  12. Probing spin-orbit-interaction-induced electron dynamics in the carbon atom by multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Rey, H. F.; van der Hart, H. W.

    2014-09-01

    We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number ML=0 and ML=1 at a laser wavelength of 390 nm and peak intensity of 1014W/cm2. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for ML. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with ML=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

  13. The spin-3/2 Blume-Capel model with competing short- and long-range interactions

    NASA Astrophysics Data System (ADS)

    Salmon, Octavio D. Rodriguez; de Sousa, José Ricardo; Neto, Minos A.; Padilha, Igor T.; Azevedo, J. Roberto Viana; Neto, Francisco Dinóla

    2016-12-01

    The phase diagrams of the spin- 3 / 2 Blume-Capel model with competing short and long-range interactions were studied through the free energy density obtained by analytical methods. The competition emerges when positive short-range interactions of strength K arranged in a linear chain tend to establish an anti-parallel spin order, whereas negative long-range interactions - J tend to align them in parallel. Thus, no ferromagnetic order exists for K / J > 0.25. So, the phase-diagrams were scanned by varying the values of K, for 0 < K / J < 0.25. As in other similar study done for the spin-1 case, the second-order frontier separating the ferromagnetic and the paramagnetic phases is transformed gradually into a first-order line when K / J is greater than a certain critical value. Accordingly, there is a sub interval of K, for which two tricritical points appear restricting the length of the second-order frontier. Nevertheless, for greater values of K / J, the ferromagnetic-paramagnetic frontier becomes wholly of first order. Also, the typical line of coexistence of the spin- 3 / 2 Blume-Capel model, which divides two different ferromagnetic phases of magnetization m = 3 / 2 and m = 1 / 2, becomes more complex by giving rise to another first-order line with a reentrant behavior that encloses a third ordered phase. In this case, the competition is such that there is a region in the phase diagram, where for each spin i with Si = 3 / 2 (Si = - 3 / 2), there is another spin j, where j = i + 1 and Sj = 1 / 2 (Sj = - 1 / 2), such that the absolute value of the magnetization per spin is one.

  14. Probing multiferroicity and spin-spin interactions via angular dependent dielectric measurements on Y-doped HoMnO3 in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Vasic, R.; Zhou, H. D.; Brooks, J. S.; Wiebe, C. R.

    2007-05-01

    Dielectric measurements are used to characterize magnetic phase transitions in the doped ferroelectric oxides Ho1-xYxMnO3 (x=0.4). The focus of this experiment is on the effects of the magnetic field direction on the reentrant T-B-θ phase diagram below the Néel temperature. The Ho sublattice plays a major role in all magnetic phase transitions for Y doping (x =0.4), consistent with previous results (x=0,0.6,0.8). Two successive Mn spin rotations in the ab plane in the antiferromagnetic state are driven by the interaction with the Ho subsystem, although the Ho ordering peak in data is not pronounced. The dielectric response is a very sensitive probe for fine analysis of all aspects of spin-spin interactions in diluted Ho1-xYxMnO3. The magnetic field anisotropy study is an important step towards the understanding of magnetic and electric phase competition in the diluted 4f system by the nonmagnetic yttrium (Y) ion.

  15. Topological Phases of the Spin-1/2 Ferromagnetic--Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2013-06-01

    The spin-1/2 ferromagnetic--antiferromagnetic alternating Heisenberg chain with ferromagnetic next-nearest-neighbour (NNN) interaction is investigated. The ground state is the Haldane phase for weak NNN interaction, and is the ferromagnetic phase for weak antiferromagnetic interaction. We find a series of topologically distinct spin-gap phases with various magnitudes of edge spins for strong NNN interaction. The phase boundaries between these phases are determined on the basis of the DMRG calculation with additional spins that compensate the edge spins. It is found that each of the exact solutions with short-range antiferromagnetic correlation on the ferromagnetic--nonmagnetic phase boundary is representative of each spin gap phase.

  16. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins.

    PubMed

    Britton, Joseph W; Sawyer, Brian C; Keith, Adam C; Wang, C-C Joseph; Freericks, James K; Uys, Hermann; Biercuk, Michael J; Bollinger, John J

    2012-04-25

    The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.

  17. Quantum systems with position-dependent mass and spin-orbit interaction via Rashba and Dresselhaus terms

    SciTech Connect

    Schmidt, Alexandre G. M. Portugal, L. Jesus, Anderson L. de

    2015-01-15

    We consider a particle with spin 1/2 with position-dependent mass moving in a plane. Considering separately Rashba and Dresselhaus spin-orbit interactions, we write down the Hamiltonian for this problem and solve it for Dirichlet boundary conditions. Our radial wavefunctions have two contributions: homogeneous ones which are written as Bessel functions of non-integer orders—that depend on angular momentum m—and particular solutions which are obtained after decoupling the non-homogeneous system. In this process, we find non-homogeneous Bessel equation, Laguerre, as well as biconfluent Heun equation. We also present the probability densities for m = 0, 1, 2 in an annular quantum well. Our results indicate that the background as well as the spin-orbit interaction naturally splits the spinor components.

  18. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, G.; Miller, R.; Ogden, L.; Kavand, M.; Jamali, S.; Ambal, K.; Venkatesh, S.; Schurig, D.; Malissa, H.; Lupton, J. M.; Boehme, C.

    2016-09-01

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

  19. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment.

    PubMed

    Azarkh, Mykhailo; Singh, Vijay; Okle, Oliver; Seemann, Isabelle T; Dietrich, Daniel R; Hartig, Jörg S; Drescher, Malte

    2013-01-01

    Double electron-electron resonance (DEER) is an electron paramagnetic resonance (EPR) technique used to determine distance distributions in the nanometer range between spin labels by measuring their dipole-dipole interactions. Here we describe how in-cell DEER can be applied to spin-labeled DNA sequences to unravel their conformations in living cells by long-range distance measurements in cellula. As EPR detects unpaired electron spins only, diamagnetic molecules provide no background and do not reduce detection sensitivity of the specific signal. Compared with in-cell NMR spectroscopy, low concentrations of spin-labeled molecules can be used owing to the higher sensitivity of EPR per spin. This protocol describes the synthesis of the spin labels, their introduction in DNA strands, the injection of labeled DNA solutions in cells and the performance of in-cell EPR measurements. Completion of the entire protocol takes ~20 d.

  20. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Two Electrons with Spin-Orbit Interactions in InAs Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Xu, Dong; Zhu, Jia-Lin

    2010-02-01

    We theoretically study the spin properties of two interacting electrons confined in the InAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.

  1. Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical Properties Entanglement Entropy Signature of Quantum Phase Transitions in a Multiple Spin Interactions Model

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Lin

    2011-02-01

    Through the Jordan—Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory. In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields. It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT). In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations. However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order QPT at the tricritical point and an additional new phase called “spin waves”, which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.

  2. Intrinsic spin-orbit interaction in diffusive normal wire Josephson weak links: Supercurrent and density of states

    NASA Astrophysics Data System (ADS)

    Arjoranta, Juho; Heikkilä, Tero T.

    2016-01-01

    We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor-nanowire-superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several channels and in the presence of disorder.

  3. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction

    NASA Astrophysics Data System (ADS)

    Macquarrie, E. R.; Otten, M.; Gray, S. K.; Fuchs, G. D.

    2017-02-01

    Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5+/-0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.

  4. Momentum spectrometer for electron-electron coincidence studies on superconductors

    SciTech Connect

    Wallauer, Robert; Voss, Stefan; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schoeffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Schmidt-Boecking, Horst; Doerner, Reinhard; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt and others

    2012-10-15

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 {pi} solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  5. Momentum spectrometer for electron-electron coincidence studies on superconductors

    NASA Astrophysics Data System (ADS)

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  6. Momentum spectrometer for electron-electron coincidence studies on superconductors.

