General Model of Photon-Pair Detection with an Image Sensor
NASA Astrophysics Data System (ADS)
Defienne, Hugo; Reichert, Matthew; Fleischer, Jason W.
2018-05-01
We develop an analytic model that relates intensity correlation measurements performed by an image sensor to the properties of photon pairs illuminating it. Experiments using an effective single-photon counting camera, a linear electron-multiplying charge-coupled device camera, and a standard CCD camera confirm the model. The results open the field of quantum optical sensing using conventional detectors.
Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype
NASA Astrophysics Data System (ADS)
Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille
2012-06-01
The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.
Electronic cameras for low-light microscopy.
Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith
2013-01-01
This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.
A Flight Photon Counting Camera for the WFIRST Coronagraph
NASA Astrophysics Data System (ADS)
Morrissey, Patrick
2018-01-01
A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.
Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf
2011-03-01
We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.
Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs
NASA Astrophysics Data System (ADS)
Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.
2014-02-01
This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
VizieR Online Data Catalog: Properties of late M-dwarfs (Janson+, 2014)
NASA Astrophysics Data System (ADS)
Janson, M.; Bergfors, C.; Brandner, W.; Kudryavtseva, N.; Hormuth, F.; Hippler, S.; Henning, T.
2017-03-01
The targets in this study were selected from the Lepine & Gaidos (2011, J/AJ/142/138) sample, where stars with a spectral type (SpT) estimate of M5 or later were selected if they were sufficiently bright (J <= 10.0 mag) and sufficiently far north (>-15°) to be meaningfully observed with AstraLux Norte. In total, this gave an input sample of 408 potential targets, of which 286 were actually observed. All observations in this program were acquired with the AstraLux Norte camera on the 2.2 m telescope at Calar Alto in Spain. The 2.2 m telescope is on an equatorial mount. AstraLux uses an Andor DV887-UVB camera head equipped with a thinned, back-illuminated, electron-multiplying 512 x 512 pixel monolithic CCD. The CCD is equipped with two readout registers, one for conventional readout, and one 536 stage electron multiplication register. Each of the two registers comes with its own output amplifier. All Lucky Imaging data were obtained using the electron multiplication mode, and the associated output amplifier. (3 data files).
NASA Astrophysics Data System (ADS)
Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.
2012-07-01
We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.
Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station
NASA Astrophysics Data System (ADS)
Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly
2013-09-01
We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.
Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A
2004-01-01
The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.
NASA Technical Reports Server (NTRS)
Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.
1976-01-01
Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
NASA Astrophysics Data System (ADS)
Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.
2017-11-01
Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.
Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range
NASA Astrophysics Data System (ADS)
Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.
2013-12-01
The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.
NASA Astrophysics Data System (ADS)
Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi
2011-03-01
Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.
Maturing CCD Photon-Counting Technology for Space Flight
NASA Technical Reports Server (NTRS)
Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian
2015-01-01
This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
Tests of commercial colour CMOS cameras for astronomical applications
NASA Astrophysics Data System (ADS)
Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.
2013-12-01
We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.
Miniature self-contained vacuum compatible electronic imaging microscope
Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.
2001-01-01
A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.
NASA Astrophysics Data System (ADS)
Moreau, Paul-Antoine; Mougin-Sisini, Joé; Devaux, Fabrice; Lantz, Eric
2012-07-01
We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely spatial quantum correlations in the near and far fields of spontaneous parametric down-conversion generated in a type-2 beta barium borate crystal. Full-field imaging is performed in the photon-counting regime with an electron-multiplying CCD camera. The data are used without any postselection, and we obtain a violation of Heisenberg inequalities with inferred quantities taking into account all the biphoton pairs in both the near and far fields by integration on the entire two-dimensional transverse planes. This ensures a rigorous demonstration of the EPR paradox in its original position-momentum form.
Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J
2015-02-01
To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The ICCD with an intensifier better optimized for red wavelengths was found to provide the best potential for real-time display (at least 8.6 fps) of radiation dose on the skin during treatment at a resolution of 1024 × 1024.
Design principles and applications of a cooled CCD camera for electron microscopy.
Faruqi, A R
1998-01-01
Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.
NASA Astrophysics Data System (ADS)
van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish
2016-07-01
Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.
Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy
NASA Astrophysics Data System (ADS)
Hewat, A. W.
We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.
Typical effects of laser dazzling CCD camera
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin
2015-05-01
In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.
24/7 security system: 60-FPS color EMCCD camera with integral human recognition
NASA Astrophysics Data System (ADS)
Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.
2007-04-01
An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.
Live event reconstruction in an optically read out GEM-based TPC
NASA Astrophysics Data System (ADS)
Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.
2018-04-01
Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.
Driving techniques for high frame rate CCD camera
NASA Astrophysics Data System (ADS)
Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu
2008-03-01
This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.
Design and realization of an AEC&AGC system for the CCD aerial camera
NASA Astrophysics Data System (ADS)
Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun
2015-08-01
An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.
Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors
NASA Technical Reports Server (NTRS)
Opal, Chet B.; Carruthers, George R.
1989-01-01
In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.
Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko
2006-01-01
The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.
Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples
Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.
2014-01-01
Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510
NASA Astrophysics Data System (ADS)
Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.
2003-01-01
The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.
High-resolution CCD imaging alternatives
NASA Astrophysics Data System (ADS)
Brown, D. L.; Acker, D. E.
1992-08-01
High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.
MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera
NASA Astrophysics Data System (ADS)
Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.
2017-10-01
An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).
Adjustment of multi-CCD-chip-color-camera heads
NASA Astrophysics Data System (ADS)
Guyenot, Volker; Tittelbach, Guenther; Palme, Martin
1999-09-01
The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
The design and development of low- and high-voltage ASICs for space-borne CCD cameras
NASA Astrophysics Data System (ADS)
Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.
2017-12-01
The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.
A sniffer-camera for imaging of ethanol vaporization from wine: the effect of wine glass shape.
Arakawa, Takahiro; Iitani, Kenta; Wang, Xin; Kajiro, Takumi; Toma, Koji; Yano, Kazuyoshi; Mitsubayashi, Kohji
2015-04-21
A two-dimensional imaging system (Sniffer-camera) for visualizing the concentration distribution of ethanol vapor emitting from wine in a wine glass has been developed. This system provides image information of ethanol vapor concentration using chemiluminescence (CL) from an enzyme-immobilized mesh. This system measures ethanol vapor concentration as CL intensities from luminol reactions induced by alcohol oxidase and a horseradish peroxidase (HRP)-luminol-hydrogen peroxide system. Conversion of ethanol distribution and concentration to two-dimensional CL was conducted using an enzyme-immobilized mesh containing an alcohol oxidase, horseradish peroxidase, and luminol solution. The temporal changes in CL were detected using an electron multiplier (EM)-CCD camera and analyzed. We selected three types of glasses-a wine glass, a cocktail glass, and a straight glass-to determine the differences in ethanol emission caused by the shape effects of the glass. The emission measurements of ethanol vapor from wine in each glass were successfully visualized, with pixel intensity reflecting ethanol concentration. Of note, a characteristic ring shape attributed to high alcohol concentration appeared near the rim of the wine glass containing 13 °C wine. Thus, the alcohol concentration in the center of the wine glass was comparatively lower. The Sniffer-camera was demonstrated to be sufficiently useful for non-destructive ethanol measurement for the assessment of food characteristics.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhijit; Verma, Anurag
2016-05-01
The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.
Explosive Transient Camera (ETC) Program
1991-10-01
VOLTAGES 4.- VIDEO OUT CCD CLOCKING UNIT UUPSTAIRS" ELECTRONICS AND ANALOG TO DIGITAL IPR OCECSSER I COMMANDS TO DATA AND STATUS INSTRUMENT INFORMATION I...and transmits digital video and status information to the "downstairs" system. The clocking unit and regulator/driver board are the only CCD dependent...A. 1001, " Video Cam-era’CC’" tandari Piells" (1(P’ll m-norartlum, unpublished). Condon,, J.J., Puckpan, M.A., and Vachalski, J. 1970, A. J., 9U, 1149
Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted
2012-12-01
We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
NASA Astrophysics Data System (ADS)
Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John
2007-11-01
This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.
Ellefsen, Kyle L; Settle, Brett; Parker, Ian; Smith, Ian F
2014-09-01
Local Ca(2+) transients such as puffs and sparks form the building blocks of cellular Ca(2+) signaling in numerous cell types. They have traditionally been studied by linescan confocal microscopy, but advances in TIRF microscopy together with improved electron-multiplied CCD (EMCCD) cameras now enable rapid (>500 frames s(-1)) imaging of subcellular Ca(2+) signals with high spatial resolution in two dimensions. This approach yields vastly more information (ca. 1 Gb min(-1)) than linescan imaging, rendering visual identification and analysis of local events imaged both laborious and subject to user bias. Here we describe a routine to rapidly automate identification and analysis of local Ca(2+) events. This features an intuitive graphical user-interfaces and runs under Matlab and the open-source Python software. The underlying algorithm features spatial and temporal noise filtering to reliably detect even small events in the presence of noisy and fluctuating baselines; localizes sites of Ca(2+) release with sub-pixel resolution; facilitates user review and editing of data; and outputs time-sequences of fluorescence ratio signals for identified event sites along with Excel-compatible tables listing amplitudes and kinetics of events. Copyright © 2014 Elsevier Ltd. All rights reserved.
