Science.gov

Sample records for electron-electron spin interaction

  1. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    SciTech Connect

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  2. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  3. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    PubMed

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  4. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  5. Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences

    PubMed Central

    Goldozian, Bahareh; Damtie, Fikeraddis A.; Kiršanskas, Gediminas; Wacker, Andreas

    2016-01-01

    Quantum dots are nanoscopic systems, where carriers are confined in all three spatial directions. Such nanoscopic systems are suitable for fundamental studies of quantum mechanics and are candidates for applications such as quantum information processing. It was also proposed that linear arrangements of quantum dots could be used as quantum cascade laser. In this work we study the impact of electron-electron interactions on transport in a spinful serial triple quantum dot system weakly coupled to two leads. We find that due to electron-electron scattering processes the transport is enabled beyond the common single-particle transmission channels. This shows that the scenario in the serial quantum dots intrinsically deviates from layered structures such as quantum cascade lasers, where the presence of well-defined single-particle resonances between neighboring levels are crucial for device operation. Additionally, we check the validity of the Pauli master equation by comparing it with the first-order von Neumann approach. Here we demonstrate that coherences are of relevance if the energy spacing of the eigenstates is smaller than the lead transition rate multiplied by ħ. PMID:26948933

  6. Magnetization and susceptibility of a parabolic InAs quantum dot with electron-electron and spin-orbit interactions in the presence of a magnetic field at finite temperature

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron-electron and spin-orbit interactions as a function of magnetic field and temperature. The spin-orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron-electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron-electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin-orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin-orbit interaction shifts it to the lower magnetic field side. Spin-orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  7. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    SciTech Connect

    Gavrilenko, V. I.; Krishtopenko, S. S.; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensional electrons is demonstrated.

  8. Electron-Electron Interactions in Artificial Graphene

    NASA Astrophysics Data System (ADS)

    Räsänen, E.; Rozzi, C. A.; Pittalis, S.; Vignale, G.

    2012-06-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of “designer Dirac materials”. In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points.

  9. Electron-electron interactions in artificial graphene

    NASA Astrophysics Data System (ADS)

    Rasanen, Esa

    2013-03-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of ``designer Dirac materials.'' In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points, and discuss future investigations and challenges in this field.

  10. Geometrically induced electron-electron interaction in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Pinto, N.; Rezvani, S. J.; Favre, L.; Berbezier, I.; Fretto, M.; Boarino, L.

    2016-09-01

    We report the observation of a structurally induced doping compensation mechanism in doped semiconductor nanowires that results from the reduced size geometry. This kind of compensation can significantly affect the electronic transport properties of the doped nanowires. We demonstrate that in a crystalline n-type doped Ge wire, compensated by the acceptor-like localized surface states, strong electron-electron interactions occur. Variable range hopping conduction detected in these nanowires is directly generated from strong interactions, exhibiting an unusual large Coulomb gap in the density of states of wires.

  11. Electron-electron interaction in projectile electron loss

    SciTech Connect

    Huelskoetter, H.; Meyerhof, W.E.; Dillard, E.A.; Guardala, N.; Spooner, D.W. ); Feinberg, B. ); Belkacem, A. Sciences Division, Building 71-259, Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, CA ); Alonso, J.R.; Krebs, G.F.; McMahan, M.A.; Rude, B.S ); Blumenfeld, L.; Gould, H. ); Rhoades-Brown, M.E. ); Schweppe, J. (Chemical Sciences Division, Building 71-259, Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, CA (

    1991-08-01

    In ion-atom collisions where the projectile is ionized, target electrons act not only coherently by screening the target nucleus but they may also act incoherently by directly ejecting a projectile electron. This electron-electron interaction should be relatively most important for targets that have a low nuclear charge, since the cross section for a neutral target is roughly proportional to {ital Z}{sub {ital t}}{sup 2}+{ital Z}{sub {ital t}}, where {ital Z}{sub {ital t}}{sup 2} is the contribution due to the target nucleus and {ital Z}{sub {ital t}} comes from the target electrons. In order to investigate the electron-electron interaction, we have measured and calculated cross sections for Li{sup 2+}, C{sup 5+}, and O{sup 7+} on H{sub 2} and He, Au{sup 52+} on H{sub 2}, He, C, and N{sub 2}, Au{sup 75+} on H{sub 2} and N{sub 2}, U{sup 86+} on H{sub 2} and He, and U{sup 90+} on H{sub 2}. The collision energies range from 0.75 to 405 MeV/nucleon. The calculations have been performed in the plane-wave Born approximation. We demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile, the electron-electron interaction can lead to a significant increase in the total electron-loss cross section.

  12. Variationally fitting the total electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Dunlap, Brett I.; Palenik, Mark C.

    2016-05-01

    Density fitting is used throughout quantum chemistry to simplify the electron-electron interaction energy (EE). A fundamental property of quantum chemistry, and DFT in particular, is that a variational principle connects the EE to a potential. Density fitting generally does not preserve this connection. Herein we describe the construction of a robust EE that is variationally connected to fitted potentials in all electronic structure methods. For DFT, this results in fitting equations that are satisfied at an energy saddle point in multidimensional fitting space.

  13. Effect of electron-electron interaction on thermal conductivity of disordered systems

    SciTech Connect

    Arfi, B. )

    1992-02-01

    Arfi presents a calculation of a correction to the thermal conductivity due to the inclusion of electron-electron interaction in a disordered metallic system. He finds that, to the first order in electron-electron interaction, the Wiedemann-Franz law is not satisfied.

  14. Pulsed electron-electron double resonance spectroscopy between a high-spin Mn(2+) ion and a nitroxide spin label.

    PubMed

    Akhmetzyanov, D; Plackmeyer, J; Endeward, B; Denysenkov, V; Prisner, T F

    2015-03-14

    Pulsed Electron-Electron Double Resonance (PELDOR) has attracted considerable attention for biomolecular applications, as it affords precise measurements of distances between pairs of spin labels in the range of 1.5-8 nm. Usually nitroxide moieties incorporated by site-directed spin labelling with cysteine residues are used as spin probes in protein systems. Recently, naturally occurring cofactors and metal ions have also been explored as paramagnetic spin species for such measurements. In this work we investigate the performance of PELDOR between a nitroxide spin label and a high-spin Mn(2+) ion in a synthetic model compound at Q-band (34 GHz) and G-band (180 GHz). We demonstrate that the distances obtained with high-frequency PELDOR are in good agreement with structural predictions. At Q-band frequencies experiments have been performed by probing either the high-spin Mn(2+) ion or the nitroxide spin label. At G-band frequencies we have been able to detect changes in the dipolar oscillation frequency, depending on the pump-probe positions across the g-tensor resolved nitroxide EPR spectrum. These changes result from the restricted mobility of the nitroxide spin label in the model compound. Our results demonstrate that the high-spin Mn(2+) ion can be used for precise distance measurements and open the doors for many biological applications, as naturally occurring Mg(2+) sites can be readily exchanged for Mn(2+). PMID:25669744

  15. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  16. Effect of electron-electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok

    2016-11-01

    The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .

  17. Determination of nitrogen spin concentration in diamond using double electron-electron resonance

    NASA Astrophysics Data System (ADS)

    Stepanov, Viktor; Takahashi, Susumu

    2016-07-01

    Diamond has been extensively investigated recently due to a wide range of potential applications of nitrogen-vacancy (NV) defect centers existing in a diamond lattice. The applications include magnetometry and quantum information technologies, and long decoherence time (T2) of NV centers is critical for those applications. Although it has been known that T2 highly depends on the concentration of paramagnetic impurities in diamond, precise measurement of the impurity concentration remains challenging. In the present work we show a method to determine a wide range of the nitrogen concentration (n ) in diamond using a wide-band high-frequency electron spin resonance and double electron-electron resonance spectrometer. Moreover, we investigate T2 of the nitrogen impurities and show the relationship between T2 and n . The method developed here is applicable for various spin systems in solid and implementable in nanoscale magnetic resonance spectroscopy with NV centers to characterize the concentration of the paramagnetic spins within a microscopic volume.

  18. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    SciTech Connect

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  19. Tuning nanoscale thermoelectricity with electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Coomar, Arunima; Stafford, Charles

    2015-03-01

    The Nonequilibrium Green's Function (NEGF) formalism is a powerful tool that provides a microscopic theory for interacting quantum systems out of equilibrium. In this talk, I will be presenting a few results obtained using the NEGF approach combined with pi-electron effective field theory to study the thermoelectric transport properties such as the thermopower (S) and the dimensionless figure of merit (ZT) across single-molecule junctions with pi-conjugated molecular systems, which exhibit destructive quantum interference of the electron waves. Some interesting results showcasing the tuning of the thermoelectric properties by embedding the junctions in a dielectric medium will be presented, along with our ongoing investigations of the transmission node spectrum in these molecular junctions, and the enhanced thermoelectricity resulting from it. This work was supported by the Department of Energy, Basic Energy Sciences Grant No. DE-SC0006699.

  20. Manifestation of nonlocal electron-electron interaction in graphene

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Schüler, Malte; Bianchi, Marco; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Wehling, Tim; Hofmann, Philip

    2016-08-01

    Graphene is an ideal platform to study many-body effects due to its semimetallic character and the possibility to dope it over a wide range. Here we study the width of graphene's occupied π band as a function of doping using angle-resolved photoemission. Upon increasing electron doping, we observe the expected shift of the band to higher binding energies. However, this shift is not rigid and the bottom of the band moves less than the Dirac point. We show that the observed shift cannot be accounted for by single-particle effects and local self-energies alone, but that nonlocal many-body effects, in particular exchange interactions, must be taken into account.

  1. Weak localization and electron-electron interactions in few layer black phosphorus devices

    NASA Astrophysics Data System (ADS)

    Shi, Yanmeng; Gillgren, Nathaniel; Espiritu, Timothy; Tran, Son; Yang, Jiawei; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning

    2016-09-01

    Few layer phosphorene (FLP) devices are extensively studied due to their unique electronic properties and potential applications on nano-electronics. Here we present magnetotransport studies which reveal electron-electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (˜T -0.4). These results establish that the dominant scattering mechanism in FLP is electron-electron interactions.

  2. Spin decoherence in n-type GaAs: The effectiveness of the third-body rejection method for electron-electron scattering

    SciTech Connect

    Marchetti, Gionni Hodgson, Matthew D'Amico, Irene

    2014-10-28

    We study the spin decoherence in n-type bulk GaAs for moderate electronic densities at room temperature using the Ensemble Monte Carlo method. We demonstrate that a technique called “third-body rejection method” devised by B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977) can be successfully adapted to Ensemble Monte Carlo method and used to tackle the problem of the electron-electron contribution to spin decoherence in the parameter region under study, where the electron-electron interaction can be reasonably described by a Yukawa potential. This scattering technique is employed in a doping region where one can expect that multiple collisions may play a role in carrier dynamics. By this technique, we are able to calculate spin relaxation times which are in very good agreement with the experimental results found by Oertel et al., Appl. Phys. Lett. 93, 13 (2008). Through this method, we show that the electron-electron scattering is overestimated in Born approximation, in agreement with previous results obtained by C. A. Kukkonen and H. Smith, Phys. Rev. B 8, 4601 (1973).

  3. Evidence for electron-electron interaction in projectile K -shell ionization

    SciTech Connect

    Hulskotter, H.; Meyerhof, W.E.; Dillard, E.; Guardala, N. )

    1989-10-30

    Cross sections for projectile {ital K}-shell ionization were measured for 0.75--3.5-MeV/{ital N} C{sup 5+} and O{sup 7+} projectiles in collisions with H{sub 2} and He targets. The experimental results agree with plane-wave Born-approximation calculations which take into account the interaction between projectile and target electrons. We demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile electron, the electron-electron interaction can lead to a significant increase in the total ionization cross section.

  4. Quantum spin Hall insulators with interactions and lattice anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Rachel, Stephan; Liu, Wu-Ming; Le Hur, Karyn

    2012-05-01

    We investigate the interplay between spin-orbit coupling and electron-electron interactions on the honeycomb lattice, combining the cellular dynamical mean-field theory and its real-space extension with analytical approaches. We provide a thorough analysis of the phase diagram and temperature effects at weak spin-orbit coupling. We systematically discuss the stability of the quantum spin Hall phase toward interactions and lattice anisotropy, resulting in the plaquette-honeycomb model. We also show the evolution of the helical edge states characteristic of quantum spin Hall insulators as a function of Hubbard interaction and anisotropy. At very weak spin-orbit coupling and intermediate electron-electron interactions, we substantiate the existence of a quantum spin liquid phase.

  5. Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron electron resonance) of force activation in muscle

    NASA Astrophysics Data System (ADS)

    Fajer, Piotr G.

    2005-05-01

    The recent development of site specific spin labelling and advances in pulsed electron paramagnetic resonance (EPR) have established spin labelling as a viable structural biology technique. Specific protein sites or whole domains can be selectively targeted for spin labelling by cysteine mutagenesis. The secondary structure of the proteins is determined from the trends in EPR signals of labels attached to consecutive residues. Solvent accessibility or label mobility display periodicities along the labelled polypeptide chain that are characteristic of β-strands (periodicity of 2 residues) or α-helices (3.6 residues). Low-resolution 3D structure of proteins is determined from the distance restraints. Two spin labels placed within 60-70 Å of each other create a local dipolar field experienced by the other spin labels. The strength of this field is related to the interspin distance, {\\propto } r^{-3 } . The dipolar field can be measured by the broadening of the EPR lines for the short distances (8-20 Å) or for the longer distances (17-70 Å) by the pulsed EPR methods, double electron-electron resonance (DEER) and double quantum coherence (DQC). A brief review of the methodology and its applications to the multisubunit muscle protein troponin is presented below.

  6. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  7. Weak localization and electron-electron interactions in indium-doped ZnO nanowires.

    PubMed

    Thompson, Richard S; Li, Dongdong; Witte, Christopher M; Lu, Jia G

    2009-12-01

    Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields with directions both perpendicular and parallel to the wire axes. A quantitative fit of our data is obtained, consistent with the theory of a quasi-one-dimensional metallic system with quantum corrections due to weak localization and electron-electron interactions. The anisotropy of the magneto-conductivity agrees with theory. The two quantum corrections are of approximately equal magnitude with respective temperature dependences of T(-1/3)and T(-1/2). The alternative model of quasi-two-dimensional surface conductivity is excluded by the absence of oscillations in the magneto-conductivity in parallel magnetic fields. PMID:19831413

  8. Anisotropy in a high Landau level due to effective electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2013-05-01

    Quantization of Hall resistivity in strongly correlated two-dimensional electronic systems at high magnetic fields generally indicates the stabilization of novel electronic quantum liquid phases of matter. This is the nature of the integer and fractional quantum Hall states that stabilize at integer and fractional odd-denominator (not always, though) filling factors of the Landau level. Away from certain filling factors that represent quantum Hall liquid states, different phases, some of them with unusually high magneto-transport anisotropy have been known to stabilize specially in high Landau levels. In this work, we try to understand this anisotropic behaviour in terms of effective electron-electron interaction potentials. To this effect, we implement a full projection of the original Coulomb interaction potential in the suitable Landau level. We find out that, in high Landau levels, thus for relatively weak magnetic fields, a semi-classical description of the interaction potential between electrons appear to be an adequate choice. The features of this semi-classical interaction potential in this limit suggest ways how the energetic balance between density waves and/or liquid crystalline phases might be sensitively affected.

  9. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Vladisavljevic, Milos; Korkusinski, Marek; Hawrylak, Pawel

    2015-12-01

    We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show that the maximally spin-polarized (S =5 /2 ) and maximally spin-depolarized (S =1 /2 ) states are the lowest energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S =1 /2 . We present a theory of optical absorption spectra and show that the evolution of the ground and excited states, level crossings, and presence of artificial gauge can be detected optically.

  10. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease

    PubMed Central

    Casey, Thomas M.; Fanucci, Gail E.

    2016-01-01

    An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron–electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron–electron resonance (DEER). Data are processed with the software package “DeerAnalysis” (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications. PMID:26477251

  11. Transmission zero in a quantum dot with strong electron-electron interaction: Perturbative conductance calculations

    NASA Astrophysics Data System (ADS)

    Kim, Sejoong; Lee, Hyun-Woo

    2006-05-01

    A pioneering experiment [E. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and Hadas Shtrikman, Nature 385, 417 (1997)] reported the measurement of the transmission phase of an electron traversing a quantum dot and found the intriguing feature of a sudden phase drop in the conductance valleys. Based on the Friedel sum rule for a spinless effective one-dimensional system, it has been previously argued [H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999)] that the sudden phase drop should be accompanied by the vanishing of the transmission amplitude, or transmission zero. Here we address roles of strong electron-electron interactions on the electron transport through a two-level quantum dot where one level couples with the leads much more strongly than the other level does [P. G. Silvestrov and Y. Imry, Phys. Rev. Lett. 85, 2565 (2000)]. We perform a perturbative conductance calculation with an explicit account of large charging energy and verify that the resulting conductance exhibits transmission zero, in agreement with the analysis based on the Friedel sum rule.

  12. Kinetic properties of surface electrons over liquid helium under strong electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Buntar, V. A.; Grigoriev, V. N.; Kirichek, O. I.; Kovdrya, Yu. Z.; Monarkha, Yu. P.; Sokolov, S. S.

    1990-06-01

    The mobility μ and lifetime of ground-level electrons τ⊥ are studied experimentally in a two-dimensional electron system at the surface of liquid helium at temperatures of 0.4 to 1.4 K and charge concentrations of (2.8 12.0) × 108 cm-2. It is shown that for fairly low temperature and high concentration where the frequency of interelectronic collisions is much higher than that of electron-ripplon ones, the so-called complete control condition is realized in the electron system, i.e., when the average drift velocity of electrons and the effective electron temperature can be introduced. This model is found to describe well the kinetic properties of surface electrons in the range of charge concentrations up to 4×108 cm-2, where the one-particle approach is no longer applicable. For the value of parameter Γ=e2(πns)1/2/T=47 that corresponds to a strong electron-electron interaction, the lifetime τ⊥ is found to increase sharply and the short-range order typical of a liquid state appears in the two-dimensional electron layer.

  13. Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance.

    PubMed

    Lerch, Michael T; Yang, Zhongyu; Brooks, Evan K; Hubbell, Wayne L

    2014-04-01

    The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. PMID:24707053

  14. Electron-electron interactions and lattice distortions in the perovskite titanates

    NASA Astrophysics Data System (ADS)

    Bjaalie, Lars

    A two-dimensional electron gas (2DEG) with the unprecedented high density of 3x1014 (corresponding to 1/2 electron per interface unit cell area) can be formed at the interface between SrTiO3 and a rare-earth titanate (RTiO3). The 2DEG resides in the SrTiO3, and arises from a polar discontinuity at the interface. The formation of this 2DEG has led us to study these perovskite titanates in detail. Some of these compounds are Mott insulators, where a Mott-Hubbard gap opens up between partially filled Ti 3 d bands. This talk focuses on the importance of the interplay between electron-electron interactions and lattice distortions in these complex oxides, which we study with density functional theory using a hybrid functional, capable of correctly describing electron localization and Mott-insulating behavior. These effects are crucial to understanding the metal-to-insulator transition as a function of electron density. Indeed, very thin SrTiO3 layers inserted in GdTiO3 show insulating behavior, in contrast to the metallic character of thicker layers in which the electrons form a 2DEG. The same physics is observed in bulk SrTiO3 when doped with 1/2 electron per Ti atom. Charge localization and lattice distortions also govern the formation of small hole polarons in the rare-earth titanates. We demonstrate that these polarons impact the optical absorption measurements commonly used to determine the value of the Mott-Hubbard gap. Work performed in collaboration with Anderson Janotti, Burak Himmetoglu, and Chris G. Van de Walle, and supported by NSF and ARO.

  15. Crossover of electron-electron interaction effect in Sn-doped indium oxide films

    SciTech Connect

    Zhang, Yu-Jie; Gao, Kuang-Hong; Li, Zhi-Qing

    2015-03-09

    We systematically study the structures and electrical transport properties of a series of Sn-doped indium oxide (ITO) films with thickness t ranging from ∼5 to ∼53 nm. Scanning electron microscopy and x-ray diffraction results indicate that the t ≲ 16.8 nm films are polycrystalline, while those t ≳ 26.7 nm films are epitaxially grown along [100] direction. For the epitaxial films, the Altshuler and Aronov electron-electron interaction (EEI) effect governs the temperature behaviors of the sheet conductance σ{sub □} at low temperatures, and the ratios of relative change of Hall coefficient ΔR{sub H}/R{sub H} to relative change of sheet resistance ΔR{sub □}/R{sub □} are ≈2, which is quantitatively consistent with Altshuler and Aronov EEI theory and seldom observed in other systems. For those polycrystalline films, both the sheet conductance and Hall coefficient vary linearly with logarithm of temperature below several tens Kelvin, which can be well described by the current EEI theories in granular metals. We extract the intergranular tunneling conductance of each film by comparing the σ{sub □}(T) data with the predication of EEI theories in granular metals. It is found that when the tunneling conductance is less than the conductance of a single indium tin oxide (ITO) grain, the ITO film reveals granular metal characteristics in transport properties; conversely, the film shows transport properties of homogeneous disordered conductors. Our results indicate that electrical transport measurement can not only reveal the underlying charge transport properties of the film but also be a powerful tool to detect the subtle homogeneity of the film.

  16. Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Ronetti, Flavio; Vannucci, Luca; Dolcetto, Giacomo; Carrega, Matteo; Sassetti, Maura

    2016-04-01

    We consider thermoelectric transport properties of the edge states of a two-dimensional topological insulator in a double quantum point contact geometry coupled to two thermally biased reservoirs. Both spin-preserving and spin-flipping tunneling processes between opposite edges are analyzed in the presence of electron-electron interactions. We demonstrate that the simultaneous presence of spin-flipping processes and interactions gives rise to a finite longitudinal spin current. Moreover, its sign and amplitude can be tuned by means of gate voltages with the possibility to generate a pure spin current, with a vanishing charge current.

  17. Effects of electron-electron interactions on the electronic Raman scattering of graphite in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Kim, Y.; Kalugin, N. G.; Lombardo, A.; Ferrari, A. C.; Kono, J.; Imambekov, A.; Smirnov, D.

    2014-03-01

    We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ˜0.05 at 40 T.

  18. Influence of electron-electron interactions on pair tunneling through a mesoscopic N-S tunnel junction.

    NASA Astrophysics Data System (ADS)

    Huck, A. K.; Hekking, F. W. J.

    1997-03-01

    At low temperatures and voltages, smaller than the superconducting gap, transport through a normal metal - superconductor (N-S) tunnel barrier is due to tunneling of electrons in pairs. For a mesoscopic N-S tunnel junction, this process is very sensitive to quantum interference effects: pair tunneling is determined by particle-particle diffusion (Cooperon propagation) near the junction (F.W.J. Hekking, Yu.V. Nazarov, Phys. Rev. Lett. 70, 1625 (1993)). On the other hand it is well-known that electron-electron interactions in a disordered metal lead to significant corrections to particle-particle diffusion (Yu.N. Ovchinnikov, Sov. Phys. JETP 37, 366 (1973)). We explore the effect of the interplay between disorder and interactions on the subgap conductivity of a mesoscopic N-S tunnel junction.

  19. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    DOE PAGESBeta

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. -F.; Han, X. -F.; Zhang, X. -G.; Coey, J. M. D.

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states,more » while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.« less

  20. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    SciTech Connect

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. -F.; Han, X. -F.; Zhang, X. -G.; Coey, J. M. D.

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states, while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.

  1. Quantum chaotic tunneling in graphene systems with electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Ying, Lei; Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

  2. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    SciTech Connect

    Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  3. Superconducting Pairing Mechanism of Rare-Earth Effects of Electron-Electron and Electron-Phonon Interactions

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Jain, Rajendra K.

    Upon considering the three interactions namely, the electron-acoustic phonon, the electron-optical phonon and the Coulomb, the analytical solutions for the energy gap equation allows one to determine the electronic structure parameters to discuss the behavior of superconducting transition temperature (Tc) and isotope effect coefficient (α) for layered structure YNi2 B2C. Tc of 17 K is estimated for YNi2B2C with electron-acoustic phonon (λac) = 0.31, electron-optical phonon (λop) = 0.1 and Coulomb screening parameter (μ*) = 0.126 indicating that the YNi2B2C superconductor is in the intermediate coupling regime. To correlate the Tc with various coupling strengths as λac, λop and μ*, we present curves of Tc with them. The present approach also explains the conditions for the Boron and Carbon isotope effect. The negative pressure coefficient of Tc in this layered material is attributed to the contraction along c-axis under hydrostatic pressure. We suggest from these results that both the acoustic and optical phonons within the framework of a three-square well scheme consistently explains the effective electron-electron interaction leading to superconductivity in layered structure YNi2B2C.

  4. Magnetization of interacting electrons in anisotropic quantum dots with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Avetisyan, Siranush; Chakraborty, Tapash; Pietiläinen, Pekka

    2016-07-01

    Magnetization of anisotropic quantum dots in the presence of the Rashba spin-orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin-orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron-electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin-orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin-orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin-orbit interaction strength.

  5. Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2Se3 thin film

    NASA Astrophysics Data System (ADS)

    Jing, Yumei; Huang, Shaoyun; Zhang, Kai; Wu, Jinxiong; Guo, Yunfan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2016-01-01

    The electron transport properties of a topological insulator Bi2Se3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmical decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.

  6. Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2Se3 thin film.

    PubMed

    Jing, Yumei; Huang, Shaoyun; Zhang, Kai; Wu, Jinxiong; Guo, Yunfan; Peng, Hailin; Liu, Zhongfan; Xu, H Q

    2016-01-28

    The electron transport properties of a topological insulator Bi2Se3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmical decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.

  7. Magnetization of a parabolic quantum dot in the presence of Rashba and Dresselhaus spin-orbit interactions

    SciTech Connect

    Kumar, D. Sanjeev Chatterjee, Ashok; Mukhopadhyay, Soma

    2015-05-15

    The magnetization of a parabolic quantum dot has been studied as a function of temperature and external magnetic field in the presence of Rashba, Dresselhaus Spin Orbit Interactions (SOI) and the electron-electron interactions. By the introduction of a simple and physically reasonable model potential, the problem has been solved exactly up to second order in both the SOI terms. Both the SOI found to be showing considerable effects on the magnetization of the quantum dot. The effect of electron-electron interaction on the magnetization also has been studied.

  8. Structure of Self-Aggregated Alamethicin in ePC Membranes Detected by Pulsed Electron-Electron Double Resonance and Electron Spin Echo Envelope Modulation Spectroscopies

    PubMed Central

    Milov, Alexander D.; Samoilova, Rimma I.; Tsvetkov, Yuri D.; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio; Handgraaf, Jan-Willem; Raap, Jan

    2009-01-01

    Abstract PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)7,18,19]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70–1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n ≈ 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and ∼5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 ≈ TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)18,19 residues are suggested to stabilize the self-aggregate superstructure. PMID:19383464

  9. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Tie, M.; Dhirani, A.-A.

    2016-09-01

    Strong electron-electron interactions experienced by electrons as they delocalize are widely believed to play a key role in a range of remarkable phenomena such as high Tc superconductivity, colossal magnetoresistance, and others. Strongly correlated electrons are often described by the Hubbard model, which is the simplest description of a correlated system and captures important gross features of phase diagrams of strongly correlated materials. However, open challenges in this field include experimentally mapping correlated electron phenomena beyond those captured by the Hubbard model, and extending the model accordingly. Here we use electrolyte gating to study a metal-insulator transition (MIT) in a new class of strongly correlated material, namely, nanostructured materials, using 1,4-butanedithiol-linked Au nanoparticle films (NPFs) as an example. Electrolyte gating provides a means for tuning the chemical potential of the materials over a wide range, without significantly modifying film morphology. On the insulating side of the transition, we observe Efros-Shklovskii variable range hopping and a soft Coulomb gap, evidencing the importance of Coulomb barriers. On the metallic side of the transition, we observe signatures of strong disorder mediated electron-electron correlations. Gating films near MIT also reveal a zero-bias conductance peak, which we attribute to a resonance at the Fermi level predicted by the Hubbard and Anderson impurity models when electrons delocalize and experience strong Coulomb electron-electron interactions. This study shows that by enabling large changes in carrier density, electrolyte gating of Au NPFs is a powerful means for tuning through the Hubbard MIT in NPFs. By revealing the range of behaviours that strongly correlated electrons can exhibit, this platform can guide the development of an improved understanding of correlated materials.

  10. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions.

    PubMed

    Tie, M; Dhirani, A-A

    2016-09-14

    Strong electron-electron interactions experienced by electrons as they delocalize are widely believed to play a key role in a range of remarkable phenomena such as high Tc superconductivity, colossal magnetoresistance, and others. Strongly correlated electrons are often described by the Hubbard model, which is the simplest description of a correlated system and captures important gross features of phase diagrams of strongly correlated materials. However, open challenges in this field include experimentally mapping correlated electron phenomena beyond those captured by the Hubbard model, and extending the model accordingly. Here we use electrolyte gating to study a metal-insulator transition (MIT) in a new class of strongly correlated material, namely, nanostructured materials, using 1,4-butanedithiol-linked Au nanoparticle films (NPFs) as an example. Electrolyte gating provides a means for tuning the chemical potential of the materials over a wide range, without significantly modifying film morphology. On the insulating side of the transition, we observe Efros-Shklovskii variable range hopping and a soft Coulomb gap, evidencing the importance of Coulomb barriers. On the metallic side of the transition, we observe signatures of strong disorder mediated electron-electron correlations. Gating films near MIT also reveal a zero-bias conductance peak, which we attribute to a resonance at the Fermi level predicted by the Hubbard and Anderson impurity models when electrons delocalize and experience strong Coulomb electron-electron interactions. This study shows that by enabling large changes in carrier density, electrolyte gating of Au NPFs is a powerful means for tuning through the Hubbard MIT in NPFs. By revealing the range of behaviours that strongly correlated electrons can exhibit, this platform can guide the development of an improved understanding of correlated materials. PMID:27634270

  11. Mesoscopic Rings with Spin-Orbit Interactions

    ERIC Educational Resources Information Center

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto

    2010-01-01

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin…

  12. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    NASA Astrophysics Data System (ADS)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  13. Dynamic spin susceptibility of interacting electron systems

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir; Maslov, Dmitrii

    2015-03-01

    We study the dynamic spin susceptibility of interacting electrons in spatial dimensions from one to three. In all cases, backscattering processes result in non-zero imaginary part of the spin susceptibility above the particle-hole continuum of non-interacting electrons. In one dimension, we employ the renormalization group to go beyond the second order and obtain a general expression for the spin susceptibility. In higher dimensions, we show that the imaginary part of the spin susceptibility arises from the same mechanism as non-analytic corrections to the Fermi-liquid theory. We relate the obtained results to the lifetime of collective spin modes. This work was supported by the National Science Foundation via Grant NSF DMR-1308972.

  14. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The effect of electron-electron interaction and the Rashba and Dresselhaus spin-orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron-electron interaction term, the problem is solved exactly to second-order in the spin-orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  15. Higher spins and open strings: Quartic interactions

    SciTech Connect

    Polyakov, Dimitri

    2011-02-15

    We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators constructed in our previous works and computing their 4-point amplitudes in superstring theory. The kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant 1-1-3-3 quartic interaction (two massless spin 3 particles interacting with two photons) and comment on more general 1-1-s-s cases, particularly pointing out the structure of 1-1-5-5 coupling.

  16. Measurement of noncommuting spin components using spin-orbit interaction

    SciTech Connect

    Sokolovski, D.; Sherman, E. Ya.

    2011-09-15

    We propose a possible experiment aimed at a joint measurement of two noncommuting spin-1/2 components and analyze its physical meaning. We demonstrate that switching of a strong spin-orbit interaction, e.g., in a solid-state or a cold-atom system, for a short time interval simulates a simultaneous von Neumann measurement of the operators {sigma}{sub x} and {sigma}{sub y}. With the spin dynamics mapped onto the quantum coordinate-space motion, such an experiment determines averages of {sigma}{sub x} and {sigma}{sub y} over the duration of the measurement, however short the latter may be. These time averages, unlike the instantaneous values of {sigma}{sub x} and {sigma}{sub y}, may be evaluated simultaneously to an arbitrary accuracy.

  17. Spin current source based on a quantum point contact with local spin-orbit interaction

    SciTech Connect

    Nowak, M. P.; Szafran, B.

    2013-11-11

    Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.

  18. Multiple state transport deduced by weak antilocalization and electron-electron interaction effects in Sb(x)Te(1-x) layers.

    PubMed

    Takagaki, Y; Jahn, U; Giussani, A; Calarco, R

    2014-03-01

    Quantum corrections to the conductivity due to the weak antilocalization (WAL) and electron-electron interaction (EEI) effects are investigated in Sb-Te layers to evaluate the number of independent conduction channels in the topological insulator system. We separate the two contributions in the logarithmic temperature dependence of conductivity relying on their distinct response to a magnetic field. For the WAL effect, the amplitude parameter α being -1 observed in magnetoconductivity is confirmed. The magnitude of the EEI contribution is too large to be produced by one transport channel. The mixing between the surface and bulk states is thus indicated to be weak in the Sb-Te system. In addition, the disorder scattering appears to be less influential for the EEI effect than for the WAL effect.

  19. Effect of Electron-Electron Interaction on Transport in Dye-Sensitized Nanocrystalline TiO2

    SciTech Connect

    van de Lagemaat, J.; Kopidakis, N.; Neale, N. R.; Frank, A. J.

    2005-01-01

    Experimental measurements and continuous-time random walk simulations on sensitized electrolyte-infused porous nanocrystalline TiO2 films show that the actual electronic charge in the films is significantly larger than that estimated from small-perturbation methods by a constant, light-intensity-independent factor. This observation can be explained by small-perturbation techniques measuring the chemical diffusion coefficient of electrons instead of the normally assumed tracer diffusion coefficient of electrons. The difference between the two diffusion coefficients is attributed to the presence of an exponential density of states through which electrons interact. At high light intensities, an additional extra component owing to Coulomb interactions between the electrons is expected to arise.

  20. Universal power-law decay of electron-electron interactions due to nonlinear screening in a Josephson junction array

    NASA Astrophysics Data System (ADS)

    Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.

  1. Interaction vertex for classical spinning particles

    NASA Astrophysics Data System (ADS)

    Rempel, Trevor; Freidel, Laurent

    2016-08-01

    We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position and momentum variables, and the other encoding the spinning degrees of freedom. This "dual phase space model" is shown to be a consistent theory of both massive and massless particles and allows for coupling to background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two terms, one associated with motion in spacetime, and the other with motion in "spin space." Interactions between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-point vertex is established.

  2. Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems?: PAH and graphene

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Louis, E.; San-Fabián, E.; Vergés, J. A.

    2015-11-01

    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The

  3. Role of electron-electron interactions in the charge dynamics of rare-earth-doped CaF e2A s2

    NASA Astrophysics Data System (ADS)

    Xing, Zhen; Huffman, T. J.; Xu, Peng; Hollingshad, A. J.; Brooker, D. J.; Penthorn, N. E.; Qazilbash, M. M.; Saha, S. R.; Drye, T.; Roncaioli, C.; Paglione, J.