    PubMed

    Wallauer, Robert; Voss, Stefan; Foucar, Lutz; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schöffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser; Müller, Andreas; Berner, Götz; Sing, Michael; Claessen, Ralph; Schmidt-Böcking, Horst; Dörner, Reinhard

    2012-10-01

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  7. Modulation scheme for electron-electron double resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehlkopf, A. F.; Kuiper, F. G.; Smidt, J.; Tiggelman, T. A.

    1983-06-01

    A modulation scheme for electron-electron double resonance (ELDOR) spectrometers is presented. With this scheme an optimum stabilization signal for locking the pump microwave generator to the pumped electron paramagnetic resonance (EPR) line is generated. A separate pump power level and a separate magnetic field modulation amplitude are used for the purpose of locking. In general, such a modulation scheme introduces false ELDOR lines. These false lines disturb the real ELDOR signals, or introduce an ELDOR signal in the absence of any communication between the observed EPR line and the pumped EPR line. With the described modulation scheme the frequencies of the false ELDOR signals are limited to even multiples of the frequency of the wanted ELDOR signals. This makes a suppression of the false ELDOR lines easy.

  8. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.

    PubMed Central

    Ge, M; Freed, J H

    1993-01-01

    The model of microscopic order and macroscopic disorder was used to stimulate electron spin resonance spectra of spin-labeled lipids, 5-PC, 10-PC, and 16-PC in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) containing gramicidin A' (GA) at temperatures above the gel-to-liquid crystal transition of DPPC. The simulations show that at a lower concentration of GA (i.e., molar ratios of DPPC/GA greater than 3), GA has only a slight effect on the acyl chain dynamics. The rotational diffusion rate around the axis parallel to the long hydrocarbon chain remains unchanged or increases slightly, while the rate around the perpendicular axes decreases slightly. These spectra from DPPC/GA mixtures could only be fit successfully with two or more components consistent with the well-known concept of "boundary lipids," that is, the peptide induces structural inhomogeneity in lipid bilayers. However, the spectra were significantly better fit with additional components that exhibit increased local ordering, implying decreased amplitude of rotational motion, rather than immobilized components with sharply a reduced rotational rate. The largest relative effects occur at the end of the acyl chains, where the average local order parameter St of 16-PC increases from 0.06 for pure lipid to 0.66 for 1:1 DPPC/GA. The inhomogeneity in ordering in DPPC bilayers due to GA decreases with increasing temperature. The hyperfine tensor component Azz increases for 10-PC and 16-PC when GA is incorporated into DPPC bilayers, indicating that water has deeply penetrated into the DPPC bilayers. Simulations of published electron spin resonance spectra of 14-PC in dimyristoylphosphatidylcholine/cytochrome oxidase complexes were also better fit by additional components that were more ordered, rather than immobilized. The average local order parameter in this case is found to increase from 0.11 for pure dimyristoylphosphatidylcholine to 0.61 for a lipid/protein ratio of 50. These spectra and

  9. Critical behavior of su(1|1) supersymmetric spin chains with long-range interactions.

    PubMed

    Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A; Tempesta, Piergiulio

    2016-06-01

    We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.

  10. Spin configuration of magnetic multi-layers: effect of exchange, dipolar and Dzyalozhinski-Moriya interactions.

    PubMed

    Franco, A F; Kachkachi, H

    2013-08-07

    We investigate the effect of coupling (intensity and nature), applied field, and anisotropy on the spin dynamics of a multi-layer system composed of a hard magnetic layer coupled to a soft magnetic layer through a nonmagnetic spacer. The soft layer is modeled as a stack of several atomic planes while the hard layer, of a different material, is either considered as a pinned macroscopic magnetic moment or again as a stack of atomic planes. We compute the magnetization profile and hysteresis loop of the whole multi-layer system by solving the Landau-Lifshitz equations for the net magnetic moment of each (atomic) plane. We study the competition between the intra-layer anisotropy and exchange interaction, applied magnetic field, and the interface exchange, dipolar or Dzyalozhinski-Moriya interaction. Compared with the exchange coupling, the latter two couplings present peculiar features in the magnetization profile and hysteresis loop that may help identify the nature of the interface coupling in multi-layer magnetic systems.

  11. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.

    2017-01-01

    Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.

  12. A classical description of relaxation of interacting pairs of unlike spins: Extension to T1 ϱ, T2, and T1 ϱoff, including contact interactions

    NASA Astrophysics Data System (ADS)

    Konig, Seymour H.

    A novel derivation of the equations that describe the spin-lattice magnetic relaxation of nuclear spin moments, in liquids, resulting from magnetic dipolar interactions with neighboring paramagnetic ions, the Solomon-Bloembergen-Morgan equations was previously presented (S. H. Koenig, J. Magn. Reson.31, 1 (1978)). The derivation involves a computation of the dissipative energy flow from the nuclear spins to the lattice rather than a computation of the lattice-produced fluctuations of the local field at the nuclear spins. Two advantages accrue: (1) the spectral densities that enter into the relaxation expressions can be directly related to well-defined absorption transitions and relaxation processes of the paramagnetic ions, clarifying the physical processes that produce relaxation, and (2) the derivation can be readily generalized to paramagnetic ions with arbitrary spin Hamiltonian, and to deviations of their susceptibility from Curie law behavior. The derivation is extended to include relaxation in liquids in the rotating frame: the on resonance T1 ϱ which reduces to T2 for small amplitude radiofrequency fields; and the off resonance T1 ϱoff, which reduces to T1. The results, which are given for contact as well as dipolar interactions, also describe relaxation of 13C and 15N nuclei by protons under conditions of proton-decoupling, a situation becoming increasingly important in the study of biological macromolecules by high-resolution NMR spectroscopy.

  13. Electron correlations and the minority-spin band gap in half-metallic Heusler alloys.

    PubMed

    Chioncel, L; Arrigoni, E; Katsnelson, M I; Lichtenstein, A I

    2006-04-07

    Electron-electron correlations affect the band gap of half-metallic ferromagnets by introducing nonquasiparticle states just above the Fermi level. In contrast with the spin-orbit coupling, a large asymmetric nonquasiparticle spectral weight is present in the minority-spin channel, leading to a peculiar finite-temperature spin depolarization effects. Using recently developed first-principle dynamical mean-field theory, we investigate these effects for the half-metallic ferrimagnetic Heusler compound FeMnSb. We discuss depolarization effects in terms of strength of local Coulomb interaction U and temperature in FeMnSb. We propose Ni(1-x)Fe(x)MnSb alloys as a perspective materials to be used in spin-valve structures and for experimental search of nonquasiparticle states in half-metallic materials.

  14. Influence of spin-phonon interactions and spin-reorientation transitions on the phonon properties of RCrO3

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2017-01-01

    Using a microscopic model and a Green’s function technique we calculate the renormalized phonon energy in multiferroic RCrO3 (R = Sm, Dy, Er, Pr, Gd and Y) compounds as a function of temperature, magnetic field and R-ionic radius. We explain the observed anomalies in the temperature dependence of the phonon spectra based on a detailed analysis of the influence of the magnetic sublattices, the interaction between them and the spin-reorientation (SR) transition on lattice vibrations via spin-phonon interactions. When the rare earth ions are magnetic we investigate their essential role for the anomalies around the SR temperature. For the case when R is nonmagnetic, for example YCrO3, we propose a new microscopic model. We define an induced Dzyaloshinskii-Moriya (IDM) vector as a consequence from the spontaneous polarization. This IDM interaction is responsible for the appearance of a temperature-driven SR transition, which itself is responsible for the phonon anomalies at low temperatures. The numerical calculations are in good qualitative agreement with the experimental data.