Performance measurement of commercial electronic still picture cameras
NASA Astrophysics Data System (ADS)
Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te
1998-06-01
Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.
Design and fabrication of a CCD camera for use with relay optics in solar X-ray astronomy
NASA Technical Reports Server (NTRS)
1984-01-01
Configured as a subsystem of a sounding rocket experiment, a camera system was designed to record and transmit an X-ray image focused on a charge coupled device. The camera consists of a X-ray sensitive detector and the electronics for processing and transmitting image data. The design and operation of the camera are described. Schematics are included.
Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1981-01-01
The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.
Ultrafast Imaging using Spectral Resonance Modulation
NASA Astrophysics Data System (ADS)
Huang, Eric; Ma, Qian; Liu, Zhaowei
2016-04-01
CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.
NASA Astrophysics Data System (ADS)
Gonzaga, S.; et al.
2011-03-01
ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.
VizieR Online Data Catalog: BVRI photometry of S5 0716+714 (Liao+, 2014)
NASA Astrophysics Data System (ADS)
Liao, N. H.; Bai, J. M.; Liu, H. T.; Weng, S. S.; Chen, L.; Li, F.
2016-04-01
The variability of S5 0716+714 was photometrically monitored in the optical bands at Yunnan Observatories, making use of the 2.4m telescope (http://www.gmg.org.cn/) and the 1.02m telescope (http://www1.ynao.ac.cn/~omt/). The 2.4m telescope, which began working in 2008 May, is located at the Lijiang Observatory of Yunnan Observatories, where the longitude is 100°01'51''E and the latitude is 26°42'32''N, with an altitude of 3193m. There are two photometric terminals. The PI VersArry 1300B CCD camera with 1340*1300 pixels covers a field of view 4'48''*4'40'' at the Cassegrain focus. The readout noise and gain are 6.05 electrons and 1.1 electrons ADU-1, respectively. The Yunnan Faint Object Spectrograph and Camera (YFOSC) has a field of view of about 10'*10' and 2000*2000 pixels for photometric observation. Each pixel corresponds to 0.283'' of the sky. The readout noise and gain of the YFOSC CCD are 7.5 electrons and 0.33 electrons ADU-1, respectively. The 1.02m telescope is located at the headquarters of Yunnan Observatories and is mainly used for photometry with standard Johnson UBV and Cousins RI filters. An Andor CCD camera with 2048*2048 pixels has been installed at its Cassegrain focus since 2008 May. The readout noise and gain are 7.8 electrons and 1.1 electrons ADU-1, respectively. (1 data file).
NASA Technical Reports Server (NTRS)
Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)
1998-01-01
A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.
Architecture of PAU survey camera readout electronics
NASA Astrophysics Data System (ADS)
Castilla, Javier; Cardiel-Sas, Laia; De Vicente, Juan; Illa, Joseph; Jimenez, Jorge; Maiorino, Marino; Martinez, Gustavo
2012-07-01
PAUCam is a new camera for studying the physics of the accelerating universe. The camera will consist of eighteen 2Kx4K HPK CCDs: sixteen for science and two for guiding. The camera will be installed at the prime focus of the WHT (William Herschel Telescope). In this contribution, the architecture of the readout electronics system is presented. Back- End and Front-End electronics are described. Back-End consists of clock, bias and video processing boards, mounted on Monsoon crates. The Front-End is based on patch panel boards. These boards are plugged outside the camera feed-through panel for signal distribution. Inside the camera, individual preamplifier boards plus kapton cable completes the path to connect to each CCD. The overall signal distribution and grounding scheme is shown in this paper.
Design of a CCD Camera for Space Surveillance
2016-03-05
Laboratory fabricated CCID-51M, a 2048x1024 pixel Charge Couple Device (CCD) imager. [1] The mission objective is to observe and detect satellites in...phased to transfer the charge to the outputs. An electronic shutter is created by having an equal area of pixels covered by an opaque metal mask. The...Figure 4 CDS Timing Diagram By design the CCD readout rate is 400 KHz. This rate was chosen so reading the 2E6 pixels from one output is less than
VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2015-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.
NASA Technical Reports Server (NTRS)
Jones, J. A.
1983-01-01
In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.
Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations
NASA Astrophysics Data System (ADS)
Hirsch, Michael
During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward.
Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.
Elleaume, P; Fortgang, C; Penel, C; Tarazona, E
1995-09-01
A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.
The simulated spectrum of the OGRE X-ray EM-CCD camera system
NASA Astrophysics Data System (ADS)
Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.
2017-12-01
The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible observation time. These results are compared to a Chandra observation to show the overall effectiveness of the new technologies. The current optical module is shown to narrowly meet the minimum success conditions whilst the proposed model comfortably demonstrates the effectiveness of the technologies if a larger effective area is provided.
Timing generator of scientific grade CCD camera and its implementation based on FPGA technology
NASA Astrophysics Data System (ADS)
Si, Guoliang; Li, Yunfei; Guo, Yongfei
2010-10-01
The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.
An electron energy loss spectrometer based streak camera for time resolved TEM measurements.
Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus
2017-05-01
We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.
Noise and sensitivity of x-ray framing cameras at Nike (abstract)
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Deniz, A. V.; Lehecka, T.
1999-01-01
X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.
OSIRIS-REx OCAMS detector assembly characterization
NASA Astrophysics Data System (ADS)
Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.
2013-09-01
The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.
Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware
NASA Astrophysics Data System (ADS)
Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.
2007-12-01
We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.
Particle displacement tracking applied to air flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.
High-frame rate multiport CCD imager and camera
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.
1993-01-01
A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.
X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.
Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S
2016-02-01
Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.
Vacuum compatible miniature CCD camera head
Conder, Alan D.
2000-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
Microchannel plate streak camera
Wang, Ching L.
1989-01-01
An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
The MROI fast tip-tilt correction and target acquisition system
NASA Astrophysics Data System (ADS)
Young, John; Buscher, David; Fisher, Martin; Haniff, Christopher; Rea, Alexander; Seneta, Eugene B.; Sun, Xiaowei; Wilson, Donald; Farris, Allen; Olivares, Andres; Selina, Robert
2012-07-01
The fast tip-tilt correction system for the Magdalena Ridge Observatory Interferometer (MROI) is being designed and fabricated by the University of Cambridge. The design of the system is currently at an advanced stage and the performance of its critical subsystems has been verified in the laboratory. The system has been designed to meet a demanding set of specifications including satisfying all performance requirements in ambient temperatures down to -5 °C, maintaining the stability of the tip-tilt fiducial over a 5 °C temperature change without recourse to an optical reference, and a target acquisition mode with a 60” field-of-view. We describe the important technical features of the system, which uses an Andor electron-multiplying CCD camera protected by a thermal enclosure, a transmissive optical system with mounts incorporating passive thermal compensation, and custom control software running under Xenomai real-time Linux. We also report results from laboratory tests that demonstrate (a) the high stability of the custom optic mounts and (b) the low readout and compute latencies that will allow us to achieve a 40 Hz closed-loop bandwidth on bright targets.
Development of a scintillating G-GEM detector for a 6-MeV X-band Linac for medical applications
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Tanaka, S.; Mitsuya, Y.; Takahashi, H.; Tagi, K.; Kusano, J.; Tanabe, E.; Yamamoto, M.; Nakamura, N.; Dobashi, K.; Tomita, H.; Uesaka, M.
2013-12-01
We recently developed glass gas electron multipliers (G-GEMs) with an entirely new process using photo-etchable glass. The photo-etchable glass used for the substrate is called PEG3 (Hoya Corporation). Taking advantage of low outgassing material, we have envisioned a medical application of G-GEMs. A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for real-time dose distribution monitoring in X-ray radiation therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside of which G-GEM structures are mounted. Photons produced by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD-camera system. We found that the intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the first results from a scintillating G-GEM detector for a position-sensitive X-ray beam dosimeter.
Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto
2014-11-01
The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Event-Driven Random-Access-Windowing CCD Imaging System
NASA Technical Reports Server (NTRS)
Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William
2004-01-01
A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Ultrasound-modulated optical tomography with intense acoustic bursts.
Zemp, Roger J; Kim, Chulhong; Wang, Lihong V
2007-04-01
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.
Printed circuit board for a CCD camera head
Conder, Alan D.
2002-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca
2012-05-01
Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.
Sonoluminescence and sonochemiluminescence study of cavitation field in a 1.2MHz focused ultrasound
NASA Astrophysics Data System (ADS)
Yin, Hui; Qiao, Yangzi; Cao, Hua; Wan, Mingxi
2017-03-01
An intensified CCD (ICCD) and an electron-multiplying CCD (EMCCD) were employed to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2MHz HIFU field. Various sonication conditions, which are free field and focal region near a water-parenchyma interface, were studied. In addition, the differences of two shells coated UCAs were also investigated. In this study, an acoustic radiation force (ARF) counterbalance appliance was added to reduce bubble displacement. Cavitation mapping in this situation was also operated through SCL recording. SCL was also employed to measure cavitation does and map the spatial distribution of cavitation near a boundary of parenchyma.
Chao, Jerry; Ward, E. Sally; Ober, Raimund J.
2012-01-01
The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166
Experiments with synchronized sCMOS cameras
NASA Astrophysics Data System (ADS)
Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar
2016-07-01
Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.
X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J.
Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago.more » The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.« less
The development of large-aperture test system of infrared camera and visible CCD camera
NASA Astrophysics Data System (ADS)
Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying
2015-10-01
Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.