    2016-08-01

    We have investigated the charge dynamics and the nature of many-body interactions in La- and Pr- doped CaF e2A s2 . From the infrared part of the optical conductivity, we discover that the scattering rate of mobile carriers above 200 K exhibits saturation at the Mott-Ioffe-Regel limit of metallic transport. However, the dc resistivity continues to increase with temperature above 200 K due to the loss of Drude spectral weight. The loss of Drude spectral weight with increasing temperature is seen in a wide temperature range in the uncollapsed tetragonal phase, and this spectral weight is recovered at energy scales about one order of magnitude larger than the Fermi energy scale in these semimetals. The phenomena noted above have been observed previously in other correlated metals in which the dominant interactions are electronic in origin. Further evidence of significant electron-electron interactions is obtained from the presence of quadratic temperature and frequency-dependent terms in the scattering rate at low temperatures and frequencies in the uncollapsed tetragonal structures of La-doped and Pr-doped CaF e2A s2 . For temperatures below the structure collapse transition in Pr-doped CaF e2A s2 at ˜70 K , the scattering rate decreases due to weakening of electronic correlations, and the Drude spectral weight decreases due to modification of the low-energy electronic structure.

  4. Introduction of Spin-Orbit Interaction into Graphene with Hydrogenation

    NASA Astrophysics Data System (ADS)

    Nakamura, Taketomo; Haruyama, Junji; Katsumoto, Shingo

    2016-10-01

    The introduction of the spin-orbit interaction (SOI) into graphene with weak hydrogenation (˜0.1%) by the dissociation of hydrogen silsesquioxane resist has been confirmed through the appearance of the inverse spin Hall effect. The spin current was produced by spin injection from permalloy electrodes excluding a non-spin-related experimental artifact.

  5. Spin-Gravity Interactions and Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Obukhov, Yu. N.; Silenko, A. J.; Teryaev, O. V.

    2016-02-01

    The spin-gravity interactions imply the new manifestation of the equivalence principle leading to the absence of gravitoelectric and anomalous gravitomagnetic moments for fermions. This property is still valid in the presence of the space-time torsion due to the covariance arguments. The experimental bounds for the torsion, which may be extracted from modern co-magnetometer experiments, are discussed.

  6. Influence of variations in the electron-electron interaction on the ground state metric space "band structure" of a two-electron magnetic system

    NASA Astrophysics Data System (ADS)

    Sharp, P. M.; D'Amico, I.

    2016-02-01

    We consider a model system of two electrons confined in a two-dimensional harmonic oscillator potential, with the electrons interacting via an α / r2 potential, and subject to a magnetic field applied perpendicular to the plane of confinement. Our results show that variations in the strength of the electron-electron interaction generate a "band structure" in ground state metric spaces, which shares many characteristics with those generated as a result of varying the confinement potential. In particular, the metric spaces for wavefunctions, particle densities, and paramagnetic current densities all exhibit distinct "bands" and "gaps". The behavior of the polar angle of the bands also shares traits with that obtained by varying the confinement potential, but the behavior of the arc lengths of the bands on the metric space spheres can be seen to be different for the two cases and opposite for a large range of angular momentum values. The findings here and in Refs. [1,2] demonstrate that the "band structure" that arises in ground state metric spaces when a magnetic field is applied is a robust feature.

  7. Quantum spin glass and the dipolar interaction.

    PubMed

    Schechter, Moshe; Laflorencie, Nicolas

    2006-09-29

    Anisotropic dipolar systems are considered. Such systems in an external magnetic field are expected to be a good experimental realization of the transverse field Ising model. With random interactions, this model yields a spin glass to paramagnet phase transition as a function of the transverse field. We show that the off-diagonal dipolar interaction, although effectively reduced, induces a finite correlation length and thus destroys the spin-glass order at any finite transverse field. We thus explain the behavior of the nonlinear susceptibility in the experiments on LiHo(x)Y(1-x)F(4), and argue that a crossover to the paramagnetic phase, and not quantum criticality, is observed.

  8. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  9. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  10. Dimerizations in spin-S antiferromagnetic chains with three-spin interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Yuan; Furuya, Shunsuke C.; Nakamura, Masaaki; Komakura, Ryo

    2013-12-01

    We discuss spin-S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest-neighbor interactions, and bond alternation. First, we prove rigorously that there exist parameter regions of the exact dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitrary S. Next, we discuss the ground-state phase diagram of the models by introducing several effective field theories and the universality classes of the transitions are described by the level-2S SU (2) Wess-Zumino-Witten model and the Gaussian model. Finally, we determine the phase diagrams of S =1 and S =3/2 systems by using exact diagonalization and level spectroscopy.

  11. The cosmology of interacting spin-2 fields

    SciTech Connect

    Tamanini, Nicola; Saridakis, Emmanuel N.; Koivisto, Tomi S. E-mail: Emmanuel_Saridakis@baylor.edu

    2014-02-01

    We investigate the cosmology of interacting spin-2 particles, formulating the multi-gravitational theory in terms of vierbeins and without imposing any Deser-van Nieuwen-huizen-like constraint. The resulting multi-vierbein theory represents a wider class of gravitational theories if compared to the corresponding multi-metric models. Moreover, as opposed to its metric counterpart which in general seems to contain ghosts, it has already been proved to be ghost-free. We outline a discussion about the possible matter couplings and we focus on the study of cosmological scenarios in the case of three and four interacting vierbeins. We find rich behavior, including de Sitter solutions with an effective cosmological constant arising from the multi-vierbein interaction, dark-energy solutions and nonsingular bouncing behavior.

  12. Superconductors with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yu. N.

    2016-09-01

    The effect of spin-orbit (SO) interaction on the formation of the critical states in thin superconducting films in magnetic field oriented along the film is investigated. Hereby, the case of interband pairing is considered. It was found that eight branches exist in the plane of two parameters (γ1,γ2) determined by the value of magnetic field and SO interaction. Six modes leads to inhomogeneous states with different values of the impulse Q. Each state is doubly degenerate over direction of impulse Q. The parameter values at critical point are found for all eight branches in explicit form for zero temperature. The optimal two branches are estimated, corresponding to largest critical magnetic field value for given SO interaction.

  13. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  14. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    NASA Astrophysics Data System (ADS)

    Chu, P.-H.; Kim, Y. J.; Savukov, I.

    2016-08-01

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. We estimate that by moving unpolarized or polarized objects next to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10-2 m .

  15. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    SciTech Connect

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

  16. Spin dynamics in relativistic light-matter interaction

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2015-05-01

    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.

  17. Interacting giant gravitons from spin matrix theory

    NASA Astrophysics Data System (ADS)

    Harmark, Troels

    2016-09-01

    Using the non-Abelian Dirac-Born-Infeld action we find an effective matrix model that describes the dynamics of weakly interacting giant gravitons wrapped on three-spheres in the anti-de Sitter (AdS) part of AdS5×S5 at high energies with two angular momenta on the S5. In parallel we consider the limit of N =4 super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory called S U (2 ) spin matrix theory. We show that the exact same matrix model that describes the giant gravitons on the string theory side also provides the effective description in the strong coupling and large energy limit of the spin matrix theory. Thus, we are able to match nonsupersymmetric dynamics of D-branes on AdS5×S5 to a finite-N regime in N =4 super Yang-Mills theory near a unitarity bound.

  18. QCD SPIN PHYSICS IN HADRONIC INTERACTIONS.

    SciTech Connect

    VOGELSANG,W.

    2007-06-19

    We discuss spin phenomena in high-energy hadronic scattering, with a particular emphasis on the spin physics program now underway at the first polarized proton-proton collider, RHIC. Experiments at RHIC unravel the spin structure of the nucleon in new ways. Prime goals are to determine the contribution of gluon spins to the proton spin, to elucidate the flavor structure of quark and antiquark polarizations in the nucleon, and to help clarify the origin of transverse-spin phenomena in QCD. These lectures describe some aspects of this program and of the associated physics.

  19. Nanometer-scale exchange interactions between spin centers in diamond

    NASA Astrophysics Data System (ADS)

    Kortan, V. R.; Şahin, C.; Flatté, M. E.

    2016-06-01

    Exchange interactions between isolated pairs of spin centers in diamond have been calculated, based on an accurate atomistic electronic structure for diamond and any impurity atoms, for spin-center separations of up to 2 nm. The exchange interactions exceed dipolar interactions for spin-center separations of less than 3 nm. NV- spin centers, which involve two lattice sites which differ from the host, interact very differently depending on the relative orientations of the symmetry axis of the spin center and the radius vector connecting the pair. Exchange interactions between transition-metal dopants behave similarly to those of NV- centers. The Mn-Mn exchange interaction decays with a much longer length scale than the Cr-Cr and Ni-Ni exchange interactions, exceeding dipolar interactions for Mn-Mn separations of less than 5 nm. Calculations of these highly anisotropic and spin-center-dependent interactions provide the potential for the design of spin-spin interactions for novel nanomagnetic structures.

  20. Spin Mass Interaction Limiting Experiment (SMILE)

    NASA Astrophysics Data System (ADS)

    Lee, Junyi; Romalis, Michael

    2016-05-01

    We present preliminary results of an upcoming experiment to limit possible anomalous spin mass interactions. Such interactions arise naturally if light pseudoscalar bosons like the axion exist and a bound on such interactions places constraints on the couplings of the axion, which is of particular interest both as a solution to the strong CP problem in QCD and as a dark matter candidate. In this experiment, we measure the couplings of the axion using a 3 He-K co-magnetometer by modulating the positions of two 200kg source masses that produces an energy shift in the atoms proportional to the axion's coupling constants. Astroyphysical observations currently exceed the best laboratory limits of light axions' couplings to nucleons by two order of magnitudes but we expect, for the first time in a laboratory experiment, to surpass those astrophysical bounds. Construction of the experiment has been completed and we present here some preliminary results and discuss possible systematic effects. Supported by NSF PHY-1404325.

  1. On higher spin interactions with matter

    NASA Astrophysics Data System (ADS)

    Bekaert, Xavier; Joung, Euihun; Mourad, Jihad

    2009-05-01

    Cubic couplings between a complex scalar field and a tower of symmetric tensor gauge fields of all ranks are investigated. A symmetric conserved current, bilinear in the scalar field and containing r derivatives, is provided for any rank r>=1 and is related to the corresponding rigid symmetry of Klein-Gordon's Lagrangian. Following Noether's method, the tensor gauge fields interact with the scalar field via minimal coupling to the conserved currents. The corresponding cubic vertex is written in a compact form by making use of Weyl's symbols. This enables the explicit computation of the non-Abelian gauge symmetry group, the current-current interaction between scalar particles mediated by any gauge field and the corresponding four-scalar elastic scattering tree amplitude. The exact summation of these amplitudes for an infinite tower of gauge fields is possible and several examples for a definite choice of the coupling constants are provided where the total amplitude exhibits fast (e.g. exponential) fall-off in the high-energy limit. Nevertheless, the long range interaction potential is dominated by the exchange of low-spin (r<=2) particles in the low-energy limit.

  2. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGESBeta

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  3. Electrically detected double electron-electron resonance: exchange interaction of ?P donors and P? defects at the Si/SiO? interface

    NASA Astrophysics Data System (ADS)

    Suckert, Max; Hoehne, Felix; Dreher, Lukas; Kuenzl, Markus; Huebl, Hans; Stutzmann, Martin; Brandt, Martin S.

    2013-10-01

    We study the coupling of P? dangling bond defects at the Si/SiO2 interface and 31P donors in an epitaxial layer directly underneath using electrically detected double electron-electron resonance (EDDEER). An exponential decay of the EDDEER signal is observed, which is attributed to a broad distribution of exchange coupling strengths J/2π from 25 kHz to 3 MHz. Comparison of the experimental data with a numerical simulation of the exchange coupling shows that this range of coupling strengths corresponds to 31P-P? distances ranging from 14 nm to 20 nm.

  4. Using geoelectrons to search for velocity-dependent spin-spin interactions.

    PubMed

    Hunter, L R; Ang, D G

    2014-03-01

    We use the recently developed model of the electron spins within Earth to investigate all of the six possible long-range velocity-dependent spin-spin interactions associated with the exchange of an ultralight (mz'<10(-10) eV) or massless intermediate vector boson. Several laboratory experiments have established upper limits on the energy associated with various fermion-spin orientations relative to Earth. We combine the results from three of these experiments with the geoelectron-spin model to obtain bounds on the velocity-dependent interactions that couple electron spin to the spins of electrons, neutrons, and protons. Five of the six possible potentials investigated were previously unbounded. In the long-range limit we have improved the bound on the sixth potential by 30 orders of magnitude. PMID:24655243

  5. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    SciTech Connect

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-09-14

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters.

  6. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  7. RKKY interaction in spin polarized armchair graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Azizi, Farshad

    2016-11-01

    We present the Ruderman-Kittle-Kasuya-Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction.

  8. Generation and Detection of Spin Currents in Semiconductor Nanostructures with Strong Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Nichele, Fabrizio; Hennel, Szymon; Pietsch, Patrick; Wegscheider, Werner; Stano, Peter; Jacquod, Philippe; Ihn, Thomas; Ensslin, Klaus

    2015-05-01

    Storing, transmitting, and manipulating information using the electron spin resides at the heart of spintronics. Fundamental for future spintronics applications is the ability to control spin currents in solid state systems. Among the different platforms proposed so far, semiconductors with strong spin-orbit interaction are especially attractive as they promise fast and scalable spin control with all-electrical protocols. Here we demonstrate both the generation and measurement of pure spin currents in semiconductor nanostructures. Generation is purely electrical and mediated by the spin dynamics in materials with a strong spin-orbit field. Measurement is accomplished using a spin-to-charge conversion technique, based on the magnetic field symmetry of easily measurable electrical quantities. Calibrating the spin-to-charge conversion via the conductance of a quantum point contact, we quantitatively measure the mesoscopic spin Hall effect in a multiterminal GaAs dot. We report spin currents of 174 pA, corresponding to a spin Hall angle of 34%.

  9. Generating non-classical states from spin coherent states via interaction with ancillary spins

    NASA Astrophysics Data System (ADS)

    Dooley, Shane; Joo, Jaewoo; Proctor, Timothy; Spiller, Timothy P.

    2015-02-01

    The generation of non-classical states of large quantum systems has attracted much interest from a foundational perspective, but also because of the significant potential of such states in emerging quantum technologies. In this paper we consider the possibility of generating non-classical states of a system of spins by interaction with an ancillary system, starting from an easily prepared initial state. We extend previous results for an ancillary system comprising a single spin to bigger ancillary systems and the interaction strength is enhanced by a factor of the number of ancillary spins. Depending on initial conditions, we find - by a combination of approximation and numerics - that the system of spins can evolve to spin cat states, spin squeezed states or to multiple cat states. We also discuss some candidate systems for implementation of the Hamiltonian necessary to generate these non-classical states.

  10. Calculation of the first nonlinear contribution to the general-relativistic spin-spin interaction for binary systems.

    PubMed

    Porto, Rafael A; Rothstein, Ira Z

    2006-07-14

    We use recently developed effective field theory techniques to calculate the third order post-Newtonian correction to the spin-spin potential between two spinning objects. This correction represents the first contribution to the spin-spin interaction due to the nonlinear nature of general relativity and will play an important role in forthcoming gravity wave experiments.

  11. Cosmology with three interacting spin-2 fields

    NASA Astrophysics Data System (ADS)

    Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R.

    2016-08-01

    Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally viable cosmological solutions that are distinguishable from Λ cold dark matter (CDM). We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with Λ CDM . For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-Λ CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.

  12. Electron-electron interaction and the universality of critical indices for quantum Hall effect plateau-plateau transitions in n-InGaAs/GaAs nanostructures with double quantum wells

    SciTech Connect

    Arapov, Yu. G.; Gudina, S. V. Klepikova, A. S.; Neverov, V. N.; Shelushinina, N. G.; Yakunin, M. V.

    2015-02-15

    The dependences of the longitudinal and Hall resistances on a magnetic field in the integer quantum Hall effect regime in n-InGaAs/GaAs heterostructures with a double quantum well are measured in the range of magnetic fields B = 0–16 T and temperatures T = 0.05–4.2 K, before and after infrared illumination. Analysis of the temperature dependence of the width of transitions between plateaus of the quantum Hall effect is performed in the scope of the scaling hypothesis allowing for electron-electron interaction effects.

  13. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  14. Symmetries of higher-spin current interactions in four dimensions

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2016-06-01

    We show that the current interaction of massless fields in four dimensions breaks the sp(8) symmetry of free massless equations of arbitrary spin down to the conformal symmetry su(2, 2). This breaking agrees with the form of the nonlinear higher-spin field equations.

  15. Universal spin transport in a strongly interacting Fermi gas.

    PubMed

    Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W

    2011-04-14

    Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.

  16. Ultrafast spin dynamics in II-VI diluted magnetic semiconductors with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-05-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic semiconductors in the presence of spin-orbit interaction. Our goal is to explore the interplay or competition between the exchange sd coupling and the spin-orbit interaction in both bulk and quantum-well systems. For bulk materials we concentrate on Zn1 -xMnxSe and take into account the Dresselhaus interaction, while for quantum wells we examine Hg1 -x -yMnxCdyTe systems with a strong Rashba coupling. Our calculations were performed with a recently developed formalism which incorporates electronic correlations beyond mean-field theory originating from the exchange sd coupling. For both bulk and quasi-two-dimensional systems we find that, by varying the system parameters within realistic ranges, either of the two interactions can be chosen to play a dominant role or they can compete on an equal footing with each other. The most notable effect of the spin-orbit interaction in both types of system is the appearance of strong oscillations where the exchange sd coupling by itself causes only an exponential decay of the mean electronic spin components. The mean-field approximation is also studied and an analytical interpretation is given as to why it shows a strong suppression of the spin-orbit-induced dephasing of the spin component parallel to the Mn magnetic field.

  17. Interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    2016-02-01

    The recent experimental realization of spin-orbit (SO) coupling for spin-1 ultracold atoms opens an interesting avenue for exploring SO-coupling-related physics in large-spin systems, which is generally unattainable in electronic materials. In this paper, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 Bose-Einstein condensates (BECs) in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting in-phase or out-of-phase modulating patterns between spin-tensor and zero-spin-component density waves. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a double maxon-roton structure in the Bogoliubov-excitation spectrum, attributed to the three band minima of the SO-coupled spin-1 BEC.

  18. Generation of spin polarization in graphene by the spin-orbit interaction and a magnetic barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Qingtian; Chan, K. S.; Lin, Zijing

    2014-10-01

    We study the generation of spin polarization in monolayer graphene in the presence of Rashba spin-orbit interaction (SOI) and a ferromagnetic (FM) stripe. It is shown that Rashba SOI alone can generate an in-plane (x-y plane) spin polarization, but a FM stripe with magnetization parallel to the current direction cannot generate any spin polarization. A combination of the Rashba SOI and the magnetic field of a FM stripe can increase the spin polarization to a value close to 100%, and the polarization components can be found along the x, y and z directions. The attainment of highly spin polarized current using the Rashba SOI and FM effect could have useful applications in the development of graphene spintronics.

  19. Frustration in spin models with cavity-mediated interactions

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sarang

    2013-05-01

    Ultracold atoms confined in transversely pumped optical cavities experience cavity-mediated interactions, which can give rise to phenomena such as crystallization that are otherwise difficult to realize using ultracold atoms. We show that for atoms with three or more internal levels, the spin-dependent cavity-mediated interactions are long-ranged and sign-changing, like the RKKY interaction; therefore, ensembles of such atoms subject to frozen-in positional randomness can realize spin systems having disordered and frustrated interactions. We map the problem of spins with cavity-mediated interactions onto a variant of the Hopfield associative-memory model. Using this mapping we argue that if the spins are coupled to sufficiently many cavity modes, the cavity-mediated interactions give rise to a spin glass. We then discuss how spins in cavities can emulate models of interacting bosons subject to purely ``off-diagonal'' disorder, which exhibit Mott glass and random-singlet glass phases (hitherto unrealized using ultracold atoms). We discuss how the realizable glassy phases can be detected through their slow dynamics, as well as their imprint on the correlations of the light emitted from the cavity. Finally, we discuss the robustness of the predicted glassy physics in the presence of driving and dissipation.

  20. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators.

    PubMed

    Pufall, M R; Rippard, W H; Russek, S E; Kaka, S; Katine, J A

    2006-08-25

    We have investigated the interaction mechanism between two nanocontact spin transfer oscillators made on the same magnetic spin valve multilayer. The oscillators phase lock when their precession frequencies are made similar, and a giant magnetoresistance signal is detectable at one contact due to precession at the other. Cutting the magnetic mesa between the contacts with a focused-ion beam modifies the contact outputs, eliminates the phase locking, and strongly attenuates the magnetoresistance coupling, which indicates that spin waves rather than magnetic fields are the primary interaction mechanism. PMID:17026331

  1. Note on spin orbit interactions in nuclei and hypernuclei

    NASA Astrophysics Data System (ADS)

    Kaiser, N.; Weise, W.

    2008-05-01

    A detailed comparison is made between the spin-orbit interactions in Λ hypernuclei and ordinary nuclei. We argue that there are three major contributions to the spin-orbit interaction: (1) a short-range component involving scalar and vector mean fields; (2) a "wrong-sign" spin-orbit term generated by the pion exchange tensor force in second order; and (3) a three-body term induced by two-pion exchange with excitation of virtual Δ (1232)-isobars (à la Fujita-Miyazawa). For nucleons in nuclei the long-range pieces related to the pion-exchange dynamics tend to cancel, leaving room dominantly for spin-orbit mechanisms of short-range origin (parametrized, e.g., in terms of relativistic scalar and vector mean fields terms). In contrast, the absence of an analogous 2π-exchange three-body contribution for Λ hyperons in hypernuclei leads to an almost complete cancellation between the short-range (relativistic mean-field) component and the "wrong-sign" spin-orbit interaction generated by second order π-exchange with an intermediate Σ hyperon. These different balancing mechanisms between short- and long-range components are able to explain simultaneously the very strong spin-orbit interaction in ordinary nuclei and the remarkably weak spin-orbit splitting in Λ hypernuclei.

  2. Spin-orbit interaction in bent carbon nanotubes: resonant spin transitions

    NASA Astrophysics Data System (ADS)

    Osika, E. N.; Szafran, B.

    2015-11-01

    We develop an effective tight-binding Hamiltonian for spin-orbit (SO) interaction in bent carbon nanotubes (CNT) for the electrons forming the π bonds between the nearest neighbor atoms. We account for the bend of the CNT and the intrinsic spin-orbit interaction which introduce mixing of π and σ bonds between the p z orbitals along the CNT. The effect contributes to the main origin of the SO coupling—the folding of the graphene plane into the nanotube. We discuss the bend-related contribution of the SO coupling for resonant single-electron spin and charge transitions in a double quantum dot. We report that although the effect of the bend-related SO coupling is weak for the energy spectra, it produces a pronounced increase of the spin transition rates driven by an external electric field. We find that spin-flipping transitions driven by alternate electric fields have usually larger rates when accompanied by charge shift from one dot to the other. Spin-flipping transition rates are non-monotonic functions of the driving amplitude since they are masked by stronger spin-conserving charge transitions. We demonstrate that the fractional resonances—counterparts of multiphoton transitions for atoms in strong laser fields—occurring in electrically controlled nanodevices already at moderate ac amplitudes—can be used to maintain the spin-flip transitions.

  3. Interplay of Coulomb interaction and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian

    2016-07-01

    We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .

  4. Spin Transport in Semiconductor heterostructures

    SciTech Connect

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  5. Interactions between domain walls and spin currents

    NASA Astrophysics Data System (ADS)

    Klaui, M.; Laufenberg, M.; Backes, D.; Buhrer, W.; Rudiger, U.; Vila, L.; Vouille, C.; Faini, G.

    2006-03-01

    A promising novel approach for switching magnetic nanostructures is current-induced domain wall propagation (CIDP), where due to a spin torque effect, electrons transfer angular momentum to a head-to-head domain wall and thereby push it in the direction of the electron flow without any externally applied fields. This effect has been observed with a variety of techniques including MFM [1] and spin polarized scanning electron microscopy [2] to directly observe current-induced domain wall propagation in ferromagnetic nanostructures and magnetoresistance measurements to systematically probe the critical current densities as a function of the geometry [3]. The observed wall velocities and critical current densities, where wall motion sets in at room temperature, do not agree well with theoretical 0K calculations [4]. We have therefore measured the critical current densities as a function of the sample temperature. We find that the spin torque effect becomes more efficient at low temperatures, which could account for some of the observed discrepancies between the 300K experiment and the 0K simulation. [1] A. Yamaguchi et al., Phys. Rev. Lett. 92, 77205 (2004); [2] M. Klaui et al., PRL 95, 26601 (2005); [3] M. Klaui et al., PRL 94, 106601 (2005); [4] A. Thiaville et al., EPL 69, 990 (2005); G. Tatara et al., APL 86, 252509 (2005);

  6. On the p-spin interaction transverse Ising spin-glass model without replicas

    NASA Astrophysics Data System (ADS)

    De Cesare, L.; Lukierska-Walasek, K.; Rabuffo, I.; Walasek, K.

    1995-02-01

    The p-spin interaction Ising spin glass model in the presence of a transverse field is studied in the large p-limit by means of a convenient operator extension of the cavity fields method avoiding replicas and the Trotter-Suzuki transformation. The results appear quite consistent with those recently obtained for the same model using conventional treatments within the replica trick. This gives additional support to the cavity fields approach as a promising tool towards a general theory of classical and quantum spin glasses.

  7. Spin response of a normal Fermi liquid with noncentral interactions

    SciTech Connect

    Pethick, C. J.; Schwenk, A.

    2009-11-15

    We consider the spin response of a normal Fermi liquid with noncentral interactions under conditions intermediate between the collisionless and hydrodynamic regimes. This problem is of importance for calculations of neutrino properties in dense matter. By expressing the deviation of the quasiparticle distribution function from equilibrium in terms of eigenfunctions of the transport equation under the combined influence of collisions and an external field, we derive a closed expression for the spin-density-spin-density response function and compare its predictions with that of a relaxation-time approximation. Our results indicate that the relaxation-time approximation is reliable for neutrino properties under astrophysically relevant conditions.

  8. Magnetic and electric order in the spin-1/2 XX model with three-spin interactions

    NASA Astrophysics Data System (ADS)

    Thakur, Pradeep; Durganandini, P.

    2016-05-01

    We study the spin-1/2 XX model in the presence of three-spin interactions of the XZX+YZY and XZY-YZX types. We solve the problem exactly and show that there is both finite magnetization and electric polarization for low non-zero strengths of the three-spin interactions.

  9. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  10. Dimerizations in spin- S antiferromagnetic chains with three-spin interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Yuan; Furuya, Shunsuke C.; Nakamura, Masaaki; Komakura, Ryo

    2014-03-01

    We discuss spin- S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest interactions, and bond alternation. First, we prove rigorouslly that there exist parameter regions of the exact dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitral S. Next, we discuss the ground state phase diagram of the models by introducing several effective field theories and universality classes of the transitions are described by the level- 2 S SU(2) Wess-Zumino-Witten model and the Gaussian model. Finally, we determine the phase diagrams of S = 1 and S = 3 / 2 systems by using exact diagonalization and level spectroscopy method.

  11. Spin-orbit interaction in relativistic nuclear structure models

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Mutschler, A.; Khan, E.; Vretenar, D.

    2016-08-01

    Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however, standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in the single-neutron spectra in these nuclei.

  12. Charge-density wave induced by combined electron-electron and electron-phonon interactions in 1 T -TiSe2: A variational Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Seki, Kazuhiro; Yunoki, Seiji

    2015-05-01

    To clarify the origin of a charge-density wave (CDW) phase in 1 T -TiSe2 , we study the ground-state property of a half-filled two-band Hubbard model in a triangular lattice including electron-phonon interaction. By using the variational Monte Carlo method, the electronic and lattice degrees of freedom are both treated quantum mechanically on an equal footing beyond the mean-field approximation. We find that the cooperation between Coulomb interaction and electron-phonon interaction is essential to induce the CDW phase. We show that the "pure" exciton condensation without lattice distortion is difficult to realize under the poor nesting condition of the underlying Fermi surface. Furthermore, by systematically calculating the momentum-resolved hybridization between the two bands, we examine the character of electron-hole pairing from the viewpoint of BCS-BEC crossover within the CDW phase and find that the strong-coupling BEC-like pairing dominates. We therefore propose that the CDW phase observed in 1 T -TiSe2 originates from a BEC-like electron-hole pairing.

  13. Gate-Tunable Spin-Charge Conversion and the Role of Spin-Orbit Interaction in Graphene

    NASA Astrophysics Data System (ADS)

    Dushenko, S.; Ago, H.; Kawahara, K.; Tsuda, T.; Kuwabata, S.; Takenobu, T.; Shinjo, T.; Ando, Y.; Shiraishi, M.

    2016-04-01

    The small spin-orbit interaction of carbon atoms in graphene promises a long spin diffusion length and the potential to create a spin field-effect transistor. However, for this reason, graphene was largely overlooked as a possible spin-charge conversion material. We report electric gate tuning of the spin-charge conversion voltage signal in single-layer graphene. Using spin pumping from an yttrium iron garnet ferrimagnetic insulator and ionic liquid top gate, we determined that the inverse spin Hall effect is the dominant spin-charge conversion mechanism in single-layer graphene. From the gate dependence of the electromotive force we showed the dominance of the intrinsic over Rashba spin-orbit interaction, a long-standing question in graphene research.

  14. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3

  15. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  16. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  17. Exchange interaction of two spin qubits mediated by a superconductor

    NASA Astrophysics Data System (ADS)

    Hassler, Fabian; Catelani, Gianluigi; Bluhm, Hendrik

    2015-12-01

    Entangling two quantum bits by letting them interact is the crucial requirement for building a quantum processor. For qubits based on the spin of the electron, these two qubit gates are typically performed by exchange interaction of the electrons captured in two nearby quantum dots. Since the exchange interaction relies on tunneling of the electrons, the range of interaction for conventional approaches is severely limited as the tunneling amplitude decays exponentially with the length of the tunneling barrier. Here, we present an approach to couple two spin qubits via a superconducting coupler. In essence, the superconducting coupler provides a tunneling barrier for the electrons which can be tuned with exquisite precision. We show that as a result exchange couplings over a distance of several microns become realistic, thus enabling flexible designs of multiqubit systems.

  18. Character of matter in holography: Spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Seo, Yunseok; Kim, Keun-Young; Kim, Kyung Kiu; Sin, Sang-Jin

    2016-08-01

    Gauge/Gravity duality as a theory of matter needs a systematic way to characterise a system. We suggest a 'dimensional lifting' of the least irrelevant interaction to the bulk theory. As an example, we consider the spin-orbit interaction, which causes magneto-electric interaction term. We show that its lifting is an axionic coupling. We present an exact and analytic solution describing diamagnetic response. Experimental data on annealed graphite shows a remarkable similarity to our theoretical result. We also find an analytic formulas of DC transport coefficients, according to which, the anomalous Hall coefficient interpolates between the coherent metallic regime with ρxx2 and incoherent metallic regime with ρxx as we increase the disorder parameter β. The strength of the spin-orbit interaction also interpolates between the two scaling regimes.

  19. FREQUENT SPIN REORIENTATION OF GALAXIES DUE TO LOCAL INTERACTIONS

    SciTech Connect

    Cen, Renyue

    2014-04-10

    We study the evolution of angular momenta of M {sub *} = 10{sup 10}-10{sup 12} M {sub ☉} galaxies utilizing large-scale ultra-high resolution cosmological hydrodynamic simulations and find that the spin of the stellar component changes direction frequently because of interactions with nearby systems, such as major mergers, minor mergers, significant gas inflows, and torques. The rate and nature of change of spin direction cannot be accounted for by large-scale tidal torques, because the rates of the latter fall short by orders of magnitude and because the apparent random swings of the spin direction are inconsistent with the alignment by linear density field. The implications for galaxy formation as well as the intrinsic alignment of galaxies are profound. Assuming the large-scale tidal field is the sole alignment agent, a new picture emerging is that intrinsic alignment of galaxies would be a balance between slow large-scale coherent torquing and fast spin reorientation by local interactions. What is still open is whether other processes, such as feeding galaxies with gas and stars along filaments or sheets, introduce coherence for spin directions of galaxies along the respective structures.

  20. Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

    NASA Astrophysics Data System (ADS)

    Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji

    2013-10-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi

  1. Effects of interaction and polarization on spin-charge separation: A time-dependent spin-density-functional theory study

    NASA Astrophysics Data System (ADS)

    Xianlong, Gao

    2010-03-01

    We calculate the nonequilibrium dynamic evolution of a one-dimensional system of two-component fermionic atoms after a strong local quench by using a time-dependent spin-density-functional theory. The interaction quench is also considered to see its influence on the spin-charge separation. It is shown that the charge velocity is larger than the spin velocity for the system of on-site repulsive interaction (Luttinger liquid), and vise versa for the system of on-site attractive interaction (Luther-Emery liquid). We find that both the interaction quench and polarization suppress the spin-charge separation.

  2. Spin effects in the weak interaction

    SciTech Connect

    Freedman, S.J. Chicago Univ., IL . Dept. of Physics Chicago Univ., IL . Enrico Fermi Inst.)

    1990-01-01

    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.

  3. Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    B, Gisi; S, Sakiroglu; İ, Sokmen

    2016-01-01

    In this work, we investigate the effects of interplay of spin-orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin-orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin-orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.

  4. Spin-independent interferences and spin-dependent interactions with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ochoa, F.

    2016-05-01

    We explore mechanisms of interferences under which the spin-independent interaction in the scattering of scalar dark matter with nucleus is suppressed in relation to the spin-dependent one. We offer a detailed derivation of the nuclear amplitudes based on the interactions with quarks in the framework of a nonuniversal U(1)' extension of the standard model. By assuming a range of parameters compatible with collider searches, electroweak observables and dark matter abundance, we find scenarios for destructive interferences with and without isospin symmetry. The model reveals solutions with mutually interfering scalar particles, canceling the effective spin-independent coupling with only scalar interactions, which requires an extra Higgs boson with mass M H > 125 GeV. The model also possesses scenarios with only vector interactions through two neutral gauge bosons, Z and Z', which do not exhibit interference effects. Due to the nonuniversality of the U(1)' symmetry, we distinguish two family structures of the quark sector with different numerical predictions. In one case, we obtain cross sections that pass all the Xenon-based detector experiments. In the other case, limits from LUX experiment enclose an exclusion region for dark matter between 9 and 800 GeV. We examine a third scenario with isospin-violating couplings where interferences between scalar and vector boson exchanges cancel the scattering. We provide solutions where interactions with Xenon-based detectors is suppressed for light dark matter, below 6 GeV, while interactions with Germanium- and Silicon-based detectors exhibit solutions up to the regions of interest for positive signals reported by CoGeNT and CDMS-Si experiments, and compatible with the observed DM relic density for DM mass in the range 8 .3-10 GeV. Spin-dependent interactions become the dominant source of scattering around the interference regions, where Maxwellian speed distribution is considered.

  5. Synchronization of spin torque nano-oscillators through dipolar interactions

    SciTech Connect

    Chen, Hao-Hsuan Wu, Jong-Ching Horng, Lance; Lee, Ching-Ming; Chang, Ching-Ray Chang, Jui-Hang

    2014-04-07

    In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory.

  6. Spin-orbit interactions in free lanthanide (3+) ions

    NASA Astrophysics Data System (ADS)

    Petrov, Dimitar N.

    2016-07-01

    The effective nuclear charges of free Ln3+ ions (Ln IV in spectroscopic notation) with Ln=Pr, Nd, Er, Tm, and Yb, have been determined semiempirically from the dependence between calculated or empirical expectation values 4f and spin-orbit radial integrals ζ4f known from experimental free-ion spectra. The variation with 4f of the matrix elements of spin-orbit interactions for the ground levels of the same free ions has been also discussed.