  15. Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe2Se3

    SciTech Connect

    Wang, Meng; Yi, Ming; Jin, Shangjian; Jiang, Hongchen; Song, Yu; Luo, Huiqian; Christianson, Andrew D.; de la Cruz, Clarina; Bourret-Courchesne, E.; Yao, Dao-Xin; Lee, D. H.; Birgeneau, R. J.

    2016-07-20

    In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe2Se3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.

  16. Spin interaction in octahedral zinc complexes of mono- and diradical Schiff and mannich bases.

    PubMed

    Orio, M; Philouze, C; Jarjayes, O; Neese, F; Thomas, F

    2010-01-18

    The four Schiff bases 2-tert-butyl-4-methoxy-6-[(pyridin-2-ylmethylimino)methyl]phenol, 2,4-di-tert-butyl-6-[(pyridin-2-ylmethylimino)methyl]phenol, 2-tert-butyl-4-methoxy-6-(quinolin-8-yliminomethyl)phenol, and 2,4-di-tert-butyl-6-(quinolin-8-yliminomethyl)phenol) as well as one Mannich base, N,N',N,N'-bis[(2-hydroxy-3,5-di-tert-butylbenzyl)(2-pyridylmethyl)]ethylenediamine, and their zinc bis-phenolate complexes 1-5, respectively, have been prepared. The complexes 4 and 5 have been characterized by X-ray diffraction crystallography, showing a zinc ion within an octahedral environment, with a cis orientation of the phenolate moieties. 1-5 exhibit in their cyclic voltammetry curves two anodic reversible waves attributable to the successive oxidation of the phenolates into phenoxyl radicals. Bulk electrolysis at ca. +0.1 V affords the zinc-coordinated monophenoxyl radical species (1(*))(+)-(5(*))(+) characterized by UV-vis absorption bands at 400-440 nm. The more stable radicals are (3(*))(+) and (4(*))(+) (half-life higher than 90 min at 298 K), likely due to the increased charge delocalization within the quinoline moieties. These species exhibit a significant additional near-IR band (epsilon > 1650 M(-1) cm(-1)) attributed to a CT transition. In the two-electron-oxidized species (1(**))(2+)-(5(**))(2+) the radical spins present a weak magnetic coupling. EPR reveals an antiferromagnetic exchange interaction for (1(**))(2+)-(4(**))(2+), whereas an unusual ferromagnetic exchange coupling is operative in (5(**))(2+). The weak magnitude of experimental |J| values (within the 1-5 cm(-1) range) as well as their sign could be well reproduced by DFT calculations at the B3LYP level. The small energy gap between the ground and the first excited spin states allows us to investigate the zero-field splitting (ZFS) of the triplet by EPR spectroscopy. This parameter is found to be axial for all systems, with |D| values of 0.0163 cm(-1) for (1(**))(2+), 0.0182 cm(-1) for (2

  17. Spin exchange interactions in hexagonal manganites RMnO3 (R = Tb, Dy, Ho, Er) epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Bai; Thi Minh Hien, Nguyen; Lee, D.; Jang, S.-Y.; Noh, T. W.; Yang, In-Sang

    2011-08-01

    We present the results of an optical method of quantitatively estimating the spin exchange interactions in hexagonal manganites RMnO3 (R = Tb, Dy, Ho, Er) epitaxial thin films. The two in-plane (a-b plane) spin exchange integrals J1 (intratrimer Mn-Mn interaction) and J2 (intertrimer Mn-Mn interaction) are deduced from the magnon scattering peak wavenumbers. We found that J2 decreases systematically when the R ionic radius increases, while J1 is nearly independent of R ionic radius, contrary to the expectation in single crystals. We show that the R dependence of J1 could be understood in terms of the stress in the thin films. Our result indicates that the stress has stronger effect on the atomic displacement of the intratrimer Mn-Mn distance than the intertrimer Mn-Mn distance.

  18. Realization of a Quantum Integer-Spin Chain with Controllable Interactions

    DTIC Science & Technology

    2015-06-17

    Areas: Atomic and Molecular Physics, Condensed Matter Physics, Quantum Physics I. INTRODUCTION Amajor area of current research is devoted to developing...protocols or for simulating lattice spin models. In this paper, we use trapped atomic ions to simulate a chain of spin-1 particles with tunable, long- range...IMPLEMENTATION The spin-1 chain is represented by a string of 171Ybþ atoms held in a linear Paul trap. Three hyperfine levels in the 2S1=2 ground

  19. Relevance of supramolecular interactions, texture and lattice occupancy in the designer iron(II) spin crossover complexes

    SciTech Connect

    Naik, Anil D.; Tinant, Bernard; Muffler, Kai; Wolny, Juliusz A.; Schuenemann, Volker; Garcia, Yann

    2009-06-15

    New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent (Solvent=0.5 CH{sub 3}OH (1), 2 CH{sub 2}Cl{sub 2} (2), desolvation of 2 (3), 0.5 CH{sub 3}COCH{sub 3} (4) and 0 (5)) have been synthesized. {sup 57}Fe Moessbauer and magnetic investigation reveal unique features atypical of classic [Fe(phen){sub 2}(NCS){sub 2}] polymorphs. Complex 1, prepared by precipitation in MeOH, undergoes upon cooling below room temperature an incomplete and gradual thermally induced spin conversion, while 4 prepared by an extraction method remains mostly in the low-spin state. The non solvated compounds 3 and 5, display a more abrupt spin crossover on cooling around T{sub 1/2}=175 K and T{sub 1/2}=198 K, respectively. Defects/soft lattice inclusion due to different methods of material synthesis, extent of aging, reaction medium and associated solvent molecules have enormous influence on the particle size and magnetic properties of these complexes. Scanning electron micrographs helps to establish a logical relationship among methods employed for synthesis, texture of materials and their effect on magnetic properties. The crystal structure of 2 determined in the monoclinic space group P2/c (100 K) reveals a mononuclear complex consisting of a distorted FeN{sub 6} octahedron in the low-spin state, constructed from two 3-bromo-1, 10-phenanthroline and two isothiocyanato anions in cis position. Intermolecular interactions between mononuclear units of the S...Br, S...C(H) and pi-pi type afford a 2D supramolecular network. DFT calculations for the single molecule 2 reveals an energy difference between high-spin and low-spin isomers of 7 kJ/mol suggesting a slight destabilization of the low-spin state compared to [Fe(phen){sub 2}(NCS){sub 2}]. Normal co-ordinate analysis was also carried out for 3 and compared with experimental temperature dependent Raman spectra for 5. - Graphical abstract: New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent

  20. Influence of spin-orbit interaction within the insulating barrier on the electron transport in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Vedyayev, A.; Ryzhanova, N.; Strelkov, N.; Titova, M.; Chshiev, M.; Rodmacq, B.; Auffret, S.; Cuchet, L.; Nistor, L.; Dieny, B.

    2017-02-01

    We present a theory of the anisotropy of tunneling magnetoresistance (ATMR) phenomenon in magnetic tunnel junctions (MTJs) attributed to Rashba spin-orbit interaction in the insulating barrier. ATMR represents the difference of tunnel magnetoresistance (TMR) amplitude measured with in-plane and out-of-plane magnetic configurations. It is demonstrated that within the spin-polarized free-electron model the change of conductance associated with the ATMR is exactly twice the change of conductance measured at full saturation (i.e., in parallel configuration of magnetizations) between in-plane and out-of-plane configuration, i.e., the tunneling anisotropic magnetoresistance (TAMR). Both ATMR and TAMR are closely related to the TMR amplitude and spin-orbit constant. The predicted ATMR phenomenon is confirmed experimentally, showing a few percent value in the case of the widely studied CoFeB/MgO/CoFeB based MTJ.