The imaging system design of three-line LMCCD mapping camera
NASA Astrophysics Data System (ADS)
Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da
2011-08-01
In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.
Manned observations technology development, FY 1992 report
NASA Technical Reports Server (NTRS)
Israel, Steven
1992-01-01
This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras.
CCD TV focal plane guider development and comparison to SIRTF applications
NASA Technical Reports Server (NTRS)
Rank, David M.
1989-01-01
It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.
Toolkit for testing scientific CCD cameras
NASA Astrophysics Data System (ADS)
Uzycki, Janusz; Mankiewicz, Lech; Molak, Marcin; Wrochna, Grzegorz
2006-03-01
The CCD Toolkit (1) is a software tool for testing CCD cameras which allows to measure important characteristics of a camera like readout noise, total gain, dark current, 'hot' pixels, useful area, etc. The application makes a statistical analysis of images saved in files with FITS format, commonly used in astronomy. A graphical interface is based on the ROOT package, which offers high functionality and flexibility. The program was developed in a way to ensure future compatibility with different operating systems: Windows and Linux. The CCD Toolkit was created for the "Pie of the Sky" project collaboration (2).
Cameras for digital microscopy.
Spring, Kenneth R
2013-01-01
This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. Copyright © 1998 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Golcuk, Kurtulus; Mandair, Gurjit S.; Callender, Andrew F.; Finney, William F.; Sahar, Nadder; Kohn, David H.; Morris, Michael D.
2006-02-01
Background fluorescence can often complicate the use of Raman microspectroscopy in the study of musculoskeletal tissues. Such fluorescence interferences are undesirable as the Raman spectra of matrix and mineral phases can be used to differentiate between normal and pathological or microdamaged bone. Photobleaching with the excitation laser provides a non-invasive method for reducing background fluorescence, enabling 532 nm Raman hyperspectral imaging of bone tissue. The signal acquisition time for a 400 point Raman line image is reduced to 1-4 seconds using electronmultiplying CCD (EMCCD) detector, enabling acquisition of Raman images in less than 10 minutes. Rapid photobleaching depends upon multiple scattering effects in the tissue specimen and is applicable to some, but not all experimental situations.
NASA Astrophysics Data System (ADS)
Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris
2016-07-01
World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.
Design of a Day/Night Star Camera System
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Swift, Wesley; Ghosh, Kajal; Ramsey, Brian
1999-01-01
This paper describes the design of a camera system capable of acquiring stars during both the day and night cycles of a high altitude balloon flight (35-42 km). The camera system will be filtered to operate in the R band (590-810 nm). Simulations have been run using MODTRAN atmospheric code to determine the worse case sky brightness at 35 km. With a daytime sky brightness of 2(exp -05) W/sq cm/str/um in the R band, the sensitivity of the camera system will allow acquisition of at least 1-2 stars/sq degree at star magnitude limits of 8.25-9.00. The system will have an F2.8, 64.3 mm diameter lens and a 1340X1037 CCD array digitized to 12 bits. The CCD array is comprised of 6.8 X 6.8 micron pixels with a well depth of 45,000 electrons and a quantum efficiency of 0.525 at 700 nm. The camera's field of view will be 6.33 sq degree and provide attitude knowledge to 8 arcsec or better. A test flight of the system is scheduled for fall 1999.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.
Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S
2012-06-01
To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.
Solid state television camera (CCD-buried channel)
NASA Technical Reports Server (NTRS)
1976-01-01
The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state television camera (CCD-buried channel), revision 1
NASA Technical Reports Server (NTRS)
1977-01-01
An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state, CCD-buried channel, television camera study and design
NASA Technical Reports Server (NTRS)
Hoagland, K. A.; Balopole, H.
1976-01-01
An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.
Soft x-ray imager (SXI) onboard the NeXT satellite
NASA Astrophysics Data System (ADS)
Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu
2006-06-01
We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.
Cooper, Justin T; Harris, Joel M
2014-08-05
The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.
Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A
2014-02-01
The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.
The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less
Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)
NASA Astrophysics Data System (ADS)
Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.
2014-12-01
(Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
VizieR Online Data Catalog: Observations of binary stars at the WIYN telescope (Horch+, 2017)
NASA Astrophysics Data System (ADS)
Horch, E. P.; Casetti-Dinescu, D. I.; Camarata, M. A.; Bidarian, A.; van Altena, W. F.; Sherry, W. H.; Everett, M. E.; Howell, S. B.; Ciardi, D. R.; Henry, T. J.; Nusdeo, D. A.; Winters, J. G.
2018-05-01
The observations were carried out over six runs at the WIYN telescope, specifically, 2010 September 17-21, 2010 October 23-26, 2011 June 11-16, 2011 September 7-11, 2011 December 10-11, and 2012 February 4-8. In each case, an observing list was constructed primarily from HDSs and Hipparcos suspected doubles (ESA 1997ESASP1200.....E), double-lined spectroscopic binary stars identified in the Geneva-Copenhagen spectroscopic survey (Nordstroem et al. 2004, Cat. V/117), and stars we have previously found to be double in our own program and reported in earlier papers in this series. For all observations here, the Differential Speckle Survey Instrument (DSSI) was used (Horch et al. 2009AJ....137.5057H). The instrument can mount to either of the Nasmyth ports of the WIYN telescope and takes speckle observations in two filters simultaneously. The DSSI observing program at WIYN began in 2008, and the instrument was upgraded to use two electron-multiplying CCD cameras in 2010 January. More recently, DSSI have also been used at Lowell Observatory's Discovery Channel Telescope (DCT), and at both the Gemini north and Gemini south telescopes. (3 data files).
Development and use of an L3CCD high-cadence imaging system for Optical Astronomy
NASA Astrophysics Data System (ADS)
Sheehan, Brendan J.; Butler, Raymond F.
2008-02-01
A high cadence imaging system, based on a Low Light Level CCD (L3CCD) camera, has been developed for photometric and polarimetric applications. The camera system is an iXon DV-887 from Andor Technology, which uses a CCD97 L3CCD detector from E2V technologies. This is a back illuminated device, giving it an extended blue response, and has an active area of 512×512 pixels. The camera system allows frame-rates ranging from 30 fps (full frame) to 425 fps (windowed & binned frame). We outline the system design, concentrating on the calibration and control of the L3CCD camera. The L3CCD detector can be either triggered directly by a GPS timeserver/frequency generator or be internally triggered. A central PC remotely controls the camera computer system and timeserver. The data is saved as standard `FITS' files. The large data loads associated with high frame rates, leads to issues with gathering and storing the data effectively. To overcome such problems, a specific data management approach is used, and a Python/PYRAF data reduction pipeline was written for the Linux environment. This uses calibration data collected either on-site, or from lab based measurements, and enables a fast and reliable method for reducing images. To date, the system has been used twice on the 1.5 m Cassini Telescope in Loiano (Italy) we present the reduction methods and observations made.
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles; ...
2016-05-16
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
One-Meter Telescope in Kolonica Saddle - 4 Years of Operation
NASA Astrophysics Data System (ADS)
Kudzej, I.; Dubovsky, P. A.
2010-12-01
The actual technical status of 1 meter Vihorlat National Telescope (VNT) at Astronomical Observatory at Kolonica Saddle is presented. Cassegrain and Nasmyth focus, autoguiding system, computer controlled focusing and fine movements and other improvements achieved recently. For two channel photoelectric photometer the system of channels calibration based on artificial light source is described. For CCD camera FLI PL1001E actually installed in Cassegrain focus we presents transformation coefficients from our instrumental to international photometric BVRI system. The measurements were done during regular observations when good photometry of the constant field stars was available. Before FLI camera acquisition we used SBIG ST9 camera. Transformation coefficients for this instrument are presented as well. In the second part of the paper we presents results of variable stars observations with 1 meter telescope in recent four years. The first experimental electronic measurements were done in 2006. Both with CCD cameras and with two channel photoelectric photometer. Starting in 2007 the regular observing program is in operation. There are only few stars suitable for two channel photoelectric photometer observation. Generally the photometer is better when fast brightness changes (time scale of seconds) must be recorded. Thus the majority of observations is done with CCD detectors. We presents an brief overview of most important observing programs: long term monitoring of selected intermediate polars, eclipse observations of SW Sex stars. Occasional observing campaigns were performed on several interesting objects: OT J071126.0+440405, V603 Aql, V471 Tau eclipse timings, Z And in outburst.
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
Machine vision system for online inspection of freshly slaughtered chickens
USDA-ARS?s Scientific Manuscript database
A machine vision system was developed and evaluated for the automation of online inspection to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system consisted of an electron-multiplying charge-coupled-device camera used with an imaging spectrograph and ...
Portal imaging with flat-panel detector and CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.
1997-07-01
This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.
Puesta en marcha de un microdensitómetro automático basado en CCD
NASA Astrophysics Data System (ADS)
Calderón, J. H.; Bustos Fierro, I. H.
We present the commisioning of a CCD-based microdensitometer intended to perform astrometric measurements of photographic plates. The work done consisted in the installation of a CCD camera, the modification of the motion system, the construction of a new illumination device, the adaptation of the electronics, and the development of software. The instrument is intended to be used for the astrometric measurement mainly of plates of the Astrographic Catalog and Carte du Ciel collections from Córdoba Observatory. In this phase of the project we counted with the collaboration of the Instituto Provincial de Enseñanza Media No 59, 25 de Mayo, Cruz Alta (Province of Córdoba). The origin and importance of such collaboration is commented.
Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing
NASA Technical Reports Server (NTRS)
Crooke, Julie A.
2003-01-01
The simple addition of a charge-coupled-device (CCD) camera to a theodolite makes it safe to measure the pointing direction of a laser beam. The present state of the art requires this to be a custom addition because theodolites are manufactured without CCD cameras as standard or even optional equipment. A theodolite is an alignment telescope equipped with mechanisms to measure the azimuth and elevation angles to the sub-arcsecond level. When measuring the angular pointing direction of a Class ll laser with a theodolite, one could place a calculated amount of neutral density (ND) filters in front of the theodolite s telescope. One could then safely view and measure the laser s boresight looking through the theodolite s telescope without great risk to one s eyes. This method for a Class ll visible wavelength laser is not acceptable to even consider tempting for a Class IV laser and not applicable for an infrared (IR) laser. If one chooses insufficient attenuation or forgets to use the filters, then looking at the laser beam through the theodolite could cause instant blindness. The CCD camera is already commercially available. It is a small, inexpensive, blackand- white CCD circuit-board-level camera. An interface adaptor was designed and fabricated to mount the camera onto the eyepiece of the specific theodolite s viewing telescope. Other equipment needed for operation of the camera are power supplies, cables, and a black-and-white television monitor. The picture displayed on the monitor is equivalent to what one would see when looking directly through the theodolite. Again, the additional advantage afforded by a cheap black-and-white CCD camera is that it is sensitive to infrared as well as to visible light. Hence, one can use the camera coupled to a theodolite to measure the pointing of an infrared as well as a visible laser.
Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.
1992-01-01
The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.
NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).
Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander
2017-10-26
The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, F; Tosh, R
2014-06-01
Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less
A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software
NASA Astrophysics Data System (ADS)
Oh, S. H.; Kang, Y. W.; Byun, Y. I.
2007-12-01
We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.
NASA Astrophysics Data System (ADS)
Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi
2013-12-01
We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.
NASA Astrophysics Data System (ADS)
Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu
2016-03-01
We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.
VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras
NASA Astrophysics Data System (ADS)
Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.
2015-08-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (<= 25 e- read noise and <= 10 e- /sec/pixel dark current), in addition to maintaining a stable gain of ≍ 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.
CCD imaging system for the EUV solar telescope
NASA Astrophysics Data System (ADS)
Gong, Yan; Song, Qian; Ye, Bing-Xun
2006-01-01
In order to develop the detector adapted to the space solar telescope, we have built a CCD camera system capable of working in the extra ultraviolet (EUV) band, which is composed of one phosphor screen, one intensified system using a photocathode/micro-channel plate(MCP)/ phosphor, one optical taper and one chip of front-illuminated (FI) CCD without screen windows. All of them were stuck one by one with optical glue. The working principle of the camera system is presented; moreover we have employed the mesh experiment to calibrate and test the CCD camera system in 15~24nm, the position resolution of about 19 μm is obtained at the wavelength of 17.1nm and 19.5nm.
Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teruya, A. T.; Palmer, N. E.; Schneider, M. B.
2013-09-01
The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effortmore » was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.« less
NASA Astrophysics Data System (ADS)
Jaanimagi, Paul A.
1992-01-01
This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.
NASA Astrophysics Data System (ADS)
Bernas, Martin; Páta, Petr; Hudec, René; Soldán, Jan; Rezek, Tomáš; Castro-Tirado, Alberto J.
1998-05-01
Although there are several optical GRB follow-up systems in operation and/or in development, some of them with a very short response time, they will never be able to provide true simultaneous (no delay) and pre-burst optical data for GRBs. We report on the development and tests of a monitoring experiment expected to be put into test operation in 1998. The system should detect Optical Transients down to mag 6-7 (few seconds duration assumed) over a wide field of view. The system is based on the double CCD wide-field cameras ST8. For the real time evaluation of the signal from both cameras, two TMS 320C40 processors are used. Using two channels differing in spectral sensitivity and processing of temporal sequence of images allows us to eliminate man-made objects and defects of the CCD electronics. The system is controlled by a standard PC computer.
Development of an all-in-one gamma camera/CCD system for safeguard verification
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo
2014-12-01
For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.
NASA Technical Reports Server (NTRS)
1994-01-01
Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.
Method for eliminating artifacts in CCD imagers
Turko, B.T.; Yates, G.J.
1992-06-09
An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.
Structure Formation in Complex Plasma
2011-08-24
Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.
Kopp, O; Markert, S; Tornow, R P
2002-01-01
To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.
Mechanical Design of the LSST Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordby, Martin; Bowden, Gordon; Foss, Mike
2008-06-13
The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors inmore » image reconstruction. Design and analysis for the camera body and cryostat will be detailed.« less
Scientific CCD technology at JPL
NASA Technical Reports Server (NTRS)
Janesick, J.; Collins, S. A.; Fossum, E. R.
1991-01-01
Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.
Study of Cryogenic Complex Plasma
2007-04-26
enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Hyper Suprime-Cam: Camera dewar design
NASA Astrophysics Data System (ADS)
Komiyama, Yutaka; Obuchi, Yoshiyuki; Nakaya, Hidehiko; Kamata, Yukiko; Kawanomoto, Satoshi; Utsumi, Yousuke; Miyazaki, Satoshi; Uraguchi, Fumihiro; Furusawa, Hisanori; Morokuma, Tomoki; Uchida, Tomohisa; Miyatake, Hironao; Mineo, Sogo; Fujimori, Hiroki; Aihara, Hiroaki; Karoji, Hiroshi; Gunn, James E.; Wang, Shiang-Yu
2018-01-01
This paper describes the detailed design of the CCD dewar and the camera system which is a part of the wide-field imager Hyper Suprime-Cam (HSC) on the 8.2 m Subaru Telescope. On the 1.°5 diameter focal plane (497 mm in physical size), 116 four-side buttable 2 k × 4 k fully depleted CCDs are tiled with 0.3 mm gaps between adjacent chips, which are cooled down to -100°C by two pulse tube coolers with a capability to exhaust 100 W heat at -100°C. The design of the dewar is basically a natural extension of Suprime-Cam, incorporating some improvements such as (1) a detailed CCD positioning strategy to avoid any collision between CCDs while maximizing the filling factor of the focal plane, (2) a spherical washers mechanism adopted for the interface points to avoid any deformation caused by the tilt of the interface surface to be transferred to the focal plane, (3) the employment of a truncated-cone-shaped window, made of synthetic silica, to save the back focal space, and (4) a passive heat transfer mechanism to exhaust efficiently the heat generated from the CCD readout electronics which are accommodated inside the dewar. Extensive simulations using a finite-element analysis (FEA) method are carried out to verify that the design of the dewar is sufficient to satisfy the assigned errors. We also perform verification tests using the actually assembled CCD dewar to supplement the FEA and demonstrate that the design is adequate to ensure an excellent image quality which is key to the HSC. The details of the camera system, including the control computer system, are described as well as the assembling process of the dewar and the process of installation on the telescope.
NASA Technical Reports Server (NTRS)
1996-01-01
PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
NASA Astrophysics Data System (ADS)
Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.
2017-07-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.
VizieR Online Data Catalog: IC 361 Vilnius photometry (Zdanavicius+, 2010)
NASA Astrophysics Data System (ADS)
Zdanavicius, J.; Bartasiute, S.; Boyle, R. P.; Vrba, F. J.; Zdanavicius, K.
2015-03-01
CCD observations in seven filters U,P,X,Y,Z,V,S of the Vilnius system plus the filter I of the Cousins system were carried out in December of 1999 with a 2K CCD camera on the 1m telescope of the USNO Flagstaff Station (Arizona), which gives a field of the diameter of 20'. Repeated observations in the Vilnius filters were done with the same telescope and a new 2Kx2K CCD camera in March of 2009. During the latter run we have obtained well-calibrated CCD data only for filters Y, Z, V, S, since observations through the remaining three filters on the succeeding night were curtailed by cirrus clouds. Additional frames in the Vilnius filters U,Y,V were taken for the central part of the field (12'x12') in December of 2008 with a 4K CCD camera on the 1.8m Vatican Advanced Technology Telescope (VATT) on Mt. Graham (Arizona). (1 data file).
Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.
Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R
2010-10-01
A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.
CTK: A new CCD Camera at the University Observatory Jena
NASA Astrophysics Data System (ADS)
Mugrauer, M.
2009-05-01
The Cassegrain-Teleskop-Kamera (CTK) is a new CCD imager which is operated at the University Observatory Jena since begin of 2006. This article describes the main characteristics of the new camera. The properties of the CCD detector, the CTK image quality, as well as its detection limits for all filters are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
The research on calibration methods of dual-CCD laser three-dimensional human face scanning system
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong
2013-09-01
In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.
The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, Gordon B.; Langton, Brian J.; /SLAC
2014-05-28
The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less
NASA Astrophysics Data System (ADS)
Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš
2018-02-01
Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.
Choice and maintenance of equipment for electron crystallography.
Mills, Deryck J; Vonck, Janet
2013-01-01
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007
NASA Technical Reports Server (NTRS)
Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.;
2007-01-01
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică
2013-12-27
Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
CCD image sensor induced error in PIV applications
NASA Astrophysics Data System (ADS)
Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.
2014-06-01
The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.