  7. Interplay between spin-orbit coupling and Hubbard interaction in SrIrO3 and related Pbnm perovskite oxides

    NASA Astrophysics Data System (ADS)

    Zeb, M. Ahsan; Kee, Hae-Young

    2012-08-01

    There has been a rapidly growing interest in the interplay between spin-orbit coupling (SOC) and the Hubbard interaction U in correlated materials. A current consensus is that the stronger the SOC, the smaller is the critical interaction Uc required for a spin-orbit Mott insulator, because the atomic SOC splits a band into different total angular momentum bands, narrowing the effective bandwidth. It was further claimed that at large enough SOC, the stronger the SOC, the weaker the Uc, because in general the effective SOC is enhanced with increasing electron-electron interaction strength. Contrary to this expectation, we find that, in orthorhombic perovskite oxides (Pbnm), the stronger the SOC, the bigger the Uc. This originates from a line of Dirac nodes in Jeff=1/2 bands near the Fermi level, inherited from a combination of the lattice structure and a large SOC. Due to this protected line of nodes, there are small hole and electron pockets in SrIrO3, and such a small density of states makes the Hubbard interaction less efficient in building a magnetic insulator. The full phase diagram in U vs SOC is obtained, where nonmagnetic semimetal, magnetic metal, and magnetic insulator are found. Magnetic ordering patterns beyond Uc are also presented. We further discuss implications of our finding in relation to other perovskites such as SrRhO3 and SrRuO3.

  8. RKKY interaction for the spin-polarized electron gas

    NASA Astrophysics Data System (ADS)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  9. Kapellasite: a kagome quantum spin liquid with competing interactions.

    PubMed

    Fåk, B; Kermarrec, E; Messio, L; Bernu, B; Lhuillier, C; Bert, F; Mendels, P; Koteswararao, B; Bouquet, F; Ollivier, J; Hillier, A D; Amato, A; Colman, R H; Wills, A S

    2012-07-20

    Magnetic susceptibility, NMR, muon spin relaxation, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphic with herbertsmithite, is a gapless spin liquid showing unusual dynamic short-range correlations of noncoplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to bulk susceptibility data and possesses competing exchange interactions. The magnetic specific heat calculated from these exchange couplings is in good agreement with experiment. The temperature dependence of the magnetic structure factor and the muon relaxation rate are calculated in a Schwinger-boson approach and compared to experimental results.

  10. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  11. Pulsed electron spin nutation spectroscopy of weakly exchange-coupled biradicals: a general theoretical approach and determination of the spin dipolar interaction.

    PubMed

    Ayabe, Kazuki; Sato, Kazunobu; Nishida, Shinsuke; Ise, Tomoaki; Nakazawa, Shigeaki; Sugisaki, Kenji; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2012-07-01

    determined by simulating the random-orientation CW ESR spectra of 1. In addition, we have carried out Q-band pulsed ELDOR (ELectron-electron DOuble Resonance) experiments to confirm whether the obtained values for D(12) and J(12) are accurate. The distance is in a fuzzy region for the distance-measurements capability of the conventional, powerful ELDOR spectroscopy. The strong and weak points of the ESN spectroscopy with a single microwave frequency applicable to weakly exchange-coupled multi-electron systems are discussed in comparison with conventional ELDOR spectroscopy. The theoretical spin dipolar tensor and exchange interaction of the TEMPO biradical, as obtained by sophisticated quantum chemical calculations, agree with the experimental ones.

  12. Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots

    NASA Astrophysics Data System (ADS)

    Bragar, Igor; Cywiński, Łukasz

    2015-04-01

    We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.

  13. Spin filtering and scaling of spin-dependent potentials in quasi-one-dimensional electron liquids with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Lue, N.-Y.; Wu, G. Y.

    2010-04-01

    We investigate theoretically the spin-filtering effect in a quasi-one-dimensional (Q1D) electron liquid with spin-orbit interaction. The Q1D system considered is formed from a two-dimensional electron-gas (2DEG) subject to both a lateral confining potential and an interface potential perpendicular to the 2DEG. Spin and charge degrees of freedom in the system are mixed by the interface potential through the Rashba mechanism of spin-orbit interaction [A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999)] and we show that when a spin-dependent δ potential is further introduced into the system, for example, via implantation of magnetic/ferromagnetic impurities, the mixing leads to the spin-filtering effect which favors electrons with a certain spin orientation to transport through the δ potential. In particular, we calculate the scaling dimension of electron scattering both by spin-flip and by spin-independent δ potentials when the temperature is varied and show that, in the spin-flip case, the scaling of electron scattering with temperature varies with spin orientation. Conductance is calculated for both spin and charge transport, and the spin-filtering effect is discussed quantitatively in terms of the conductance.

  14. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-11-12

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  15. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  16. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  17. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    PubMed Central

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  18. Theoretical Study of Interaction between Photons and Single Spins

    NASA Astrophysics Data System (ADS)

    Chen, Ting

    Spin is a promising candidate for new resources of information technology. The major applications of spin-based technology are quantum computation, quantum communication and high-sensitive magnetometry. Optical control and detection of spin coherence are important techniques for such applications. In quantum communication and distributed quantum computing, quantum networks consisting of local nodes which are connected by quantum channels are essential. They provide platforms for transmission of flying qubits from one node to another. Within physical implementation of such networks, local nodes consist of clusters of stationary qubits. A single photon can form the flying qubit. The quantum information carried by the flying qubits can be conducted between local nodes through waveguides. Therefore quantum interfacing is the key element for the scalability in the quantum network. In the first two chapters of the thesis, we focus on the strong coupling region of the quantum interfacing. Solid-state systems have the advantages of stability and integratability. In solid-state systems, one-dimensional waveguides serve as an outstanding medium for transporting photons. Waveguides provide suitable circumstance for the strong interaction between photons and atoms for the small interaction section. This strong coupling between the atom and waveguide allows the photons to be directionally emitted into one optical channel connecting different quantum nodes. First, we follow the control scheme of the interplay between a stationary qubit and a flying qubit at an interface, which is composed of a Λ-type system coupled to a one-dimensional waveguide. It shows that the sending and receiving process can be independently controlled by changing the driving laser pulses. We extend a general control scheme of a spin-photon quantum interface. Our scheme removes the constraints of Markovian process and therefore can be applied to the atom-waveguide devices for quantum network applications

  19. Giant spin-Hall effect induced by the Zeeman interaction in graphene.

    PubMed

    Abanin, D A; Gorbachev, R V; Novoselov, K S; Geim, A K; Levitov, L S

    2011-08-26

    We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of an external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by the Zeeman interaction, and do not involve a spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications.

  20. Visualization of Distance Distribution from Pulsed Double Electron-Electron Resonance Data

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.; Kim, Nak-Kyoon; DeRose, Victoria J.

    2004-01-01

    Double electron-electron resonance (DEER), also known as pulsed electron-electron double resonance (PELDOR), is a time-domain electron paramagnetic resonance method that can measure the weak dipole-dipole interactions between unpaired electrons. DEER has been applied to discrete pairs of free radicals in biological macromolecules and to clusters containing small numbers of free radicals in polymers and irradiated materials. The goal of such work is to determine the distance or distribution of distances between radicals, which is an underdetermined problem. That is, the spectrum of dipolar interactions can be readily calculated for any distribution of free radicals, but there are many, quite different distributions of radicals that could produce the same experimental dipolar spectrum. This paper describes two methods that are useful for approximating the distance distributions for the large subset of cases in which the mutual orientations of the free radicals are uncorrelated and the width of the distribution is more than a few percent of its mean. The first method relies on a coordinate transformation and is parameter free, while the second is based on iterative least-squares with Tikhonov regularization. Both methods are useful in DEER studies of spin labeled biomolecules containing more than two labels.

  1. Interacting boson model descriptions of high-spin states

    SciTech Connect

    Kuyucak, S.

    1995-10-01

    The I/N expansion technique for the interacting boson model (IBM) has recently been extended to higher orders using computer algebra. This allows, for the first time, a realistic description of high-spin states in the framework of the sdg-IBM. Systematic studies of moment of inertia show that the problems with its spin dependence are due to the energy surface being too rigid against rotations which can be remedied by including the d-boson energy in the Hamiltonian. The d-boson energy is also instrumental in resolving two other problems in the IBM first raised by Bohr and Mottelson, namely, energy scale mismatch in the ground and gamma bands, and the boson cutoff in B(E2) values. We apply the results to describe the high-spin states in rare-earth and actinide nuclei where the ground band has been followed up to spins L=30, and hence provide unique test cases for collective models. The same formalism can also be used in a phenomenological description of superdeformed states as will be demonstrated with examples in the Hg-Pb region.

  2. Molecular spin on surface: From strong correlation to dispersion interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2016-09-01

    A reliable prediction of magnetic properties of surface-supported molecules containing 3d/4f spin carriers has challenged the electronic structure theory for decades. Here we tackle this problem with Hubbard-U corrected van der Waals density functional (vdW-DF), incorporating strong correlation effects of the localized electrons and dispersion interactions involved in the molecule-surface binding. By fitting the spin state energetics of a series of Fe(ii) compounds with varying ligand field strength, we find that the optimal U value for vdW-DF is much smaller than that for the local density approximation (LDA) while quite similar to that for the generalized gradient approximation (GGA). We show that although vdW-DF+U overestimates largely the metal-ligand bond distance, the predicted adiabatic high-spin-low-spin energy splitting ΔEHL is only slightly changed with respect to that obtained using the LDA+U geometries consistent with experiment. Then we use Cu(111)-supported metallocene (M(C5H5)2, M = Fe, and Co) as a prototype example to explore the effects of the molecule-surface interactions. We show that the non-local dispersion interactions, poorly described by LDA and GGA while reasonably captured by vdW-DF, are critical for reproducing ΔEHL at large molecule-surface distances. Besides, we find that ΔEHL is decreased by the molecule-metal contact, which is shown to weaken the local ligand field around the magnetic center.

  3. Classical lattice spin models involving singular interactions isotropic in spin space.

    PubMed

    Chamati, Hassan; Romano, Silvano

    2015-07-01

    We address here a few classical lattice spin models, involving n-component unit vectors (n=2,3), associated with a D-dimensional lattice Z(D),D=1,2, and interacting via a pair potential restricted to nearest neighbors and being isotropic in spin space, i.e., defined by a function of the scalar product between the interacting spins. When the potential involves a continuous function of the scalar product, the Mermin-Wagner theorem and its generalizations exclude orientational order at all finite temperatures in the thermodynamic limit, and exclude phase transitions at finite temperatures when D=1; on the other hand, we have considered here some comparatively simple functions of the scalar product which are bounded from below, diverge to +∞ for certain mutual orientations, and are continuous almost everywhere with integrable singularities. Exact solutions are presented for D=1, showing an absence of phase transitions and an absence of orientational order at all finite temperatures in the thermodynamic limit; for D=2, and in the absence of more stringent mathematical results, extensive simulations carried out on some of them point to the absence of orientational order at all finite temperatures and suggest the existence of a Berezinskiĭ-Kosterlitz-Thouless transition. PMID:26274152

  4. All-electrical production of spin-polarized currents in carbon nanotubes: Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Santos, Hernán; Latgé, A.; Alvarellos, J. E.; Chico, Leonor

    2016-04-01

    We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found that different symmetries acting on spatial and spin variables have to be considered in order to explain the relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.

  5. Constraints on Short-Range Spin-Dependent Interactions from Scalar Spin-Spin Coupling in Deuterated Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Romalis, M. V.; Kimball, D. F. Jackson

    2013-01-01

    A comparison between existing nuclear magnetic resonance measurements and calculations of the scalar spin-spin interaction (J coupling) in deuterated molecular hydrogen yields stringent constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (˜1Å). The dimensionless coupling constant gPpgPN/4π associated with the exchange of pseudoscalar (axionlike) bosons between nucleons is constrained to be less than 3.6×10-7 for boson masses in the range of 5 keV, representing improvement by a factor of 100 over previous constraints. The dimensionless coupling constant gApgAN/4π associated with the exchange of an axial-vector boson between nucleons is constrained to be gApgAN/4π<1.3×10-19 for bosons of mass ≲1000eV, improving constraints at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of magnitude for neutron-proton couplings.

  6. Stripe phase and double-roton excitations in interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    Spin-orbit (SO) coupling plays a major role in many important phenomena in condensed matter physics. However, the SO coupling physics in high-spin systems, especially with superfluids, has not been well explored because of the spin half of electrons in solids. In this context, the recent experimental realization of spin-orbit coupling in spin-1 Bose-Einstein condensates (BECs) has opened a completely new avenue for exploring SO-coupled high-spin superfluids. Nevertheless, the experiment has only revealed the single-particle physics of the system. Here, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 BECs in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting two modulating patterns. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC. Our work could motivate further theoretical and experimental study along this direction.

  7. Low microwave-amplitude ESR spectroscopy: measuring spin-relaxation interactions of moderately immobilized spin labels in proteins.

    PubMed

    Hedin, Eva M K; Hult, Karl; Mouritsen, Ole G; Høyrup, Pernille

    2004-08-31

    Electron spin resonance (ESR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful tool for determining protein structure, dynamics and interactions. We report here a method for determining interactions between spin labels and paramagnetic relaxation agents, which is performed under subsaturating conditions. The low microwave-field amplitude employed (h(1)<0.36 G) only requires standard, commercially available ESR equipment. The effect of relaxation enhancement on the spin-spin-relaxation time, T(2e), is measured by this method, and compared to classical progressive power saturation performed on a free spin label, (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl)methanethiosulfonate (MTSL), and a spin-labeled protein (Thermomyces lanuginosa lipase, TLL-I252C), employing the water-soluble relaxation agent chromium(III) oxalate (Crox) in concentrations between 0-10 mM. The low-amplitude theory showed excellent agreement with that of classical power saturation in quantifying Crox-induced relaxation enhancement. Low-amplitude measurements were then performed using a standard resonator, with Crox, on 11 spin-labeled TLL mutants displaying rotational correlation times in the motional narrowing regime. All spin-labeled proteins exhibited significant changes in T(2e). We postulate that this novel method is especially suitable for studying moderately immobilized spin labels, such as those positioned at exposed sites in a protein. This method should prove useful for research groups with access to any ESR instrumentation.

  8. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  9. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toru; Koretsune, Takashi; Arita, Ryotaro; Tatara, Gen

    2016-06-01

    We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn1 -xFexGe and Fe1 -xCoxGe .

  10. Spin-Flavor van der Waals Forces and NN interaction

    SciTech Connect

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    2011-12-01

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computed either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.

  11. Optically induced spin-dependent diffusive transport in the presence of spin-orbit interaction for all-optical magnetization reversal

    NASA Astrophysics Data System (ADS)

    Elyasi, Mehrdad; Yang, Hyunsoo

    2016-07-01

    We have considered the effect of different spin-orbit interaction mechanisms on the process of demagnetization under the influence of short-pulse lasers. All-optical magnetization reversal of perpendicularly magnetized thin films can occur if there are sufficient strong spin-Hall, skew scattering, and Rashba interactions. In the presence of spin-orbit interactions, the transient charge currents provide the generation of transverse-spin currents and accumulations, which eventually exert spin-transfer torque on the magnetization. By combining the optically excited spin-dependent diffusive transport with the spin and charge currents due to skew scattering, spin-Hall, inverse spin-Hall, and Rashba interactions into a numerical model, we demonstrate a possibility of ultrafast all-optical magnetization reversal. This understanding provokes intriguing, more in-depth experimental studies on the role of spin-orbit interaction mechanisms in optimizing structures for all-optical magnetization reversal.

  12. Dynamical spin structure factor of one-dimensional interacting fermions

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir A.; Maslov, Dmitrii L.

    2015-02-01

    We revisit the dynamic spin susceptibility χ (q ,ω ) of one-dimensional interacting fermions. To second order in the interaction, backscattering results in a logarithmic correction to χ (q ,ω ) at q ≪kF , even if the single-particle spectrum is linearized near the Fermi points. Consequently, the dynamic spin structure factor Im χ (q ,ω ) is nonzero at frequencies above the single-particle continuum. In the boson language, this effect results from the marginally irrelevant backscattering operator of the sine-Gordon model. Away from the threshold, the high-frequency tail of Im χ (q ,ω ) due to backscattering is larger than that due to finite mass by a factor of kF/q . We derive the renormalization group equations for the coupling constants of the g -ology model at finite ω and q and find the corresponding expression for χ (q ,ω ) , valid to all orders in the interaction but not in the immediate vicinity of the continuum boundary, where the finite-mass effects become dominant.

  13. Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe2Se3

    DOE PAGESBeta

    Wang, Meng; Yi, Ming; Jin, Shangjian; Jiang, Hongchen; Song, Yu; Luo, Huiqian; Christianson, Andrew D.; de la Cruz, Clarina; Bourret-Courchesne, E.; Yao, Dao-Xin; et al

    2016-07-20

    In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe2Se3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.

  14. Spin-resolved Andreev transport through a double quantum-dot system: Role of the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Nian, L. L.; Zhang, Lei; Tang, Fu-Rong; Xue, L. P.; Zhang, Rong; Bai, Long

    2014-06-01

    Using the nonequilibrium Green's function technique, spin-related Andreev tunneling through a double quantum-dot device attached to a ferromagnetic and a superconducting leads in the presence of the Rashba spin-orbit interaction is explored. We derive the general formulas of spin-related currents, which provide an insight into the Andreev reflection. Our study demonstrates that the spin-polarized Andreev reflection can be achieved, even the pure spin injection may be realized via the spin-orbit coupling and the Zeeman field. The currents show the interesting step-like behaviors and the pronounced rectification effect in the Andreev reflection regime, and the magnitude of currents can be enhanced with increasing the spin polarization of the ferromagnetic electrode. The strong Zemann field and the relative temperature are not favor of the spin-related Andreev transport; moreover, the existence of negative differential conductance of the spin-polarized current under certain conditions is observed and analyzed. These results provide the new ways to manipulate the spin-dependent transport.

  15. Spin-resolved Andreev transport through a double quantum-dot system: Role of the Rashba spin-orbit interaction

    SciTech Connect

    Nian, L. L.; Zhang, Lei; Tang, Fu-Rong; Xue, L. P.; Zhang, Rong; Bai, Long

    2014-06-07

    Using the nonequilibrium Green's function technique, spin-related Andreev tunneling through a double quantum-dot device attached to a ferromagnetic and a superconducting leads in the presence of the Rashba spin-orbit interaction is explored. We derive the general formulas of spin-related currents, which provide an insight into the Andreev reflection. Our study demonstrates that the spin-polarized Andreev reflection can be achieved, even the pure spin injection may be realized via the spin-orbit coupling and the Zeeman field. The currents show the interesting step-like behaviors and the pronounced rectification effect in the Andreev reflection regime, and the magnitude of currents can be enhanced with increasing the spin polarization of the ferromagnetic electrode. The strong Zemann field and the relative temperature are not favor of the spin-related Andreev transport; moreover, the existence of negative differential conductance of the spin-polarized current under certain conditions is observed and analyzed. These results provide the new ways to manipulate the spin-dependent transport.

  16. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  17. Interaction induced staggered spin-orbit order in two-dimensional electron gas

    SciTech Connect

    Das, Tanmoy

    2012-06-05

    Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.

  18. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    SciTech Connect

    Li, Jia

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

  19. Lipid-protein interactions with cardiac phospholamban studied by spin-label electron spin resonance.

    PubMed

    Arora, Ashish; Williamson, Ian M; Lee, Anthony G; Marsh, Derek

    2003-05-01

    Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane. PMID:12718559

  20. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  1. Peptide-membrane Interactions by Spin-labeling EPR

    PubMed Central

    Smirnova, Tatyana I.; Smirnov, Alex I.

    2016-01-01

    Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253

  2. Peptide-Membrane Interactions by Spin-Labeling EPR.

    PubMed

    Smirnova, Tatyana I; Smirnov, Alex I

    2015-01-01

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described.

  3. Enhancement of Kondo effect through Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Zarea, Mehdi; Ulloa, Sergio

    2011-03-01

    The role of Rashba spin-orbit (RSO) interactions on the Kondo regime has been a topic of debate since resistivity measurements on Pt doped Cu:Mn compounds were interpreted as evidence for suppression of the Kondo effect by SO scattering. Subsequent theoretical and experimental activity has yielded conflicting results. Thus, the question: what is the role of SO interactions in the Kondo regime? remains open. To provide a definite answer we obtain an exact solution of an Anderson magnetic impurity model in a two-dimensional metallic host with RSO interactions. We show that the Hamiltonian reduces to an effective two-band Anderson model coupled to a S=1/2 impurity. An appropriate Schrieffer-Wolff transformation produces an effective 2-channel Kondo model plus a Dzyaloshiinski-Moriya (DM) interaction term. The exact solution reveals that the impurity couples to the bath with ferro- and antiferromagnetic couplings. DM interactions, that vanish at half-filling and at the Hubbard U-infinity limits, introduce an exponential increase in the value of the Kondo temperature. Supported by NSF-PIRE and MWN/CIAM.

  4. Entanglement in a two-spin system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Soltani, M. R.; Mahdavifar, S.; Mahmoudi, M.

    2016-08-01

    The quantum entanglement between two spins in the Ising model with an added Dzyaloshinsky–Moriya (DM) interaction and in the presence of the transverse magnetic field is studied. The exchange interaction is considered as a function of the distance between spins. The negativity as a function of magnetic field, exchange and DM interaction is calculated. The effect of the distance between spins is studied based on the negativity. In addition, the effect of the thermal fluctuation on the negativity is also investigated.

  5. Magnetic focusing of electrons and holes in the presence of spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Bladwell, Samuel; Sushkov, Oleg P.

    2015-12-01

    In this paper we theoretically investigate transverse magnetic focusing in two-dimensional electron and hole gases with strong spin-orbit interactions. We present a general result for spin-orbit interactions with singular winding numbers in the adiabatic limit. We then present results for systems with two spin-orbit interactions of different winding number, using the concrete and experimentally relevant case of an applied in-plane magnetic field in hole systems with a Rashba type spin-orbit interaction. We predict that the application of a large in-plane field will have a strong effect on the magnetic focusing spectrum.

  6. Nonreciprocal spin-wave channeling along textures driven by the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, Felipe; Borys, Pablo; Vansteenkiste, Arne; Kim, Joo-Von; Stamps, Robert L.

    2014-06-01

    Ultrathin metallic ferromagnets on substrates with strong spin-orbit coupling can exhibit induced chiral interactions of the Dzyaloshinskii-Moriya (DM) form. For systems with perpendicular anisotropy, the presence of DM interactions has important consequences for current-driven domain-wall motion and underpins possible spintronic applications involving skyrmions. We show theoretically how spin textures driven by the DM interaction allow nonreciprocal channeling of spin waves, leading to measurable features in magnetic wires, dots, and domain walls. Our results provide methods for detecting induced DM interactions in metallic multilayers and controlling spin-wave propagation in ultrathin nanostructures.

  7. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase. PMID:27195598

  8. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  9. Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices

    PubMed Central

    Gong, Ming; Qian, Yinyin; Yan, Mi; Scarola, V. W.; Zhang, Chuanwei

    2015-01-01

    We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations. PMID:26014458

  10. Spin-orbit interaction induced anisotropic property in interacting quantum wires.

    PubMed

    Cheng, Fang; Zhou, Guanghui; Chang, Kai

    2011-01-01

    : We investigate theoretically the ground state and transport property of electrons in interacting quantum wires (QWs) oriented along different crystallographic directions in (001) and (110) planes in the presence of the Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI). The electron ground state can cross over different phases, e.g., spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the strengths of the RSOI and DSOI.PACS numbers: 73.63.Nm, 71.10.Pm, 73.23.-b, 71.70.Ej. PMID:21711717

  11. Investigating hard sphere interactions through spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  12. Quantum spin dynamics with pairwise-tunable, long-range interactions.

    PubMed

    Hung, C-L; González-Tudela, Alejandro; Cirac, J Ignacio; Kimble, H J

    2016-08-23

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  13. Quantum spin dynamics with pairwise-tunable, long-range interactions

    NASA Astrophysics Data System (ADS)

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-08-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models.

  14. The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang

    2016-05-01

    We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in a one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of noninteracting Bose gas and spin components. The study reveals that in the situation of a weak spin-dependent interaction the total density profiles evolve from a Gaussian-like distribution to a Fermi-like shell structure of N peaks with the increasing of spin-independent interaction. The increasing spin-exchange interaction always weakens the fermionization of the density distribution such that the total density profiles show the shell structure of less peaks and even show single peak structure in the limit of the strong spin-exchange interaction. The weakening of fermionization results from the formation of composite atoms induced by the spin-exchange interaction. It is also shown that phase separation occurs for the spinor Bose gas with a weak spin-exchange interaction, meanwhile the spin-independent interaction is strong.

  15. Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Kessel, Pan; Skvortsov, Evgeny; Taronna, Massimo

    2016-03-01

    We consider four-dimensional higher-spin (HS) theory at the first nontrivial order corresponding to the cubic action. All HS interaction vertices are explicitly obtained from Vasiliev’s equations. In particular, we obtain the vertices that are not determined solely by the HS algebra structure constants. The dictionary between the Fronsdal fields and HS connections is found and the corrections to the Fronsdal equations are derived. These corrections turn out to involve derivatives of arbitrary order. We observe that the vertices not determined by the HS algebra produce naked infinities, when decomposed into the minimal derivative vertices and improvements. Therefore, standard methods can only be used to check a rather limited number of correlation functions within the HS AdS/CFT duality. A possible resolution of the puzzle is discussed.

  16. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor

    NASA Astrophysics Data System (ADS)

    Smet, J. H.; Deutschmann, R. A.; Ertl, F.; Wegscheider, W.; Abstreiter, G.; von Klitzing, K.

    2003-01-01

    Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with applied voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for information processing and fundamental solid-state physics issues. Here, we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and ‘read-out’. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.

  17. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor

    NASA Astrophysics Data System (ADS)

    Smet, J. H.; Deutschmann, R. A.; Ertl, F.; Wegscheider, W.; Abstreiter, G.; von Klitzing, K.

    2002-01-01

    Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for both information processing and the study of fundamental solid-state physics issues. Here we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and `read out'. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.

  18. Design of spin-forbidden transitions for polypyridyl metal complexes by time-dependent density functional theory including spin-orbit interaction.

    PubMed

    Kanno, Shohei; Imamura, Yutaka; Hada, Masahiko

    2016-05-25

    We explore spin-forbidden transitions for a Ru dye with an N3 skeleton and an Fe dye with a DX1 skeleton by time-dependent density functional theory with spin-orbit interaction. The modified N3-based Ru dye with iodine anions has an absorption edge in the long wavelength region which is not observed in the original N3 dye. The long wavelength absorption edge originates from the spin-orbit interaction with iodine. Although the Fe dye has a small spin-orbit interaction, because of less spin-orbit interaction from the light metal, spin-forbidden transitions also occur for DX1-based Fe dye systems with iodine anions. This result indicates that the introduction of iodine can strengthen the spin-orbit interaction for a dye sensitizer and offers a new approach for designing spin-forbidden transitions.

  19. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  20. Spin-dependent recombination and hyperfine interaction at deep defects

    NASA Astrophysics Data System (ADS)

    Ivchenko, E. L.; Bakaleinikov, L. A.; Kalevich, V. K.

    2015-05-01

    We present a theoretical study of optical electron-spin orientation and spin-dependent Shockley-Read-Hall recombination in the longitudinal magnetic field, taking into account the hyperfine coupling between the bound-electron spin and the nuclear spin of a deep paramagnetic center. The master rate equations for the coupled system are extended to describe the nuclear spin relaxation by using two distinct relaxation times, τn 1 and τn 2, respectively, for defect states with one and two (singlet) bound electrons. The general theory is developed for an arbitrary value of the nuclear spin I . The magnetic-field and excitation-power dependencies of the electron and nuclear spin polarizations are calculated for the value of I =1 /2 . In this particular case the nuclear effects can be taken into account by a simple replacement of the bound-electron spin relaxation time by an effective time dependent on free-electron and hole densities and free-electron spin polarization. The role of nuclear spin relaxation is visualized by isolines of the electron spin polarization on a two-dimensional graph with the axes log2(τn 1) and log2(τn 2) .

  1. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  2. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins.

    PubMed

    Hovhannisyan, V V; Strečka, J; Ananikian, N S

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. PMID:26836749

  3. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Strečka, J.; Ananikian, N. S.

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.

  4. Effect of intermolecular interactions on the nucleation, growth, and propagation of like-spin domains in spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Boukheddaden, K.; Yamashita, K.

    2015-07-01

    The nucleation, growth, and propagation of like-spin domains in spin-crossover materials was investigated during the relaxation process of a metastable HS state at low temperature using an electroelastic model running on a deformable two-dimensional square lattice. We distinguish the onset of patterns formation of low-spin domain as the intermolecular interaction is increased, passing successively through random dispersion to clustering pattern and ending up with an impressive single macroscopic domain growth. Attaining and maintaining a single-domain configuration through the transition is attributed to the long-range character of interactions. Qualitative investigation of the elastic energy, of the propagation of the low-spin domain, and of the displacement field are presented. We demonstrate that as the intermolecular interaction increases the propagation of the like-spin domain slowdown. The deformations are believed as the prolonged effect of the intermolecular interactions that are at the origin of the onset of dispersed, poly-, and single-domain nucleation. Spatial autocorrelation of the deformations analysis based on Moran's I index is used. We demonstrate that at short distance significant spatially autocorrelated patterns are detected, and the extent of the autocorrelation decreases with the distance.

  5. Quantum spin dynamics with pairwise-tunable, long-range interactions

    PubMed Central

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-01-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  6. Nonlinear Amplification of Small Spin Precession Using Long-Range Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Savukov, I. M.; Romalis, M. V.

    2005-02-01

    In measurements of small signals using spin precession the precession angle usually grows linearly in time. We show that a dynamic instability caused by spin interactions can lead to an exponentially growing spin-precession angle, amplifying small signals and raising them above the noise level of a detection system. We demonstrate amplification by a factor of greater than 8 of a spin-precession signal due to a small magnetic field gradient in a spherical cell filled with hyperpolarized liquid 129Xe. This technique can improve the sensitivity in many measurements that are limited by the noise of the detection system, rather than the fundamental spin-projection noise.

  7. Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg

    2014-01-01

    Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  8. Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study

    SciTech Connect

    Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory

    2014-05-07

    Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  9. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  10. Electron spin resonance of interacting spins in n-Ge: II. Change in the width and shape of lines

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V. Goloshchapov, S. I.

    2008-11-15

    The effect of spin interaction on the width and shape of the electron spin resonance line in compensated and uncompensated n-Ge:As has been studied. It is shown that, in the case of a magnetic field oriented along the [100] axis, the width of the resonance line decreases irrespective of the degree of compensation as the critical concentration of the insulator-metal transition is approached, owing to enhancement of the exchange interaction of spins and to an increase in the spin relaxation time. When the magnetic field is directed along other axes, an additional line broadening appears in compensated samples. This broadening is determined by the influence exerted on the g factor by fluctuations of the internal electrostatic field via the stresses generated by these fluctuations. For well-conducting samples, in which the thickness of the skin layer becomes smaller than that of the sample, the line takes on an asymmetric (Dysonian) shape. In this case, the ratio between the wings of the derivative, characteristic of this line shape, is determined by the ratio between the rates of spin diffusion and spin relaxation.

  11. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction.

    PubMed

    Bulgakov, Evgeny N; Sadreev, Almas F

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase. PMID:27165662

  12. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  13. Electron-electron collisions at TESLA

    NASA Astrophysics Data System (ADS)

    Schreiber, Siegfried; Reyzl, Ingrid

    2001-07-01

    Electron-electron collisions at the future TESLA linear collider is a promising complement to e+e- collisions. A critical issue for the physics potential of this option is the achievable luminosity. For e+e- collisions, the pinch effect enhances the luminosity, while due to the repelling forces for e-e- collisions, the luminosity is significantly reduced and is more sensitive to beam separations. This report discusses the e-e- option for TESLA and the expected luminosity.

  14. Spin transport in intermediate-energy heavy-ion collisions as a probe of in-medium spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-11-01

    The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin-orbit interaction is investigated within a spin- and isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin-orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100-200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin-orbit interactions once the spin-dependent observables proposed in this work can be measured.

  15. Spin-orbit interactions in electronic structure quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Melton, Cody A.; Zhu, Minyi; Guo, Shi; Ambrosetti, Alberto; Pederiva, Francesco; Mitas, Lubos

    2016-04-01

    We develop generalization of the fixed-phase diffusion Monte Carlo method for Hamiltonians which explicitly depends on particle spins such as for spin-orbit interactions. The method is formulated in a zero-variance manner and is similar to the treatment of nonlocal operators in commonly used static-spin calculations. Tests on atomic and molecular systems show that it is very accurate, on par with the fixed-node method. This opens electronic structure quantum Monte Carlo methods to a vast research area of quantum phenomena in which spin-related interactions play an important role.

  16. Quantum Cavity for Spin due to Spin-Orbit Interaction at a Metal Boundary

    NASA Astrophysics Data System (ADS)

    Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Gudat, W.; Eberhardt, W.; Rader, O.

    2008-12-01

    A quantum cavity for spin is created using a tungsten crystal as substrate of high nuclear charge and breaking the structural inversion symmetry through deposition of a gold quantum film. Spin- and angle-resolved photoelectron spectroscopy shows directly that quantum-well states and the “matrioshka” or Russian nested doll Fermi surface of the gold film are spin polarized and spin-orbit split up to a thickness of at least nine atomic layers. Ferromagnetic materials or external magnetic fields are not required, and the quantum film does not need to possess a high atomic number as analogous results with silver show.

  17. Bose-Einstein Condensates with Spin-Orbit Interaction

    SciTech Connect

    Ho Tinlun; Zhang Shizhong

    2011-10-07

    Motivated by recent experiments carried out by Spielman's group at NIST, we study a general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST experiments, which impart momentum to bosons while changing their spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by adjusting the experimental parameters.

  18. Electrical manipulation of spins in a nanowire with Rashba interaction

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-07-01

    We investigate the influence of external electric fields on the spins of a ballistic nanowire in terms of variations of the Rashba parameter and modification of the confinement potential. For a weak Rashba effect, the spins along the confinement direction in a given subband nearly assume full quantization. In the presence of a perpendicular magnetic field, the state of quantization can be manipulated using a transverse electric. This process requires modifications in the spin textures. If an in-plane magnetic field is applied, spins suffer rigid displacement to one edge of the wire and their expectation value becomes independent of the transverse electric field.

  19. Spin-Curvature Interaction for Particles of Rest Mass Zero

    NASA Astrophysics Data System (ADS)

    Cordwell, William Robert

    Using a W.K.B. approximation, equations of motion are derived for integral spin particles of zero rest mass. The equations are similar to Papapetrou's equations. A modified, extended W.K.B. approximation is used to derive the equations for half-integral spin particles. The equations are applied to particles travelling down the axis of a spinning black hole, and to particles in a stationary, weak field spacetime. The results agree with frequency cut-offs and linear polarization rotation results found by various other methods. Some previously known polarization results for electromagnetic waves are extended to other spins.

  20. Mediated entanglement and correlations in a star network of interacting spins

    SciTech Connect

    Hutton, A.; Bose, S.

    2004-04-01

    We investigate analytically a star network of spins, in which all spins interact exclusively and continuously with a central spin through Heisenberg XX couplings of equal strength. We find that the central spin correlates and entangles the other spins at zero temperature to a degree that depends on the total number of spins. We find that the entanglement mediating capability of the central spin depends on the evenness or oddness of this number. In the limit of an infinite collection of spins, the difference between entanglement and correlations in terms of divisibility among multiple parties is clearly demonstrated. We also show that with a significant probability one can maximally entangle any two noncentral spins by measuring all the other spins (a process related to the recently introduced notion of localizable entanglement). This probability depends on the evenness and oddness of the total number of spins and remains substantial even for an infinite collection of spins. We show how symmetric multiparty states for optimal sharing and splitting of entanglement can be obtained as ground states of this system using a magnetic field. These states can then be mapped on to flying qubits for transmission to distant parties. We discuss a number of advantages of this mode of generation and distribution of entanglement over other standard methods.