  1. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  2. The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters

    NASA Astrophysics Data System (ADS)

    Ganyushin, Dmitry; Gilka, Natalie; Taylor, Peter R.; Marian, Christel M.; Neese, Frank

    2010-04-01

    In this work, the resolution of the identity (RI) approximation is developed for the calculation of the electron-electron spin-spin coupling (SSC) interaction that is a central component of the zero-field splitting (ZFS) term in the effective spin Hamiltonian. The approximated integrals are then used in large-scale multireference configuration interaction treatments of the SSC interaction. The SSC contribution to the ZFS is treated using the Breit-Pauli spin-spin Hamiltonian in conjunction with first-order perturbation theory. Test calculations on a set of diatomic molecules reveal that the error of the RI approximation does not exceed 0.01 cm-1 even if standard auxiliary basis sets are used. This error of less than 1% is considered to be negligible compared to the presently achievable accuracy of the SSC calculations relative to experimental data. The present development allows the correlated ab initio calculation of ZFS parameters of larger systems such as linear polyenes and linear polyacenes. The basis set convergence of the calculated ZFS values was investigated, and the effect of electronic correlation on the calculated ZFS parameters is discussed.

  3. Fermionic and Majorana bound states in hybrid nanowires with non-uniform spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2015-03-01

    We study intragap bound states in the topological phase of a Rashba nanowire in the presence of a magnetic field and with non-uniform spin orbit interaction (SOI) and proximity-induced superconductivity gap. We show that fermionic bound states (FBS) can emerge inside the proximity gap. They are localized at the junction between two wire sections characterized by different directions of the SOI vectors, and they coexist with Majorana bound states (MBS) localized at the nanowire ends. The energy of the FBS is determined by the angle between the SOI vectors and the lengthscale over which the SOI changes compared to the Fermi wavelength and the localization length. We also consider double-junctions and show that the two emerging FBSs can hybridize and form a double quantum dot-like structure inside the gap. We find explicit analytical solutions of the bound states and their energies for certain parameter regimes such as weak and strong SOI. The analytical results are confirmed and complemented by an independent numerical tight-binding model approach. Such FBS can act as quasiparticle traps and thus can have implications for topological quantum computing schemes based on braiding MBSs.

  4. Spin-orbit photonic interaction engineering of Bessel beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Artur; Brasselet, Etienne

    2016-09-01

    Interaction between the polarization and spatial degrees of freedom of a light field has become a powerful tool to tailor the amplitude and phase of light beams. This usually implies the use of space-variant photonic elements involving sophisticated fabrication technologies. Here we report on the optical spin-orbit engineering of the intensity, phase, and polarization structure of Bessel light beams using a homogeneous birefringent axicon. Various kinds of spatially modulated free-space light fields are predicted depending on the nature of the incident light field impinging on the birefringent axicon. In particular, we present the generation of bottle beam arrays, hollow beams with periodic modulation of the core size, and hollow needle beams with periodic modulation of the orbital angular momentum. An experimental attempt is also reported. The proposed structured light fields may find applications in long-distance optical manipulation endowed with self-healing features, periodic atomic waveguides, contactless handling of high aspect ratio micro-objects, and optical shearing of matter.

  5. Two-dimensional-lattice spin models with long-range antiferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Romano, S.

    1991-10-01

    We consider a classical system, consisting of m-component unit vectors (m=2,3), associated with a two-dimensional lattice \\{uk||k∈openZ2\\} and interacting via translationally and rotationally invariant antiferromagnetic pair potentials of the long-range form W=Wjk=ɛ||xj-xk||-puj.uk, p>2, where ɛ is a positive quantity, setting energy and temperature scales (i.e., T*=kBT/ɛ), and xk are the coordinates of the lattice sites. A spin-wave approach predicts orientational disorder (in the thermodynamic limit) at all finite temperatures and for all p>2 this agrees with available rigorous results for p>=4, whereas no such theorems are known in the literature when 22.

  6. Quasidegenerate scaled opposite spin second order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Casanova, David; Rhee, Young Min; Head-Gordon, Martin

    2008-04-01

    Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.

  7. Effect of Rasbha spin-orbit interaction on the ground state energy of a hydrogenic D{sup 0} complex in a Gaussian quantum dot

    SciTech Connect

    Boda, Aalu Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma

    2015-06-24

    The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.

  8. On Cu(II) Cu(II) distance measurements using pulsed electron electron double resonance

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Becker, James; Saxena, Sunil

    2007-10-01

    The effects of orientational selectivity on the 4-pulse electron electron double resonance (PELDOR) ESR spectra of coupled Cu(II)-Cu(II) spins are presented. The data were collected at four magnetic fields on a poly-proline peptide containing two Cu(II) centers. The Cu(II)-PELDOR spectra of this peptide do not change appreciably with magnetic field at X-band. The data were analyzed by adapting the theory of Maryasov, Tsvetkov, and Raap [A.G. Maryasov, Y.D. Tsvetkov, J. Raap, Weakly coupled radical pairs in solids:ELDOR in ESE structure studies, Appl. Magn. Reson. 14 (1998) 101-113]. Simulations indicate that orientational effects are important for Cu(II)-PELDOR. Based on simulations, the field-independence of the PELDOR data for this peptide is likely due to two effects. First, for this peptide, the Cu(II) g-tensor(s) are in a very specific orientation with respect to the interspin vector. Second, the flexibility of the peptide washes out the orientation effects. These effects reduce the suitability of the poly-proline based peptide as a good model system to experimentally probe orientational effects in such experiments. An average Cu(II)-Cu(II) distance of 2.1-2.2 nm was determined, which is consistent with earlier double quantum coherence ESR results.

  9. Cysteine-Specific Cu2+ Chelating Tags Used as Paramagnetic Probes in Double Electron Electron Resonance

    PubMed Central

    Cunningham, Timothy F.; Shannon, Matthew D.; Putterman, Miriam R.; Arachchige, Rajith J.; Sengupta, Ishita; Gao, Min; Jaroniec, Christopher P.; Saxena, Sunil

    2015-01-01

    Double electron electron resonance (DEER) is an attractive technique that is utilized for gaining insight into protein structure and dynamics via nanometer-scale distance measurements. The most commonly used paramagnetic tag in these measurements is a nitroxide spin label, R1. Here, we present the application of two types of high-affinity Cu2+ chelating tags, based on the EDTA and cyclen metal-binding motifs as alternative X-band DEER probes, using the B1 immunoglobulin-binding domain of protein G (GB1) as a model system. Both types of tags have been incorporated into a variety of protein secondary structure environments and exhibit high spectral sensitivity. In particular, the cyclen-based tag displays distance distributions with comparable distribution widths and most probable distances within 1–3 Å when compared to homologous R1 distributions. The results display the viability of the cyclen tag as an alternative to the R1 side chain for X-band DEER distance measurements in proteins. PMID:25608028

  10. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double Electron Electron Resonance (DEER)†

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  11. Dynamic phase shifts in nanoscale distance measurements by double electron electron resonance (DEER)

    NASA Astrophysics Data System (ADS)

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  12. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    PubMed

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  13. Nature of the spin-glass phase in models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew C.