An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data
NASA Technical Reports Server (NTRS)
Chandler, Gyanesh
2007-01-01
CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).
NASA Astrophysics Data System (ADS)
Luquet, Ph.; Brouard, L.; Chinal, E.
2017-11-01
Astrium has developed a product line of compact and versatile instruments for HR and VHR missions in Earth Observation. These cameras consist on a Silicon Carbide Korsch-type telescope, a focal plane with one or several retina modules - including five lines CCD, optical filters and front end electronics - and the instrument main electronics. Several versions have been developed with a telescope pupil diameter from 200 mm up to 650 mm, covering a large range of GSD (from 2.5 m down to sub-metric) and swath (from 10km up to 30 km) and compatible with different types of platform. Nine cameras have already been manufactured for five different programs: ALSAT2 (Algeria), SSOT (Chile), SPOT6 & SPOT7 (France), KRS (Kazakhstan) and VNREDSat (Vietnam). Two of them have already been launched and are delivering high quality images.
NASA Astrophysics Data System (ADS)
Mugrauer, M.
2016-03-01
The Cassegrain-Teleskop-Kamera (CTK-II) and the Refraktor-Teleskop-Kamera (RTK) are two CCD-imagers which are operated at the 25 cm Cassegrain and 20 cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD-detectors, the astrometry, the image quality, and the detection limits of both CCD-cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Beam measurements using visible synchrotron light at NSLS2 storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om
2016-07-27
Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less
Compression of CCD raw images for digital still cameras
NASA Astrophysics Data System (ADS)
Sriram, Parthasarathy; Sudharsanan, Subramania
2005-03-01
Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.
Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea
2018-01-01
The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.
Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD
NASA Astrophysics Data System (ADS)
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.
2006-02-01
We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.
Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor
Hirvonen, Liisa M.; Suhling, Klaus
2016-01-01
Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556
Measurement precision and noise analysis of CCD cameras
NASA Astrophysics Data System (ADS)
Wu, ZhenSen; Li, Zhiyang; Zhang, Ping
1993-09-01
CHINA The lirait precision of CCD camera with 1O. bit analogue to digital conversion is estimated in this paper . The noise effect on ineasurenent precision and the noise characteristics are analyzed in details. The noise process means are also discussed and the diagram of noise properties is given in this paper.
An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories
NASA Astrophysics Data System (ADS)
Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji
2008-11-01
We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.
Method for eliminating artifacts in CCD imagers
Turko, Bojan T.; Yates, George J.
1992-01-01
An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).
CMOS Imaging Sensor Technology for Aerial Mapping Cameras
NASA Astrophysics Data System (ADS)
Neumann, Klaus; Welzenbach, Martin; Timm, Martin
2016-06-01
In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.
On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras
NASA Astrophysics Data System (ADS)
Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.
2017-11-01
PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.
Electronic Fingerprinting for Industry
NASA Technical Reports Server (NTRS)
1995-01-01
Veritec's VeriSystem is a complete identification and tracking system for component traceability, improved manufacturing and processing, and automated shop floor applications. The system includes the Vericode Symbol, a more accurate and versatile alternative to the traditional bar code, that is scanned by charge coupled device (CCD) cameras. The system was developed by Veritec, Rockwell International and Marshall Space Flight Center to identify and track Space Shuttle parts.
Solar x ray astronomy rocket program
NASA Technical Reports Server (NTRS)
1990-01-01
The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
High resolution Cerenkov light imaging of induced positron distribution in proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki
2014-11-01
Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less
A design of driving circuit for star sensor imaging camera
NASA Astrophysics Data System (ADS)
Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui
2016-01-01
The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.
A 5- μ m pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering
Andresen, N. C.; Denes, P.; Goldschmidt, A.; ...
2017-08-08
Here, we have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through > 8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performancemore » during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ~280 eV (C K) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. Finally, the measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.« less
A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering
NASA Astrophysics Data System (ADS)
Andresen, N. C.; Denes, P.; Goldschmidt, A.; Joseph, J.; Karcher, A.; Tindall, C. S.
2017-08-01
We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ˜280 eV (CK) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft CK X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.
A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering.
Andresen, N C; Denes, P; Goldschmidt, A; Joseph, J; Karcher, A; Tindall, C S
2017-08-01
We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ∼280 eV (C K ) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor
NASA Astrophysics Data System (ADS)
Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad
2016-07-01
NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.
Cheap streak camera based on the LD-S-10 intensifier tube
NASA Astrophysics Data System (ADS)
Dashevsky, Boris E.; Krutik, Mikhail I.; Surovegin, Alexander L.
1992-01-01
Basic properties of a new streak camera and its test results are reported. To intensify images on its screen, we employed modular G1 tubes, the LD-A-1.0 and LD-A-0.33, enabling magnification of 1.0 and 0.33, respectively. If necessary, the LD-A-0.33 tube may be substituted by any other image intensifier of the LDA series, the choice to be determined by the size of the CCD matrix with fiber-optical windows. The reported camera employs a 12.5- mm-long CCD strip consisting of 1024 pixels, each 12 X 500 micrometers in size. Registered radiation was imaged on a 5 X 0.04 mm slit diaphragm tightly connected with the LD-S- 10 fiber-optical input window. Electrons escaping the cathode are accelerated in a 5 kV electric field and focused onto a phosphor screen covering a fiber-optical plate as they travel between deflection plates. Sensitivity of the latter was 18 V/mm, which implies that the total deflecting voltage was 720 V per 40 mm of the screen surface, since reversed-polarity scan pulses +360 V and -360 V were applied across the deflection plate. The streak camera provides full scan times over the screen of 15, 30, 50, 100, 250, and 500 ns. Timing of the electrically or optically driven camera was done using a 10 ns step-controlled-delay (0 - 500 ns) circuit.
NASA Astrophysics Data System (ADS)
Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.
2017-08-01
The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.
High-performance dual-speed CCD camera system for scientific imaging
NASA Astrophysics Data System (ADS)
Simpson, Raymond W.
1996-03-01
Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.
Development of two-framing camera with large format and ultrahigh speed
NASA Astrophysics Data System (ADS)
Jiang, Xiaoguo; Wang, Yuan; Wang, Yi
2012-10-01
High-speed imaging facility is important and necessary for the formation of time-resolved measurement system with multi-framing capability. The framing camera which satisfies the demands of both high speed and large format needs to be specially developed in the ultrahigh speed research field. A two-framing camera system with high sensitivity and time-resolution has been developed and used for the diagnosis of electron beam parameters of Dragon-I linear induction accelerator (LIA). The camera system, which adopts the principle of light beam splitting in the image space behind the lens with long focus length, mainly consists of lens-coupled gated image intensifier, CCD camera and high-speed shutter trigger device based on the programmable integrated circuit. The fastest gating time is about 3 ns, and the interval time between the two frames can be adjusted discretely at the step of 0.5 ns. Both the gating time and the interval time can be tuned to the maximum value of about 1 s independently. Two images with the size of 1024×1024 for each can be captured simultaneously in our developed camera. Besides, this camera system possesses a good linearity, uniform spatial response and an equivalent background illumination as low as 5 electrons/pix/sec, which fully meets the measurement requirements of Dragon-I LIA.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
VizieR Online Data Catalog: GSC04778-00152 photometry and spectroscopy (Tuvikene+, 2008)
NASA Astrophysics Data System (ADS)
Tuvikene, T.; Sterken, C.; Eenmae, T.; Hinojosa-Goni, R.; Brogt, E.; Longa Pena, P.; Liimets, T.; Ahumada, M.; Troncoso, P.; Vogt, N.
2012-04-01
CCD photometry of GSC04778-00152 was carried out on 54 nights during 9 observing runs. In January 2006 the observations were made with the 41-cm Meade telescope at Observatorio Cerro Armazones (OCA), Chile, using an SBIG STL-6303E CCD camera (3072x2048 pixels, FOV 23.0'x15.4') and Johnson V filter. On 3 nights in December 2006 and on 2 nights in October 2007 we used the 2.4-m Hiltner telescope at the MDM Observatory, Arizona, USA, equipped with the 8kx8k Mosaic imager (FOV 23.6'x23.6'). In December 2006 and January 2007, we also used the 41-cm Meade telescope at OCA, using an SBIG ST-7XME CCD camera (FOV 5.9'x3.9') with no filter. Figure 3 shows all OCA light curves obtained with this configuration. At Tartu Observatory the observations were carried out in December 2006 and January 2007, using the 60-cm telescope with a SpectraSource Instruments HPC-1 camera (1024x1024 pixels, FOV 11.2'x11.2') and V filter. >From January to March 2007 the system was observed using the 1.0-m telescope at SAAO, Sutherland, South Africa with an STE4 CCD camera (1024x1024 pixels, FOV 5.3'x5.3') and UBVRI filters. Spectroscopic observations were carried out at the Tartu Observatory, Estonia, using the 1.5-m telescope with the Cassegrain spectrograph ASP-32 and an Andor Newton CCD camera. (3 data files).
PN-CCD camera for XMM: performance of high time resolution/bright source operating modes
NASA Astrophysics Data System (ADS)
Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph
1997-10-01
The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.
NASA Technical Reports Server (NTRS)
1988-01-01
The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.
VizieR Online Data Catalog: Observation of six NSVS eclipsing binaries (Dimitrov+, 2015)
NASA Astrophysics Data System (ADS)
Dimitrov, D. P.; Kjurkchieva, D. P.