  1. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  2. Weak Te,Te interactions through the looking glass of NMR spin-spin coupling.

    PubMed

    Bühl, Michael; Knight, Fergus R; Křístková, Anezka; Malkin Ondík, Irina; Malkina, Olga L; Randall, Rebecca A M; Slawin, Alexandra M Z; Woollins, J Derek

    2013-02-25

    Across the bay: J((125)Te, (125)Te) spin-spin coupling is a highly sensitive probe into the electronic and geometric structure of 1,8-peri-substituted naphthalene tellurium derivatives. The coupling is related to the onset of multicenter bonding in these systems.

  3. Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters

    NASA Astrophysics Data System (ADS)

    Stamenova, Maria; Simoni, Jacopo; Sanvito, Stefano

    2016-07-01

    The ultrafast demagnetization of small iron clusters initiated by an intense optical excitation is studied from the time-dependent spin density functional theory (TDSDFT). In particular we investigate the effect of the spin-orbit interaction on the onset of the demagnetization process. It is found that demagnetization occurs locally, in the vicinity of the atomic sites, and the initial rate of spin loss, coherent with the laser field, is proportional to the square of the ionic spin-orbit coupling strength λ . A simplified quantum spin model comprising spin-orbit interaction and a time-dependent magnetic field is found to be the minimal model able to reproduce our ab initio results. The model predicts the λ2 dependence of the onset rate of demagnetization when it is solved either analytically for the small t regime, or numerically integrated in the time domain. Our findings are supported by additional TDSDFT simulations of clusters made of Co and Ni.

  4. Angular dependent study on spin transport in magnetic semiconductor heterostructures with Dresselhaus spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mirzanian, S. M.; Shokri, A. A.; Mikaili Agah, K.; Elahi, S. M.

    2015-09-01

    We investigate theoretically the effects of Dresselhaus spin-orbit coupling (DSOC) on the spin-dependent current and shot noise through II-VI diluted magnetic semiconductor/nonmagnetic semiconductor (DMS/NMS) barrier structures. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction and also applied voltage. We also study the dependence of spin-dependent properties on external magnetic field and relative angle between the magnetizations of two DMS layers in CdTe/CdMnTe heterostructures by including the DSOC effect. The results show that the DSOC has great different influence on transport properties of electrons with spin up and spin down in the considered system and this aspect may be utilized in designing new spintronics devices.

  5. Prediction of Spin Orientations in Terms of HOMO-LUMO Interactions Using Spin-Orbit Coupling as Perturbation.

    PubMed

    Whangbo, Myung-Hwan; Gordon, Elijah E; Xiang, Hongjun; Koo, Hyun-Joo; Lee, Changhoon

    2015-12-15

    For most chemists and physicists, electron spin is merely a means needed to satisfy the Pauli principle in electronic structure description. However, the absolute orientations of spins in coordinate space can be crucial in understanding the magnetic properties of materials with unpaired electrons. At low temperature, the spins of a magnetic solid may undergo long-range magnetic ordering, which allows one to determine the directions and magnitudes of spin moments by neutron diffraction refinements. The preferred spin orientation of a magnetic ion can be predicted on the basis of density functional theory (DFT) calculations including electron correlation and spin-orbit coupling (SOC). However, most chemists and physicists are unaware of how the observed and/or calculated spin orientations are related to the local electronic structures of the magnetic ions. This is true even for most crystallographers who determine the directions and magnitudes of spin moments because, for them, they are merely the parameters needed for the diffraction refinements. The objective of this article is to provide a conceptual framework of thinking about and predicting the preferred spin orientation of a magnetic ion by examining the relationship between the spin orientation and the local electronic structure of the ion. In general, a magnetic ion M (i.e., an ion possessing unpaired spins) in a solid or a molecule is surrounded with main-group ligand atoms L to form an MLn polyhedron, where n is typically 4-6, and the d states of MLn are split because the antibonding interactions of the metal d orbitals with the p orbitals of the surrounding ligands L depend on the symmetries of the orbitals involved.1 The magnetic ion M of MLn has a certain preferred spin direction because its split d states interact among themselves under SOC.2,3 The preferred spin direction can be readily predicted on the basis of perturbation theory in which the SOC is taken as perturbation and the split d states as

  6. Prediction of Spin Orientations in Terms of HOMO-LUMO Interactions Using Spin-Orbit Coupling as Perturbation.

    PubMed

    Whangbo, Myung-Hwan; Gordon, Elijah E; Xiang, Hongjun; Koo, Hyun-Joo; Lee, Changhoon

    2015-12-15

    For most chemists and physicists, electron spin is merely a means needed to satisfy the Pauli principle in electronic structure description. However, the absolute orientations of spins in coordinate space can be crucial in understanding the magnetic properties of materials with unpaired electrons. At low temperature, the spins of a magnetic solid may undergo long-range magnetic ordering, which allows one to determine the directions and magnitudes of spin moments by neutron diffraction refinements. The preferred spin orientation of a magnetic ion can be predicted on the basis of density functional theory (DFT) calculations including electron correlation and spin-orbit coupling (SOC). However, most chemists and physicists are unaware of how the observed and/or calculated spin orientations are related to the local electronic structures of the magnetic ions. This is true even for most crystallographers who determine the directions and magnitudes of spin moments because, for them, they are merely the parameters needed for the diffraction refinements. The objective of this article is to provide a conceptual framework of thinking about and predicting the preferred spin orientation of a magnetic ion by examining the relationship between the spin orientation and the local electronic structure of the ion. In general, a magnetic ion M (i.e., an ion possessing unpaired spins) in a solid or a molecule is surrounded with main-group ligand atoms L to form an MLn polyhedron, where n is typically 4-6, and the d states of MLn are split because the antibonding interactions of the metal d orbitals with the p orbitals of the surrounding ligands L depend on the symmetries of the orbitals involved.1 The magnetic ion M of MLn has a certain preferred spin direction because its split d states interact among themselves under SOC.2,3 The preferred spin direction can be readily predicted on the basis of perturbation theory in which the SOC is taken as perturbation and the split d states as

  7. Non-linear mode interaction between spin torque driven and damped modes in spin torque nano-oscillators

    SciTech Connect

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U.; Delaët, B.

    2015-05-11

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.

  8. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  9. Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.

    2016-05-01

    We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.

  10. Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Hankiewicz, E. M.; Vignale, G.

    2006-03-01

    We develop the microscopic theory of the extrinsic spin-Hall conductivity of a two-dimensional electron gas, including skew-scattering, side-jump, and Coulomb interaction effects. We find that while the spin-Hall conductivity connected with the side jump is independent of the strength of electron-electron interactions, the skew-scattering term is reduced by the spin-Coulomb drag, so the total spin current and the total spin-Hall conductivity are reduced for typical experimental mobilities. Further, we predict that in paramagnetic systems the spin-Coulomb drag reduces the spin accumulations in two different ways: (i) directly through the reduction of the skew-scattering contribution, and (ii) indirectly through the reduction of the spin diffusion length. Explicit expressions for the various contributions to the spin-Hall conductivity are obtained using an exactly solvable model of the skew scattering.

  11. Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions

    SciTech Connect

    Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej

    2011-12-15

    We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.

  12. Spin-orbit interaction in InSb nanowires

    NASA Astrophysics Data System (ADS)

    van Weperen, I.; Tarasinski, B.; Eeltink, D.; Pribiag, V. S.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Wimmer, M.

    2015-05-01

    We use magnetoconductance measurements in dual-gated InSb nanowire devices, together with a theoretical analysis of weak antilocalization, to accurately extract spin-orbit strength. In particular, we show that magnetoconductance in our three-dimensional wires is very different compared to wires in two-dimensional electron gases. We obtain a large Rashba spin-orbit strength of 0.5 -1 eVÅ corresponding to a spin-orbit energy of 0.25 -1 meV . These values underline the potential of InSb nanowires in the study of Majorana fermions in hybrid semiconductor-superconductor devices.

  13. Neutral particle effects on the spin-dependent electron scattering in dense plasmas

    SciTech Connect

    Lee, Gyeong Won; Jung, Young-Dae

    2014-09-15

    The influence of neutral particle collisions on the spin-channel preference for spin-asymmetry scattering is investigated in dense plasmas. The effective electron-electron interaction potential taking into account the electron-neutral collision effects is employed to obtain the scattering cross sections for the spin-triplet and singlet states and spin-asymmetry scattering parameter. It is found that the electron-neutral collision effect enhances the spin-asymmetry scattering parameter as well as the preference for the spin-singlet scattering channel. It is also shown that the preference for the spin-singlet scattering channel increases with an increase of the thermal energy. In addition, it is found that the angular averaged spin-asymmetry parameter decreases with increasing collision frequency and thermal energy. The variations of the spin-singlet and spin-triplet scattering channels are also discussed.

  14. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    SciTech Connect

    Verba, Roman; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processing devices.

  15. Spin inverter and polarizer curved nanowire driven by Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Baldo, C.; Villagonzalo, C.

    2016-09-01

    We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin-orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10-4 of its otherwise magnitude in other regimes.

  16. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    SciTech Connect

    Palii, Andrew E-mail: klokishner@yahoo.com; Ostrovsky, Serghei; Reu, Oleg; Klokishner, Sophia E-mail: klokishner@yahoo.com; Tsukerblat, Boris; Decurtins, Silvio; Liu, Shi-Xia

    2015-08-28

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz){sub 6}](BF{sub 4}){sub 2} crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  17. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    NASA Astrophysics Data System (ADS)

    Palii, Andrew; Ostrovsky, Serghei; Reu, Oleg; Tsukerblat, Boris; Decurtins, Silvio; Liu, Shi-Xia; Klokishner, Sophia

    2015-08-01

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  18. Spin-orbit interaction enhancement in permalloy thin films by Pt doping

    NASA Astrophysics Data System (ADS)

    Hrabec, A.; Gonçalves, F. J. T.; Spencer, C. S.; Arenholz, E.; N'Diaye, A. T.; Stamps, R. L.; Marrows, Christopher H.

    2016-01-01

    The spin-orbit interaction is an inherent part of magnetism, which links up the independent world of spins to the atomic lattice, thus controlling many functional properties of magnetic materials. In the widely used 3 d transition metal ferromagnetic films, the spin-orbit interaction is relatively weak, due to low atomic number. Here we show that it is possible to enhance and tune the spin-orbit interaction by adding 5 d platinum dopants into permalloy (Ni81Fe19 ) thin films by a cosputtering technique. This is achieved without significant changes of the magnetic properties, due to the vicinity of Pt to meeting the Stoner criterion for the ferromagnetic state. The spin-orbit interaction is investigated by means of transport measurements (the anisotropic magnetoresistance and anomalous Hall effect), ferromagnetic resonance measurements to determine the Gilbert damping, as well as by measuring the x-ray magnetic circular dichroism at the L3 and L2 x-ray absorption edges to reveal the ratio of orbital to spin magnetic moments. It is shown that the effective spin-orbit interaction increases with Pt concentration within the 0%-10% Pt concentration range in a way that is consistent with theoretical expectations for all four measurements.

  19. Molecular dynamics, spin dynamics study of phonon-magnon interactions in BCC iron

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Landau, David P.; Stocks, G. Malcolm; Nicholson, Don; Eisenbach, Markus; Yin, Junqi

    2013-03-01

    By combining an atomistic many-body potential (Finnis-Sinclair) with a classical Heisenberg-like spin Hamiltonian, we perform combined molecular and spin dynamics simulations to investigate phonon-magnon interactions in BCC iron. The coupling between atomic and spin degrees of freedom is established via a distance dependent exchange interaction derived from first principles electronic structure calculations. Coupled equations of motion are integrated using a second order Suzuki-Trotter decomposition of the exponential time evolution operator. To investigate the effect of lattice vibrations on spin wave spectrum, we calculate spin-spin and density-density dynamic structure factors S(q, ω), and compare that to the results obtained from pure spin dynamics simulations performed on a rigid lattice. In the presence of lattice vibrations, we observe an additional peak in the longitudinal spin-spin dynamic structure factor which coincides with the peak position in density-density dynanmic structure factor. Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, ''Center for Defect Physics,'' an Energy Frontier Research Center

  20. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  1. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  2. EPR Studies of V-ATPase with Spin-Labeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunit c.

    PubMed

    Gölz, Jan Philipp; Bockelmann, Svenja; Mayer, Kerstin; Steinhoff, Heinz-Jürgen; Wieczorek, Helmut; Huss, Markus; Klare, Johann P; Menche, Dirk

    2016-02-17

    Vacuolar-type H(+) -ATPases (V-ATPases) have gained recent attention as highly promising anticancer drug targets, and therefore detailed structural analyses and studies of inhibitor interactions are very important research objectives. Spin labeling of the V-ATPase holoenzyme from the tobacco hornworm Manduca sexta and V-ATPase in isolated yeast (Saccharomyces cerevisiae) vacuoles was accomplished by two novel methods involving the covalent binding of a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) derivative of N,N'-dicyclohexylcarbodiimide (DCC) to the essential glutamate residue in the active site and the noncovalent interaction of a radical analogue of the highly potent inhibitor archazolid, a natural product from myxobacteria. Both complexes were evaluated in detail by electron paramagnetic resonance (EPR) spectroscopic studies and double electron-electron resonance (DEER) measurements, revealing insight into the inhibitor binding mode, dynamics, and stoichiometry as well as into the structure of the central functional subunit c of these medicinally important hetero-multimeric proton-translocating proteins. This study also demonstrates the usefulness of natural product derived spin labels as tools in medicinal chemistry. PMID:26662886

  3. EPR Studies of V-ATPase with Spin-Labeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunit c.

    PubMed

    Gölz, Jan Philipp; Bockelmann, Svenja; Mayer, Kerstin; Steinhoff, Heinz-Jürgen; Wieczorek, Helmut; Huss, Markus; Klare, Johann P; Menche, Dirk

    2016-02-17

    Vacuolar-type H(+) -ATPases (V-ATPases) have gained recent attention as highly promising anticancer drug targets, and therefore detailed structural analyses and studies of inhibitor interactions are very important research objectives. Spin labeling of the V-ATPase holoenzyme from the tobacco hornworm Manduca sexta and V-ATPase in isolated yeast (Saccharomyces cerevisiae) vacuoles was accomplished by two novel methods involving the covalent binding of a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) derivative of N,N'-dicyclohexylcarbodiimide (DCC) to the essential glutamate residue in the active site and the noncovalent interaction of a radical analogue of the highly potent inhibitor archazolid, a natural product from myxobacteria. Both complexes were evaluated in detail by electron paramagnetic resonance (EPR) spectroscopic studies and double electron-electron resonance (DEER) measurements, revealing insight into the inhibitor binding mode, dynamics, and stoichiometry as well as into the structure of the central functional subunit c of these medicinally important hetero-multimeric proton-translocating proteins. This study also demonstrates the usefulness of natural product derived spin labels as tools in medicinal chemistry.

  4. Unified dynamics of electrons and photons via Zitterbewegung and spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Leary, C. C.; Smith, Karl H.

    2014-02-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, it experiences both a Zitterbewegung effect and a spin-orbit interaction leading to identical propagation dynamics for both particles. Applying a unified perturbative approach to both particles simultaneously, we find that to first order in perturbation theory, their Hamiltonians each contain identical Darwin (Zitterbewegung) and spin-orbit terms, resulting in the unification of their dynamics. The presence of the Zitterbewegung effect may be interpreted physically as the delocalization of the electron on the scale of its Compton wavelength, or the delocalization of the photon on the scale of its wavelength in the waveguide. The presence of the spin-orbit interaction leads to the prediction of several rotational effects: the spatial or time evolution of either particle's spin or polarization vector is controlled by the sign of its orbital angular momentum quantum number or, conversely, its spatial wave function is controlled by its spin angular momentum.

  5. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  6. Spin-Interactions and the Non-relativistic Limit of Electrodynamics

    NASA Astrophysics Data System (ADS)

    Saue, Trond

    This chapter discusses how to extinguish spin-orbit interactions and/or scalar relativistic effects from four-component relativistic molecular calculations in order to assess their importance on molecular properties. It is pointed out that standard non-relativistic calculations use the non-relativistic free-particle Hamiltonian , but the relativistic Hamiltonian which describes the interaction between particles and fields. In the strict non-relativistic limit, electrodynamics reduce to electrostatics, that is there are no effects of retardation and no magnetic interactions. It is, however, perfectly reasonable from a pragmatic point of view to introduce both scalar and vector potentials in a non-relativistic framework. Non-relativistic theory can perfectly well accommodate magnetic sources, including spin, but does not provide a mechanism for generating them. We demonstrate that the pragmatic approach leads to some inconsistencies in that non-relativistic theory cannot describe spin-same orbit interactions, but spin-other orbit interactions. We also emphasize that the distinction between spin-orbit interactions and other spin interactions is somewhat artificial and highly dependent on the chosen reference frame. In a previous paper [L. Visscher and T. Saue, J. Chem. Phys., 2000, 113, 3996] we demonstrated how to eliminate spin-orbit interaction from four-component relativistic calculations of spectroscopic constants by deleting the quaternion imaginary parts of matrix representations of the modified Dirac equation. In this chapter, we discuss the extension of this approach to second-order electric and magnetic properties. We will demonstrate the elimination of poles corresponding to spin-forbidden transitions from the dispersion of the dipole polarizability of the mercury atom. More care is needed when considering second-order magnetic properties in that the elimination of quaternion imaginary parts will extinguish all spin interactions. A procedure is developed

  7. Emergent Interacting Spin Islands in a Depleted Strong-Leg Heisenberg Ladder

    NASA Astrophysics Data System (ADS)

    Schmidiger, D.; Povarov, K. Yu.; Galeski, S.; Reynolds, N.; Bewley, R.; Guidi, T.; Ollivier, J.; Zheludev, A.

    2016-06-01

    Properties of the depleted Heisenberg spin ladder material series (C7 H10 N )2Cu1 -zZnz Br4 have been studied by the combination of magnetic measurements and neutron spectroscopy. Disorder-induced degrees of freedom lead to a specific magnetic response, described in terms of emergent strongly interacting "spin island" objects. The structure and dynamics of the spin islands is studied by high-resolution inelastic neutron scattering. This allows us to determine their spatial shape and to observe their mutual interactions, manifested by strong spectral in-gap contributions.

  8. Emergent Interacting Spin Islands in a Depleted Strong-Leg Heisenberg Ladder.

    PubMed

    Schmidiger, D; Povarov, K Yu; Galeski, S; Reynolds, N; Bewley, R; Guidi, T; Ollivier, J; Zheludev, A

    2016-06-24

    Properties of the depleted Heisenberg spin ladder material series (C_{7}H_{10}N)_{2}Cu_{1-z}Zn_{z}Br_{4} have been studied by the combination of magnetic measurements and neutron spectroscopy. Disorder-induced degrees of freedom lead to a specific magnetic response, described in terms of emergent strongly interacting "spin island" objects. The structure and dynamics of the spin islands is studied by high-resolution inelastic neutron scattering. This allows us to determine their spatial shape and to observe their mutual interactions, manifested by strong spectral in-gap contributions. PMID:27391748

  9. EDITORIAL: The effects of spin-orbit interaction on charge transport The effects of spin-orbit interaction on charge transport

    NASA Astrophysics Data System (ADS)

    Molenkamp, Laurens; Nitta, Junsaku

    2009-05-01

    As the information and communications technology industries continue to demand smaller and more powerful electronic devices, it is becoming clear that the technologies which we currently rely upon to store, process and encode data are no longer sufficient. Over the past two decades, the field of spintronics has emerged as a promising source of the new technologies that will help to meet these needs. Following the discovery of giant magnetoresistance in the late 1980s research originally focused on achieving larger and larger magnetoresistance effects in metal-based systems. The resulting devices have already found widespread applications (as read heads in hard drives, for example) and more recent developments (spin torque, domain wall effects) demonstrate a similarly large potential. The development of semiconductor spintronic devices, which promise an even more enhanced functionality, has proved a tougher challenge to researchers. While the physics of spin injection in semiconductors is well understood by now, we presently still do not have a reliable and robust means for spin detection. Moreover, while ferromagnetic semiconductors have shown a wealth of novel device physics, the applicability of these concepts is limited because the community still has not found a material that demonstrates robust ferromagnetism at and above room temperature. Because of this, a growing number of researchers has turned to the utilization of spin--orbit interaction as a tool to manipulate spin behaviour within semiconductors. This cluster of articles reflects this trend in spintronics research and the blend of reviews and novel research provides a good overview of the current status of investigation into spin--orbit interaction and its effect on charge transport. The collection includes review papers on the theory of the impact of spin-orbit effects on weak localization in semiconductor heterostructures (Glazov and Golub) and of shot noise in 2DEG devices (Nikolic and Dragomirova

  10. Improving fidelity of quantum cloning via the Dzyaloshinskii-Moriya interaction in a spin network

    SciTech Connect

    Chen Yuhan; Zhu Aidong; Shao Xiaoqiang; Yeon, Kyu-Hwang; Yu, Seong-Cho

    2010-03-15

    We investigate the effect of the Dzyaloshinskii-Moriya (DM) interaction on the fidelity of the 1{yields}M phase-covariant cloning machine (PCCM) in a spin star network. The results of numerical calculation show that the DM interaction can further improve the cloning fidelity to reach the optimal value. Furthermore, the physical mechanism is investigated by analyzing the effect of the DM interaction on the populations of the qubits. It is shown that the DM interaction leads to the populations of states |1>|S(M,k+1)> and |1>|S(M,k)>[or |0>|S(M,k)> and |0>|S(M,k-1)>] simultaneously reaching the maximum or minimum value periodically, where the first ket |i> ( is an element of 0,1) in |i>|S(M,k)> denotes the state of central spin with |0> and |1> representing the spin-up and spin-down states, respectively, while the second ket |S(M,k)> denotes the state of outer spins with M being the total number of outer spins and k the number of up spins. At these extreme overlapping points of two states, the fidelity of quantum cloning can reach optimal value. Finally the forms of these two different 1{yields}M optimal cloning transformations are presented.

  11. Solute-Solvent Interactions and High Spin ⇌ Low Spin Transitions in Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.

    1985-01-01

    The HS ⇌ LS transition in ferric dithiocarbamates in a number of solvents has been investigated using NMR and is interpreted in terms of preferential solvation or second co-ordination sphere reorganisation effects. These studies clearly demonstrate that neglect of pseudo contact shifts can lead to erroneous conclusions about the spin delocalisation mechanisms. The spin derealization in these systems is by direct σ-delocalization along the alkyl chain. The As values of 2T2 and 6A1 states have the same sign.

  12. Dynamic consequences of optical spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Sukhov, Sergey; Kajorndejnukul, Veerachart; Naraghi, Roxana Rezvani; Dogariu, Aristide

    2015-12-01

    Field symmetries and conservation laws are closely associated through Noether's theorem. Light field inhomogeneities lead to changes in linear and angular momenta and, consequently, to radiation pressure, spin or rotation of objects. Here we discuss a new type of mechanical action originating in the exchange between spin and orbital angular momenta. We demonstrate theoretically and experimentally that, when mirror and central symmetries of scattering are broken, a force appears acting perpendicularly to the direction of propagation. This new force completes the set of non-conservative forces (radiation pressure and tractor beams) that can be generated with unstructured light beams.

  13. Spin effect on parametric interactions of waves in magnetoplasmas

    SciTech Connect

    Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.

    2012-11-15

    The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfven wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfven wave even in classical regime.

  14. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    PubMed

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy. PMID:24734699

  15. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity

    PubMed Central

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A.; Zweier, Jay L.; Liu, Yangping

    2016-01-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins’ cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have variable binding affinity with CT02-VT with γ-CD (95 M−1) > M-β-CD (70 M−1) > H-β-CD (32 M−1). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (~ 22 G) and CT02-AT (7.7–9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than that of CT02-VT (1.6 G) due to the shorter linkers than that of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-time attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  16. Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems

    SciTech Connect

    Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.

    2007-09-13

    Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.

  17. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGESBeta

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  18. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  19. Evolution of ferromagnetic interactions from cluster spin glass state in Co-Ga alloy

    NASA Astrophysics Data System (ADS)

    Mohammad Yasin, Sk.; Saha, Ritwik; Srinivas, V.; Kasiviswanathan, S.; Nigam, A. K.

    2016-11-01

    Low temperature magnetic properties of binary CoxGa100-x (x=54-57) alloy have been investigated. Analysis of frequency dependence of ac susceptibility provided a conclusive evidence for the existence of cluster spin glass like behavior with the freezing temperature ~8, 14 K for x=54, 55.5 respectively. The parameters for conventional 'slowing down' of the spin dynamics have been extracted from the acs data, which confirm the presence of glassy phase. The magnitude of Mydosh parameter obtained from the fits is larger than that reported for typical canonical spin glasses and smaller than those for non-interacting ideal superparamagnetic systems but comparable to those of known cluster-glass systems. Memory phenomena using specific cooling protocols also support the spin-glass features in Co55.5Ga44.5 composition. Further the development of ferromagnetic clusters from the cluster spin glass state has been observed in x=57 composition.

  20. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids.

    PubMed

    Li, Xiaopeng; Natu, Stefan S; Paramekanti, Arun; Das Sarma, S

    2014-01-01

    Recent experiments on ultracold atoms in optical lattices have synthesized a variety of tunable bands with degenerate double-well structures in momentum space. Such degeneracies in the single-particle spectrum strongly enhance quantum fluctuations, and often lead to exotic many-body ground states. Here we consider weakly interacting spinor Bose gases in such bands, and discover a universal quantum 'order by disorder' phenomenon which selects a novel superfluid with chiral spin order displaying remarkable properties such as spontaneous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real space. We show that Bloch oscillations provide a powerful dynamical route to quantum state preparation of such a chiral spin superfluid. Our predictions can be readily tested in spin-resolved time-of-flight experiments.

  1. Spin-squared Hamiltonian of next-to-leading order gravitational interaction

    SciTech Connect

    Steinhoff, Jan; Hergt, Steven; Schaefer, Gerhard

    2008-11-15

    The static, i.e., linear momentum independent, part of the next-to-leading order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the post-Newtonian (PN) approximation is calculated from a three-dimensional covariant ansatz for the Hamilton constraint. All coefficients in this ansatz can be uniquely fixed for black holes. The resulting Hamiltonian fits into the canonical formalism of Arnowitt, Deser, and Misner (ADM) and is given in their transverse-traceless (ADMTT) gauge. This completes the recent result for the momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of motion resulting from this Hamiltonian are an important step toward more accurate calculations of templates for gravitational waves.

  2. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces.

    PubMed

    Lloveras, V; Badetti, E; Veciana, J; Vidal-Gancedo, J

    2016-03-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  3. Observation of Spin-Exchange Collisions of Electrons in a Metal

    NASA Astrophysics Data System (ADS)

    Ravano, G.; Erbudak, M.; Siegmann, H. C.

    1982-07-01

    It is shown, in an experiment, that the spin polarization P0 of a primary electron beam causes a spin polarization Pex of the secondary electrons produced in a single collision from the conduction bands of a metal. The results of PexP0 obtained with gold suggest that this type of experiment might provide a critical test of the electron-electron interactions in solids.

  4. Floquet spin states in graphene under ac-driven spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    López, A.; Sun, Z. Z.; Schliemann, J.

    2012-05-01

    We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.

  5. Spin-wave propagation steered by electric field modulated exchange interaction

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-09-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications.

  6. Spin-wave propagation steered by electric field modulated exchange interaction.

    PubMed

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  7. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  8. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    PubMed Central

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  9. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    PubMed Central

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:25645603

  10. Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps.

    PubMed

    Hu, Hui; Ramachandhran, B; Pu, Han; Liu, Xia-Ji

    2012-01-01

    We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes into different manifolds separated by ℏω{⊥}, where ω{⊥} is the trapping frequency. For a weakly interacting gas, quantum states with Skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed in a spin-orbit coupled gas of ^{87}Rb atoms in a highly oblate trap. PMID:22304247

  11. Interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation

    SciTech Connect

    Feix, J.B.; Yin, J.J.; Hyde, J.S.

    1987-06-30

    Electron-electron double resonance (ELDOR) and saturation recovery electron paramagnetic resonance (EPR) spectroscopy have been employed to examine the interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs in fluid-phase model membrane bilayers composed of a variety of phospholipids. The (/sup 14/N)-16-doxylstearate:(/sup 15/N)-16-doxylstearate (16:16) pair was utilized to measure lateral diffusion of the spin-labels, while the (/sup 14/N)-16-doxylstearate:(/sup 15/N)-5-doxylstearate (16:5) pair provided information on vertical fluctuations of the 16-doxylstearate nitroxide moiety toward the membrane surface. Three saturated host lipids of varying alkyl chain length (dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC)), an ..cap alpha..-saturated, ..beta..-unsaturated lipid (1-palmitoyl-2-oleoylphosphatidylcholine (POPC)), and phosphatidylcholine from a natural source (egg yolk phosphatidylcholine (egg PC)) were utilized as host lipids. Lateral diffusion of the stearic acid spin-labels was only slightly affected by alkyl chain length at a given reduced temperature (T/sub r/) in the saturated host lipids but was significantly decreased in POPC at the same T/sub r/. Lateral diffusion in DMPC, POPC, and egg PC was quite similar at 37/sup 0/C. A strong correlation was noted between lateral diffusion constants and rotational mobility of (/sup 14/N)-16-doxylstearate. Vertical fluctuations were likewise only slightly influenced by alklyl chain length but were strongly diminished in POPC and egg PC relative to the saturated systems. This diminution of the 16:5 interaction was observed even under conditions where no differences were discernible by conventional EPR.

  12. Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect

    SciTech Connect

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2014-05-07

    This paper predicts the effect of the Dzyaloshinskii-Moriya interaction (DMI) and spin Hall effect in the spin-torque diode response of a Magnetic Tunnel Junction built over a Tantalum strip. Our results indicate that, for a microwave current large enough, the DMI can change qualitatively the resonant response by splitting the ferromagnetic resonance peak. We also find out that the two modes have a non-uniform spatial distribution.

  13. Speckle imaging of spin fluctuations in a strongly interacting Fermi gas.

    PubMed

    Sanner, Christian; Su, Edward J; Keshet, Aviv; Huang, Wujie; Gillen, Jonathon; Gommers, Ralf; Ketterle, Wolfgang

    2011-01-01

    Spin fluctuations and density fluctuations are studied for a two-component gas of strongly interacting fermions along the Bose-Einstein condensate-BCS crossover. This is done by in situ imaging of dispersive speckle patterns. Compressibility and magnetic susceptibility are determined from the measured fluctuations. This new sensitive method easily resolves a tenfold suppression of spin fluctuations below shot noise due to pairing, and can be applied to novel magnetic phases in optical lattices.

  14. Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Huang Wujie; Gillen, Jonathon; Gommers, Ralf; Ketterle, Wolfgang

    2011-01-07

    Spin fluctuations and density fluctuations are studied for a two-component gas of strongly interacting fermions along the Bose-Einstein condensate-BCS crossover. This is done by in situ imaging of dispersive speckle patterns. Compressibility and magnetic susceptibility are determined from the measured fluctuations. This new sensitive method easily resolves a tenfold suppression of spin fluctuations below shot noise due to pairing, and can be applied to novel magnetic phases in optical lattices.

  15. Mapping out spin and particle conductances of a single-mode channel with tunable interactions

    NASA Astrophysics Data System (ADS)

    Lebrat, Martin; Krinner, Sebastian; Grenier, Charles; Husmann, Dominik; Häusler, Samuel; Nakajima, Shuta; Brantut, Jean-Philippe; Esslinger, Tilman

    2016-05-01

    We study particle and spin transport in a single-mode quantum point contact, shaped by light potentials onto a charge neutral, quantum degenerate gas of 6 Li fermions with tunable interactions. The spin and particle conductances are measured as a function of chemical potential or confinement, covering weak attraction, where quantized conductance is observed, to the strongly interacting superfluid regime. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of superfluidity. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid: it shows conductance plateaus at non-universal values continuously increasing from 1/h to 4/h, as the interaction strength is increased from weak to intermediate. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. This anomalous quantization is incompatible with a Fermi liquid description, shedding new light on the nature of the strongly attractive Fermi gas in the normal phase.

  16. Entanglement creation in electron-electron collisions at solid surfaces

    NASA Astrophysics Data System (ADS)

    Feder, R.; Giebels, F.; Gollisch, H.

    2015-08-01

    For spin-polarized low-energy electrons impinging on a crystalline surface, an important reaction channel is the collision with a bound valence electron of opposite spin, followed by the emission of a correlated electron pair with antiparallel spins. While primary and valence electrons are not entangled, the screened Coulomb interaction generates spin entanglement between the two outgoing electrons. As a quantitative measure of this entanglement, we calculated a modified von Neumann entropy in terms of direct and exchange transition matrix elements. For coplanar symmetric setups with equal energies of antiparallel-spin electrons, maximal entanglement is analytically shown to occur quite universally, irrespective of the choice of the primary electron energy, the outgoing electron energy, and polar emission angle, and even of the choice of the surface system. Numerical results for Fe(110) and Cu(111) demonstrate first that strong entanglement can persist for unequal energies and second that an overall entanglement reduction due to nonentangled parallel-spin electrons can be avoided for ferromagnetic and even for nonmagnetic surfaces.

  17. Quantum Phase Transitions Induced by the Spin--Orbit Interaction in the N = 1 Landau Level

    NASA Astrophysics Data System (ADS)

    Ito, Toru; Nomura, Kentaro; Shibata, Naokazu

    2012-03-01

    The effect of the spin--orbit interaction on the fractional quantum Hall states at filling factors ν = 7/3, 5/2, and 12/5 is studied by the exact diagonalization method and density-matrix renormalization group (DMRG) method. We calculate the excitation energy gap, ground-state pair-correlation functions, and the topological entanglement entropy to analyze the effect of the spin--orbit interaction. The obtained results show that, at ν=7/3, the spin--orbit interaction destabilizes the parafermion state, leading to the phase transition to the Laughlin state. At ν=5/2 the Pfaffian state is stabilized but the phase transition to the composite fermion liquid state finally occurs. At ν=12/5, the parafermion ground state is destabilized and the phase transition to the Jain state occurs.

  18. Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Nikoofard, Hossein; Semiromi, Ebrahim Heidari

    2016-10-01

    We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.

  19. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.

    PubMed

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  20. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine

    SciTech Connect

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  1. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.

    PubMed

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears. PMID:24929382

  2. Interplay Between Charge, Spin, and Phonons in Low Dimensional Strongly Interacting Systems

    NASA Astrophysics Data System (ADS)

    Soltanieh-ha, Mohammad

    Interacting one-dimensional electron systems are generally referred to as "Luttinger liquids", after the effective low-energy theory in which spin and charge behave as separate degrees of freedom with independent energy scales. The "spin-incoherent Luttinger liquid" describes a finite-temperature regime that is realized when the temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale, and it is realized for instance in the strongly interacting Hubbard chain (with large U). Similar physics can take place in the ground-state, when a Luttinger Liquid is coupled to a spin bath, which effectively introduces a "spin temperature" through its entanglement with the spin degree of freedom. We show that the spin-incoherent state can be exactly written as a factorized wave-function, with a spin wave-function that can be described within a valence bond formalism. This enables us to calculate exact expressions for the momentum distribution function and the entanglement entropy. This picture holds not only for two antiferromagnetically coupled t--J chains, but also for the t--J-Kondo chain with strongly interacting conduction electrons. In chapter 3 we argue that this theory is quite universal and may describe a family of problems that could be dubbed "spin-incoherent". This crossover to the spin-incoherent regime at finite temperatures can be understood by means of Ogata and Shiba's factorized wave-function, where charge and spin are totally decoupled, and assuming that the charge remains in the ground state, while the spin is thermally excited and at an effective "spin temperature". In chapter 4 we use the time-dependent density matrix renormalization group method (tDMRG) to calculate the dynamical contributions of the spin, to reconstruct the single-particle spectral function of the electrons. The crossover is characterized by a redistribution of spectral weight both in frequency and momentum, with an apparent shift by kF of

  3. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; Han, Dong-Soo; Yin, Yuxiang; Kim, June-Seo; Swagten, Henk J. M.; You, Chun-Yeol

    2016-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Our findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nm-thick Co.