    Despite decades of effort, our understanding of low-temperature phase of spin glass models with short-range interactions remains incomplete. Replica symmetry breaking (RSB) theory, based on the solution of the Sherrington-Kirkpatrick mean-field model, predicts many pure states; meanwhile, competing theories of short-range systems, such as the droplet picture, predict a single pair of pure states related by time-reversal symmetry, analogously to the ferromagnet. Since RSB certainly holds for the mean-field (infinite-range) model, it is interesting to study short-range models in high dimensions to observe whether RSB also holds here; however, computer simulations of short-range models in high dimensions are difficult because the number of spins to equilibrate grows so rapidly with the linear size of the system. A relatively recent idea which has been fruitful is to instead study one-dimensional models with long-range (power-law) interactions, which are argued to have the same critical behavior as corresponding short-range models in high dimensions, but for which simulations for a range of sizes (crucial for finite-size scaling analysis) are feasible. For these one-dimensional long-range (1DLR) models, we fill in a previously unexplored region of parameter space where the interactions become sufficiently long-range that they must be rescaled with the system size to maintain the thermodynamic limit. We find strong evidence that detailed behavior of the 1DLR models everywhere in this "nonextensive regime" is identical to that of the Sherrington-Kirkpatrick model, lending support to a recent conjecture. In an attempt to distinguish the RSB and droplet pictures, we study recently-proposed observables based on the statistics of individual disorder samples, rather than simply averaging over the disorder as is most frequently done in previous studies. We compare Monte Carlo results for 1DLR models which are proxies for short-range models in 3, 4, and 10 dimensions with

  14. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.

    PubMed

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-10

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of (4) T 1((4) G) → (6) A 1((6) s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn(2+)-Mn(2+) pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  15. Induced interactions in the BCS-BEC crossover of two-dimensional Fermi gases with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lee, Juhee; Kim, Dong-Hee

    2017-03-01

    We investigate the Gorkov-Melik-Barkhudarov (GM) correction to superfluid transition temperature in two-dimensional Fermi gases with Rashba spin-orbit coupling (SOC) across the SOC-driven BCS-BEC crossover. In the calculation of the induced interaction, we find that the spin-component mixing due to SOC can induce both of the conventional screening and additional antiscreening contributions that interplay significantly in the strong SOC regime. While the GM correction generally lowers the estimate of transition temperature, it turns out that at a fixed weak interaction, the correction effect exhibits a crossover behavior where the ratio between the estimates without and with the correction first decreases with SOC and then becomes insensitive to SOC when it goes into the strong SOC regime. We demonstrate the applicability of the GM correction by comparing the zero-temperature condensate fraction with the recent quantum Monte Carlo results.

  16. Time displacement rotational echo double resonance: Heteronuclear dipolar recoupling with suppression of homonuclear interaction under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Tsai, Tim W. T.; Mou, Yun; Chan, Jerry C. C.

    2012-01-01

    We have developed a novel variant of REDOR which is applicable to multiple-spin systems without proton decoupling. The pulse sequence is constructed based on a systematic time displacement of the pi pulses of the conventional REDOR sequence. This so-called time displacement REDOR (td-REDOR) is insensitive to the effect of homonuclear dipole-dipole interaction when the higher order effects are negligible. The validity of td-REDOR has been verified experimentally by the P-31{C-13} measurements on glyphosate at a spinning frequency of 25 kHz. The experimental dephasing curve is in favorable agreement with the simulation data without considering the homonuclear dipole-dipole interactions.

  17. Magnetic and gravitational disk-star interactions: an interdependence of PMS stellar rotation rates and spin-orbit misalignments

    SciTech Connect

    Batygin, Konstantin; Adams, Fred C. E-mail: fca@umich.edu

    2013-12-01

    The presence of giant gaseous planets that reside in close proximity to their host stars, i.e., hot Jupiters, may be a consequence of large-scale radial migration through the protoplanetary nebulae. Within the framework of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the natal disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity likely exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main-sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contraction, this process is largely controlled by the morphology of the stellar magnetic field (that is, specific angular momentum accreted by stars with octupole-dominated surface fields is smaller than that accreted by dipole-dominated stars by an order of magnitude). Subsequently, we examine the secular spin-axis dynamics of disk-bearing stars, accounting for the time-evolution of stellar and disk properties, and demonstrate that misalignments are preferentially excited in systems where stellar rotation is not overwhelmingly rapid. Moreover, we show that the excitation of spin-orbit misalignment occurs impulsively through an encounter with a resonance between the stellar precession frequency and the disk-torquing frequency. Cumulatively, the model developed herein opens up a previously unexplored avenue toward understanding star-disk evolution and its consequences in a unified manner.

  18. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.

    PubMed

    Lepkowski, S P; Bardyszewski, Witold

    2017-03-22

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the two-dimensional band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  19. Two-body gravitational spin-orbit interaction at linear order in the mass ratio

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Damour, Thibault

    2014-07-01

    We analytically compute, to linear order in the mass ratio, the "geodetic" spin-precession frequency of a small spinning body orbiting a large (nonspinning) body to the eight-and-a-half post-Newtonian order, thereby extending previous analytical knowledge which was limited to the third post-Newtonian level. These results are obtained applying analytical gravitational self-force theory to the first-derivative level generalization of Detweiler's gauge-invariant redshift variable. We compare our analytic results with strong-field numerical data recently obtained by Dolan et al. [Phys. Rev. D 89, 064011 (2014)]. Our new, high-post-Newtonian-order results capture the strong-field features exhibited by the numerical data. We argue that the spin precession will diverge as ≈-0.14/(1-3y) as the light ring is approached. We transcribe our kinematical spin-precession results into a corresponding improved analytic knowledge of one of the two (gauge-invariant) effective gyrogravitomagnetic ratios characterizing spin-orbit couplings within the effective-one-body formalism. We provide simple, accurate analytic fits both for spin precession and the effective gyrogravitomagnetic ratio. The latter fit predicts that the linear-in-mass-ratio correction to the gyrogravitomagnetic ratio changes sign before reaching the light ring. This strong-field prediction might be important for improving the analytic modeling of coalescing spinning binaries.

  20. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    SciTech Connect

    Yang, Luyi

    2013-05-17

    suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s-1.

  1. Quantum spin Hall states in graphene interacting with WS{sub 2} or WSe{sub 2}

    SciTech Connect

    Kaloni, T. P.; Schwingenschlögl, U.; Kou, L.; Frauenheim, T.

    2014-12-08

    In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS{sub 2} and WSe{sub 2} monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenide results in quantum spin Hall states in the absence of a magnetic field.

  2. Magnetodielectric Response from Spin-Orbital Interaction Occurring at Interface of Ferromagnetic Co and Organometal Halide Perovskite Layers via Rashba Effect.

    PubMed

    Li, Mingxing; Li, Ling; Mukherjee, Rupam; Wang, Kai; Liu, Qing; Zou, Qiang; Xu, Hengxing; Tisdale, Jeremy; Gai, Zheng; Ivanov, Ilia N; Mandrus, David; Hu, Bin

    2017-02-01

    The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. This study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin-dependent electronic functionalities based on thin-film design.

  3. Spin-1 quantum walks

    NASA Astrophysics Data System (ADS)

    Morita, Daichi; Kubo, Toshihiro; Tokura, Yasuhiro; Yamashita, Makoto

    2016-06-01

    We study the quantum walks of two interacting spin-1 bosons. We derive an exact solution for the time-dependent wave function, which describes the two-particle dynamics governed by the one-dimensional spin-1 Bose-Hubbard model. We show that propagation dynamics in real space and mixing dynamics in spin space are correlated via the spin-dependent interaction in this system. The spin-mixing dynamics has two characteristic frequencies in the limit of large spin-dependent interactions. One of the characteristic frequencies is determined by the energy difference between two bound states, and the other frequency relates to the cotunneling process of a pair of spin-1 bosons. Furthermore, we numerically analyze the growth of the spin correlations in quantum walks. We find that long-range spin correlations emerge showing a clear dependence on the sign of the spin-dependent interaction and the initial state.