2017-11-01
We managed to separate a sample of about 40 ultrashort-period candidates from the Northern Sky Variability Survey (NSVS, Wozniak et al. 2004AJ....127.2436W) appropriate for follow-up observations at Rozhen observatory (δ>-10°). Follow-up CCD photometry of the targets in the VRI bands was carried out with the three telescopes of the Rozhen National Astronomical Observatory. The 2-m RCC telescope is equipped with a VersArray CCD camera (1340x1300 pixels, 20 μm/pixel, field of 5.35x5.25 arcmin2). The 60-cm Cassegrain telescope is equipped with a FLI PL09000 CCD camera (3056x3056 pixels, 12 μm/pixel, field of 17.1x17.1 arcmin2). The 50/70 cm Schmidt telescope has a field of view (FoV) of around 1° and is equipped with a FLI PL 16803 CCD camera, 4096x4096 pixels, 9 μm/pixel size. (4 data files).
3D digital image correlation using single color camera pseudo-stereo system
NASA Astrophysics Data System (ADS)
Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang
2017-10-01
Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.
Novel low-cost vision-sensing technology with controllable of exposal time for welding
NASA Astrophysics Data System (ADS)
Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng
2005-02-01
In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.
Camera for Quasars in the Early Universe (CQUEAN)
NASA Astrophysics Data System (ADS)
Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.
2010-05-01
The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.
NASA Astrophysics Data System (ADS)
Abdullayev, B. I.; Gulmaliyev, N. I.; Majidova, S. O.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Basic technical characteristics of CCD matrix U-47 made by the Apogee Alta Instruments Inc. are provided. Short description and features of various noises introduced by optical system and CCD camera are presented. The technique of getting calibration frames: bias, dark, flat field and main stages of processing of results CCD photometry are described.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
Low-cost digital dynamic visualization system
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
1995-05-01
High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.
Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.
2017-01-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration
NASA Astrophysics Data System (ADS)
Anton, Rainer
2011-04-01
Using a 50cm Cassegrain in Namibia, recordings of double and multiple stars were made with a fast CCD camera and a notebook computer. From superpositions of "lucky images", measurements of 149 systems were obtained and compared with literature data. B/W and color images of some remarkable systems are also presented.
NASA Astrophysics Data System (ADS)
Anton, Rainer
2010-07-01
Using a 10" Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of "lucky images", measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented.
Experimental research on femto-second laser damaging array CCD cameras
NASA Astrophysics Data System (ADS)
Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming
2013-05-01
Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.
NASA Astrophysics Data System (ADS)
Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.
1990-10-01
Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.
The CTIO Acquisition CCD-TV camera design
NASA Astrophysics Data System (ADS)
Schmidt, Ricardo E.
1990-07-01
A CCD-based Acquisition TV Camera has been developed at CTIO to replace the existing ISIT units. In a 60 second exposure, the new Camera shows a sixfold improvement in sensitivity over an ISIT used with a Leaky Memory. Integration times can be varied over a 0.5 to 64 second range. The CCD, contained in an evacuated enclosure, is operated at -45 C. Only the image section, an area of 8.5 mm x 6.4 mm, gets exposed to light. Pixel size is 22 microns and either no binning or 2 x 2 binning can be selected. The typical readout rates used vary between 3.5 and 9 microseconds/pixel. Images are stored in a PC/XT/AT, which generates RS-170 video. The contrast in the RS-170 frames is automatically enhanced by the software.
Low Noise Camera for Suborbital Science Applications
NASA Technical Reports Server (NTRS)
Hyde, David; Robertson, Bryan; Holloway, Todd
2015-01-01
Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.
The faint intergalactic-medium red-shifted emission balloon: future UV observations with EMCCDs
NASA Astrophysics Data System (ADS)
Kyne, Gillian; Hamden, Erika T.; Lingner, Nicole; Morrissey, Patrick; Nikzad, Shouleh; Martin, D. Christopher
2016-08-01
We present the latest developments in our joint NASA/CNES suborbital project. This project is a balloon-borne UV multi-object spectrograph, which has been designed to detect faint emission from the circumgalactic medium (CGM) around low redshift galaxies. One major change from FIREBall-1 has been the use of a delta-doped Electron Multiplying CCD (EMCCD). EMCCDs can be used in photon-counting (PC) mode to achieve extremely low readout noise (¡ 1e-). Our testing initially focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimisation with the CCD Controller for Counting Photons (CCCP) from Nüvü. This optimisation also includes methods for reducing dark current, via cooling and substrate voltage adjustment. We present result of laboratory noise measurements including dark current. Furthermore, we will briefly present some initial results from our first set of on-sky observations using a delta-doped EMCCD on the 200 inch telescope at Palomar using the Palomar Cosmic Web Imager (PCWI).
Dynamic photoelasticity by TDI imaging
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
2001-06-01
High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.
Double Star Measurements at the Southern Sky with 50 cm Reflectors and Fast CCD Cameras in 2012
NASA Astrophysics Data System (ADS)
Anton, Rainer
2014-07-01
A Cassegrain and a Ritchey-Chrétien reflector, both with 50 cm aperture, were used in Namibia for recordings of double stars with fast CCD cameras and a notebook computer. From superposition of "lucky images", measurements of 39 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Images of some remarkable systems are also presented.
A Real-Time Imaging System for Stereo Atomic Microscopy at SPring-8's BL25SU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Tomohiro; Guo, Fang Zhun; Muro, Takayuki
2007-01-19
We have developed a real-time photoelectron angular distribution (PEAD) and Auger-electron angular distribution (AEAD) imaging system at SPring-8 BL25SU, Japan. In addition, a real-time imaging system for circular dichroism (CD) studies of PEAD/AEAD has been newly developed. Two PEAD images recorded with left- and right-circularly polarized light can be regarded as a stereo image of the atomic arrangement. A two-dimensional display type mirror analyzer (DIANA) has been installed at the beamline, making it possible to record PEAD/AEAD patterns with an acceptance angle of {+-}60 deg. in real-time. The twin-helical undulators at BL25SU enable helicity switching of the circularly polarized lightmore » at 10Hz, 1Hz or 0.1Hz. In order to realize real-time measurements of the CD of the PEAD/AEAD, the CCD camera must be synchronized to the switching frequency. The VME computer that controls the ID is connected to the measurement computer with two BNC cables, and the helicity information is sent using TTL signals. For maximum flexibility, rather than using a hardware shutter synchronizing with the TTL signal we have developed software to synchronize the CCD shutter with the TTL signal. We have succeeded in synchronizing the CCD camera in both the 1Hz and 0.1Hz modes.« less
Low-dose electron energy-loss spectroscopy using electron counting direct detectors.
Maigné, Alan; Wolf, Matthias
2018-03-01
Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.
Extreme Faint Flux Imaging with an EMCCD
NASA Astrophysics Data System (ADS)
Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien
2009-08-01
An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.
Realistic Simulations of Coronagraphic Observations with WFIRST
NASA Astrophysics Data System (ADS)
Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)
2018-01-01
We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa
2000-04-01
A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3- dimensional CT image.
Taking the Observatory to the Astronomer
NASA Astrophysics Data System (ADS)
Bisque, T. M.
1997-05-01
Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.
Subelectron readout noise focal plane arrays for space imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark
2004-01-01
Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.
NASA Astrophysics Data System (ADS)
Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David
2008-07-01
The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.
A USB 2.0 computer interface for the UCO/Lick CCD cameras
NASA Astrophysics Data System (ADS)
Wei, Mingzhi; Stover, Richard J.
2004-09-01
The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.
High-speed line-scan camera with digital time delay integration
NASA Astrophysics Data System (ADS)
Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.
Application of automatic threshold in dynamic target recognition with low contrast
NASA Astrophysics Data System (ADS)
Miao, Hua; Guo, Xiaoming; Chen, Yu
2014-11-01
Hybrid photoelectric joint transform correlator can realize automatic real-time recognition with high precision through the combination of optical devices and electronic devices. When recognizing targets with low contrast using photoelectric joint transform correlator, because of the difference of attitude, brightness and grayscale between target and template, only four to five frames of dynamic targets can be recognized without any processing. CCD camera is used to capture the dynamic target images and the capturing speed of CCD is 25 frames per second. Automatic threshold has many advantages like fast processing speed, effectively shielding noise interference, enhancing diffraction energy of useful information and better reserving outline of target and template, so this method plays a very important role in target recognition with optical correlation method. However, the automatic obtained threshold by program can not achieve the best recognition results for dynamic targets. The reason is that outline information is broken to some extent. Optimal threshold is obtained by manual intervention in most cases. Aiming at the characteristics of dynamic targets, the processing program of improved automatic threshold is finished by multiplying OTSU threshold of target and template by scale coefficient of the processed image, and combining with mathematical morphology. The optimal threshold can be achieved automatically by improved automatic threshold processing for dynamic low contrast target images. The recognition rate of dynamic targets is improved through decreased background noise effect and increased correlation information. A series of dynamic tank images with the speed about 70 km/h are adapted as target images. The 1st frame of this series of tanks can correlate only with the 3rd frame without any processing. Through OTSU threshold, the 80th frame can be recognized. By automatic threshold processing of the joint images, this number can be increased to 89 frames. Experimental results show that the improved automatic threshold processing has special application value for the recognition of dynamic target with low contrast.
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2012-03-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
Multi-scale auroral observations in Apatity: winter 2010-2011
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Pilgaev, S. V.; Borovkov, L. P.; Yurov, V. E.