  4. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain

    NASA Astrophysics Data System (ADS)

    Gong, Z.-X.; Maghrebi, M. Â. F.; Hu, A.; Foss-Feig, M.; Richerme, P.; Monroe, C.; Gorshkov, A. Â. V.

    2016-05-01

    Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1 /rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲3 , long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1 ) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.

  5. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance.

    PubMed Central

    Snel, M M; Marsh, D

    1994-01-01

    Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers. Images FIGURE 1 PMID:7948687

  6. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    SciTech Connect

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-12-16

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field.

  7. Spin diffusion in trapped clouds of cold atoms with resonant interactions.

    PubMed

    Bruun, G M; Pethick, C J

    2011-12-16

    We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting system. Three important features play a central role: (a) Fick's law for diffusion must be modified to allow for the trapping potential; (b) the diffusion coefficient is inhomogeneous, due to the density variations in the cloud; and (c) the diffusion approximation fails in the outer parts of the cloud, where the mean free path is long.

  8. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Yang, Yanling

    2016-08-01

    Based on the Dirac-Bogoliubov-de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry-Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI.

  9. Effect of spin exchange interaction on shot noise and tunnel magnetoresistance in double quantum dots

    NASA Astrophysics Data System (ADS)

    Xue, N. T.; Xie, H. Q.; Xue, H. B.; Liang, J.-Q.

    2014-05-01

    By means of the Rate equation approach in sequential tunneling regime, we study spin-polarized transport through series double quantum dots (DQD) weakly coupled to collinear ferromagnetic leads with particular attention on the effect of interdot spin exchange interaction (SEI). For the asymmetric DQD giant negative differential conductance is realized, which depends on the energy-level spacing between two dots. It is demonstrated that the voltage dependencies of the tunnel magnetoresistance (TMR) and the shot noise are sensitive to the SEI, which leads to the additional imbalance between spin-polarized currents. The super-Poissonian statistics is enhanced in the parallel leads’ configuration by the ferromagnetic SEI, which favorites the spin bunching, while it is suppressed by stronger antiferromagnetic SEI in antiparallel configuration for a symmetric DQD. The voltage dependencies of the TMR and shot noise may be used to probe the SEI.

  10. Dynamic properties of magnets with spin S = 3/2 and non-Heisenberg isotropic interaction

    SciTech Connect

    Kosmachev, O. A.; Fridman, Yu. A.; Galkina, E. G.; Ivanov, B. A.

    2015-02-15

    The dynamic properties of a magnet with magnetic-ion spin of 3/2 and an isotropic spin interaction of a general form have been investigated. Only four phase states can be realized in the system under consideration at various relationships between the material parameters: the ferro- and antiferromagnetic phases with saturated spin and the states with tensor order parameters, the nematic and antinematic ones. For these phases, the spontaneous symmetry breaking is determined by the octupole order parameter containing the mean values trilinear in spin operator components at a given site. The spectra of elementary excitations have been determined in all phases. Additional branches of excitations arise in all four phase states.

  11. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    PubMed Central

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  12. Static and dynamic properties of interacting spin-1 bosons in an optical lattice

    NASA Astrophysics Data System (ADS)

    Natu, Stefan S.; Pixley, J. H.; Das Sarma, S.

    2015-04-01

    We study the physics of interacting spin-1 bosons in an optical lattice using a variational Gutzwiller technique. We compute the mean-field ground state wave function and discuss the evolution of the condensate, spin, nematic, and singlet order parameters across the superfluid-Mott transition. We then extend the Gutzwiller method to derive the equations governing the dynamics of low energy excitations in the lattice. Linearizing these equations, we compute the excitation spectra in the superfluid and Mott phases for both ferromagnetic and antiferromagnetic spin-spin interactions. In the superfluid phase, we recover the known excitation spectrum obtained from Bogoliubov theory. In the nematic Mott phase, we obtain gapped, quadratically dispersing particle and hole-like collective modes, whereas in the singlet Mott phase, we obtain a nondispersive gapped mode, corresponding to the breaking of a singlet pair. For the ferromagnetic Mott insulator, the Gutzwiller mean-field theory only yields particle-hole-like modes but no Goldstone mode associated with long-range spin order. To overcome this limitation, we supplement the Gutzwiller theory with a Schwinger boson mean-field theory which captures superexchange-driven fluctuations. In addition to the gapped particle-hole-like modes, we obtain a gapless quadratically dispersing ferromagnetic spin-wave Goldstone mode. We discuss the evolution of the singlet gap, particle-hole gap, and the effective mass of the ferromagnetic Goldstone mode as the superfluid-Mott phase boundary is approached from the insulating side. We discuss the relevance and validity of Gutzwiller mean-field theories to spinful systems, and potential extensions of this framework to include more exotic physics which appears in the presence of spin-orbit coupling or artificial gauge fields.

  13. Effects of the Consistent Interaction on Kaon Photoproduction with Spin 5/2 Nucleon Resonances

    NASA Astrophysics Data System (ADS)

    Clymton, S.; Mart, T.

    2016-08-01

    Theoretical models for kaon photoproduction with spin 5/2 nucleon resonances have been plagued with the problem of interaction consistency. A number of studies predicted that a model with a consistent interaction leads to a better agreement with data. In this study a model with consistent interaction (model 2) is compared to the old model, which utilizes an inconsistent interaction (model 1), as well as to experimental data. The unknown parameters in scattering amplitude are extracted from fitting to 7400 experimental data points. This is performed by minimizing the X2/N value. It is found that model with a consistent interaction (model 2) is more suitable for explaining experimental data.

  14. Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.

    2016-05-01

    Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.

  15. Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction

    SciTech Connect

    Lees, Benjamin

    2014-09-15

    We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.

  16. Isotropic and anisotropic spin-spin interactions and a quantum phase transition in a dinuclear Cu(II) compound

    NASA Astrophysics Data System (ADS)

    Napolitano, Lia M. B.; Nascimento, Otaciro R.; Cabaleiro, Santiago; Castro, Jesús; Calvo, Rafael

    2008-06-01

    We report electron-paramagnetic resonance (EPR) studies at ˜9.5GHz ( X band) and ˜34GHz ( Q band) of powder and single-crystal samples of the compound Cu2[TzTs]4 [ N -thiazol-2-yl-toluenesulfonamidatecopper(II)], C40H36Cu2N8O8S8 , having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J0=(-113±1)cm-1 (Hex=-J0S1ṡS2) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D(Hani=S1ṡDṡS2) , a traceless symmetric matrix with principal values D/4=(0.198±0.003)cm-1 and E/4=(0.001±0.003)cm-1 arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude |J'|=(0.060±0.015)cm-1 . The interactions between a dinuclear unit and the “environment” of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113cm-1 and 0.060cm-1 ).

  17. Revealing the specific solute-solvent interactions via the measurements of the NMR spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Shahkhatuni, Astghik A.; Shahkhatuni, Aleksan G.; Minasyan, Nune S.; Panosyan, Henry A.; Sahakyan, Aleksandr B.

    2015-03-01

    The solvent induced changes of one-bond spin-spin coupling constants (SSCCs) are investigated for a set of substituted methanes in solvents with various ε dielectric constants. Solute-solvent systems with varying types of ε-dependences for the solute SSCCs are outlined. Aliphatic hydrocarbon solvents and their halogen-substituted derivatives comprise the subset, where the SSCC is linearly dependent on the solvent reaction field, f(ε) = 2(ε - 1)/(2ε + 1), hence indicating the absence of specific solute-solvent interactions. In such solvents, SSCCs depend only on bulk dielectric properties of the medium, and, the magnitudes of the solvent sensitivities of SSCCs are fully determined by the initial values of "pure" SSCCs that correspond to the isolated solute molecules. The solvents involved in the second subset have a relatively chaotic distribution of the SSCC/f(ε) relationship, with possible groupings by their chemical nature. There, the conventional linear SSCC/f(ε) dependence is perturbed by additional interactions, such as hydrogen bonding, specific association processes, lone electron pairs, and conjugation.

  18. Insulating state to quantum Hall-like state transition in a spin-orbit-coupled two-dimensional electron system

    SciTech Connect

    Lo, Shun-Tsung; Hsu, Chang-Shun; Lin, Y. M.; Lin, S.-D.; Lee, C. P.; Ho, Sheng-Han; Chuang, Chiashain; Wang, Yi-Ting; Liang, C.-T.

    2014-07-07

    We study interference and interactions in an InAs/InAsSb two-dimensional electron system. In such a system, spin-orbit interactions are shown to be strong, which result in weak antilocalization (WAL) and thereby positive magnetoresistance around zero magnetic field. After suppressing WAL by the magnetic field, we demonstrate that classical positive magnetoresistance due to spin-orbit coupling plays a role. With further increasing the magnetic field, the system undergoes a direct insulator-quantum Hall transition. By analyzing the magnetotransport behavior in different field regions, we show that both electron-electron interactions and spin-related effects are essential in understanding the observed direct transition.

  19. Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Shu-Wei, Song; Rui, Sun; Hong, Zhao; Xuan, Wang; Bao-Zhong, Han

    2016-04-01

    Starting from the Hamiltonian of the second quantization form, the weakly interacting Bose-Einstein condensate with spin-orbit coupling of Weyl type is investigated. It is found that the SU(2) nonsymmetric term, i.e., the spin-dependent interaction, can lift the degeneracy of the ground states with respect to the z component of the total angular momentum J z , casting the ground condensate state into a configuration of zero J z . This ground state density profile can also be affirmed by minimizing the full Gross-Pitaevskii energy functional. The spin texture of the zero J z state indicates that it is a knot structure, whose fundamental group is π 3(M) ≅ π 3(S 2) = Z. Project supported by the National Natural Science Foundation of China (Grant No. 11447178).

  20. Identifying a Bath-Induced Bose Liquid in Interacting Spin-Boson Models

    NASA Astrophysics Data System (ADS)

    Cai, Zi; Schollwöck, Ulrich; Pollet, Lode

    2014-12-01

    We study the ground state phase diagram of a one-dimensional hard-core bosonic model with nearest-neighbor interactions (X X Z model) where every site is coupled Ohmically to an independent but identical reservoir, hereby generalizing spin-boson models to interacting spin-boson systems. We show that a bath-induced Bose liquid phase can occur in the ground state phase diagram away from half filling. This phase is compressible, gapless, and conducting but not superfluid. At half filling, only a Luttinger liquid and a charge density wave are found. The phase transition between them is of Kosterlitz-Thouless type where the Luttinger parameter takes a nonuniversal value. The applied quantum Monte Carlo method can be used for all open bosonic and unfrustrated spin systems, regardless of their dimension, filling factor, and spectrum of the dissipation as long as the quantum system couples to the bath via the density operators.

  1. Identifying a bath-induced bose liquid in interacting spin-boson models.

    PubMed

    Cai, Zi; Schollwöck, Ulrich; Pollet, Lode

    2014-12-31

    We study the ground state phase diagram of a one-dimensional hard-core bosonic model with nearest-neighbor interactions (XXZ model) where every site is coupled Ohmically to an independent but identical reservoir, hereby generalizing spin-boson models to interacting spin-boson systems. We show that a bath-induced Bose liquid phase can occur in the ground state phase diagram away from half filling. This phase is compressible, gapless, and conducting but not superfluid. At half filling, only a Luttinger liquid and a charge density wave are found. The phase transition between them is of Kosterlitz-Thouless type where the Luttinger parameter takes a nonuniversal value. The applied quantum Monte Carlo method can be used for all open bosonic and unfrustrated spin systems, regardless of their dimension, filling factor, and spectrum of the dissipation as long as the quantum system couples to the bath via the density operators.

  2. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  3. Comment on two recent papers regarding next-to-leading order spin-spin effects in gravitational interaction

    SciTech Connect

    Steinhoff, Jan; Schaefer, Gerhard

    2009-10-15

    It is argued that the tetrad in a recent paper by Porto and Rothstein on gravitational spin-spin coupling should not have the given form. The fixation of that tetrad was suggested by Steinhoff, Hergt, and Schaefer as a possible source for the disagreement found in the spin-squared dynamics. However, this inconsistency will only show up in the next-to-leading order spin-orbit dynamics and not in the spin-squared dynamics. Instead, the disagreement found at the next-to-leading order spin-squared level is due to a sign typo in the spin-squared paper by Porto and Rothstein.

  4. Dynamic control of spin states in interacting magnetic elements

    SciTech Connect

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  5. Notes on oscillator-like interactions of various spin relativistic particles

    NASA Technical Reports Server (NTRS)

    Dvoeglazov, Valeri V.; Delsolmesa, Antonio

    1995-01-01

    The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.

  6. Spin-orbit interactions in two-dimensional holes in quasi-triangular wells: variational calculations

    NASA Astrophysics Data System (ADS)

    Marcellina, Elizabeth; Hamilton, Alex; Winkler, Roland; Culcer, Dimitrie; UNSW Collaboration; NIU Collaboration

    Spin-orbit (SO) interactions in semiconductors are key to the realization of semiconductor spintronic devices and quantum information processing. Low-dimensional holes are strongly SO-coupled systems, as such, they offer the promise of all-electrical spin control which can lead to more efficient electronic devices. However the spin properties of holes are highly complex, and heavily influencd by the nature of the confining potential. So far, calculations on two-dimensional holes in semiconductor heterojunctions have mostly been numerical and material-specific. In this work, we develop variational-based methods, which are easy to use and applicable to various materials, to quantify SO interactions in two-dimensional holes confined in self-consistent quasi-triangular wells. In particular, we calculate the SO hole spin-splittings and effective masses in common semiconductor materials such as GaAs, Ge, InSb, InAs, and Si. Our results show that the strength of SO interactions is very sensitive to the material type and that in zincblende materials with a bulk inversion asymmetry (BIA), the dominant contribution to the SO interaction is still the structure inversion asymmetry (SIA) term corresponding to the confinement potential.

  7. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  8. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.

  9. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band. PMID:25815913

  10. Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Balents, Leon

    2015-03-01

    Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.

  11. On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions

    NASA Astrophysics Data System (ADS)

    Marcos, Cristina; Peiró, Miguel; Robles, Sandra

    2016-03-01

    In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the upper limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.

  12. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  13. Exactly solvable interacting spin-ice vertex model.

    PubMed

    Ferreira, Anderson A; Alcaraz, Francisco C

    2006-07-01

    A special family of solvable five-vertex model is introduced on a square lattice. In addition to the usual nearest-neighbor interactions, the vertices defining the model also interact along one of the diagonals of the lattice. This family of models includes in a special limit the standard six-vertex model. The exact solution of these models is an application of the matrix product ansatz introduced recently and applied successfully in the solution of quantum chains. The phase diagram and the free energy of the models are calculated in the thermodynamic limit. The models exhibit massless phases, and our analytical and numerical analyses indicate that such phases are governed by a conformal field theory with central charge c=1 and continuously varying critical exponents.

  14. Influence of octupole interactions on the behavior of negative-parity states at low spins

    SciTech Connect

    Sitdikov, A. S. Safarov, R. Kh.; Kvasil, J.

    2006-12-15

    The energies of negative-parity levels based on two-particle states exhibit a nonlinear behavior at low spins versus the core-rotation energy because the alignment process has not yet been completed for them. This behavior of negative-parity levels in the low-spin region is satisfactorily described upon the inclusion of octupole-octupole interactions. This is demonstrated within the rotational model involving the Coriolis mixing of states for the even-even isotopes {sup 162-168}Hf.

  15. Eigenvectors and scalar products for long range interacting spin chains II: the finite size effects

    NASA Astrophysics Data System (ADS)

    Serban, Didina

    2013-08-01

    In this note, we study the eigenvectors and the scalar products the integrable long-range deformation of the XXX spin chain defined in [1]. The model is solved exactly by algebraic Bethe ansatz, and it coincides in the bulk with the Inozemtsev spin chain. At the closing point it contains a defect which effectively removes the wrapping interactions. Here we concentrate on determining the defect term for the first non-trivial order in perturbation in the deformation parameter and how it affects the Bethe ansatz equations. Our study is motivated by the relation with the dilatation operator of the = 4 gauge theory in the su(2) sector.

  16. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings.

    PubMed

    Sleight, Charlotte; Taronna, Massimo

    2016-05-01

    In this Letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher spin theory in (d+1)-dimensional anti- de Sitter space. For this purpose, we also determine the operator-product expansion coefficients of all single-trace conserved currents in the d-dimensional free scalar O(N) vector model, and we compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher spin gauge fields in the metriclike formulation. PMID:27203314

  17. Chiral phase from three-spin interactions in an optical lattice

    SciTech Connect

    D'Cruz, Christian; Pachos, Jiannis K.

    2005-10-15

    A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.

  18. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings

    NASA Astrophysics Data System (ADS)

    Sleight, Charlotte; Taronna, Massimo

    2016-05-01

    In this Letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher spin theory in (d +1 )-dimensional anti- de Sitter space. For this purpose, we also determine the operator-product expansion coefficients of all single-trace conserved currents in the d -dimensional free scalar O (N ) vector model, and we compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher spin gauge fields in the metriclike formulation.

  19. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  20. Anisotropic nuclear spin interactions for the morphology analysis of proteins in solution by NMR spectroscopy.

    PubMed

    Tate, Shin-Ichi

    2008-01-01

    Determining the relative orientation of domains within a protein is an important problem in structural biology, which has been difficult to address by either X-ray crystallography or NMR. The structure of a multidomain protein in a crystal lattice can be altered by crystal packing forces, resulting in different domain arrangements from those in solution. On the other hand, conventional NMR primarily provides short-range structural information, including proton-proton distances derived from nuclear Overhauser effects (NOEs) and torsion angles through vicinal spin couplings. Thus, NMR cannot always determine the precise interdomain arrangements due to the sparsely observed spin interactions between domains. However, the weak alignment of proteins in solution has enabled a new NMR technique to determine the domain arrangement based on the different structural information, which defines the orientation of a structural unit in protein against the magnetic field. This technique relies on the anisotropic nuclear spin interactions that only occur for a molecule in a weakly aligned state. In this review, the basics of the new NMR approach are described with focusing on its application to domain orientation analysis. We also describe our recently established NMR approach using the same spin interactions, which expands the domain arrangement analysis to higher-molecular weight proteins over 100 kDa.

  1. Topological spin liquids in the ruby lattice with anisotropic Kitaev interactions

    NASA Astrophysics Data System (ADS)

    Jahromi, Saeed S.; Kargarian, Mehdi; Masoudi, S. Farhad; Langari, Abdollah

    2016-09-01

    The ruby lattice is a four-valent lattice interpolating between honeycomb and triangular lattices. In this work we investigate the topological spin-liquid phases of a spin Hamiltonian with Kitaev interactions on the ruby lattice using exact diagonalization and perturbative methods. The latter interactions combined with the structure of the lattice yield a model with Z2×Z2 gauge symmetry. We mapped out the phase diagram of the model and found gapped and gapless spin-liquid phases. While the low-energy sector of the gapped phase corresponds to the well-known topological color code model on a honeycomb lattice, the low-energy sector of the gapless phases is described by an effective spin model with three-body interactions on a triangular lattice. A gap is opened in the spectrum in small magnetic fields, where we showed that the ground state has a finite topological entanglement entropy. We argue that the gapped phases could be possibly described by exotic excitations, and their corresponding spectrum is richer than the Ising phase of the Kitaev model.

  2. A Hilbert Space Setting for Interacting Higher Spin Fields and the Higgs Issue

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2015-03-01

    Wigner's famous 1939 classification of positive energy representations, combined with the more recent modular localization principle, has led to a significant conceptual and computational extension of renormalized perturbation theory to interactions involving fields of higher spin. Traditionally the clash between pointlike localization and the the Hilbert space was resolved by passing to a Krein space setting which resulted in the well-known BRST gauge formulation. Recently it turned out that maintaining a Hilbert space formulation for interacting higher spin fields requires a weakening of localization from point- to string-like fields for which the d = s + 1 short distance scaling dimension for integer spins is reduced to d = 1 and and renormalizable couplings in the sense of power-counting exist for any spin. This new setting leads to a significant conceptual change of the relation of massless couplings with their massless counterpart. Whereas e.g. the renormalizable interactions of s = 1 massive vectormesons with s 1 matter falls within the standard field-particle setting, their zero mass limits lead to much less understood phenomena as "infraparticles" and gluon/quark confinement. It is not surprising that such drastic conceptual changes in the area of gauge theories also lead to a radical change concerning the Higgs issue.

  3. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures.

    PubMed

    Zhang, Jiatao; Tang, Yun; Lee, Kwan; Ouyang, Min

    2010-07-01

    The interplay between light and matter is the basis of many fundamental processes and various applications. Harnessing light-matter interactions in principle allows operation of solid state devices under new physical principles: for example, the a.c. optical Stark effect (OSE) has enabled coherent quantum control schemes of spins in semiconductors, with the potential for realizing quantum devices based on spin qubits. However, as the dimension of semiconductors is reduced, light-matter coupling is typically weakened, thus limiting applications at the nanoscale. Recent experiments have demonstrated significant enhancement of nanoscale light-matter interactions, albeit with the need for a high-finesse cavity, ultimately preventing device down-scaling and integration. Here we report that a sizable OSE can be achieved at substantial energy detuning in a cavity-free colloidal metal-semiconductor core-shell hetero-nanostructure, in which the metal surface plasmon is tuned to resonate spectrally with a semiconductor exciton transition. We further demonstrate that this resonantly enhanced OSE exhibits polarization dependence and provides a viable mechanism for coherent ultrafast spin manipulation within colloidal nanostructures. The plasmon-exciton resonant nature further enables tailoring of both OSE and spin manipulation by tuning plasmon resonance intensity and frequency. These results open a pathway for tailoring light-matter-spin interactions through plasmon-exciton resonant coupling in a judiciously engineered nanostructure, and offer a basis for future applications in quantum information processing at the nanoscale. More generally, integrated nanostructures with resonantly enhanced light-matter interactions should serve as a test bed for other emerging fields, including nano-biophotonics and nano-energy.

  4. Interacting spin-2 fields in the Stückelberg picture

    SciTech Connect

    Noller, Johannes; Ferreira, Pedro G.; Scargill, James H.C. E-mail: james.scargill@physics.ox.ac.uk

    2014-02-01

    We revisit and extend the 'Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

  5. Nematic order by thermal disorder in a three-dimensional lattice spin model with dipolarlike interactions.

    PubMed

    Chamati, Hassan; Romano, Silvano

    2014-08-01

    At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example, nearest-neighbor interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally ordered phases exhibiting nematic (second-rank) order, in addition to the primary first-rank one; on the other hand, in the literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with finite-size scaling analysis, have been used for characterizing its critical behavior; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder. PMID:25215748

  6. Predicted weakening of the spin-orbit interaction with the addition of neutrons

    SciTech Connect

    Hemalatha, M.; Gambhir, Y. K.; Haider, W.; Kailas, S.

    2009-05-15

    The fully microscopic p-nucleus optical potential has been calculated in the framework of the first order Brueckner theory employing Urbana V14, soft-core internucleon interaction along with the relativistic mean field densities both for protons and neutrons. It is observed that the volume integral per nucleon, of the real part of the spin-orbit interaction calculated for Zr (A=76-110) and Sn (A=96-136) isotopes, decreases with the increase in neutron number. The present optical model calculation satisfactorily reproduces the experimental (where available) cross sections and analyzing power. Further the magnitude of the first maximum (minimum) in the calculated analyzing power decreases (increases) with the addition of neutrons both for Zr and Sn isotopes reflecting the weakening of the spin-orbit interaction.

  7. Nonequilibrium Keldysh formalism for interacting leads—Application to quantum dot transport driven by spin bias

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jalil, M. B. A.; Tan, Seng Ghee

    2012-06-01

    The conductance through a mesoscopic system of interacting electrons coupled to two adjacent leads is conventionally derived via the Keldysh nonequilibrium Green's function technique, in the limit of noninteracting leads [Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68 (1992) 2512]. We extend the standard formalism to cater for a quantum dot system with Coulombic interactions between the quantum dot and the leads. The general current expression is obtained by considering the equation of motion of the time-ordered Green's function of the system. The nonequilibrium effects of the interacting leads are then incorporated by determining the contour-ordered Green's function over the Keldysh loop and applying Langreth's theorem. The dot-lead interactions significantly increase the height of the Kondo peaks in density of states of the quantum dot. This translates into two Kondo peaks in the spin differential conductance when the magnitude of the spin bias equals that of the Zeeman splitting. There also exists a plateau in the charge differential conductance due to the combined effect of spin bias and the Zeeman splitting. The low-bias conductance plateau with sharp edges is also a characteristic of the Kondo effect. The conductance plateau disappears for the case of asymmetric dot-lead interaction.

  8. Repeating collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles

    SciTech Connect

    Li, Z. B.; Chen, Z. F.; He, Y. Z.; Bao, C. G.

    2010-09-15

    A dynamic process of repeating collisions of a pair of trapped neutral particles with weak spin-dependent interaction is designed and studied. A related theoretical derivation and numerical calculation have been performed to study the inherent coordinate-spin and momentum-spin correlations. Because of the repeating collisions, the effect of the weak interaction can be accumulated and enlarged, and therefore can be eventually detected. Numerical results suggest that the Cr-Cr interaction, which has not yet been completely clarified, could thereby be determined. The design can be used in general to determine various interactions among neutral atoms and molecules, in particular for the determination of very weak forces.

  9. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction

    PubMed Central

    Xia, Jing; Zhang, Xichao; Yan, Ming; Zhao, Weisheng; Zhou, Yan

    2016-01-01

    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient spin wave generation and propagation, with potential applications in spintronic and magnonic devices. PMID:27143311

  10. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  11. Zeeman splitting and spin-orbit interaction in Hg1-xCdxTe inversion layers

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Lv, Meng; Liu, Xinzhi; Xu, Yonggang; Wang, Reng; Lin, Tie; Yu, Guolin; Dai, Ning; Chu, Junhao

    2016-07-01

    We studied the suppression of the weak antilocalization (WAL) effect and the dependence of spin dynamics for a two-dimensional electron gas in the inversion layers of two different Hg1-x Cd x Te samples in the presence of in-plane magnetic field (B//) . The WAL magnetoconductance is fitted by the Golub model to acquire the variations of phase coherence time with increasing B// . The effective g-factors in the form of \\vert mr\\ast g\\ast\\vert (mr\\ast is the relative effective mass) at zero magnetic field and high magnetic field are obtained by investigating the electron dephasing with varying B// and measuring the spin splitting of the Shubnikov-de Hass oscillations, respectively. As the obtained g-factors are in accordance with the reported results, the suppression of the WAL effect can be attributed to the competition between Zeeman splitting and spin-orbit interaction rather than to the microroughness scattering.

  12. Spin-orbit interaction in InAs/GaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Qu, Fanming; Beukman, Arjan J. A.; de Vries, Fokko K.; van Veen, Jasper; Nadj-Perge, Stevan; Wimmer, Michael; Skolasinski, Rafal J.; de Vries, David; Nguyen, Binh-Minh; Yi, Wei; Thorp, Jacob; Sokolich, Marko; Manfra, Michael J.; Marcus, Charles M.; Kouwenhoven, Leo P.

    We investigated spin-orbit interaction (SOI) in InAs/GaSb double quantum wells. A combination of dual-gating and spatially separated electron and hole gases allows for in situ engineering of the band structure. In both the trivial and inverted band alignment regimes, zero-field spin splitting due to SOI was extracted from the beating of the Shubnikov-de Haas oscillations. Deep in the electron regime, we observed anomalous magnetoresistance that points to a highly anisotropic Fermi surface as a result of the intermixing of Dresselhaus and Rashba SOI. In the inverted regime close to the hybridization gap, we obtained an oscillating spin-splitting as a function of electron density, as expected from the band structure calculation.

  13. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  14. Dynamics of intramolecular spin exchange interaction of a nitronyl nitroxide diradical in solution and on surfaces

    NASA Astrophysics Data System (ADS)

    Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J.

    2016-02-01

    In this paper we report the study of the dynamics of a thermally modulated intramolecular spin exchange interaction of a novel diradical nitronyl nitroxide-substituted disulfide in solution and when it is grafted on a gold surface. The structure of this diradical was designed to have flexible chains leading to intramolecular collisions and hence spin exchange interaction, and with an appropriate binding group to be grafted on the gold surface to study its behavior on the surface. In solution, this diradical shows a strong spin exchange interaction between both radicals which is modulated by temperature, but also gold nanoparticles (AuNPs) functionalized with this diradical permit investigation of such a phenomenon in surface-grafted radicals. The spin-labelled AuNP synthesis was optimized to obtain high coverage of spin labels to lead to high spin exchange interaction. The obtained AuNPs were studied by Electron Paramagnetic Resonance (EPR), UV-Vis, and IR spectroscopies, HR-TEM microscopy, Cyclic Voltammetry (CV), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA). This inorganic-organic hybrid material also showed dipolar interactions between its radicals which were confirmed by the appearance in the EPR spectra of an |Δms| = 2 transition at half-field. This signal gives direct evidence of the presence of a high-spin state and permitted us to study the nature of the magnetic coupling between the spins which was found to be antiferromagnetic. Self-Assembled Monolayers (SAMs) of these radicals on the Au (111) substrate were also prepared and studied by contact angle, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Cyclic Voltammetry and EPR. The magnetic as well as the electrochemical properties of the hybrid surfaces were studied and compared with the properties of this diradical in solution. Analogies between the properties of AuNPs with high coverage of radicals and those of SAM were

  15. Complete radiative terms for the electron/electronic energy equation

    SciTech Connect

    Stanley, S.A.; Carlson, L.A.

    1994-10-01

    A derivation of the radiative terms in the electron/electronic energy equation is presented, properly accounting for the effects of absorption and emission of radiation on the individual energy modes of the gas. This electron/electronic energy equation with the complete radiative terms has successfully been used to model the radiation-dominated precursor ahead of the bow shock of a hypersonic vehicle entering the Earth`s atmosphere. 8 refs.

  16. A state interaction spin-orbit coupling density matrix renormalization group method.

    PubMed

    Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic

    2016-06-21

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter. PMID:27334156

  17. Thermodynamics of interacting cold atomic Fermi gases with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jensen, Scott; Alhassid, Yoram; Gilbreth, Christopher

    New physics is suggested with the prediction of novel phases in cold atom systems when a synthetic spin-orbit coupling is introduced. In particular, recent studies show that a new type of Bose-Einstein condensate, termed Rashbon-BEC, is formed when a generalized Rashba spin-orbit term is present. The Rashbon-BEC phase can be obtained by tuning the spin-orbit coupling strength even in the case of finite negative scattering length. This stands in contrast to the BCS-BEC crossover in the absence of spin-orbit coupling where a negative scattering length is associated with BCS physics, and its divergence signals the crossover. In our work we apply finite-temperature quantum Monte Carlo methods to a spherical Rashba spin-orbit coupled two-species Fermi gas with contact s-wave interaction in three dimensions. We will discuss the phase diagram for this system, and its crossover behavior from BCS to Rashbon-BEC. This work was supported in part by the Department of Energy Grant No. DE-FG-0291-ER-40608.

  18. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  19. Strong Spin-Orbit Interaction of Light in Plasmonic Nanostructures and Nanocircuits

    NASA Astrophysics Data System (ADS)

    Pan, Deng; Wei, Hong; Gao, Long; Xu, Hongxing

    2016-10-01

    The coupling between the spin and orbital degrees of freedom of photons is usually very weak, but recent studies have shown that this spin-orbit interaction (SOI) can be easily detected in metal structures. Here we show how the SOI of light is enhanced in plasmonic metal nanostructures, explore the underlying mechanism for this effect, and further demonstrate how it could potentially be harnessed for nanophotonic applications. Specifically, we show that the scattering of circularly polarized photons by a single metal nanosphere causes light to propagate along sharply twisted chiral trajectories near the nanosphere, thus revealing a strong SOI in the near field of surface plasmons. We find similar spin-dependent trajectories of light induced by a strong SOI also in the near field of surface plasmons generated on the tip of a metal nanowire. We utilize this strong SOI to for the first time experimentally realize spin sorting of photons in a compact plasmonic nanocircuit. The findings offer insights into how the SOI of light can be enhanced and explored for a new degree of freedom in plasmonic nanocircuits and future spin-controlled nanophotonic devices.

  20. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  1. A state interaction spin-orbit coupling density matrix renormalization group method.

    PubMed

    Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic

    2016-06-21

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  2. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    NASA Astrophysics Data System (ADS)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  3. Membrane-Sugar Interactions Probed by Pulsed Electron Paramagnetic Resonance of Spin Labels.

    PubMed

    Konov, Konstantin B; Leonov, Dmitry V; Isaev, Nikolay P; Fedotov, Kirill Yu; Voronkova, Violeta K; Dzuba, Sergei A

    2015-08-13

    Sugars can stabilize biological systems under extreme desiccation and freezing conditions. Hypothetical molecular mechanisms suggest that the stabilization effect may be determined either by specific interactions of sugars with biological molecules or by the influence of sugars on the solvating shell of the biomolecule. To explore membrane-sugar interactions, we applied electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), to phospholipid bilayers with spin-labeled lipids added and solvated by aqueous deuterated sucrose and trehalose solutions. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The spin-labeled lipids were 1,2-dipalmitoyl-sn-glycero-3-phospho(TEMPO)choline (T-PCSL), with spin-label TEMPO at the lipid polar headgroup. The deuterium ESEEM amplitude was calibrated using known concentrations of glassy deuterated sugar solvents. The data obtained indicated that the sugar concentration near the membrane surface obeyed a simple Langmuir model of monolayer adsorption, which assumes direct sugar-molecule bonding to the bilayer surface. PMID:26214261

  4. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS–BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow–Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree–Fock–Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted

  5. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  6. Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction

    NASA Astrophysics Data System (ADS)

    Lü, Hao; Zhu, Shao-Bing; Qian, Jun; Wang, Yu-Zhu

    2015-09-01

    Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose-Einstein condensate imposed by Raman-induced spin-orbit coupling. We find that, in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction. Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 11104292).

  7. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  8. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    NASA Astrophysics Data System (ADS)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.

    2016-04-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.

  9. Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Thakur, Pradeep; Durganandini, P.

    2015-06-24

    We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.

  10. Spin and Isospin Dependent Interactions in Classical Molecular Simulations of Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Amason, Charlee; Caplan, Matt; Horowitz, Cj

    2015-10-01

    A neutron star is the hot, incredibly dense remnant of a massive star gone supernova. Extreme conditions on neutron stars allow for the formation of exotically shaped nuclear matter, known colloquially as ``nuclear pasta.'' Competition between the strong nuclear force and the repulsive Coulomb force results in frustration of the neutron star crust, ultimately resulting in these pasta shapes. Previous work at Indiana University has used classical molecular dynamic simulations to model the formation of this pasta. For this project, we introduce a similar model with a new spin dependent interaction. Using this model, we perform molecular dynamics simulations of both symmetric nuclear matter and pure neutron matter with 400 particles. The energies found are similar to those in chiral effective field theory calculations. When we include Coulomb interactions, the model produces pasta shapes. Future work will incorporate this spin potential into larger pasta simulations. Supported by the National Science Foundation REU at Indiana University.