  4. Topological Phases of Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chains with Alternating Next-Nearest-Neighbour Interaction

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2016-12-01

    A series of symmetry-protected topological (SPT) and trivial spin-gap phases in the spin-1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain with alternating next-nearest-neighbour interaction are investigated using two kinds of entanglement spectra defined by different divisions of the whole chain. In case one of the next-nearest-neighbor interactions vanishes, the model reduces to the Δ-chain in which a series of spin-gap phases are found, as shown in J. Phys. Soc. Jpn. 77, 044707 (2008). From the degeneracy of the entanglement spectra, these phases are identified as the SPT and trivial phases. It is found that the ground-state phase boundaries are insensitive to the strength of the alternation in the next-nearest-neighbor interaction. These results are consistent with the analysis based on the nonlinear σ model and exact solution on the ferromagnetic-nonmagnetic phase boundary.

  5. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    SciTech Connect

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y

  6. Intraband optical conductivity sigma/omega,T/ of Cu, Ag, and Au - Contribution from electron-electron scattering

    NASA Technical Reports Server (NTRS)

    Parkins, G. R.; Lawrence, W. E.; Christy, R. W.

    1981-01-01

    The frequency and temperature dependence of the intraband optical conductivity of the noble metals Cu, Ag and Au is measured and contributions of electron-electron scattering are assessed. Optical measurements were performed at temperatures of 77, 295 and 425 K to obtain values of the Drude electron scattering rate with a linear dependence on temperature which may be attributed to electron-phonon scattering, and a quadratic dependence on photon energy, which is suggestive of electron-electron scattering but is a factor of two to three times greater than would be expected. Comparison of the optical data with dc electrical and thermal resistivity data which also show behavior attributed to electron-electron scattering reveals discrepancies of up to an order of magnitude. Other possible mechanisms for the frequency dependence, including absorptance, electron-surface plasmon interactions, a two-carrier model, and a structure dependence are considered, and it is concluded that the frequency dependence in the Drude scattering rates of the noble metals is not yet quantitatively understood

  7. Topological approach to microcanonical thermodynamics and phase transition of interacting classical spins

    NASA Astrophysics Data System (ADS)

    Santos, F. A. N.; da Silva, L. C. B.; Coutinho-Filho, M. D.

    2017-01-01

    We propose a topological approach suitable to establish a connection between thermodynamics and topology in the microcanonical ensemble. Indeed, we report on results that point to the possibility of describing interacting classical spin systems in the thermodynamic limit, including the occurrence of a phase transition, using topological arguments only. Our approach relies on Morse theory, through the determination of the critical points of the potential energy, which is the proper Morse function. Our main finding is that, in the context of the classical models studied, the Euler characteristic χ (E) embeds the necessary features for a correct description of several magnetic thermodynamic quantities of the systems, such as the magnetization, correlation function, susceptibility, and critical temperature. Despite the classical nature of the models, such quantities are those that do not violate the laws of thermodynamics (with the proviso that van der Waals loop states are mean field (MF) artifacts). We also discuss the subtle connection between our approach using the Euler entropy, defined by the logarithm of the modulus of χ (E) per site, and that using the Boltzmann microcanonical entropy. Moreover, the results suggest that the loss of regularity in the Morse function is associated with the occurrence of unstable and metastable thermodynamic solutions in the MF case. The reliability of our approach is tested in two exactly soluble systems: the infinite-range and the one-dimensional short-range XY models in the presence of a magnetic field. In particular, we confirm that the topological hypothesis holds for both the infinite-range ({{T}c}\

  8. Spin-orbit interaction for the double ring-shaped oscillator

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng; You, Yuan; Dong, Shi-Hai

    2016-08-01

    The spin-orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m = 0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m ≠ 0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases | m | = 2 , 3 , 4 , …. We note that around the critical value b0, the energy levels are reversed. We also discuss some special cases for η = 2 , 3 , 4 , 5 , 6 , …, and the b = 0 , c > 0. It should be pointed out that the parameter b0 is relevant for the angular part parameter b in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter c corresponds to the angular part parameter in double ring-shaped potential and the η is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.

  9. Spin Dynamics of Electrons Confined in Silicon Heterostructures

    NASA Astrophysics Data System (ADS)

    Jock, Ryan Michael

    The spin states of electrons confined in silicon heterostructures have shown promise as qubits for quantum information processing. Recently, a host of single and few electron silicon quantum dot device architectures have arisen as implementations for quantum computation. These devices often combine regions of low density two-dimensional (2D) electrons, localized electrons, and interfaces depleted of electrons. Electron spin resonance (ESR) is a unique tool for probing the spin dynamics of both mobile and localized electrons at silicon heterointerfaces and investigating the effects limiting the ability to control electrons and their spin states in these structures. We use a continuous wave ESR method to examine localized 2D electron band-tail states at Si/SiO 2 interfaces in large area metal-oxide-semiconductor transistors. We compare two devices, fabricated in different laboratories, which display similar low temperature (4.2 K) peak mobilities. We find that one of the devices displays a smaller band-tail density of confined states and a shallower characteristic confinement. Thus, ESR reveals a difference in device quality, which is not apparent from mobility measurements, and is a valuable tool for evaluating the interface quality in Si/SiO2 heterostructures. Additionally, we use pulsed ESR techniques to study the spin dynamics of electrons confined in Si/SiGe heterostructures. For mobile 2D electrons, the density-dependent Dyakonov-Perel mechanism dominates spin relaxation. At low 2D densities, stronger electron-electron interactions cause an increase in the electron effective mass, leading to an increase in spin susceptibility. For very low densities, natural disorder localizes electrons at the silicon heterointerface. Naturally localized electrons in these structures display short spin relaxation times (< 0.1 ms). By electrostatically confining electrons to quantum dots, the spin relaxation time may be extended. We fabricate large-area dual-gated devices which

  10. Fractional charge and spin states in topological insulator constrictions

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  11. Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II.

    PubMed Central

    Persson, M; Harbridge, J R; Hammarström, P; Mitri, R; Mårtensson, L G; Carlsson, U; Eaton, G R; Eaton, S S

    2001-01-01

    Four doubly spin-labeled variants of human carbonic anhydrase II and corresponding singly labeled variants were prepared by site-directed spin labeling. The distances between the spin labels were obtained from continuous-wave electron paramagnetic resonance spectra by analysis of the relative intensity of the half-field transition, Fourier deconvolution of line-shape broadening, and computer simulation of line-shape changes. Distances also were determined by four-pulse double electron-electron resonance. For each variant, at least two methods were applicable and reasonable agreement between methods was obtained. Distances ranged from 7 to 24 A. The doubly spin-labeled samples contained some singly labeled protein due to incomplete labeling. The sensitivity of each of the distance determination methods to the non-interacting component was compared. PMID:11371461

  12. Black-Box Description of Electron Correlation with the Spin-Extended Configuration Interaction Model: Implementation and Assessment.