2011-12-01
Routine observations of the aurora are conducted in Apatity by a set of five cameras: (i) all-sky TV camera Watec WAT-902K (1/2"CCD) with Fujinon lens YV2.2 × 1.4A-SA2; (ii) two monochromatic cameras Guppy F-044B NIR (1/2"CCD) with Fujinon HF25HA-1B (1:1.4/25 mm) lens for 18° field of view and glass filter 558 nm; (iii) two color cameras Guppy F-044C NIR (1/2"CCD) with Fujinon DF6HA-1B (1:1.2/6 mm) lens for 67° field of view. The observational complex is aimed at investigating spatial structure of the aurora, its scaling properties, and vertical distribution in the rayed forms. The cameras were installed on the main building of the Apatity division of the Polar Geophysical Institute and at the Apatity stratospheric range. The distance between these sites is nearly 4 km, so the identical monochromatic cameras can be used as a stereoscopic system. All cameras are accessible and operated remotely via Internet. For 2010-2011 winter season the equipment was upgraded by special blocks of GPS-time triggering, temperature control and motorized pan-tilt rotation mounts. This paper presents the equipment, samples of observed events and the web-site with access to available data previews.
Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014
NASA Astrophysics Data System (ADS)
Anton, Rainer
2015-04-01
A Ritchey-Chrétien reflector with 50 cm aperture was used in Namibia for recordings of double stars with a fast CCD camera and a notebook computer. From superposition of "lucky images", measurements of 91 pairings in 79 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Some images of noteworthy systems are also presented.
Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.
Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio
2009-01-01
3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.
Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras
NASA Astrophysics Data System (ADS)
Quinn, Mark Kenneth
2018-05-01
Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.
Measuring high-resolution sky luminance distributions with a CCD camera.
Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther
2013-03-10
We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.
Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera
NASA Technical Reports Server (NTRS)
Stanojev, B. J.; Houts, M.
2004-01-01
Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.
2004-04-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.
NASA Astrophysics Data System (ADS)
Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng
2009-08-01
A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.
2017-01-01
We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130
Realization of Vilnius UPXYZVS photometric system for AltaU42 CCD camera at the MAO NAS of Ukraine
NASA Astrophysics Data System (ADS)
Vid'Machenko, A. P.; Andruk, V. M.; Samoylov, V. S.; Delets, O. S.; Nevodovsky, P. V.; Ivashchenko, Yu. M.; Kovalchuk, G. U.
2005-06-01
The description of two-inch glass filters of the Vilnius UPXYZVS photometric system, which are made at the Main Astronomical Observatory of NAS of Ukraine for AltaU42 CCD camera with format of 2048×2048 pixels, is presented in the paper. Reaction curves of instrumental system are shown. Estimations of minimal star's magnitudes for each filter's band in comparison with the visual V one are obtained. New software for automation of CCD frames processing is developed in program shell of LINUX/MIDAS/ROMAFOT. It is planned to carry out observations with the purpose to create the catalogue of primary UPXYZVS CCD standards in selected field of the sky for some radio-sources, globular and open clusters, etc. Numerical estimations of astrometric and photometric accuracy are obtained.
The Speckle Toolbox: A Powerful Data Reduction Tool for CCD Astrometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Rowe, David; Genet, Russell
2017-01-01
Recent advances in high-speed low-noise CCD and CMOS cameras, coupled with breakthroughs in data reduction software that runs on desktop PCs, has opened the domain of speckle interferometry and high-accuracy CCD measurements of double stars to amateurs, allowing them to do useful science of high quality. This paper describes how to use a speckle interferometry reduction program, the Speckle Tool Box (STB), to achieve this level of result. For over a year the author (Harshaw) has been using STB (and its predecessor, Plate Solve 3) to obtain measurements of double stars based on CCD camera technology for pairs that are either too wide (the stars not sharing the same isoplanatic patch, roughly 5 arc-seconds in diameter) or too faint to image in the coherence time required for speckle (usually under 40ms). This same approach - using speckle reduction software to measure CCD pairs with greater accuracy than possible with lucky imaging - has been used, it turns out, for several years by the U. S. Naval Observatory.
Toward a digital camera to rival the human eye
NASA Astrophysics Data System (ADS)
Skorka, Orit; Joseph, Dileepan
2011-07-01
All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.
Autonomous star tracker based on active pixel sensors (APS)
NASA Astrophysics Data System (ADS)
Schmidt, U.
2017-11-01
Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.
Optics design of laser spotter camera for ex-CCD sensor
NASA Astrophysics Data System (ADS)
Nautiyal, R. P.; Mishra, V. K.; Sharma, P. K.
2015-06-01
Development of Laser based instruments like laser range finder and laser ranger designator has received prominence in modern day military application. Aiming the laser on the target is done with the help of a bore sighted graticule as human eye cannot see the laser beam directly. To view Laser spot there are two types of detectors available, InGaAs detector and Ex-CCD detector, the latter being a cost effective solution. In this paper optics design for Ex-CCD based camera is discussed. The designed system is light weight and compact and has the ability to see the 1064nm pulsed laser spot upto a range of 5 km.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
Environmental performance evaluation of an advanced-design solid-state television camera
NASA Technical Reports Server (NTRS)
1979-01-01
The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.
Hanada, Takashi; Katsuta, Shoichi; Yorozu, Atsunori; Maruyama, Koichi
2009-01-01
When using a HDR remote afterloading brachytherapy unit, results of treatment can be greatly influenced by both source position and treatment time. The purpose of this study is to obtain information on the source of the HDR remote afterloading unit, such as its position and time structure, with the use of a simple system consisting of a plastic scintillator block and a charge‐coupled device (CCD) camera. The CCD camera was used for recording images of scintillation luminescence at a fixed rate of 30 frames per second in real time. The source position and time structure were obtained by analyzing the recorded images. For a preset source‐step‐interval of 5 mm, the measured value of the source position was 5.0±1.0mm, with a pixel resolution of 0.07 mm in the recorded images. For a preset transit time of 30 s, the measured value was 30.0±0.6 s, when the time resolution of the CCD camera was 1/30 s. This system enabled us to obtain the source dwell time and movement time. Therefore, parameters such as I192r source position, transit time, dwell time, and movement time at each dwell position can be determined quantitatively using this plastic scintillator‐CCD camera system. PACS number: 87.53.Jw
Linear CCD attitude measurement system based on the identification of the auxiliary array CCD
NASA Astrophysics Data System (ADS)
Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan
2015-10-01
Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.
pnCCD for photon detection from near-infrared to X-rays
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar
2006-09-01
A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical photons. A novel type of pnCCD is in preparation, which allows single optical photon counting. This feature is accomplished by implementation of an avalanche-type amplifier in the pnCCD concept.
Circuit design of an EMCCD camera
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun
2012-07-01
EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.
Impact of New Camera Technologies on Discoveries in Cell Biology.
Stuurman, Nico; Vale, Ronald D
2016-08-01
New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. © 2016 Marine Biological Laboratory.
A compact high-speed pnCCD camera for optical and x-ray applications
NASA Astrophysics Data System (ADS)
Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo
2012-07-01
We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.
1991-04-03
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
1995-08-29
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
Optical registration of spaceborne low light remote sensing camera
NASA Astrophysics Data System (ADS)
Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long
2018-02-01
For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.
VizieR Online Data Catalog: Observed light curve of (3200) Phaethon (Ansdell+, 2014)
NASA Astrophysics Data System (ADS)
Ansdell, M.; Meech, K. J.; Hainaut, O.; Buie, M. W.; Kaluna, H.; Bauer, J.; Dundon, L.
2017-04-01
We obtained time series photometry over 15 nights from 1994 to 2013. All but three nights used the Tektronix 2048x2048 pixel CCD camera on the University of Hawaii 2.2 m telescope on Mauna Kea. Two nights used the PRISM 2048x2048 pixel CCD camera on the Perkins 72 inch telescope at the Lowell Observatory in Flagstaff, Arizona, while one night used the Optic 2048x4096 CCD camera also on the University of Hawaii 2.2 m telescope. All observations used the standard Kron-Cousins R filter with the telescope guiding on (3200) Phaethon at non-sidereal rates. Raw images were processed with standard IRAF routines for bias subtraction, flat-fielding, and cosmic ray removal (Tody, 1986SPIE..627..733T). We constructed reference flat fields by median combining dithered images of either twilight or the object field (in both cases, flattening reduced gradients to <1% across the CCD). We performed photometry using the IRAF phot routine with circular apertures typically 5'' in radius, although aperture sizes changed depending on the night and/or exposure as they were chosen to consistently include 99.5% of the object's light. (1 data file).
Cryostat and CCD for MEGARA at GTC
NASA Astrophysics Data System (ADS)
Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.
2012-09-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.