  11. Effect of spin-orbit interaction on the electronic structure of indium-antimonide d bands

    SciTech Connect

    Sobolev, V. V. Perevoshchikov, D. A.

    2015-05-15

    The bands and densities of states of d bands in indium antimonide (InSb) are determined taking into account and disregarding the spin-orbit interaction. It is established that taking into account the effect of spin-orbit interaction results also in a substantial change in the dispersion of the obtained bands instead of only in the doublet splitting of the band of core d levels at ∼(0.79–0.86) eV. It is established that it is indium 4d states with e{sub g} and t{sub 2g} symmetry that give the main contribution to the density of states. The calculations are carried out by the LAPW method with the exchange-correlation potential in the generalized gradient approximation (LAPW + GGA)

  12. Spin transport in an Aharonov-Bohm ring with exchange interaction

    NASA Astrophysics Data System (ADS)

    Savenko, I. G.; Polozkov, R. G.; Shelykh, I. A.

    2013-11-01

    We investigate spin-dependent conductance through a quantum Aharonov-Bohm ring containing localized electrons which interact with the propagating flow of electrons via exchange interaction of the ferromagnetic or antiferromagnetic type. We analyze the conductance oscillations as a function of both the chemical potential (particle concentration) and external magnetic field. It is demonstrated that the amplitude of the conductance oscillations in the ballistic regime is determined by the value of the noncompensated spin localized in the ring. The results are in agreement with the concept of fractional quantization of the ballistic conductance, proposed by us earlier [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.71.113311 71, 113311 (2005)].

  13. Indirect exchange interaction in fully metal-semiconductor separated single-walled carbon nanotubes revealed by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Havlicek, M.; Jantsch, W.; Wilamowski, Z.; Yanagi, K.; Kataura, H.; Rümmeli, M. H.; Malissa, H.; Tyryshkin, A.; Lyon, S.; Chernov, A.; Kuzmany, H.

    2012-07-01

    The ESR response from highly metal-semiconductor (M-SC) separated single-walled carbon nanotubes (SWCNTs) for temperatures T between 0.39 and 200 K is characteristically different for the two systems. The signal originates from defect spins but interaction with free electrons leads to a larger linewidth for M tubes. The latter decreases with increasing T, whereas it increases with T for SC tubes. The spins undergo a ferromagnetic phase transition below around 10 K. Indirect exchange is suggested to be responsible for the spin-spin interaction, supported by RKKY interaction in the case of M tubes. For SC tubes, the spin-lattice relaxation via an Orbach process is suggested to determine the linewidth.

  14. Detrimental effect of interfacial Dzyaloshinskii-Moriya interaction on perpendicular spin-transfer-torque magnetic random access memory

    SciTech Connect

    Jang, Peong-Hwa; Lee, Seo-Won E-mail: kj-lee@korea.ac.kr; Song, Kyungmi; Lee, Seung-Jae; Lee, Kyung-Jin E-mail: kj-lee@korea.ac.kr

    2015-11-16

    Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performance of perpendicular spin transfer torque memory has not been explored yet. We show based on numerical studies that the interfacial Dzyaloshinskii-Moriya interaction decreases the thermal energy barrier while increases the switching current. As high thermal energy barrier as well as low switching current is required for the commercialization of spin torque memory, our results suggest that the interfacial Dzyaloshinskii-Moriya interaction should be minimized for spin torque memory applications.

  15. Interactive effects of body position and perceived exertion during spinning exercises.

    PubMed

    Rendos, Nicole K; Musto, Anthony A; Signorile, Joseph F

    2015-03-01

    Spinning is a popular group exercise taught in health and fitness facilities worldwide. Throughout a Spinning workout session, intensity is variable and is controlled by body position on the Spinning stationary cycle and perceived resistance. This study examined the effects of 3 body positions and 4 levels of perceived exertion (RPE) on cardiorespiratory response and vastus lateralis normalized electromyographical activity (NrmsEMGVL). Eleven participants (24.4 ± 6.3 years) with 3.2 ± 2.2 years of Spinning experience completed twelve 3-minute randomly assigned Spinning conditions across 4 separate testing days after an 8-hour fast. Conditions were determined by body position (seated, running, and standing climb [SC]) and RPE (low, low-medium, medium-high, and high). Cardiorespiratory data and NrmsEMGVL were recorded continuously during each Spinning condition. Respiratory rate and oxygen consumption were significantly higher for running and SC than seated, and minute ventilation was significantly higher for running than seated. All cardiorespiratory values were higher at medium-high and high RPE, than low or medium-low RPE, and high RPE generated higher respiratory rate and respiratory exchange ratio than medium-high RPE. Significant body position × RPE interactions were observed for heart rate (HR) and NrmsEMGVL with running and SC producing higher HRs than seated at low and high RPE, and running producing higher NrmsEMGVL than seated at low RPE. Results indicate that running and SC provide the greatest cardiorespiratory responses, and maximal efforts are not needed for these responses. Additionally, HR seems to be a poor marker of oxygen consumption, especially at high RPEs.

  16. Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions.

    PubMed

    Hayami, Shinya; Hiki, Kenji; Kawahara, Takayoshi; Maeda, Yonezo; Urakami, Daisuke; Inoue, Katsuya; Ohama, Mitsuo; Kawata, Satoshi; Sato, Osamu

    2009-01-01

    Iron(III) spin-crossover compounds [Fe(pap)(2)]ClO(4) (1), [Fe(pap)(2)]BF(4) (2), [Fe(pap)(2)]PF(6) (3), [Fe(qsal)(2)]NCS (4), and [Fe(qsal)(2)]NCSe (5) (Hpap=2-(2-pyridylmethyleneamino)phenol and Hqsal=2-[(8-quinolinylimino)methyl]phenol) were prepared and their spin-transition properties investigated by magnetic susceptibility and Mössbauer spectroscopy measurements. The iron(III) compounds exhibited spin transition with thermal hysteresis. Single crystals of the iron(III) compounds were obtained as suitable solvent adducts for X-ray analysis, and structures in high-spin (HS) and low-spin (LS) states were revealed. Light-induced excited-spin-state trapping (LIESST) effects of the iron(III) compounds were induced by light irradiation at 532 nm for 1-3 and at 800 nm for 4 and 5. The activation energy E(a) and the low-temperature tunneling rate k(HL)(T-->0) of iron(III) LIESST compound 1 were estimated to be 1079 cm(-1) and 2.4x10(-8) s(-1), respectively, by HS-->LS relaxation experiments. The Huang-Rhys factor S of 1 was also estimated to be 50, which was similar to that expected for iron(II) complexes. It is thought that the slow relaxation in iron(III) systems is achieved by the large structural distortion between HS and LS states. Introduction of strong intermolecular interactions, such as pi-pi stacking, can also play an important role in the relaxation behavior, because it can enhance the structural distortion of the LIESST complex. PMID:19191246

  17. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.

    PubMed

    Khudaverdyan, M; Alt, W; Kampschulte, T; Reick, S; Thobe, A; Widera, A; Meschede, D

    2009-09-18

    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.

  18. Importance of Coriolis interaction and pseudo-spin doublets in deformed proton emitters

    SciTech Connect

    Ferreira, Lidia S.; Costa Lopes, M.; Maglione, Enrico

    2006-04-26

    Theoretical aspects in the calculation of the half lives for proton decay from deformed nuclei lying beyond the proton drip line are discussed. The presence of pseudo-spin doublets close to the Fermi energy depends strongly on the parameterization of the single particle mean field. The calculation of the decay widths from these states, is very sensitive to the Coriolis coupling, and the pairing residual interaction cannot be ignored in these studies, for a correct interpretation of data.

  19. Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations

    NASA Astrophysics Data System (ADS)

    Litvinchuk, A. P.

    2009-08-01

    The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.

  20. Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field

    NASA Astrophysics Data System (ADS)

    Fang, Jiancheng; Chen, Yao; Lu, Yan; Quan, Wei; Zou, Sheng

    2016-07-01

    We report on the dynamics of spin-polarized Rb and 21Ne ensembles in which the 21Ne spin ensemble in a glass vapor cell experiences a high magnetic field produced by a Rb electron-spin ensemble. The coupled spin ensembles are modeled and the response of the transverse-step magnetic field excitation is solved and studied experimentally. Moreover, we analyze the frequency response of the ensembles to a transverse-oscillating magnetic field. We demonstrate the strong transverse damping and large frequency shift of the 21Ne spin ensemble as the precession frequencies of 21Ne spin and Rb spin match and the magnetic resonance spectroscopies of the two ensembles merge into one. We also demonstrate the operation of the spin ensembles as a self-compensating co-magnetometer that is insensitive to low-frequency magnetic fields that would be useful for rotation rate sensing. For such sensing applications, a large Rb density is achieved to polarize the 21Ne spins. This density leads to a high Rb electron spin magnetic field and we demonstrate its effect on the dynamics of the co-magnetometer.

  1. Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters.

    PubMed

    Kostopoulou, A; Brintakis, K; Vasilakaki, M; Trohidou, K N; Douvalis, A P; Lascialfari, A; Manna, L; Lappas, A

    2014-04-01

    Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibility in aqueous media, are composed of ∼13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, φ, of the inorganic magnetic phase that goes from individual colloidal nanoparticles (φ = 0.47) to clusters (φ = 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behaviour at 300 K. Comparative Mössbauer spectroscopic studies imply that intra-cluster interactions come into play. New insight emerges from the clusters' temperature-dependent ac susceptibility that displays two maxima in χ''(T), with strong frequency dispersion. Scaling-law analysis together with the observed memory effects suggests that a superspin-glass state settles-in at TB ∼ 160-200 K, while at lower-temperatures, surface spin-glass freezing is established at Tf ∼ 40-70 K. In such nanoparticle-assembled systems, with increased φ, Monte Carlo simulations corroborate the role of the inter-particle dipolar interactions and that of the constituent nanoparticles' surface spin disorder in the emerging spin-glass dynamics.

  2. Quantum spin dynamics and entanglement in systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rey, Ana M.

    One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.

  3. Spin-density-functional theory for imbalanced interacting Fermi gases in highly elongated harmonic traps

    NASA Astrophysics Data System (ADS)

    Gao Xianlong; Asgari, Reza

    2008-03-01

    We numerically study imbalanced two component Fermi gases with attractive interactions in highly elongated harmonic traps. An accurate parametrization formula for the ground state energy is presented for a spin-polarized attractive Gaudin-Yang model. Our studies are based on an accurate microscopic spin-density-functional theory through the Kohn-Sham scheme which employs the one-dimensional homogeneous Gaudin-Yang model with a Luther-Emery-liquid ground-state correlation as a reference system. A Thomas-Fermi approximation is examined incorporating the exchange-correlation interaction. By studying the charge and spin density profiles of the system based on these methods, we gain a quantitative understanding of the role of attractive interactions and polarization on the formation of the two-shell structure, with the coexisted Fulde-Ferrell-Larkin-Ovchinnikov-type phase in the center of the trap and either the BCS superfluid phase or the normal phase at the edges of the trap. Our results are in good agreement with the recent theoretical consequences.

  4. Quantum Monte Carlo Method for Heavy Atomic and Molecular Systems with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Melton, Cody; Mitas, Lubos

    We present a new quantum Monte Carlo (QMC) method that can treat spin-orbit and other types of spin-depentent interactions explicitly. It is based on generalization of the fixed-phase and projection of the nonlocal operators with spinor trial wave functions. For testing the method we calculate several atomic and molecular systems such as Bi, W, Pb, PbH and PbO, some of them with both large- and small-core pseudopotentials. We validate the quality of the results against other correlated methods such as configuration interaction in two-component formalism. We find excellent agreement with extrapolated values for the total energies and we are able to reliably reproduce experimental values of excitation energies, electron affinity and molecular binding. We show that in order to obtain the agreement with experimental values the explicit inclusion of the spin-orbit interactions is crucial. U.S. D.O.E. grant de-sc0012314 and NERSC Contract No. DE-AC02-05CH11231.

  5. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    DOE PAGESBeta

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  6. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics.

    PubMed

    Eremeev, S V; Nechaev, I A; Echenique, P M; Chulkov, E V

    2014-11-04

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

  7. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    PubMed Central

    Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V.

    2014-01-01

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications. PMID:25365945

  8. Magnetic friction of a nanometer-sized tip scanning a magnetic surface: Dynamics of a classical spin system with direct exchange and dipolar interactions between the spins

    NASA Astrophysics Data System (ADS)

    Fusco, C.; Wolf, D. E.; Nowak, U.

    2008-05-01

    We theoretically study the occurrence of magnetic friction of a nanometer-sized tip scanning a magnetic surface by studying the dynamics of a model of classical spins interacting through dipolar and exchange interactions, neglecting thermal effects. We find that for small scanning velocities, the friction force linearly scales with the velocity, with a slope proportional to the phenomenological damping parameter of the Landau-Lifshitz-Gilbert equation. At higher velocities, the friction vs velocity relationship becomes rather complex with the presence of a maximum that is explained by the excitations of spin-wave resonances in the sample.

  9. Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode

    SciTech Connect

    Sproll, Markus; Noske, Matthias; Kammerer, Matthias; Dieterle, Georg; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Bauer, Hans; Gangwar, Ajay; Woltersdorf, Georg; Back, Christian H.

    2014-01-06

    We show, by experiments and micromagnetic simulations in vortex structures, that an active “dual frequency” excitation of both the sub-GHz vortex gyromode and multi-GHz spin waves considerably changes the frequency response of spin wave mediated vortex core reversal. Besides additional minima in the switching threshold, a significant broadband reduction of the switching amplitudes is observed, which can be explained by non-linear interaction between the vortex gyromode and the spin waves. We conclude that the well known frequency spectra of azimuthal spin waves in vortex structures are altered substantially, when the vortex gyromode is actively excited simultaneously.

  10. Final-state interaction as origin of single-spin asymmetry in semi-inclusive DIS

    SciTech Connect

    Hwang, D.S.

    2005-05-06

    Recent measurements from the HERMES, SMC, CLAS and COMPASS collaborations show a remarkably large azimuthal single-spin asymmetries of the proton in semi-inclusive pion leptoproduction {gamma}*(q)p{up_arrow} {yields} {pi}X. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with J{sub p}{sup z} = {+-}(1/2) to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum Lz of the proton's constituents and is thus distinct for different proton spin amplitudes. We then find that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality Q2 at fixed xbj.

  11. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z.; Adamek, E. R.; Brandt, A.; Callahan, N. B.; Clayton, S. M.; Currie, S. A.; Ito, T. M.; Makela, M.; Masuda, Y.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Young, A. R.

    2016-08-01

    We report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiPonSS = (3 .3-5.6+1.8) ×10-6 . For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiPonAl = (3 .6-5.9+2.1) ×10-6 . For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6 .7-2.5+5.0) ×10-6 . The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiPonSS < 6.2 ×10-6 (90% C.L.) and βNiPonAl < 7.0 ×10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  12. Interactions of Low-Energy Spin-Polarized ^4He^+ Ions with Au(100)

    NASA Astrophysics Data System (ADS)

    Bixler, D. L.; Lancaster, J. C.; Popple, R. A.; Dunning, F. B.; Walters, G. K.

    1998-05-01

    A spin polarized He^+ ion source has been developed to study the dynamics of ion-surface interactions. The He^+ ions are produced by Penning ionization in collisions between electron-spin-polarized He(2^3S) metastable atoms contained in a weak rf-excited discharge. The ions are extracted from the discharge and focused onto a clean Au(100) surface using a series of electrostatic lenses. The impact energy can be varied from <=10eV to >=650eV and typical beam polarizations are 10-15%. Measurements of the polarization of electrons ejected from the surface as a result of Auger neutralization reveal spin correlation that can be explained by considering the local perturbation in the surface electronic structure induced by the presence of the (polarized) He^+ ion. The calculated induced densities of states are spin dependent and exhibit sharp Kondo-like features near the Fermi level. These features, and their influence on Auger neutralization, are being further explored through measurements at several different incident ion energies. *This research is support by the U. S. Department of Energy and the Robert A. Welch Foundation.

  13. Quartic AdS interactions in higher-spin gravity from Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C.

    2015-11-01

    Clarifying the locality properties of higher-spin gravity is a pressing task, but notoriously difficult due to the absence of a weakly-coupled flat regime. The simplest non-trivial case where this question can be addressed is the quartic self-interaction of the AdS scalar field present in the higher-spin multiplet. We investigate this issue in the context of the holographic duality between the minimal bosonic higher-spin theory on AdS4 and the free O( N) vector model in three dimensions. In particular, we determine the exact explicit form of the derivative expansion of the bulk scalar quartic vertex. The quartic vertex is obtained from the field theory four-point function of the operator dual to the bulk scalar, by making use of our previous results for the Witten diagrams of higher-spin exchanges. This is facilitated by establishing the conformal block expansions of both the boundary four-point function and the dual bulk Witten diagram amplitudes. We show that the vertex we find satisfies a generalised notion of locality.

  14. Angular momentum analysis of interactions between spin-(1/2) particles

    SciTech Connect

    Riddell, A.G.; Stedman, G.E.

    1984-10-01

    In the interaction of N spin-(1/2) particles, the possible types of dependence of the cross section on polarization and momentum three-vectors and/or on two-spinor components may be defined with the use of angular-momentum-coupling trees with j = 1 and/or j = (1/2) external labels, respectively. We show, using integrity-basis theory, that all such trees with spin-(1/2) labels only may be expressed as sums of products of Kronecker delta functions and 2jm symbols in the spinor component labels; this is related to Kramers's method of spinor invariants. The integrity-basis method also identifies the nature of inter-relationships between the spinor invariants. Explicit reductions of angular momentum trees of degree 2N in spin-(1/2) labels are given for N< or =4. As simple illustrations of the application of such trees, we discuss the Dirac and Anderson spin Hamiltonians of nonrelativistic exchange theory in this context and also develop a concise description of the polarization dependence of Moller scattering in QED.

  15. Spin density in a triazole-nitronyl-nitroxide radical presenting linear ferromagnetic interactions: role of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Gillon, Béatrice; Aebersold, Michael A.; Kahn, Olivier; Pardi, Luca; Delley, Bernard

    1999-11-01

    The compound 2-{3-[4-methyl-1,2,4-triazolyl]}-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide, abbreviated as Metrz-Nit, crystallizes in the non-centrosymmetric space group P2 12 12 1. The investigation of the magnetic properties has revealed the occurrence of intermolecular ferromagnetic interactions. The crystal structure has been refined by neutron diffraction at 11 K. The spin density distribution has been determined from polarized neutron diffraction experiments carried out at 1.5 K under a magnetic field of 5 T. As expected, the main contributions of the spin distribution have been observed in the 2p π orbitals of the nitrogen and oxygen atoms of the two NO groups, and a significant negative spin population has been detected on the sp 2 carbon atom of the nitronyl nitroxide moiety. The spin distribution is slightly dissymmetrical, so that the sp 3 carbon atoms in α-position of the nitro nitrogen atoms carry spin populations of opposite signs. Concerning the triazole ring, the main spin population, of negative sign, has been found on the nitrogen atom occupying the 3-position. The carbon atom of the methyl group attached to the 4-position has been also found to carry a significant negative spin population. The spin populations on the hydrogen atoms have been determined. These experimental data have been compared to the results of LSD calculations performed on an isolated molecule. The role of intermolecular interactions in the spin distribution has been discussed.

  16. Critical and compensation points of a mixed spin-2-spin-5/2 Ising ferrimagnetic system with crystal field and nearest and next-nearest neighbors interactions

    NASA Astrophysics Data System (ADS)

    De La Espriella, N.; Mercado, C. A.; Buendía, G. M.

    2016-11-01

    We perform Monte Carlo simulations to analyze the magnetic properties of a mixed Ising model, where spins S that can take 5 values , 0 , ± 1 , ± 2 , alternate on a square lattice with spins σ that can take 6 values, ± 5 / 2 , ± 3 / 2 , ± 1 / 2 . The Hamiltonian of the model includes an antiferromagnetic interaction between the S and σ spins, nearest-neighbors on the lattice, a ferromagnetic interaction between the S spins, next-nearest neighbors on the lattice, and a crystal field. We found that the system presents compensation temperatures in a wide range of the parameters. At the compensation temperature the total magnetization is zero but, contrary to what happens at the critical temperature, the system remains ordered. These temperatures have important technological applications, particularly in the field of thermo-magnetical recording. We calculate the finite-temperature phase diagram of the model. We found that the presence of the compensation temperature is strongly dependent on the next-nearest neighbor interaction term between the S spins, while its value can be calibrated by changing the crystal field.

  17. Magnetic interactions and microscopic spin Hamiltonian approaches for 3d 3 ions at trigonal symmetry sites

    NASA Astrophysics Data System (ADS)

    Yue, Hao; Zi-Yuan, Yang

    2006-04-01

    The spin-Hamiltonian (SH) parameters ( D, g //, and g ⊥) for 4A2(3d 3)-state ions at trigonal symmetry sites, taking into account the spin-spin (SS), the spin-other-orbit (SOO), the orbit-orbit (OO) magnetic interactions besides the well-known spin-orbit (SO) magnetic interaction, are studied in the intermediate-field coupling scheme using the CDM/MSH (Complete Diagonalization Method/ Microscopic Spin Hamiltonian) program recently developed. It is shown that the SH parameters arise from five microscopic mechanisms including SO coupling mechanism, SS coupling mechanism, SOO coupling mechanism, OO coupling mechanism, and SO-SS-SOO-OO combined coupling mechanism. The relative importance of the five (SO, SS, SOO, OO and combined SO-SS-SOO-OO) contributions to the SH parameters is investigated. It is shown that the SO coupling mechanism in these coupling mechanisms is the most important one. The effect of the OO coupling mechanism on the energy levels is appreciable whereas that on the SH parameters is negligible. The contribution from the SS coupling mechanism to the zero-field splitting (ZFS) parameter D is appreciable but is quite small to g-factors: g // and g ⊥. In contrast, the contribution from the SOO coupling mechanism to the ZFS parameter D is quite small but is appreciable to g-factors. Two perturbation theory method approaches have been examined using CDM/MSH program. It is found that the analytical expressions developed by Macfarlane for D, g //, and g ⊥ work well in most of the CF ranges considered whereas those developed by Zdansky for D do not work well in almost all the CF ranges considered. The illustrative evaluation is performed for typical laser material Cr 3+: Al 2O 3. The good agreements between the theoretical values and the experimental finding are obtained. It is found that the percentage difference δ (=|D-D|/|D|×100%) reaches 20.9% for laser material Cr 3+: Al 2O 3. The investigation indicates that the contribution to the ZFS parameter

  18. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe–Co metallic glass system of composition [(Co1‑x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  19. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses.

    PubMed

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent 'Stoner type' magnetization for the amorphous alloys in contrast to 'Heisenberg type' in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study. PMID:27143686

  20. Real beards and real networks: a spin-glass model for interacting individuals

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    ''I want to be different, just like all the other different people'' sang the band King Missile. Whether they are the Beatniks of the 1950s, the punks of the 1970s, or the hipsters of today, non-conformists often tend to look the same, seemingly at odds with their goal of non-conformity. The spin-glass model, originally developed to describe the interaction of magnetic spins, and since applied to situations as diverse as the electrical activity of networks of neurons, to trades on a financial market, has recently been used in social science to study populations of interacting individuals comprised of a mix of both conformists and anti-conformists - or hipsters. Including delay effects for the interactions between individuals has been shown to give a system with non-trivial dynamics with a phase transition from stable behaviour to periodic switching between two states (let's call them bushy bearded and clean shaven). Analytic solutions to such a model are possible, but only for particular assumptions about the interaction and delay matrices. In this work we will show what happens when the interactions in the model are based on real-world networks with ''small-world'' effects and clustering.

  1. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  2. Quantitative analysis of spin exchange interactions to identify β strand and turn regions in Ure2 prion domain fibrils with site-directed spin labeling.

    PubMed

    Ngo, Sam; Chiang, Vicky; Guo, Zhefeng

    2012-11-01

    Amyloid formation is associated with a range of debilitating human disorders including Alzheimer's and prion diseases. The amyloid structure is essential for understanding the role of amyloids in these diseases. Amyloid formation of Ure2 protein underlies the yeast prion [URE3]. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structure of amyloid fibrils formed by the Ure2 prion domain. The Ure2 prion domain under study contains a Sup35M domain at C-terminus as a solubilization element. We introduced spin labels at every residue from positions 2-15, and every 5th residue from positions 20-80 in Ure2 prion domain. EPR spectra at most labeling sites show strong spin exchange interactions, suggesting a parallel in-register β structure. With quantitative analysis of spin exchange interactions, we show that residues 8-12 form the first β strand, followed by a turn at residues 13-14, and then the second β strand from residue 15 to at least residue 20. Comparison of the spin exchange frequency for the fibrils formed under quiescent and agitated conditions also revealed differences in the fibril structures. Currently there is a lack of techniques for in-depth structural studies of amyloid fibrils. Detailed structural information is obtained almost exclusively from solid-state NMR. The identification of β-strand and turn regions in this work suggests that quantitative analysis of spin exchange interactions in spin-labeled amyloid fibrils is a powerful approach for identifying the β-strand and turn/loop residues and for studying structural differences of different fibril polymorphs.

  3. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  4. Interaction effects in superconductor/quantum spin Hall devices: Universal transport signatures and fractional Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Aasen, David; Lee, Shu-Ping; Karzig, Torsten; Alicea, Jason

    2016-10-01

    Interfacing s -wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here, we predict e -periodic Coulomb-blockade peaks, as recently observed in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e /2 . These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.

  5. Floquet-engineering topological and spin-dependent bands with interacting ultracold fermions

    NASA Astrophysics Data System (ADS)

    Jotzu, Gregor; Messer, Michael; Görg, Frederik; Greif, Daniel; Lebrat, Martin; Uehlinger, Thomas; Desbuquois, Rémi; Esslinger, Tilman

    2016-05-01

    Periodically driven quantum systems, when observed on time-scales longer than one modulation period, can be described by effective Floquet Hamiltonians that show qualitatively new features. Using a magnetic field gradient, we apply an oscillating force to ultracold fermions in an optical lattice. The resulting effective energy bands then become spin dependent, allowing for a tunable ratio of the effective mass for each internal state, also giving access to the regime where one spin is completely localized whilst the other remains itinerant. In a honeycomb lattice, circular modulation leads to the appearance of complex next-nearest neighbour tunnelling. This corresponds to a staggered magnetic flux in the lattice, allowing for the realisation of Haldane's model of a topological Chern insulator. When spin dependence is included, time-reversal symmetry can be restored giving rise to the Kane-Mele model. A crucial question is whether Floquet engineering can be extended to interacting systems, how the resulting Hamiltonians are modified, and whether the system thermalizes to a steady state. In particular, we study how heating in the system depends on the modulation and interaction parameters and identify regimes where it becomes negligible.

  6. Drift transport of helical spin coherence with tailored spin–orbit interactions

    PubMed Central

    Kunihashi, Y.; Sanada, H.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Sogawa, T.

    2016-01-01

    Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. PMID:26952129

  7. Spin-dependent electron emission from metals in the neutralization of He{sup +} ions

    SciTech Connect

    Alducin, M.; Roesler, M.; Juaristi, J.I.

    2005-08-15

    We calculate the spin-polarization of electrons emitted in the neutralization of He{sup +} ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He{sup +} ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He{sup +} ion neutralization process and on the electronic properties of the surface.

  8. Protection of a non-Fermi liquid by spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Kiselev, M. N.

    2015-07-01

    We show that a thermoelectric transport through a quantum dot-single-mode quantum point contact nanodevice demonstrating pronounced fingerprints of nonFermi liquid (NFL) behavior in the absence of external magnetic field is protected from magnetic field NFL destruction by strong spin-orbit interaction (SOI). The mechanism of protection is associated with the appearance of additional scattering processes due to lack of spin conservation in the presence of both SOI and small Zeeman field. The interplay between in-plane magnetic field B ⃗ and SOI is controlled by the angle between B ⃗ and B⃗SOI. We predict strong dependence of the thermoelectric coefficients on the orientation of the magnetic field and discuss a window of parameters for experimental observation of NFL effects.

  9. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    SciTech Connect

    Li, Sheng-Chang; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is found that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.

  10. Some remarks on p-spin interaction models in a random field

    NASA Astrophysics Data System (ADS)

    Haddad, T. A. S.; Vieira, A. P.; Salinas, S. R.

    2004-10-01

    We present some calculations for the thermodynamic behavior of mean-field ferromagnetic p-spin interaction models in the presence of quenched random fields. For both Ising and spherical spin variables, we use the law of large numbers, without recourse to the replica trick, to obtain a free-energy functional in terms of the order parameter and an extra non-ordering density. In the spherical limit, we show that the transition is continuous for p=2, but turns into first order for p⩾3, regardless of the probability distribution of the random fields. In the Ising case, for p=2, we recover previously known results. The free-energy functional obtained in this treatment can be used as a starting point for a dynamical study of these models.

  11. Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Steckel, F.; Hess, C.; Ji, H. W.; Hor, Y. S.; Cava, R. J.; Büchner, B.; Kataev, V.

    2016-09-01

    The magnetic and electronic properties of the magnetically doped topological insulator Bi2 -xMnxTe3 were studied using electron-spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated high-quality single crystals of Bi2 -xMnxTe3 show a ferromagnetic phase transition for x ≥0.04 at TC≈12 K. The Hall measurements reveal a p -type finite charge-carrier density. Measurements of the temperature dependence of the ESR signal of Mn dopants for different orientations of the external magnetic field give evidence that the localized Mn moments interact with the mobile charge carriers leading to Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a low-dimensional character of magnetic correlations that persist far above the ferromagnetic ordering temperature.

  12. Proximity effect induced by Kondo interaction in a network composed of YBCO and spin density wave

    NASA Astrophysics Data System (ADS)

    Maity, S.; Ghosh, Ajay Kumar

    2015-10-01

    The possibility of the proximity effect mediated by Kondo interaction in YBCO embedded in system of diluted magnetic spin ordering has been studied. An YBCO sample is selected in which both metal to insulator transition and superconducting state exist in the different ranges of temperature. The intergranular network of the bulk Y-123 has been modified by the inclusion of YMnO3 which has a well defined magnetic structure depending on temperature. The current-voltage measurements have been carried out in pure Y-123 at several temperatures. At the same set of temperatures the current-voltage curves in presence of YMnO3 have been studied. The role of the diluted spin magnetic ordering in tuning proximity effect and conduction property in binary systems is associated with reduced coherence length in the normal region.

  13. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    NASA Astrophysics Data System (ADS)

    Guo, J. L.; Zhang, X. Z.

    2016-09-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented.

  14. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction.

    PubMed

    Guo, J L; Zhang, X Z

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  15. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    PubMed Central

    Guo, J. L.; Zhang, X. Z.

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  16. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  17. Frustration in an exactly solvable mixed-spin Ising model with bilinear and three-site four-spin interactions on a decorated square lattice

    NASA Astrophysics Data System (ADS)

    Jaščur, M.; Štubňa, V.; Szałowski, K.; Balcerzak, T.

    2016-11-01

    Competitive effects of so-called three-site four-spin interactions, single ion anisotropy and bilinear interactions is studied in the mixed spin-1/2 and spin-1 Ising model on a decorated square lattice. Exploring the decoration-iteration transformation, we have obtained exact closed-form expressions for the partition function and other thermodynamic quantities of the model. From these relations, we have numerically determined ground-state and finite-temperature phase diagrams of the system. We have also investigated temperature variations of the correlation functions, internal energy, entropy, specific heat and Helmholtz free energy of the system. From the physical point of view, the most interesting result represents our observation of a partially ordered ferromagnetic or phase in the system with zero bilinear interactions. It is remarkable, that due to strong frustrations disordered spins survive in the system even at zero temperature, so that the ground state of the system becomes macroscopically degenerate with non-zero entropy. Introduction of arbitrarily small bilinear interaction completely removes degeneracy and the entropy always goes to zero at the ground state.

  18. Spin-Component-Scaled Double-Hybrid Density Functionals with Nonlocal van der Waals Correlations for Noncovalent Interactions.

    PubMed

    Yu, Feng

    2014-10-14

    Nonlocal (NL) van der Waals correlation has been incorporated into the spin-component and spin-opposite scaled double-hybrid density functionals (DHDFs) for noncovalent interactions. The short-range attenuation parameters for the tested DHDFs with the NL correlations are optimized by minimizing the mean absolute deviations (MADs) against the S66 database. And consequently, the obtained DHDFs with the NL correlations are denoted as PWPB95-NL, DSD-BLYP-NL, DSD-PBEP86-NL, and DOD-PBEP86-NL. These four DHDFs with the NL correlations are further assessed with the S22B, NCCE31, and ADIM6 databases. On the basis of our benchmark computations, the cooperation of the NL correlation and the spin-component and spin-opposite scaled DHDFs is successful for noncovalent interactions. However, the performances of the four aforementioned DHDFs with the NL correlations on the charge transfer interactions are less than satisfactory. PMID:26588137

  19. Effect of the spin-orbit interaction on the thermodynamic properties of crystals: specific heat of bismuth.

    PubMed

    Díaz-Sánchez, L E; Romero, A H; Cardona, M; Kremer, R K; Gonze, X

    2007-10-19

    We discuss measurements and ab initio calculations of the specific heat for crystalline bismuth, strictly speaking, a semimetal but in the temperature region accessible to us (T>2 K) acting as a semiconductor. We extend experimental data available in the literature and notice that the ab initio calculations without spin-orbit interaction exhibit a maximum at approximately 8 K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: the maximum of C(T) is now only 7% larger than the measured one. Exact agreement is obtained if the strength of the spin-orbit Hamiltonian is reduced by a factor of approximately 0.9. We also discuss the dependence of the lattice parameter and the cohesive energy on spin-orbit interaction.

  20. Anomalous magnetic response of a quasi-periodic mesoscopic ring in presence of Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2016-04-01

    We investigate the properties of persistent charge current driven by magnetic flux in a quasi-periodic mesoscopic Fibonacci ring with Rashba and Dresselhaus spin-orbit interactions. Within a tight-binding framework we work out individual state currents together with net current based on second-quantized approach. A significant enhancement of current is observed in presence of spin-orbit coupling and sometimes it becomes orders of magnitude higher compared to the spin-orbit interaction free Fibonacci ring. We also establish a scaling relation of persistent current with ring size, associated with the Fibonacci generation, from which one can directly estimate current for any arbitrary flux, even in presence of spin-orbit interaction, without doing numerical simulation. The present analysis indeed gives a unique opportunity of determining persistent current and has not been discussed so far.

  1. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  2. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    SciTech Connect

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli V.

    2013-12-04

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

  3. Gate-tunable indirect exchange interaction in spin-orbit-coupled mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Nikoofard, H.; Heidari Semiromi, E.

    2015-05-01

    We study the carrier-mediated exchange interaction, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between two magnetic impurity moments embedded in a semiconductor mesoscopic ring. We treat the ring in the presence of an Aharonov-Bohm-type magnetic flux and the Rashba and Dresselhaus spin-orbit interactions (RSOI and DSOI). Energy eigenvalues of the system are obtained within a tight-binding framework and the strength of the indirect exchange interaction vs. RSOI strengths are plotted for different values of DSOI strength. The results show that the type of the impurity magnetic order, ferromagnetic (F) or antiferromagnetic (AF), depends on the RSOI and DSOI strengths. This leads to a full electrical control on the magnetic alignment of the system through, e.g., an external gate voltage.

  4. Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters

    NASA Astrophysics Data System (ADS)

    Kostopoulou, A.; Brintakis, K.; Vasilakaki, M.; Trohidou, K. N.; Douvalis, A. P.; Lascialfari, A.; Manna, L.; Lappas, A.