    PubMed

    Tsuchimochi, Takashi; Ten-no, Seiichiro

    2016-04-12

    In our recent Communication (J. Chem. Phys. 2016, 144, 011101), we proposed Wick's theorem for nonorthogonal determinants and applied it to spin-extended configuration interaction with singles and doubles (ECISD) based on spin-projected unrestricted Hartree-Fock (SUHF), given that SUHF is a special case of nonorthogonal CI. It was shown that ECISD is accurate for bond-dissociation processes of several representative molecules. In the present work, we give a detailed derivation of ECISD and report an efficient implementation with two physically motivated preconditioning schemes in the generalized Davidson diagonalization for ECISD, whose Hamiltonian and overlap are not diagonal dominant due to SUHF's nonorthogonal character. In the first approach, we exploit the properties of corresponding pair orbitals and spin-projection operator and rotate the spin-projected CI basis so that the Hamiltonian is approximately diagonal. The second scheme is based on the normal ordered Hamiltonian, which suggests neglecting the expensive two-particle terms in the preconditioning. To enable frozen-core approximations in ECISD, core orbitals were introduced in SUHF. We also show the validity of our method with various numerical examples for static correlations, apart from the left-right correlation in bond-dissociation processes: the ground state energies of the Be isoelectronic series, excitation energies of representative small molecules, and spectroscopic constants of the strongly correlated BN singlet state. Several aspects of ECISD were studied.

  13. Superconducting transition temperatures and coherence length in non-s-wave pairing materials correlated with spin-fluctuation mediated interaction

    NASA Astrophysics Data System (ADS)

    Angilella, G. G.; March, N. H.; Pucci, R.

    2002-03-01

    Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non-s-wave pairing materials, with coherence length ξ and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14 598 (1999)] have each focused on the concept of a spin-fluctuation temperature Tsf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that kBTsf~ħ2/m*ξ2. This demonstrates that ξ is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely, the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-two-dimensional ruthenate Sr2RuO4, with Tc~1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.

  14. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    DTIC Science & Technology

    2016-03-31

    platform. The logic qubit is formed by three individual spins in electrostatically-defined quantum dots. The gate operations are carried out by spin...compatible with commercial Si CMOS technology. During the funding period, we have successfully developed an array of highly stable Si MOS triple quantum ...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 quantum computing, Si qubits, Si MOS quantum dots, ESR

  15. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  16. Topological Basis Method for Four-Qubit Spin-1/2 XXZ Heisenberg Chain with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng

    2017-03-01

    In this paper, we investigate the four-qubit spin-1/2 XXZ Heisenberg chain with Dzyaloshinskii-Moriya interaction by topological basis method, and research the relationship between the topological basis states and the ground states. In order to study the Hamiltonian system beyond XXZ model, we introduce two Temperley-Lieb algebra generators and two other generalized generators. Then we investigate the relationship between topological basis and Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction. The results show that the ground state of this model falls on the topological basis state for anti-ferromagnetic case and gapless phase case.

  17. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity.

    PubMed

    Vora, Patrick M; Bracker, Allan S; Carter, Samuel G; Sweeney, Timothy M; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G; Economou, Sophia E; Gammon, Daniel

    2015-07-17

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network.

  18. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-07-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network.

  19. Spin crossover and hyperfine interactions of iron in (Mg ,Fe ) CO3 ferromagnesite

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Huang, Sheng-Chieh

    2016-08-01

    Ferromagnesite, an iron-bearing carbonate stable up to 100-115 GPa, is believed to be the major carbon carrier in the earth's lower mantle and play a key role in the earth's deep carbon cycle. In this paper, we use the local density approximation plus self-consistent Hubbard U (LDA+Usc) method to study the iron spin crossover in ferromagnesite with a wide range of iron concentration (12.5-100%). Our calculation shows that this mineral undergoes a crossover from the high-spin (HS) (S =2 ) to the low-spin (LS) (S =0 ) state at around 45-50 GPa, regardless of the iron concentration. The intermediate-spin (S =1 ) state is energetically unfavorable and not involved in spin crossover. The anomalous changes of volume, density, and bulk modulus accompanying the spin crossover obtained in our calculation are in great agreement with experiments. Our calculation also predicts that an abrupt change of the iron nuclear quadrupole splitting, from ≳2.8 mm/s to ≲0.3 mm/s, can be observed in Mössbauer spectra at 45-50 GPa as a signature of the HS-LS crossover.

  20. Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters.

    PubMed

    Lazzeretti, Paolo

    2012-08-21

    A gauge transformation of the vector potential A(m(I)), associated to the magnetic dipole m(I) of nucleus I in a molecule, has been studied. The conditions for gauge invariance of nuclear magnetic shielding, nuclear spin/electron orbit contribution to spin-spin coupling between two nuclei, I and J, and electronic current density induced by m(I), have been expressed via quantum mechanical sum rules that are identically satisfied for exact and optimal variational wavefunctions. It is shown that separate diamagnetic and paramagnetic contributions to the properties transform into one another in the gauge transformation, whereas their sum is invariant. Therefore, only total response properties have a physical meaning. In particular, the disjoint diamagnetic and paramagnetic components of nuclear spin/electron orbit contributions to coupling constants are not uniquely defined. The diamagnetic contribution to the nuclear spin-spin coupling tensor, evaluated as an expectation value in the Ramsey theory, can alternatively be expressed as a sum-over-states formula, by rewriting the second-order Hamiltonian in commutator form à la Geertsen, as previously reported by Sauer. Other sum-over-states formulae are obtained via a gauge transformation, by a procedure formally allowing for a continuous translation of the origin of the m(I)-induced current density, analogous to those previously proposed for magnetizabilities and nuclear magnetic shielding.

  1. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species

    NASA Astrophysics Data System (ADS)

    Tan, Samuel; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I.

    2017-02-01

    The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current "gold standard" method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller-Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ɛΔ s=E/INT O SEIN T S S , calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3-4 usually observed for the ratio of absolute correlation energy, ɛs=E/OSES S , in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups: (1) complexes with ɛΔ s< 1 and (2) complexes with ɛΔ s≥ 1 . A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning's basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol-1 and maximum errors below 6.2 kJ mol-1. The new modification, spin-ratio scaled second-order Møller-Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic

  2. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  3. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.

    PubMed

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-14

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.

  4. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.

    PubMed

    Valero, Rosendo; Truhlar, Donald G

    2007-09-06

    A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that

  5. Valley spin-orbit interaction for the triplet and doublet 1sground states of lithium donor center in monoisotopic {sup 28}Si

    SciTech Connect

    Ezhevskii, Alexander A.; Popkov, Sergey A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Konakov, Anton A.; Abrosimov, Nikolai V.; Riemann, Helge

    2013-12-04

    Valley spin-orbit interaction for the triplet and doublet 1s-ground states of lithium donor center in monoisotopic {sup 28}Si was studied in order to determine its contribution to the electron spin relaxation rate. We observed new electron paramagnetic resonance spectra of lithium in monoisotopic silicon with g<2.000 and found the spin Hamiltonian parameters for it. Using our experimental results and taking into account spin-orbit coupling between the triplet states and the triplet and doublet states we found that the lithium donor electron spectrum and g-factors for its states strongly depend on both the internal strains in the crystal and the intervalley spin-orbit interactions.

  6. Unveiling the thermal entanglement in a mixed-spin XXZ model with Dzyaloshinskii-Moriya interaction under a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Cheng; Xu, Shuai; He, Juan; Ye, Liu

    2015-10-01

    We analytically investigate the thermal entanglement of three-mixed-spin (1/2, 1, 1/2) XXZ model with the DM interaction under an external magnetic field B. Two different cases are considered: one subsystem (1/2, 1/2) consists of two spin-1/2 fermions and the other subsystem (1/2, 1) contains a spin-1/2 fermion and a spin-1 boson. It is shown that the DM interaction parameter D, the external magnetic field strength B and coupling constant J have different effects on Fermi and mixed Fermi-Bose systems. All of the factors mentioned above can be utilized to control entanglement switch of any two particles in mixed spins model.