    2014-03-01

    Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibility in aqueous media, are composed of ~13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, ϕ, of the inorganic magnetic phase that goes from individual colloidal nanoparticles (ϕ = 0.47) to clusters (ϕ = 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behaviour at 300 K. Comparative Mössbauer spectroscopic studies imply that intra-cluster interactions come into play. New insight emerges from the clusters' temperature-dependent ac susceptibility that displays two maxima in χ''(T), with strong frequency dispersion. Scaling-law analysis together with the observed memory effects suggests that a superspin-glass state settles-in at TB ~ 160-200 K, while at lower-temperatures, surface spin-glass freezing is established at Tf ~ 40-70 K. In such nanoparticle-assembled systems, with increased ϕ, Monte Carlo simulations corroborate the role of the inter-particle dipolar interactions and that of the constituent nanoparticles' surface spin disorder in the emerging spin-glass dynamics.Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibility in aqueous media, are composed of ~13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, ϕ, of the inorganic magnetic phase that goes from individual colloidal nanoparticles (ϕ = 0.47) to clusters (ϕ = 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behaviour at 300 K. Comparative

  5. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.

    PubMed

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-10-01

    The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low.

  6. Gate tunable spin exchange interaction and inversion of magnetoresistance in ferromagnetic ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Kim, Jeongyong; Yoo, Jung-Woo

    Tuning magnetism in diluted magnetic semiconductor (DMS) is one of the central issue to the development of future spintronic device applications. Particularly, realizing such control in nanostructure has received growing attention. Here, we report the dramatic change of MR in ferromagnetic ZnO nanowire with varied gate voltages (+50 V to -40 V) at different temperatures (2 K to 50 K). The MR signal was greatly influenced by the gate voltage induced carrier concentrations which results the inversion of MR from positive to negative sign while pertaining the coexistence of both parts before inversion in the range of -2T to 2T. The origin of negative MR is mainly due to spin scattering while the positive one is due to a field induced change in relative populations of conduction bands with different conductivities. The extracted spin exchange related parameter was well tuned with the varied gate voltages at different temperatures. More importantly this type of gate tuning of spin exchange interactions in ferromagnetic single ZnO nanowire is well suitable for future spintronic device applications.

  7. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang

    2016-03-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  8. Interactions between SAS-C spacecraft nutations and spin control system

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.; Thayer, D. L.

    1974-01-01

    The SAS-C spacecraft is stabilized by a momentum biased reaction wheel and passive nutation damper. A closed-loop low-speed spacecraft spin rate control system is included which uses a single-axis gyro and a variable speed range on the reaction wheel. Dynamic instability can result from interactions among the gyro, damper, and spacecraft dynamic unbalance. This instability may be aggravated by gyro angular misalignment, gyro error signals, and spacecraft nutations. Analytic eigenvector, and digital computer analyses of the coupled systems are presented. Mechanisms for instability are described as well as the effects that gyro error signal, tilt, and spacecraft dynamic unbalance produce on control system performance.

  9. Self-Induced Glassiness and Pattern Formation in Spin Systems Subject to Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-09-01

    We study the glass formation in two- and three-dimensional Ising and Heisenberg spin systems subject to competing interactions and uniaxial anisotropy with a mean-field approach. In three dimensions, for sufficiently strong anisotropy the systems always modulate in a striped phase. Below a critical strength of the anisotropy, a glassy phase exists in a finite range of temperature, and it becomes more stable as the system becomes more isotropic. In two dimensions the criticality is always avoided and the glassy phase always exists.

  10. High-Q filters with complete transports using quasiperiodic rings with spin-orbit interaction

    SciTech Connect

    Qiu, R. Z.; Chen, C. H.; Tsao, C. W.; Hsueh, W. J.

    2014-09-15

    A high Q filter with complete transports is achieved using a quasiperiodic Thue-Morse array of mesoscopic rings with spin-orbit interaction. As the generation order of the Thue-Morse array increases, not only does the Q factor of the resonance peak increase exponentially, but the number of sharp resonance peaks also increases. The maximum Q factor for the electronic filter of a Thue-Morse array is much greater than that in a periodic array, for the same number of the rings.

  11. Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories

    SciTech Connect

    Goodwin, D. L.; Kuprov, Ilya

    2015-08-28

    Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome, and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.

  12. Effect of exciton-spin-orbit-photon interaction in the performance of organic solar cells

    NASA Astrophysics Data System (ADS)

    Narayan, Monishka Rita; Singh, Jai

    2013-02-01

    Photon absorptions leading to singlet and triplet excitonic states in organic solar cells are presented in this study. Applying Fermi's golden rule, the rates of absorption of singlet and triplet excitons are derived using singlet exciton-photon and triplet exciton-spin-orbit-photon-interaction, respectively, as perturbation operators. The rate of triplet absorption depends on the square of the atomic number and hence heavier atoms play the dominant role. Incorporation of heavy metal atoms in the donor organic material enhances the absorption rate and hence absorption, leading of higher generation of excited charge carriers. This increases the conversion efficiency of organic solar cells. The results are compared with experimental studies.

  13. Double quantum coherence electron spin resonance on coupled Cu(II)-Cu(II) electron spins

    NASA Astrophysics Data System (ADS)

    Becker, James S.; Saxena, Sunil

    2005-10-01

    We demonstrate for the first time the ability to generate double quantum coherences (DQCs) for the case of Cu(II). We show that small splittings (˜7 MHz) from the Cu(II)-Cu(II) electron-electron magnetic dipolar interaction can be reliably resolved even though the inhomogeneously broadened Cu(II) linewidth is ˜2 GHz. A Cu(II)-Cu(II) distance of 2.0 nm was measured on a model peptide system, thus, demonstrating that distances on the nanometer scale may be measured using DQC electron spin resonance (ESR).

  14. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  15. Fast spinning strange stars: possible ways to constrain interacting quark matter parameters

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip; Bombaci, Ignazio; Logoteta, Domenico; Thampan, Arun V.

    2016-04-01

    For a set of equation of state (EoS) models involving interacting strange quark matter, characterized by an effective bag constant (Beff) and a perturbative quantum chromodynamics corrections term (a4), we construct fully general relativistic equilibrium sequences of rapidly spinning strange stars for the first time. Computation of such sequences is important to study millisecond pulsars and other fast spinning compact stars. Our EoS models can support a gravitational mass (MG) and a spin frequency (ν) at least up to ≈3.0 M⊙ and ≈1250 Hz, respectively, and hence are fully consistent with measured MG and ν values. This paper reports the effects of Beff and a4 on measurable compact star properties, which could be useful to find possible ways to constrain these fundamental quark matter parameters, within the ambit of our EoS models. We confirm that a lower Beff allows a higher mass. Besides, for known MG and ν, measurable parameters, such as stellar radius, radius-to-mass ratio and moment of inertia, increase with the decrease of Beff. Our calculations also show that a4 significantly affects the stellar rest mass and the total stellar binding energy. As a result, a4 can have signatures in evolutions of both accreting and non-accreting compact stars, and the observed distribution of stellar mass and spin and other source parameters. Finally, we compute the parameter values of two important pulsars, PSR J1614-2230 and PSR J1748-2446ad, which may have implications to probe their evolutionary histories, and for constraining EoS models.

  16. Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance

    NASA Astrophysics Data System (ADS)

    Kattnig, Daniel R.; Hinderberger, Dariush

    2013-05-01

    Based on a simple geometrical approach, we derive analytical expression of the probability density functions (pdfs) of distance of probe molecules distributed homogeneously in spherical aggregates with shell structure. These distance distributions can be utilized in the investigation of double electron-electron resonance (DEER) data of disordered nanometer-sized spin clusters. Structural insights and geometrical parameters of the aggregates can be extracted by modeling the DEER time traces based on the analytical pdfs. This approach is efficient and avoids difficulties of the model-free solution of the inverse problem that are related to multi-spin effects, limited excitation bandwidth, bias introduced by the regularization scheme, or ambiguity resulting from broad distance distributions. The derived pdfs can serve as building blocks, from which the distance distributions in arbitrary spherically symmetric objects can be assembled. The scenario of the pumped species being chemically distinct from the observed species is covered as well as that of a single type of probe molecules. We demonstrate the merits of analytical distance distributions by studying the distribution of three different spin probes in SDS micelles. By simultaneously analyzing DEER data corresponding to different spin probe concentrations, the distribution of the spin probes over the micelle can be determined. Employing Bayesian inference it is found that for all probes studied, a spherical shell model is most appropriate among the studied models and by orders of magnitude more likely than a homogeneous distribution in a ball. This statement also applies to probes that are deemed nonpolar. We envisage that the spin probe distributions in disordered soft and hard matter systems can now be quantified using DEER spectroscopy with greater precision and reduced ambiguity.

  17. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment

    NASA Astrophysics Data System (ADS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.; Capuzzi, Pablo

    2016-07-01

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator S ˆ 2 , avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and < S ˆ 2 > expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  18. Anisotropic hyperfine interactions limit the efficiency of spin-exchange optical pumping of ³He nuclei.

    PubMed

    Tscherbul, T V; Zhang, P; Sadeghpour, H R; Dalgarno, A

    2011-07-01

    We use accurate ab initio and quantum scattering calculations to demonstrate that the maximum ³He spin polarization that can be achieved in spin-exchange collisions with potassium (³⁹K) and silver (¹⁰⁷Ag) atoms is limited by the anisotropic hyperfine interaction. We find that spin exchange in Ag-He collisions occurs much faster than in K-He collisions over a wide range of temperatures (10-600 K). Our analysis indicates that measurements of trap loss rates of ²S atoms in the presence of cold ³He gas may be used to probe anisotropic spin-dependent interactions in atom-He collisions.

  19. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure

    SciTech Connect

    Pirro, P.; Sebastian, T.; Leven, B.; Hillebrands, B.; Koyama, T.; Brächer, T.

    2015-06-08

    The interaction of propagating dipolar spin waves with magnetic domain walls is investigated in square-shaped microstructures patterned from the Heusler compound Co{sub 2}Mn{sub 0.6}Fe{sub 0.4}Si. Using magnetic force microscopy, the reversible preparation of a Landau state with four magnetic domains separated by Néel domain walls is confirmed. A local spin-wave excitation using a microstructured antenna is realized in one of the domains. It is shown by Brillouin light scattering microscopy that the domain structure in the remanence state has a strong influence on the spin-wave excitation and propagation. The domain walls strongly reflect the spin waves and can be used as spin-wave reflectors. A comparison with micromagnetic simulations shows that the strong reflection is due to the long-range dipolar interaction which has important implications for the use of these spin waves for exerting an all-magnonic spin-transfer torque.

  20. Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling

    PubMed Central

    Rönty, Mikko; Taivainen, Anu; Heiska, Leena; Otey, Carol; Ehler, Elisabeth; Song, Woo Keun; Carpen, Olli

    2007-01-01

    Palladin and SPIN90 are widely expressed proteins, which participate in modulation of actin cytoskeleton by binding to a variety of scaffold and signaling molecules. Cytoskeletal reorganization can induced by activation of signaling pathways, including the PDGF receptor and Src tyrosine kinase pathways. In this study we have analyzed the interplay between palladin, SPIN90 and Src, and characterized the role of palladin and SPIN90 in PDGF and Src-induced cytoskeletal remodeling. We show that the SH3 domains of SPIN90 and Src directly bind palladin’s poly-proline sequence and the interaction controls intracellular targeting of SPIN90. In PDGF-treated cells, palladin and SPIN90 co-localize in actin rich membrane ruffles and lamellipodia. The effect of PDGF on the cytoskeleton is at least partly mediated by the Src kinase, since PP2, a selective Src kinase family inhibitor, blocked PDGF-induced changes. Furthermore, expression of active Src kinase resulted in coordinated translocation of both palladin and SPIN90 to membrane protrusions. Knock-down of endogenous SPIN90 did not inhibit Src-induced cytoskeletal rearrangement, whereas knock-down of palladin resulted in cytoskeletal disorganization and inhibition of remodeling. Further studies showed that palladin is tyrosine phosphorylated in cells expressing active Src indicating bidirectional interplay between palladin and Src. These results may have implications in understanding the invasive and metastatic phenotype of neoplastic cells induced by Src. PMID:17537434

  1. Stable mean-field solution of a short-range interacting SO(3) quantum Heisenberg spin glass.

    PubMed

    da Conceição, C M S; Marino, E C

    2008-07-18

    We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an antiferromagnetic (AF) coupling J[over ]>0, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Néel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.

  2. A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction.

    PubMed

    Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2016-01-01

    Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426

  3. A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction

    PubMed Central

    Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2016-01-01

    Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426

  4. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    SciTech Connect

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun E-mail: koreasds@naver.com

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  5. Crystalline spin-orbit interaction and the Zeeman splitting in Pb1-x Sn x Te

    NASA Astrophysics Data System (ADS)

    Hayasaka, Hiroshi; Fuseya, Yuki

    2016-08-01

    The ratio of the Zeeman splitting to the cyclotron energy (M=Δ {{E}Z}/\\hslash {ωc} ), which characterizes the relative strength of the spin-orbit interaction in crystals, is examined for the narrow gap IV-VI semiconductors PbTe, SnTe, and their alloy Pb1-x Sn x Te on the basis of the multiband \\boldsymbol{k}\\centerdot \\boldsymbol{p} theory. The inverse mass α, the g-factor g, and M are calculated numerically by employing the relativistic empirical tight-binding band calculation. On the other hand, a simple but exact formula of M is obtained for the six-band model based on the group theoretical analysis. It is shown that M  <  1 for PbTe and M  >  1 for SnTe, which are interpreted in terms of the relevance of the interband couplings due to the crystalline spin-orbit interaction. It is clarified both analytically and numerically that M is not a quantized value but a continuous one, and M  =  1 is obtained just at the band inversion point, where the transition from trivial to nontrivial topological crystalline insulator occurs. By using this property, one can detect the transition point only with the bulk measurements. It is also proposed that M is useful to evaluate quantitatively a degree of the Dirac electrons in solids.

  6. A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2016-07-01

    Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI.

  7. Crystalline spin-orbit interaction and the Zeeman splitting in Pb1-x Sn x Te.

    PubMed

    Hayasaka, Hiroshi; Fuseya, Yuki

    2016-08-10

    The ratio of the Zeeman splitting to the cyclotron energy ([Formula: see text]), which characterizes the relative strength of the spin-orbit interaction in crystals, is examined for the narrow gap IV-VI semiconductors PbTe, SnTe, and their alloy Pb1-x Sn x Te on the basis of the multiband [Formula: see text] theory. The inverse mass α, the g-factor g, and M are calculated numerically by employing the relativistic empirical tight-binding band calculation. On the other hand, a simple but exact formula of M is obtained for the six-band model based on the group theoretical analysis. It is shown that M  <  1 for PbTe and M  >  1 for SnTe, which are interpreted in terms of the relevance of the interband couplings due to the crystalline spin-orbit interaction. It is clarified both analytically and numerically that M is not a quantized value but a continuous one, and M  =  1 is obtained just at the band inversion point, where the transition from trivial to nontrivial topological crystalline insulator occurs. By using this property, one can detect the transition point only with the bulk measurements. It is also proposed that M is useful to evaluate quantitatively a degree of the Dirac electrons in solids. PMID:27301789

  8. Quantum chaos: An introduction via chains of interacting spins 1/2

    NASA Astrophysics Data System (ADS)

    Gubin, Aviva; F. Santos, Lea

    2012-03-01

    We introduce aspects of quantum chaos by analyzing the eigenvalues and the eigenstates of quantum many-body systems. The properties of quantum systems whose classical counterparts are chaotic differ from those whose classical counterparts are not chaotic. The spectrum of the first exhibits repulsion of the energy levels, which is one of the main signatures of quantum chaos. We show how level repulsion develops in one-dimensional systems of interacting spins 1/2 which are devoid of random elements and involve only two-body interactions. In addition to the statistics of the eigenvalues, we analyze how the structure of the eigenstates may indicate chaos. The programs used to obtain the data are available online.

  9. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities

    SciTech Connect

    Chen Zhixin; Zhou Zhengwei; Zhou Xingxiang; Zhou Xiangga; Guo Guangcan

    2010-02-15

    We propose a scheme to simulate one-dimensional XXZ-type Heisenberg spin models with competing interactions between nearest neighbors (NNs) and next NNs in photon-coupled microcavities. Our scheme exploits the rich resources and flexible controls available in such a system to realize arbitrarily adjustable ratios between the effective NN and next-NN coupling strengths. Such a powerful capability allows us to simulate frustration phenomena and disorder behaviors in one-dimensional systems arising from next-NN interactions, a large class of problems of great importance in condensed-matter physics. Our scheme is robust due to the lack of atomic excitations, which suppresses spontaneous emission and cavity decay strongly.

  10. Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions

    NASA Astrophysics Data System (ADS)

    Ivanov, Nedko B.; Ummethum, Jörg; Schnack, Jürgen

    2014-10-01

    For the time being isotropic three-body exchange interactions are scarcely explored and mostly used as a tool for constructing various exactly solvable one-dimensional models, although, generally speaking, such competing terms in generic Heisenberg spin systems can be expected to support specific quantum effects and phases. The Heisenberg chain constructed from alternating S = 1 and σ = 1/2 site spins defines a realistic prototype model admitting extra three-body exchange terms. Based on numerical density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we demonstrate that the additional isotropic three-body terms stabilize a variety of partially-polarized states as well as two specific non-magnetic states including a critical spin-liquid phase controlled by two Gaussinal conformal theories as well as a critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. Most of the established effects are related to some specific features of the three-body interaction such as the promotion of local collinear spin configurations and the enhanced tendency towards nearest-neighbor clustering of the spins. It may be expected that most of the predicted effects of the isotropic three-body interaction persist in higher space dimensions.

  11. Effects of Spin-Orbit Coupling on the Spin-Rotation Interaction in the AsH2 Radical

    NASA Astrophysics Data System (ADS)

    Duxbury, Geoffrey; Alijah, Alexander

    2014-06-01

    The occurence of predissociation in the electronic spectrum of AsH2 is very dependent upon the magnitude of the spin-orbit coupling parameter of the central atom. Making use of Table 5.6 in "The Spectra and Dynamics of Diatomic Molecules, ELSEVIER" by H. Lefebvre-Brion and R.W. Field, it is possible to appreciate the rapid rate of increase of the spin-orbit constants associated with the heavy central atom in the di-hydrides NH2, PH2 and AsH2. The spin-orbit constants range from 42.7 cm-1 for NH2, to 191.3 cm-1 for PH2, and 1178 cm-1 for AsH2. The effects of spin-orbit coupling may be seen in a plot of the separation of the central RQ0,9 and PQ1,N sub-bands as the value of v2' increases from 0 to 5. As the value of v2' increases beyond 2 the spectrum becomes more and more fuzzy as the effects of predissociation become more obvious. This means that unlike the example of the behaviour of PH2, where the vibronic level pattern can be followed below and above the barrier to linearity, in AsH2 and AsD2 the absorption spectrum becomes completely diffuse below the barrier to linearity in the A 2A1 state. The change in the magnitude of the doublet splittings as v2' increases may be seen in the plots of the doublet splittings showing the spin-uncoupling as a result of the increase of overall rotation. In the absorption spectrum of SbH2, recorded in 1967 by T. Barrow in the Chemistry Department at Sheffield University, all the absorption features showed the effects of predissociation, consistent with a spin-orbit constant of 2834 cm-1 for the central atom of SbH2.

  12. A critical phase induced by interplay of spin-orbit coupling and Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon

    2013-03-01

    We study long range Coulomb interaction effect on the Luttinger Hamiltonian in three spatial dimensions, which describes strong spin orbit coupling intrinsically. The Hamiltonian has energy spectrum of inverted band gap semiconductors as in well-known HgTe; only one quadratic band touching point exists at the gamma point in Brillouin zone protected by the cubic and time reversal symmetries. Using controlled renormalization group techniques, we find that long-range Coulomb interaction converts the quadratic band touching state into a non-Fermi liquid (NFL) state, in some ways analogous to the Luttinger liquid state in one dimension. Consequently, all physical quantities become scale invariant and show deviations from non-interacting electrons' properties. Temperature and field dependence of various thermodynamic functions are obtained. Moreover, our ground state can be viewed as a parent state of topological insulators, magnetic metals, and Weyl semi-metals by breaking either cubic symmetry or time-reversal symmetry. The strong Coulomb interaction changes phase boundaries qualitatively and phase diagrams with the Coulomb interaction are provided. Applications to iridium-oxides materials are also discussed.

  13. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    SciTech Connect

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2011-08-24

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba ({alpha}) and linear Dresselhaus ({beta}{sub 1}), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term ({beta}{sub 3}) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as {alpha} {yields} {beta}{sub 1}. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning {alpha} and {beta}{sub 1}. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying {beta}{sub 3} as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  14. Trityl radicals: spin labels for nanometer-distance measurements.

    PubMed

    Reginsson, Gunnar W; Kunjir, Nitin C; Sigurdsson, Snorri Th; Schiemann, Olav

    2012-10-22

    Spin labelling with trityls: to gather information about the structure and dynamics of trityl radicals, spin-labelled polymers were measured with pulsed electron-electron double resonance (PELDOR) and double-quantum coherence (DQC). This study demonstrates that trityl radicals have great potential as spin labels that eliminate some limitations of nitroxide spin labels. PMID:22996284

  15. Spin-symmetric solution of an interacting quantum dot attached to superconducting leads: Andreev states and the 0- π transition

    NASA Astrophysics Data System (ADS)

    Janiš, Václav; Pokorný, Vladislav; Žonda, Martin

    2016-09-01

    Behavior of Andreev gap states in a quantum dot with Coulomb repulsion symmetrically attached to superconducting leads is studied via the perturbation expansion in the interaction strength. We find the exact asymptotic form of the spin-symmetric solution for the Andreev states continuously approaching the Fermi level. We thereby derive a critical interaction at which the Andreev states at zero temperature merge at the Fermi energy, being the upper bound for the 0-π transition. We show that the spin-symmetric solution becomes degenerate beyond this interaction, in the π phase, and the Andreev states do not split unless the degeneracy is lifted. We further demonstrate that the degeneracy of the spin-symmetric state extends also into the 0 phase in which the solutions with zero and non-zero frequencies of the Andreev states may coexist.

  16. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  17. Configuration interaction studies on the spectroscopic properties of PbO including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan

    2016-07-01

    Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin-orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm-1, for instance, X1Σ+, 13Σ+, and 13Σ-, and their spin-orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  18. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  19. On the choice of the electron-electron potential in relativistic atomic physics

    NASA Technical Reports Server (NTRS)

    Sucher, J.

    1988-01-01

    In the calculation of relativistic effects in the structure of many-electron atoms there are two popular choice for the operator V used to represent the electron-electron interaction. One of these, V(I), is associated with the use of the Coulomb gauge propagator for photons; the other, V(II), is associated with the use of the Feynman gauge propagator. In contrast to V(I), the nonperturbative use of V(II) leads to energy levels which are already incorrect in order (alpha exp 4)m. This fact provides a quantitative argument for preferring V(I) to V(II).

  20. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin–orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane–Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin–orbit interaction. The Rashba spin–orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, ‑1, 0} and {‑2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  ‑1 (or  ‑2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane–Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  1. Electron Spin Resonance Spectra of Photogenerated Polarons in Poly(Paraphenylene Vinylene)

    NASA Astrophysics Data System (ADS)

    Murata, Kazuhiro; Kuroda, Shin-ichi; Shimoi, Yukihiro; Abe, Shuji; Noguchi, Takanobu; Ohnishi, Toshihiro

    1996-12-01

    Light-induced ESR (LESR) measurements have been performed on undoped poly(parapheny- lene vinylene) (PPV) down to 4 K. The ESR signal increases significantly for the excitation energy above 3.1 3.2 eV, as in the case of the excitation spectra of photocarriers reported in PPV derivatives. The anisotropic light-induced ESR spectra in oriented samples are well reproduced by the spectra calculated using a theoretical polaron spin distribution in the case of finite electron-electron interaction. These spectral features indicate that the observed spins are photogenerated polarons.

  2. Microscopic understanding of spin current probed by shot noise

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  3. Electron-spin-polarized He^+ ion source for studying ion-surface interaction dynamics

    NASA Astrophysics Data System (ADS)

    Bixler, D. L.; Lancaster, J. C.; Popple, R. A.; Dunning, F. B.; Walters, G. K.

    1997-03-01

    An electron-spin-polarized He^+ ion source has been developed to study the dynamics of ion-surface interactions. The He^+ ions are produced by Penning ionization in collisions between helium metastable atoms contained in a weak rf-excited discharge. The 2^3S metastable atoms in the discharge are polarized by optical pumping using a 300 mW Ti:sapphire laser tuned to the 2^3S_1-2^3P1 (D_1) transition at 1.083μm. Spin conservation during Penning ionization results in the production of polarized He^+ ions which are extracted from the discharge through a small canal and focused on the target surface using a series of electrostatic lenses, which reduce the energy spread in the beam to ~ 3 eV through chromatic abberation. Currents of ~ 10-9 A are achieved at ion energies of >= 10 eV. The ion beam polarization is determined by allowing the beam to strike a clean Au(100) surface and observing the polarization of the ejected secondary electrons. He^+ ion polarizations of ~ 10 % are routinely obtained, and work is underway to further improve this polarization. ^*Research supported by the U.S. Department of Energy and the Robert A. Welch Foundation. DLB is the recipient of a Texaco Fellowship.

  4. Electron-spin-polarized He^+ ion source for studying ion-surface interaction dynamics

    NASA Astrophysics Data System (ADS)

    Bixler, D. L.; Lancaster, J. C.; Popple, R. A.; Dunning, F. B.; Walters, G. K.

    1997-04-01

    An electron-spin-polarized He^+ ion source has been developed to study the dynamics of ion-surface interactions. The He^+ ions are produced by Penning ionization in collisions between helium metastable atoms contained in a weak rf-excited discharge. The 2^3S metastable atoms in the discharge are polarized by optical pumping using a 300 mW Ti:sapphire laser tuned to the 2^3S_1-2^3P1 (D_1) transition at 1.083μm. Spin conservation during Penning ionization results in the production of polarized He^+ ions which are extracted from the discharge through a small canal and focused on the target surface using a series of electrostatic lenses, which reduce the energy spread in the beam to ~ 3 eV through chromatic abberation. Currents of ~ 10-9 A are achieved at ion energies of >= 10 eV. The ion beam polarization is determined by allowing the beam to strike a clean Au(100) surface and observing the polarization of the ejected secondary electrons. He^+ ion polarizations of ~ 10 % are routinely obtained, and work is underway to further improve this polarization. ^*Research supported by the U.S. Department of Energy and the Robert A. Welch Foundation.

  5. What is intrinsic and what is extrinsic in the spin Hall effect?

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Vignale, Giovanni; Flatté, Michael

    2006-03-01

    Two different forms of the spin Hall effect, intrinsic and extrinsic, have been recently proposed and observed in experiments. The intrinsic effect is caused by spin-orbit coupling in the band structure of the semiconductor and survives in the limit of zero disorder, whereas the extrinsic effect is caused by spin-orbit coupling between Bloch electrons and impurities. We treat both effects on equal footing within the framework of the exact Kubo linear response formalism. We show that the ``side-jump" term, which is usually considered part of the extrinsic spin Hall effect, is really intrinsic, because it is independent of disorder. Furthermore, it is the only non-zero intrinsic contribution to the spin-Hall effect for the linear Rashba (or Dresselhaus) spin-orbit coupling model. On the other hand, the skew scattering term is the only extrinsic contribution to the spin-Hall effect within this model. The proof based on gauge invariance holds at all orders in disorder and electron-electron interactions and to first order in spin-orbit coupling, but does not apply to more complex spin-orbit coupled bands (e.g the Luttinger model). We also study many-body effects and predict that the spin Coulomb drag will reduce the spin Hall conductivity.

  6. Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film

    SciTech Connect

    Di, Kai; Zhang, Vanessa Li; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Qiu, Xuepeng; Yang, Hyunsoo

    2015-02-02

    Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignificant for the 0.8 nm-thick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic and spintronic applications.

  7. An interactive, multitask computer system for heavy-ion physics research with the spin spectrometer: (Progress report, 1982)

    SciTech Connect

    Sarantites, D.G.

    1982-01-01

    The scope of this proposal is to assemble an interactive off-line data analysis system based on a DEC VAX 11/780 computer interfaced with an array processor, which is capable of meeting the needs of modern heavy-ion physics experiments involving data of large dimensionality as created in the Spin Spectrometer at the Holifield Heavy-ion Research Facility, to adapt the existing PDP 11 software for the Spin Spectrometer for this computer system in a form completely compatible with other laboratories with VAX 11 computers, and to develop new general and efficient software for automatic but fully interactive data analysis making use of an attach array processor.

  8. Canonical angles in a compact binary star system with spinning components: Approximative solution through next-to-leading-order spin-orbit interaction for circular orbits

    NASA Astrophysics Data System (ADS)

    Tessmer, Manuel; Steinhoff, Jan; Schäfer, Gerhard

    2013-03-01

    This paper will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading-order spin-orbit interactions. We modify the method of Schneider and Cui proposed [Theoreme über Bewegungsintegrale und ihre Anwendung in Bahntheorien, A Theoretische Geodäsie Vol. 121 (Verlag der Bayerischen Akademie der Wissenschaften, München, Germany, 2005)] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum J and the amplitudes of the orbital angular momentum and of the spins, L, S1, and S2. In contrast, S≔|S1+S2| is not conserved, and we wish to shift its nonconservation to higher orders of the smallness parameter. We perform the iterations explicitly to first order, while performing higher orders would mean no structural difference or harder mathematical difficulties. To apply this method, we develop a canonical system of spin variables reduced by the conservation law of total angular momentum, which is imposed on the phase space as a constraint. The result is an asymptotic series in ɛ that may be truncated appropriately by considering the physical properties of the regarded system.

  9. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions.

    PubMed

    Vavřinská, Andrea; Zelinka, Jiří; Šebera, Jakub; Sychrovský, Vladimír; Fiala, Radovan; Boelens, Rolf; Sklenář, Vladimír; Trantírek, Lukáš

    2016-01-01

    Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy. PMID:26685997

  10. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions.

    PubMed

    Vavřinská, Andrea; Zelinka, Jiří; Šebera, Jakub; Sychrovský, Vladimír; Fiala, Radovan; Boelens, Rolf; Sklenář, Vladimír; Trantírek, Lukáš

    2016-01-01

    Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.

  11. Tunneling, decoherence, and entanglement of two spins interacting with a dissipative bath

    SciTech Connect

    Sahrapour, Mohammad M.; Makri, Nancy

    2013-03-21

    We use numerically exact iterative path integral methods to investigate the decoherence and entanglement dynamics of a tunneling pair of two coupled qubits (spins) system interacting with a dissipative bath. We find that decoherence is generally accompanied by the destruction of entanglement, although the specifics of this destruction depend sensitively on the parameters of the Hamiltonian (qubit-qubit coupling and/or energy bias), the strength of dissipation, the temperature, and the choice of initial condition. We also observe that dissipation can in some cases generate a substantial amount of entanglement. Finally, if an entangled eigenstate exists which does not couple to the environment, the long-time entanglement can significantly exceed the value corresponding to the Boltzmann equilibrium state.

  12. Constraints on a long-range spin-independent interaction from precision atomic physics

    SciTech Connect

    Karshenboim, S. G.

    2010-10-01

    Constraints on a spin-independent interaction by the exchange of a neutral light boson are derived from precision data on the electron anomalous magnetic moment and from atomic spectroscopy of hydrogen and deuterium atoms. The mass range from 1 eV/c{sup 2} to 1 MeV/c{sup 2} is studied, and the effective coupling constant {alpha}{sup '} is allowed below the level of 10{sup -11}-10{sup -13} depending on the value of the boson mass. The mass range corresponds to the Yukawa radius from 0.0002 nm to 20 nm, which covers the distances far above and far below the Bohr radius of the hydrogen atom.

  13. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers.

    PubMed

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices. PMID:27601317

  14. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    SciTech Connect

    Korenev, V. L.

    2014-03-03

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10{sup 4} A/cm{sup 2} in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  15. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    PubMed Central

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices. PMID:27601317

  16. Self-interaction-corrected local-spin-density calculations for rare earth materials

    SciTech Connect

    Svane, A.; Temmerman, W.M.; Szotek, Z.; Laegsgaard, J.; Winter, H.

    2000-04-20

    The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. In Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.

  17. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    NASA Astrophysics Data System (ADS)

    Smith, Anders; Nielsen, Kaspar K.; Bez, Henrique N.; Bahl, Christian R. H.

    2016-08-01

    We measure the magnetocaloric effect of the manganite series La0.67Ca0.33 -xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence. In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.

  18. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-09-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices.

  19. From Floquet to Dicke: Quantum Spin Hall Insulator Interacting with Quantum Light.

    PubMed

    Gulácsi, Balázs; Dóra, Balázs

    2015-10-16

    Time-periodic perturbations due to classical electromagnetic fields are useful to engineer the topological properties of matter using the Floquet theory. Here we investigate the effect of quantized electromagnetic fields by focusing on the quantized light-matter interaction on the edge state of a quantum spin Hall insulator. A Dicke-type superradiant phase transition occurs at arbitrary weak coupling, the electronic spectrum acquires a finite gap, and the resulting ground-state manifold is topological with a Chern number of ±1. When the total number of excitations is conserved, a photocurrent is generated along the edge, being pseudoquantized as ωln(1/ω) in the low-frequency limit and decaying as 1/ω for high frequencies with ω the photon frequency. The photon spectral function exhibits a clean Goldstone mode, a Higgs-like collective mode at the optical gap and the polariton continuum.

  20. Majorana zero modes in a one dimensional Fermi gas with spin orbit coupling and attractive interactions

    NASA Astrophysics Data System (ADS)

    Ruhman, Jonathan; Altman, Ehud

    2014-03-01

    Majorana zero modes can emerge at the edge of a nano wire subject to Rashba like spin-orbit interaction and a Zeeman field, which is coupled through a proximity effect to an s-wave superconductor. Can the zero modes obtain even if the superconductivity is intrinsic, due to attractive interactions in the single channel wire, with strictly conserved charge? We answer this question in the affirmative and provide an exact low energy description of the Majorana modes at the interface between a low density ``trivial'' Luttinger liquid on one side and a high density ``topological'' Luttinger liquid on the other side. The energy splitting of a pair of such modes at the edges of a topological segment of length L scales as 1 /L K / 2 where K > 1 is the Luttinger parameter. We discuss how to detect these Majorana modes in systems of ultra cold atoms, where an intrinsic attractive interaction is indeed much more natural than proximity induced pairing. Supported by ERC Synergy grant UQUAM.

  1. Impurity States in Ionic Crystals: a Self-Interaction - Corrected Local Spin Density Theory Study.

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar Alan

    1988-12-01

    While the local spin density theory (LSD) has been successfully used to calculate the electronic properties of a variety of condensed matter systems, its use does not provide an adequate description of point impurities in insulating crystals. Unphysical self-interaction effects in LSD lead to calculated one-electron properties which do not agree well with corresponding experimental properties in the limit of localized states. As an additional result of the spurious self-interactions, LSD calculations underestimate the host crystal band gaps in these systems by typically 40%. Recently the self-interaction-correction (SIC) was developed to remove the non-physical effects of electronic self-interaction from LSD. The resulting SIC-LSD theory is self-interaction free, and its use greatly improves the description of both localized states and insulator band gaps compared to uncorrected LSD. In the first part of this work, a novel method for calculating multiplet -dependent atomic wave functions in SIC-LSD is described, and calculated SIC-LSD wave functions for the quintet and triplet excited states of atomic oxygen are shown to be in excellent agreement with the corresponding Hartree-Fock wave functions, further establishing the success of SIC -LSD in calculating the properties of localized states. SIC -LSD is then applied to the NaCl:Cu^+ and LiCl:Ag^+ impurity systems. Transitions associated with the impurity ions in these systems are studied, and the calculated transition energies are found to be in good agreement with experiment. By examining the impurity state wave functions, characteristic differences between the absorption spectra for the Cu^+ and Ag^+ systems are explained.

  2. Quantum systems with position-dependent mass and spin-orbit interaction via Rashba and Dresselhaus terms

    SciTech Connect

    Schmidt, Alexandre G. M. Portugal, L. Jesus, Anderson L. de

    2015-01-15

    We consider a particle with spin 1/2 with position-dependent mass moving in a plane. Considering separately Rashba and Dresselhaus spin-orbit interactions, we write down the Hamiltonian for this problem and solve it for Dirichlet boundary conditions. Our radial wavefunctions have two contributions: homogeneous ones which are written as Bessel functions of non-integer orders—that depend on angular momentum m—and particular solutions which are obtained after decoupling the non-homogeneous system. In this process, we find non-homogeneous Bessel equation, Laguerre, as well as biconfluent Heun equation. We also present the probability densities for m = 0, 1, 2 in an annular quantum well. Our results indicate that the background as well as the spin-orbit interaction naturally splits the spinor components.

  3. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, G.; Miller, R.; Ogden, L.; Kavand, M.; Jamali, S.; Ambal, K.; Venkatesh, S.; Schurig, D.; Malissa, H.; Lupton, J. M.; Boehme, C.

    2016-09-01

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

  4. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins.

    PubMed

    Britton, Joseph W; Sawyer, Brian C; Keith, Adam C; Wang, C-C Joseph; Freericks, James K; Uys, Hermann; Biercuk, Michael J; Bollinger, John J

    2012-04-26

    The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism

  5. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants.

  6. Predominance of the Kitaev interaction in a three-dimensional honeycomb iridate: From ab initio to spin model

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kin-Ho Lee, Eric; Kim, Yong Baek

    2015-12-01

    The recently discovered three-dimensional hyperhoneycomb iridate, β-Li2IrO3, has raised hopes for the realization of the dominant Kitaev interaction between spin-orbit entangled local moments due to its near-ideal lattice structure. If true, this material may lie close to the sought-after quantum spin-liquid phase in three dimensions. Utilizing ab initio electronic structure calculations, we first show that the spin-orbit entangled basis, j\\text{eff} = 1/2 , correctly captures the low-energy electronic structure. The effective spin model derived in the strong-coupling limit supplemented by the ab initio results is shown to be dominated by the Kitaev interaction. We demonstrated that the possible range of parameters is consistent with a non-coplanar spiral magnetic order found in a recent experiment. All of these analyses suggest that β-Li2IrO3 may be the closest among known materials to the Kitaev spin-liquid regime.

  7. Intrinsic spin-orbit interaction in diffusive normal wire Josephson weak links: Supercurrent and density of states

    NASA Astrophysics Data System (ADS)

    Arjoranta, Juho; Heikkilä, Tero T.

    2016-01-01

    We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor-nanowire-superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several channels and in the presence of disorder.

  8. Spin Configurations of π Electrons and Dimerization in Quasi-One-Dimensional Organic Bipartite Lozenge Chains

    NASA Astrophysics Data System (ADS)

    Duan, Y. F.; Yao, K. L.; Yi, L.

    Based on a theoretical model proposed for an organic bipartite lozenge ferrimagnetic chain, the spin configuration of π electrons and the dimerization are investigated. With the Hartree-Fock approximation, the strong electron-phonon coupling and the electron-electron interaction in the one-dimensional system are taken into account self-consistently. It is shown that around the middle of the chain appears a π electron spin polarization cloud with alternation of sign and amplitude of the spin density extending over a certain distance, which extends all over the chain with no decay when the e-e interaction is larger than a critical value. In the stable ferrimagnetic state, the antiferromagnetic exchange interaction between electrons at site A and site B along the chain will become very strong, and almost zero dimerization happens for the chain.

  9. Critical behavior of su(1|1) supersymmetric spin chains with long-range interactions

    NASA Astrophysics Data System (ADS)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-06-01

    We introduce a general class of su (1 |1 ) supersymmetric spin chains with long-range interactions which includes as particular cases the su (1 |1 ) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su (1 |1 ) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1 +1 ) -dimensional conformal field theory (CFT) with central charge c =1 when the chemical potential lies in the critical interval ( 0 ,E (π )) , E (p ) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1 +1 ) -dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c =1 . From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su (1 |1 ) elliptic chain.

  10. Critical behavior of su(1|1) supersymmetric spin chains with long-range interactions.

    PubMed

    Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A; Tempesta, Piergiulio

    2016-06-01

    We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.

  11. Critical behavior of su(1|1) supersymmetric spin chains with long-range interactions.

    PubMed

    Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A; Tempesta, Piergiulio

    2016-06-01

    We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain. PMID:27415204

  12. Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics

    SciTech Connect

    Guo, Y. J.; Gao, Y. J.; Ge, C. N; Guo, Y. Y.; Yan, Z. B.; Liu, J.-M.

    2015-05-07

    In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.

  13. Exchange interactions in [2 × 2] Cu(II) grids: on the reliability of the fitting spin models.

    PubMed

    Calzado, Carmen J; Evangelisti, Stefano

    2014-02-21

    This paper reports a theoretical analysis of the electronic structure and magnetic properties of a ferromagnetic Cu(II) [2 × 2] grid. The calculations confirm a quintet (S = 2) ground state and an energy-level distribution of the magnetic states in accordance with Heisenberg behaviour. The whole set of first- and second-neighbour magnetic coupling constants has been evaluated, all in agreement with the structure and arrangement of the Cu 3dx(2) - y(2) magnetic orbitals. The results indicate that the dominant interaction in the system is the ferromagnetic coupling between the nearest Cu sites. The calculated J values suggest a C(2v) spin-spin interaction pattern, instead of the D(4h) model employed in the magnetic data fit. However, both spin models provide similar plots of the thermal dependence of the susceptibility and magnetic moment data. This study highlights the fact that the spin models resulting from the fittings can be just effective models, capable of correctly reproducing the macroscopic properties, although not always in accordance with the microscopic interactions governing these properties.

  14. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Colombo, Luigi; Register, Leonard F.; Banerjee, Sanjay K.

    2014-06-01

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2-20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  15. Competition between spin-orbit interaction and exchange coupling within a honeycomb lattice ribbon

    NASA Astrophysics Data System (ADS)

    Su, Yu-Hsin; Chen, Son-Hsien; Hu, C. D.; Chang, Ching-Ray

    2016-01-01

    Spin density patterns of a pinned magnetic impurity that is embedded in a honeycomb lattice with zigzag edges are investigated by employing a mean-field assisted Landauer-Keldysh formalism. Both the intrinsic spin-orbit coupling and the extrinsic localized magnetic moments are considered, and the effects of the pinning directions and the species of the sublattice on the electron spins are analyzed. A local time-reversal symmetry breaking cannot destroy the equilibrium edge-state spin accumulation that is induced by intrinsic spin-orbit coupling when the pinning field lies in the plane of the ribbon and the embedding position is the A-site at the edge. The induced local spin can be either parallel or antiparallel to the localized impurity moment, depending on the location of the pinned impurity, because itinerant electrons are found only at the B-site of the edge, but not at the A-site.

  16. Molecular Level Insights on Collagen-Polyphenols Interaction Using Spin-Relaxation and Saturation Transfer Difference NMR.

    PubMed

    Reddy, R Ravikanth; Phani Kumar, Bandaru V N; Shanmugam, Ganesh; Madhan, Balaraman; Mandal, Asit B

    2015-11-01

    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., (1)H and (13)C chemical shifts (δH and δC), (1)H nonselective spin-lattice relaxation times (T1NS) and selective spin-lattice relaxation times (T1SEL), as well as spin-spin relaxation times (T2). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that -COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from (13)C analysis, while PG, which is devoid of -COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2', H5' and H6') and C-ring (H6 and H8) protons of CA, and A-ring (H2' and H6'), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective (1)H T1 measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols. PMID:26447653

  17. Rashba spin-orbit interaction effect on the optical properties of a disk-like quantum dot

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Parinaz; Barvestani, Jamal; Soltani-Vala, Ali

    2016-04-01

    Using the density matrix approach and iterative method, we have theoretically investigated the optical properties of a disk-like quantum dot (QD) with hard-wall confining potential subjected to an external static magnetic field in the presence of a Rashba spin-orbit interaction. The results of numerical calculations for the typical InAs QD show that the linear, nonlinear and total absorption coefficients (ACs) and refractive index (RI) changes are sensitive to the parameters of the magnetic field and dot size. Moreover, the resonance peaks of ACs and RI changes redshift when increasing the Rashba spin-orbit interaction strength. The role of this interaction as a control parameter on the ACs and RI changes has been demonstrated in detail.

  18. Relevance of supramolecular interactions, texture and lattice occupancy in the designer iron(II) spin crossover complexes

    SciTech Connect

    Naik, Anil D.; Tinant, Bernard; Muffler, Kai; Wolny, Juliusz A.; Schuenemann, Volker; Garcia, Yann

    2009-06-15

    New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent (Solvent=0.5 CH{sub 3}OH (1), 2 CH{sub 2}Cl{sub 2} (2), desolvation of 2 (3), 0.5 CH{sub 3}COCH{sub 3} (4) and 0 (5)) have been synthesized. {sup 57}Fe Moessbauer and magnetic investigation reveal unique features atypical of classic [Fe(phen){sub 2}(NCS){sub 2}] polymorphs. Complex 1, prepared by precipitation in MeOH, undergoes upon cooling below room temperature an incomplete and gradual thermally induced spin conversion, while 4 prepared by an extraction method remains mostly in the low-spin state. The non solvated compounds 3 and 5, display a more abrupt spin crossover on cooling around T{sub 1/2}=175 K and T{sub 1/2}=198 K, respectively. Defects/soft lattice inclusion due to different methods of material synthesis, extent of aging, reaction medium and associated solvent molecules have enormous influence on the particle size and magnetic properties of these complexes. Scanning electron micrographs helps to establish a logical relationship among methods employed for synthesis, texture of materials and their effect on magnetic properties. The crystal structure of 2 determined in the monoclinic space group P2/c (100 K) reveals a mononuclear complex consisting of a distorted FeN{sub 6} octahedron in the low-spin state, constructed from two 3-bromo-1, 10-phenanthroline and two isothiocyanato anions in cis position. Intermolecular interactions between mononuclear units of the S...Br, S...C(H) and pi-pi type afford a 2D supramolecular network. DFT calculations for the single molecule 2 reveals an energy difference between high-spin and low-spin isomers of 7 kJ/mol suggesting a slight destabilization of the low-spin state compared to [Fe(phen){sub 2}(NCS){sub 2}]. Normal co-ordinate analysis was also carried out for 3 and compared with experimental temperature dependent Raman spectra for 5. - Graphical abstract: New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent

  19. Momentum spectrometer for electron-electron coincidence studies on superconductors

    SciTech Connect

    Wallauer, Robert; Voss, Stefan; Bauer, Tobias; Schneider, Deborah; Titze, Jasmin; Ulrich, Birte; Kreidi, Katharina; Neumann, Nadine; Havermeier, Tilo; Schoeffler, Markus; Jahnke, Till; Czasch, Achim; Schmidt, Lothar; Schmidt-Boecking, Horst; Doerner, Reinhard; Kanigel, Amit; Campuzano, Juan Carlos; Jeschke, Harald; Valenti, Roser [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt and others

    2012-10-15

    We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 {pi} solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.

  20. Flux 1/fα noise in two-dimensional Heisenberg spin glasses: Effects of weak anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Clarke, John; Schön, Gerd; Shnirman, Alexander

    2014-07-01

    We study the dynamics of a two-dimensional ensemble of randomly distributed classical Heisenberg spins with isotropic RKKY and weaker anisotropic dipole-dipole couplings. Such ensembles may give rise to the flux noise observed in SQUIDs with a 1/fα power spectrum with α ≲1. We solve numerically the Landau-Lifshitz-Gilbert equations of motion in the dissipationless limit. We find that Ising-type fluctuators, which arise from spin clustering close to a spin-glass critical behavior with Tc=0, give rise to 1/fα noise. Even weak anisotropic interactions lead to a crossover from the Heisenberg-type criticality to the much stronger Ising-type criticality. The temperature-dependent exponent α (T)≲1 increases and approaches unity when the temperature is lowered. This mechanism acts in parallel to the spin diffusion mechanism. Whereas the latter is sensitive to the device geometry, the spin-clustering mechanism is largely geometry independent.

  1. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    SciTech Connect

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ..delta..T=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs.

  2. Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques.

    PubMed

    Freimuth, F; Blügel, S; Mokrousov, Y

    2014-03-12

    Recent experiments on current-induced domain-wall motion in chiral domain walls reveal important contributions both from spin-orbit torques (SOTs) and from the Dzyaloshinskii-Moriya interaction (DMI). We derive a Berry phase expression for the DMI and show that within this Berry phase theory DMI and SOTs are intimately related, in a way formally analogous to the relation between orbital magnetization (OM) and anomalous Hall effect (AHE). We introduce the concept of the twist torque moment, which probes the internal twist of wavepackets in chiral magnets in a similar way as the orbital moment probes the wavepacket's internal self-rotation. We propose to interpret the Berry phase theory of DMI as a theory of spiralization in analogy to the modern theory of OM. We show that the twist torque moment and the spiralization together give rise to a Berry phase governing the response of the SOT to thermal gradients, in analogy to the intrinsic anomalous Nernst effect. The Berry phase theory of DMI is computationally very efficient because it only needs the electronic structure of the collinear magnetic system as input. As an application of the formalism we compute the DMI in Co/Pt(111), O/Co/Pt(111) and Al/Co/Pt(111) magnetic bi- and trilayers and show that the DMI is highly anisotropic in these systems. PMID:24552898

  3. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping.

    PubMed

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-05-11

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few.

  4. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  5. Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques.

    PubMed

    Freimuth, F; Blügel, S; Mokrousov, Y

    2014-03-12

    Recent experiments on current-induced domain-wall motion in chiral domain walls reveal important contributions both from spin-orbit torques (SOTs) and from the Dzyaloshinskii-Moriya interaction (DMI). We derive a Berry phase expression for the DMI and show that within this Berry phase theory DMI and SOTs are intimately related, in a way formally analogous to the relation between orbital magnetization (OM) and anomalous Hall effect (AHE). We introduce the concept of the twist torque moment, which probes the internal twist of wavepackets in chiral magnets in a similar way as the orbital moment probes the wavepacket's internal self-rotation. We propose to interpret the Berry phase theory of DMI as a theory of spiralization in analogy to the modern theory of OM. We show that the twist torque moment and the spiralization together give rise to a Berry phase governing the response of the SOT to thermal gradients, in analogy to the intrinsic anomalous Nernst effect. The Berry phase theory of DMI is computationally very efficient because it only needs the electronic structure of the collinear magnetic system as input. As an application of the formalism we compute the DMI in Co/Pt(111), O/Co/Pt(111) and Al/Co/Pt(111) magnetic bi- and trilayers and show that the DMI is highly anisotropic in these systems.

  6. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping.

    PubMed

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  7. Quasidegenerate scaled opposite spin second order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Casanova, David; Rhee, Young Min; Head-Gordon, Martin

    2008-04-01

    Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.

  8. Resonant tunneling between two-dimensional layers accounting for spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2016-05-01

    We present a theory of quantum tunneling between two-dimensional (2D) layers with Rashba and Dresselhaus spin-orbit interaction (SOI) in the layers. Accounting for SOI in the layers leads to a complex pattern in the tunneling characteristic with typical features corresponding to SOI energy. The resonant features strongly depend on the SOI parameters; for clear experimental observation the SOI characteristic energy should exceed the resonant broadening related to the particles' quantum lifetime in the layers. It appears that the experiments on hole tunneling are favorable to meet this criterion. We also consider a promising candidate for observing the effect, that is, p -doped SiGe strained heterostructures. As supported by our calculations, small adjustments of the parameters for experimentally studied AlGaAs/GaAs p -type quantum walls or designing a 2D-2D tunneling experiment for recently fabricated SiGe structures are very likely to reveal the SOI features in the 2D-2D tunneling.

  9. Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model

    NASA Astrophysics Data System (ADS)

    Kugel, K. I.; Khomskii, D. I.; Sboychakov, A. O.; Streltsov, S. V.

    2015-04-01

    Specific features of orbital and spin structure of transition-metal compounds in the case of the face-sharing MO6 octahedra are analyzed. In this geometry, we consider the form of the spin-orbital Hamiltonian for transition-metal ions with double (egσ) or triple (t2 g) orbital degeneracy. Trigonal distortions typical of the structures with face-sharing octahedra lead to splitting of t2 g orbitals into an a1 g singlet and egπ doublet. For both doublets (egσ and egπ), in the case of one electron or hole per site, we arrive at a symmetric model with the orbital and spin interaction of the Heisenberg type and the Hamiltonian of unexpectedly high symmetry: SU(4). Thus, many real materials with this geometry can serve as a testing ground for checking the prediction of this interesting theoretical model. We also compare general trends in the spin-orbital ("Kugel-Khomskii") exchange interaction for three typical situations: those of MO6 octahedra with common corner, common edge, and the present case of common face, which has not been considered yet.

  10. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    PubMed

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}. PMID:27015496

  11. Fermi Surface of Sr2 RuO4 : Spin-Orbit and Anisotropic Coulomb Interaction Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-01

    The topology of the Fermi surface of Sr2 RuO4 is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix—responsible for the reshaping of the Fermi surface—sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr2 RuO4 .

  12. Two tri-spin complexes based on gadolinium and nitronyl nitroxide radicals: Structure and ferromagnetic interactions

    SciTech Connect

    Zhou Na; Ma Yue; Wang Chao; Xu Gongfeng; Tang Jinkui; Yan Shiping; Liao Daizheng

    2010-04-15

    Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac){sub 3}(NITPhOEt){sub 2}] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (2) (NITPhOCH{sub 2}Ph=4'-benzyloxy-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions Gd{sup III} or Lu{sup III} are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two Gd{sup III} complexes, there are ferromagnetic Gd{sup III}-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with J{sub Rad-Gd}=0.27 cm{sup -1}, j{sub Rad-Rad}=-2.97 cm{sup -1} for 1: and J{sub Rad-Gd}=0.62 cm{sup -1}, j{sub Rad-Rad}=-7.01 cm{sup -1} for 2). An analogous complex of [Lu(hfac){sub 3} (NITPhOCH{sub 2}Ph){sub 2}] (3) containing diamagnetic Lu{sup III} ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals. - Graphical abstract: Two tri-spin complexes based on gadolinium-radical have been synthesized and characterized, the magnetic studies show that in the two complexes the Gd-radical interaction is ferromagnetic and the radical-radical interaction is antiferromagnetic. An analogous complex containing the diamagnetic Lu{sup III} ions has also been synthesized to further demonstrate the nature of the magnetic coupling between radicals.

  13. Relativistic corrections to the algebra of position variables and spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Deriglazov, Alexei A.; Pupasov-Maksimov, Andrey M.

    2016-10-01

    In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy-Wouthuysen transformation.

  14. Effect of Rasbha spin-orbit interaction on the ground state energy of a hydrogenic D{sup 0} complex in a Gaussian quantum dot

    SciTech Connect

    Boda, Aalu Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma

    2015-06-24

    The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.

  15. Nature of the spin-glass phase in models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew C.

    Despite decades of effort, our understanding of low-temperature phase of spin glass models with short-range interactions remains incomplete. Replica symmetry breaking (RSB) theory, based on the solution of the Sherrington-Kirkpatrick mean-field model, predicts many pure states; meanwhile, competing theories of short-range systems, such as the droplet picture, predict a single pair of pure states related by time-reversal symmetry, analogously to the ferromagnet. Since RSB certainly holds for the mean-field (infinite-range) model, it is interesting to study short-range models in high dimensions to observe whether RSB also holds here; however, computer simulations of short-range models in high dimensions are difficult because the number of spins to equilibrate grows so rapidly with the linear size of the system. A relatively recent idea which has been fruitful is to instead study one-dimensional models with long-range (power-law) interactions, which are argued to have the same critical behavior as corresponding short-range models in high dimensions, but for which simulations for a range of sizes (crucial for finite-size scaling analysis) are feasible. For these one-dimensional long-range (1DLR) models, we fill in a previously unexplored region of parameter space where the interactions become sufficiently long-range that they must be rescaled with the system size to maintain the thermodynamic limit. We find strong evidence that detailed behavior of the 1DLR models everywhere in this "nonextensive regime" is identical to that of the Sherrington-Kirkpatrick model, lending support to a recent conjecture. In an attempt to distinguish the RSB and droplet pictures, we study recently-proposed observables based on the statistics of individual disorder samples, rather than simply averaging over the disorder as is most frequently done in previous studies. We compare Monte Carlo results for 1DLR models which are proxies for short-range models in 3, 4, and 10 dimensions with

  16. Time displacement rotational echo double resonance: Heteronuclear dipolar recoupling with suppression of homonuclear interaction under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Tsai, Tim W. T.; Mou, Yun; Chan, Jerry C. C.

    2012-01-01

    We have developed a novel variant of REDOR which is applicable to multiple-spin systems without proton decoupling. The pulse sequence is constructed based on a systematic time displacement of the pi pulses of the conventional REDOR sequence. This so-called time displacement REDOR (td-REDOR) is insensitive to the effect of homonuclear dipole-dipole interaction when the higher order effects are negligible. The validity of td-REDOR has been verified experimentally by the P-31{C-13} measurements on glyphosate at a spinning frequency of 25 kHz. The experimental dephasing curve is in favorable agreement with the simulation data without considering the homonuclear dipole-dipole interactions.

  17. Magnetic and gravitational disk-star interactions: an interdependence of PMS stellar rotation rates and spin-orbit misalignments

    SciTech Connect

    Batygin, Konstantin; Adams, Fred C. E-mail: fca@umich.edu

    2013-12-01

    The presence of giant gaseous planets that reside in close proximity to their host stars, i.e., hot Jupiters, may be a consequence of large-scale radial migration through the protoplanetary nebulae. Within the framework of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the natal disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity likely exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main-sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contraction, this process is largely controlled by the morphology of the stellar magnetic field (that is, specific angular momentum accreted by stars with octupole-dominated surface fields is smaller than that accreted by dipole-dominated stars by an order of magnitude). Subsequently, we examine the secular spin-axis dynamics of disk-bearing stars, accounting for the time-evolution of stellar and disk properties, and demonstrate that misalignments are preferentially excited in systems where stellar rotation is not overwhelmingly rapid. Moreover, we show that the excitation of spin-orbit misalignment occurs impulsively through an encounter with a resonance between the stellar precession frequency and the disk-torquing frequency. Cumulatively, the model developed herein opens up a previously unexplored avenue toward understanding star-disk evolution and its consequences in a unified manner.

  18. Quantum spin Hall states in graphene interacting with WS{sub 2} or WSe{sub 2}

    SciTech Connect

    Kaloni, T. P.; Schwingenschlögl, U.; Kou, L.; Frauenheim, T.

    2014-12-08

    In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS{sub 2} and WSe{sub 2} monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenide results in quantum spin Hall states in the absence of a magnetic field.

  19. Synthesis of 14N and 15N-labeled trityl-nitroxide biradicals with strong spin-spin interaction and improved sensitivity to redox status and oxygen

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Song, Yuguang; Sun, Jian; Rockenbauer, Antal

    2014-01-01

    Simultaneous evaluation redox status and oxygenation in biological systems is of great importance for the understanding of biological functions. Electron paramagnetic resonance spectroscopy coupled with the use of the nitroxide radicals have been an indispensable technique for this application but are still limited by its low oxygen sensitivity, and low EPR resolution in part due to the moderately broad EPR triplet and spin quenching through bioreduction. In this study, we showed that these drawbacks can be overcome through the use of trityl-nitroxide biradicals allowing for the simultaneous measurement of redox status and oxygenation. A new trityl-nitroxide biradical TNN14 composed of a pyrrolidinyl-nitroxide and a trityl, and its isotopically labeled 15N analogue TNN15 were synthesized and characterized. Both biradicals exhibited much stronger spin-spin interaction with J > 400 G than the previous synthesized trityl-nitroxide biradicals TN1 (~160 G) and TN2 (~52 G) with longer linker chain length. The enhanced stability of TNN14 was evaluated using ascorbate as reductant and the effect of different types of cyclodextrins on its stability in the presence of ascorbate was also investigated. Both biradicals are sensitive to redox status, and their corresponding trityl-hydroxylamines resulting from the reduction of the biradicals by ascorbate share the same oxygen sensitivity. Of note is that the 15N-labeled TNN15-H with an EPR doublet exhibits improved EPR signal amplitude as compared to TNN14-H with an EPR triplet. In addition, cyclic voltammetric studies verify the characteristic electrochemical behaviors of the trityl-nitroxide biradicals. PMID:21028905

  20. Relativistic Spin and Pseudospin Symmetries of Inversely Quadratic Yukawa-like plus Mobius Square Potentials Including a Coulomb-like Tensor Interaction

    NASA Astrophysics Data System (ADS)

    Ikot, Akpan N.; Maghsoodi, Elham; Zarrinkamar, Saber; Hassanabadi, Hassan

    2013-11-01

    The Dirac equation for the combined Mobius square and inversely quadratic Yukawa potentials including a Coulomb-like interaction term has been investigated in the presence of spin and pseudospin symmetries with arbitrary spin-orbit quantum number κ .We have obtained the explicit energy eigenvalues and the corresponding eigenfunctions by the framework of Nikiforov-Uvarov method.

  1. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    SciTech Connect

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y

  2. Electrically controllable spin conductance of zigzag silicene nanoribbons in the presence of anti-ferromagnetic exchange field

    NASA Astrophysics Data System (ADS)

    Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Ahmadi, Somaieh; Farokhnezhad, Mohsen

    2016-01-01

    We study spin-dependent electron transport properties of zigzag silicene nanoribbons in the presence of anti-ferromagnetic exchange field using a nonequilibrium Green's function method. Applying a transverse electric field, spin splitting can take place and the silicene nanoribbon can work as a spin filter. The spin polarization is calculated and it is shown that the spin filtering is perfect and the spin states of electrons are fully coherent. The spin direction of transmitted electrons through the silicene filter can be easily controlled by changing the transverse electric field direction. Using Hubbard model, we take into account the electron-electron interaction and we find that although this interaction causes some changes in the electron conductance, it has no destructive effect on spin filtering properties. The effect of a single vacancy on electron transport is also investigated and it is found that, the vacancy causes to decrease the electron conductance; however, the spin-dependent properties remain the same. The vacancy in the near of the edges of nanoribbon has less destructive effect on electron conductance than that in the middle.

  3. Spin-orbit interaction for the double ring-shaped oscillator

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng; You, Yuan; Dong, Shi-Hai

    2016-08-01

    The spin-orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m = 0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m ≠ 0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases | m | = 2 , 3 , 4 , …. We note that around the critical value b0, the energy levels are reversed. We also discuss some special cases for η = 2 , 3 , 4 , 5 , 6 , …, and the b = 0 , c > 0. It should be pointed out that the parameter b0 is relevant for the angular part parameter b in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter c corresponds to the angular part parameter in double ring-shaped potential and the η is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.

  4. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    SciTech Connect

    Yang, Luyi

    2013-05-17

    suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s-1.

  5. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Cheng; Liu, Yong; Chi, Feng

    2014-02-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature.

  6. Measurement of the magnetic interaction between two electrons

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    In this talk we will report on the first measurement of the magnetic interaction between two electronic spins. While the dipolar magnetic interactions between different spin systems, such as an electron and its nucleus or several multi-electron spin complexes, were experimentally studied, the magnetic interaction between two isolated electronic spins was never observed. We will explain why columb exchange forces on the one hand, and magnetic field noise on the other hand, make the electron-electron magnetic interaction measurement a challenging one. This challenge was resolved by the use of Quantum Information techniques. In our experiment, we used the ground state valence electrons of two 88 Sr+ ions, co-trapped in an electric Paul trap and separated by more than two micrometers. We measured a weak, millihertz scale, magnetic interaction between their electronic spins, in the presence of magnetic noise that was six orders of magnitude larger than the respective magnetic fields the electrons apply on each other. Spin dynamics was restricted to a Decoherence Free Subspace where a coherent evolution of 15 s led to spin-entanglement. Finally, by varying the separation between the two ions, we were able to recover the cubic distance dependence of the interaction Current position: NIST, Boulder, CO.

  7. Measurement of the Magnetic Interaction Between Two Electrons

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    In this talk we will report on the first measurement of the magnetic interaction between two electronic spins. While the dipolar magnetic interaction between different spin systems, such as an electron and its nucleus or several multi-electron spin complexes, were experimentally studied, the magnetic interaction between two isolated electronic spins was never observed. We will explain why the Coulomb exchange forces on the one hand, and magnetic field noise on the other hand, make the electron-electron magnetic interaction measurement a challenging one. This challenge was resolved by the use of Quantum Information techniques. In our experiment, we used the ground state valence electrons of two 88Sr+ ions, co-trapped in an electric Paul trap and separated by more than two micrometers. We measured a weak, millihertz scale, magnetic interaction between their electronic spins, in the presence of magnetic noise that was six orders of magnitude larger than the respective fields the electrons apply on each other. Spin dynamics was restricted to a Decoherence Free Subspace where a coherent evolution of 15 seconds led to spin-entanglement. Finally, by varying the separation between the ions, we were able to recover the inverse cubic distance dependence of the interaction. Current position: National Institute of Standards and Technology, Boulder, CO.

  8. Spin Effects in the Interaction of Antiprotons with the Deuteron at Low and Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Uzikov, Y. N.; Haidenbauer, J.

    2014-08-01

    Antiproton-deuteron scattering is analyzed within the Glauber theory, accounting for the full spin dependence of the underlying amplitudes. The latter are taken from the Jülich models and from a recently published new partial-wave analysis of scattering data. Predictions for differential cross sections and the spin observables , , A xx , A yy are presented for antiproton beam energies up to about 300 MeV. The efficiency of the polarization buildup for antiprotons in a storage ring is investigated.

  9. Quenching of the spin-dependent scattering of weakly interacting massive particles on heavy nuclei

    NASA Astrophysics Data System (ADS)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-12-01

    We present calculations of the quenching of the spin-dependent elastic scattering cross section for dark matter WIMPs on heavy nuclei. The theory of finite Fermi systems was used to describe the behavior of the nuclear spin matrix elements in the nuclear medium. The results of the calculations for planned dark matter detector nuclei are not only always smaller than corresponding single particle estimations but in some cases also differ from the ones obtained by using measured nuclear magnetic moments.

  10. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double Electron Electron Resonance (DEER)†

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  11. On Cu(II) Cu(II) distance measurements using pulsed electron electron double resonance

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Becker, James; Saxena, Sunil

    2007-10-01

    The effects of orientational selectivity on the 4-pulse electron electron double resonance (PELDOR) ESR spectra of coupled Cu(II)-Cu(II) spins are presented. The data were collected at four magnetic fields on a poly-proline peptide containing two Cu(II) centers. The Cu(II)-PELDOR spectra of this peptide do not change appreciably with magnetic field at X-band. The data were analyzed by adapting the theory of Maryasov, Tsvetkov, and Raap [A.G. Maryasov, Y.D. Tsvetkov, J. Raap, Weakly coupled radical pairs in solids:ELDOR in ESE structure studies, Appl. Magn. Reson. 14 (1998) 101-113]. Simulations indicate that orientational effects are important for Cu(II)-PELDOR. Based on simulations, the field-independence of the PELDOR data for this peptide is likely due to two effects. First, for this peptide, the Cu(II) g-tensor(s) are in a very specific orientation with respect to the interspin vector. Second, the flexibility of the peptide washes out the orientation effects. These effects reduce the suitability of the poly-proline based peptide as a good model system to experimentally probe orientational effects in such experiments. An average Cu(II)-Cu(II) distance of 2.1-2.2 nm was determined, which is consistent with earlier double quantum coherence ESR results.

  12. Double Electron-Electron Resonance Probes Ca2+-induced Conformational Changes and Dimerization of Recoverin†

    PubMed Central

    Myers, William K.; Xu, Xianzhong; Li, Congmin; Lagerstedt, Jens O.; Budamagunta, Madhu S.; Voss, John C.; Britt, R. David; Ames, James B.

    2013-01-01

    Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca2+-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca2+-myristoyl switch) that promote translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron-electron resonance (DEER) experiments on recoverin that probe Ca2+-induced changes in distance as measured by the dipolar coupling between spin labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ±0.1 nm for Ca2+-free recoverin and 3.7 ±0.1 nm for Ca2+-bound recoverin. An additional DEER distance (5 - 6 nm) observed for Ca2+-bound recoverin may represent an intermolecular distance between C39 and N120. 15N NMR relaxation analysis and CW-EPR experiments both confirm that Ca2+-bound recoverin forms a dimer at protein concentrations above 100 μM, whereas Ca2+-free recoverin is monomeric. We propose that Ca2+-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca2+-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca2+-induced dimerization is functionally important but not well understood. PMID:23906368

  13. Spin crossover and hyperfine interactions of iron in (Mg ,Fe ) CO3 ferromagnesite

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Huang, Sheng-Chieh

    2016-08-01

    Ferromagnesite, an iron-bearing carbonate stable up to 100-115 GPa, is believed to be the major carbon carrier in the earth's lower mantle and play a key role in the earth's deep carbon cycle. In this paper, we use the local density approximation plus self-consistent Hubbard U (LDA+Usc) method to study the iron spin crossover in ferromagnesite with a wide range of iron concentration (12.5-100%). Our calculation shows that this mineral undergoes a crossover from the high-spin (HS) (S =2 ) to the low-spin (LS) (S =0 ) state at around 45-50 GPa, regardless of the iron concentration. The intermediate-spin (S =1 ) state is energetically unfavorable and not involved in spin crossover. The anomalous changes of volume, density, and bulk modulus accompanying the spin crossover obtained in our calculation are in great agreement with experiments. Our calculation also predicts that an abrupt change of the iron nuclear quadrupole splitting, from ≳2.8 mm/s to ≲0.3 mm/s, can be observed in Mössbauer spectra at 45-50 GPa as a signature of the HS-LS crossover.

  14. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity.

    PubMed

    Vora, Patrick M; Bracker, Allan S; Carter, Samuel G; Sweeney, Timothy M; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G; Economou, Sophia E; Gammon, Daniel

    2015-07-17

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network.

  15. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-07-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network.

  16. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity.

    PubMed

    Vora, Patrick M; Bracker, Allan S; Carter, Samuel G; Sweeney, Timothy M; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G; Economou, Sophia E; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  17. An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals

    SciTech Connect

    Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H. ); Dwyer, D.W. )

    1993-02-11

    Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interaction of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.

  18. Effect of Rashba spin-orbit interaction on the ground state energy of a D0 centre in a GaAs quantum dot with Gaussian confinement

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Boda, Aalu; Mukhopadhyay, Soma; Chatterjee, Ashok

    2015-12-01

    The ground state energy of a neutral hydrogenic donor impurity (D0) trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated in the presence of Rashba spin-orbit interaction. The effect of the spin-orbit interaction is incorporated by performing a unitary transformation and retaining terms up to quadratic in the spin-orbit interaction coefficient. For the resulting Hamiltonian, the Rayleigh-Ritz variational method is employed with a simple wave function within the framework of effective-mass envelope function theory to determine the ground state energy and the binding energy of the donor complex. The results show that the Rashba spin-orbit interaction reduces the total GS energy of the donor impurity.

  19. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  20. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2015-06-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.