  7. Altering TCNQ-TCNQ interactions and a study of the spin-Peierls state including muon-fluorine entanglement

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Giblin, Sean; Szablewski, Marek

    2015-03-01

    Potassium TCNQ is a well known spin-Peierls system where a spin gap opens at 390 K due to the strong electron-phonon coupling within the material, essentially forming 1D stack of antiferromagnetially coupled anion TCNQ dimers. We show that on substitution of TCNQF4 for the TCNQ this changes the interaction of the anions and shifts Tsp to 150 K. Additionally, substitution of TCNQ by TCNQBr2 produces a sample with an even lower interaction strength. These observations demonstrate the ability to tune this system from a chemical point of view. Muon spin relaxation measurements show that in the vicinity of Tsp the system is dominated by magnetic fluctuations and these persist to lower temperatures until the moments exhibit a quasi-static state on the time scale of the μSR experiment (MHz range). Within the KTCNQF4 sample we also observe the emergence of a small contribution from an entangled F-μ+-F where the data could be modeled using two environments that can help suggest possible muon stopping sites. Also affiliated to The Bragg Institute, ANSTO, Australia.

  8. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma

    SciTech Connect

    Han, Jiu-Ning Luo, Jun-Hua; Li, Jun-Xiu; Li, Sheng-Chang; Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang

    2015-06-15

    We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.

  9. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Ebrahimian, N.; Eghbalifar, B.

    2016-10-01

    By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  10. Dynamic response for Dzyaloshinskii-Moriya interaction on bubble-like magnetic solitons driven by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Chen, Shujun; Zhu, Qiyuan; Zhang, Senfu; Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-05-01

    By using micromagnetic simulations, we studied the dynamic response for different bubble-like magnetic solitons in the [CoPt-CoNi]/Cu/CoNi magnetic multilayer with perpendicular magnetic anisotropy. It is found that a localized spin-polarized current can not only nucleate a dissipative magnetic droplet but also excite the in-plane domain wall (DW) oscillation at the edge of bubble-like magnetic solitons. The dependence of oscillation frequency on current for the dissipative magnetic droplet is hysteretic in the absence of the Dzyaloshinskii-Moriya interactions (DMI). In the presence of DMI, three different bubble-like magnetic solitons are excited: (1) singular magnetic droplet, (2) pseudonormal magnetic droplet, (3) dynamical skyrmion. Meanwhile, the oscillation frequencies of these magnetic solitons have different response as current density varies. These results open up new possibilities for the applications of magnetic soliton-based spin transfer nano-oscillators.

  11. Effect of Dzyaloshinskii-Moriya interaction on the magnetic vortex oscillator driven by spin-polarized current

    SciTech Connect

    Chen, Shujun; Zhang, Senfu; Zhu, Qiyuan; Liu, Xianyin; Jin, Chendong; Wang, Jianbo; Liu, Qingfang

    2015-05-07

    By micromagnetic simulation, we investigated the dynamic of magnetic vortex driven by spin-polarized current in Permalloy nanodisks in the presence of interfacial/superficial Dzyaloshinskii-Moriya interactions (DMI). It is found that spin-polarized current can drive the vortex precession. In the presence of DMI, the oscillation frequency of the vortex is about 3 times higher than that of without DMI for the same nanodisk. Moreover, the linewidth is more narrow than that of without DMI when the radius of nanodisk is 50 nm. In addition, the vortex can support a higher current density than that of without DMI. Introduction of DMI in this system can provide a new way to design magnetic vortex oscillator.

  12. Hexagonal pnictide SrPtAs; the role of spin-orbit interaction and locally broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Youn, S. J.; Fischer, M. H.; Agterberg, D. F.; Sigrist, M.; Weinert, M.; Freeman, A. J.

    2012-02-01

    The first hexagonal pnictide superconductor SrPtAs which consists of stacked PtAs layers has been studied using the FLAPW methodootnotetextWimmer, Krakauer, Weinert, and Freeman, Phys.Rev.B. 24, 864 (1981) and tight-binding methods. The single PtAs layer forms a honeycomb structure that exhibits: (1) locally broken inversion symmetry despite the presence of the global inversion center, and (2) strong spin-orbit interaction, for which physical consequences are nontrivial. Based on these findings, we predict significant enhancement of both the spin susceptibility and the paramagnetic limiting field with respect to the usual s wave superconductors. Further, we suggest an increase of TC by electron doping of a van Hove singularity.

  13. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions.

    PubMed

    Sandvik, Anders W

    2007-06-01

    Using ground-state projector quantum Monte Carlo simulations in the valence-bond basis, it is demonstrated that nonfrustrating four-spin interactions can destroy the Néel order of the two-dimensional S=1/2 Heisenberg antiferromagnet and drive it into a valence-bond solid (VBS) phase. Results for spin and dimer correlations are consistent with a single continuous transition, and all data exhibit finite-size scaling with a single set of exponents, z=1, nu=0.78+/-0.03, and eta=0.26+/-0.03. The unusually large eta and an emergent U(1) symmetry, detected using VBS order parameter histograms, provide strong evidence for a deconfined quantum critical point.

  14. Weak localization and phase interference due to spin-orbit interaction in metal-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Haruyama, Junji; Takesue, Izumi; Hasegawa, Tetsuro

    2002-01-01

    Electrode atoms are slightly diffused, with only about 5% volume ratio, into the top end of multiwalled carbon nanotubes (MWNT's), standing in nanopores of porous alumina membranes. Diffusion of light-mass materials (carbon and aluminum) leads to weak localization in the Altshuler-Aronov-Spivak (AAS) oscillations, which is qualitatively consistent with previous works on MWNT's. In contrast, we find that diffusion of heavy materials (gold and platinum) changes this weak localization into an antilocalization in the MWNT bulk. This effect is only observable when electrons are injected through the diffusion region and undergo a π-phase shift in their electron waves, caused by polarized injection of spin-flipped electrons due to spin-orbit interaction in the diffusion region of the MWNT bulk.

  15. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.

    PubMed

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-24

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.

  16. Effects of coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    NASA Astrophysics Data System (ADS)

    Ogloblya, O. V.; Kuznietsova, H. M.; Strzhemechny, Y. M.

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  17. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    SciTech Connect

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-12-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H{sup -} sources with good monochromatization. With one electron of H{sup -} stripped by a laser, the remained electron is excited to upper state (2P{sup 3/2} and 2P{sup 1/2}) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  18. Electron spin rotations induced by oscillating Rashba interaction in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pawłowski, J.; Szumniak, P.; Bednarek, S.

    2016-01-01

    A method and nanodevice are introduced that allows us to rotate the single electron spin confined in a gated electrostatic InSb nanowire quantum dot. The proposed method does not require the application of any (oscillating or static) external magnetic fields. Our proposal instead employs spatial and time modulation of confining potential induced by electric gates, which, in turn leads to oscillating Rashba-type spin-orbit coupling. Moving electron back and forth in such a variable Rashba field allows for the realization of spin rotations around two different axes separately without using an external magnetic field. The results are supported by realistic three-dimensional time-dependent Poisson-Schrödinger calculations for systems and material parameters corresponding to experimentally accessible structures.

  19. Evidence of exchange bias effect originating from the interaction between antiferromagnetic core and spin glass shell

    SciTech Connect

    Zhang, X. K. Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.; Tang, S. L.; Xu, L. Q.

    2014-07-14

    Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn{sub 3}O{sub 6−x} nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn{sub 3}O{sub 6−x} nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.

  20. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.