Overview of the Multi-Spectral Imager on the NEAR spacecraft
NASA Astrophysics Data System (ADS)
Hawkins, S. E., III
1996-07-01
The Multi-Spectral Imager on the Near Earth Asteroid Rendezvous (NEAR) spacecraft is a 1 Hz frame rate CCD camera sensitive in the visible and near infrared bands (~400-1100 nm). MSI is the primary instrument on the spacecraft to determine morphology and composition of the surface of asteroid 433 Eros. In addition, the camera will be used to assist in navigation to the asteroid. The instrument uses refractive optics and has an eight position spectral filter wheel to select different wavelength bands. The MSI optical focal length of 168 mm gives a 2.9 ° × 2.25 ° field of view. The CCD is passively cooled and the 537×244 pixel array output is digitized to 12 bits. Electronic shuttering increases the effective dynamic range of the instrument by more than a factor of 100. A one-time deployable cover protects the instrument during ground testing operations and launch. A reduced aperture viewport permits full field of view imaging while the cover is in place. A Data Processing Unit (DPU) provides the digital interface between the spacecraft and the Camera Head and uses an RTX2010 processor. The DPU provides an eight frame image buffer, lossy and lossless data compression routines, and automatic exposure control. An overview of the instrument is presented and design parameters and trade-offs are discussed.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
NASA Astrophysics Data System (ADS)
Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji
2012-03-01
We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.
Bayram, Banu; Sayın, Emrah; Güneş, Hasan Veysi; Değirmenci, Irfan; Türkoğlu, Züleyha; Doganer, Fulya; Coşan, Didem Turgut
2011-03-01
This study was conducted in Turkish osteoarthritis patients to determine the frequency of I/D polymorphism genotypes of angiotensin converting enzyme gene, and to examine the role of this polymorphism in osteoarthritis development. Genomic DNA obtained from 200 persons (135 patients with osteoarthritis and 65 healthy controls) was used in the study. DNA was multiplied by polymerase chain reaction using I and D allele-specific primers. Polymerase chain reaction products were assessed with CCD camera by being exposed to 2% agarose gel electrophoresis. There was statistically significant difference between the groups with respect to genotype distribution (P < 0.001). The D allele frequency was indicated as 69% and I allele was as 31% in the patients, whereas it was 55-45% in the control group. Consequently, in this study, we may assert that ACE gene I/D polymorphism DD genotype determination is significant criteria for identifying patients who are likely to develop osteoarthritis in east population of Turkey.
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Hormuth, Felix
Lucky Imaging improves the angular resolution of astronomical observations hampered by atmospheric turbulence ("seeing"). Unlike adaptive optics, Lucky Imaging is a passive observing technique with individual integration times comparable to the atmospheric coherence time. Thanks to the advent of essentially noise free "Electron multiplying CCD" detectors, Lucky Imaging saw a renewed interest in the past decade. It is now routinely used at a number of 2-5-m class telescopes, such as ESO's NTT. We review the history of Lucky Imaging, present the technical implementation, describe the data analysis philosophy, and show some recent results obtained with this technique. We also discuss the advantages and limitations of Lucky Imaging compared to other passive and active high angular resolution observing techniques.
A goggle navigation system for cancer resection surgery
NASA Astrophysics Data System (ADS)
Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald
2014-02-01
We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.
A compact electron spectrometer for an LWFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.; Crowell, R.; Li, Y.
2007-01-01
The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams.more » The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.« less
Recent improvements of the JET lithium beam diagnostica)
NASA Astrophysics Data System (ADS)
Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors
2012-10-01
A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).
A Comprehensive Approach to Phonon Control for Enhanced Device Performance
2006-07-12
substantially on parameters of the transit space . 300 kV/cm (drift region) but also specifically on the AC com- >, k\\/cm ponent of the tunnel emission... reseracher to grow well-controlled and high quality -, N2/Ar: V 35x 10 (old) multilayers and heterostructures, resulting in record electron . V 3 x 109...reflected from the sample, back through the viewport, and into a CCD camera. Monitoring fractional changes in the spacing between these re- flected spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfield, B.R.; Rendell, J.T.
1991-01-01
The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradere, P.; Perol, A.
The requirements for the design of an XRII can be quite different depending on the application: medical; industrial; low or high energy. A specific need for industrial applications is to reduce image burn-in, a permanent marking of the tube related to the inspection of sharp contrast objects with high X-ray doses. Burn-in is mainly related to the darkening of the output screen which depends on the electron beam density in the tube. A first way to reduce burn-in is to reduce the tube gain. A more efficient solution now proposed by Thomson Tubes Electroniques is to use a non browning,more » radiation hard glass for the tube output window together with a more adapted screen process that will limit the darkening of the output phosphor itself. The new industrial tube will be proposed in 9 in. (215 mm useful) or 12 in. (290 mm) format and could be ideally combined with a new high resolution (1024 x 1024 pixels) 12 bits real time CCD camera. This camera includes a new interline CCD developed to avoid image smear and blooming. Integrated image heads with power supply and folded optics are available. Low energy, beryllium windowed 9 in. XRII is already available in industrial version.« less
NASA Astrophysics Data System (ADS)
Ahmad, Anees; Batcheldor, Scott; Cannon, Steven C.; Roberts, Thomas E.
2002-09-01
This paper presents the lessons learned during the design and development of a high performance cooled CCD camera for military applications utilizing common commercial off the shelf (COTS) parts. Our experience showed that concurrent evaluation and testing of high risk COTS must be performed to assess their performance over the required temperature range and other special product requirements such as fuel vapor compatibility, EMI and shock susceptibility, etc. Technical, cost and schedule risks for COTS parts must also be carefully evaluated. The customer must be involved in the selection and evaluation of such parts so that the performance limitations of the selected parts are clearly understood. It is equally important to check with vendors on the availability and obsolescence of the COTS parts being considered since the electronic components are often replaced by newer, better and cheaper models in a couple of years. In summary, this paper addresses the major benefits and risks associated with using commercial and industrial parts in military products, and suggests a risk mitigation approach to ensure a smooth development phase, and predictable performance from the end product.
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
Wide field NEO survey 1.0-m telescope with 10 2k×4k mosaic CCD camera
NASA Astrophysics Data System (ADS)
Isobe, Syuzo; Asami, Atsuo; Asher, David J.; Hashimoto, Toshiyasu; Nakano, Shi-ichi; Nishiyama, Kota; Ohshima, Yoshiaki; Terazono, Junya; Umehara, Hiroaki; Yoshikawa, Makoto
2002-12-01
We developed a new 1.0 m telescope with a 3 degree flat focal plane to which a mosaic CCD camera with 10 2k×4k chips is fixed. The system was set up in February 2002, and is now undergoing the final fine adjustments. Since the telescope has a focal length of 3 m, a field of 7.5 square degrees is covered in one image. In good seeing conditions, 1.5 arc seconds, at the site located in Bisei town, Okayama prefecture in Japan, we can expect to detect down to 20th magnitude stars with an exposure time of 60 seconds. Considering a read-out time, 46 seconds, of the CCD camera, one image is taken in every two minutes, and about 2,100 square degrees of field is expected to be covered in one clear night. This system is very effective for survey work, especially for Near-Earth-Asteroid detection.
CCD Camera Detection of HIV Infection.
Day, John R
2017-01-01
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
New design environment for defect detection in web inspection systems
NASA Astrophysics Data System (ADS)
Hajimowlana, S. Hossain; Muscedere, Roberto; Jullien, Graham A.; Roberts, James W.
1997-09-01
One of the aims of industrial machine vision is to develop computer and electronic systems destined to replace human vision in the process of quality control of industrial production. In this paper we discuss the development of a new design environment developed for real-time defect detection using reconfigurable FPGA and DSP processor mounted inside a DALSA programmable CCD camera. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The system is targeted for web inspection but has the potential for broader application areas. We describe and show test results of the prototype system board, mounted inside a DALSA camera and discuss some of the algorithms currently simulated and implemented for web inspection applications.
NASA Astrophysics Data System (ADS)
Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.
1995-06-01
The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.
Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications
NASA Astrophysics Data System (ADS)
Olson, Gaylord G.; Walker, Jo N.
1997-09-01
Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
The Development of the Spanish Fireball Network Using a New All-Sky CCD System
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte
2004-12-01
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.
GF-7 Imaging Simulation and Dsm Accuracy Estimate
NASA Astrophysics Data System (ADS)
Yue, Q.; Tang, X.; Gao, X.
2017-05-01
GF-7 satellite is a two-line-array stereo imaging satellite for surveying and mapping which will be launched in 2018. Its resolution is about 0.8 meter at subastral point corresponding to a 20 km width of cloth, and the viewing angle of its forward and backward cameras are 5 and 26 degrees. This paper proposed the imaging simulation method of GF-7 stereo images. WorldView-2 stereo images were used as basic data for simulation. That is, we didn't use DSM and DOM as basic data (we call it "ortho-to-stereo" method) but used a "stereo-to-stereo" method, which will be better to reflect the difference of geometry and radiation in different looking angle. The shortage is that geometric error will be caused by two factors, one is different looking angles between basic image and simulated image, another is not very accurate or no ground reference data. We generated DSM by WorldView-2 stereo images. The WorldView-2 DSM was not only used as reference DSM to estimate the accuracy of DSM generated by simulated GF-7 stereo images, but also used as "ground truth" to establish the relationship between WorldView-2 image point and simulated image point. Static MTF was simulated on the instantaneous focal plane "image" by filtering. SNR was simulated in the electronic sense, that is, digital value of WorldView-2 image point was converted to radiation brightness and used as radiation brightness of simulated GF-7 camera. This radiation brightness will be converted to electronic number n according to physical parameters of GF-7 camera. The noise electronic number n1 will be a random number between -√n and √n. The overall electronic number obtained by TDI CCD will add and converted to digital value of simulated GF-7 image. Sinusoidal curves with different amplitude, frequency and initial phase were used as attitude curves. Geometric installation errors of CCD tiles were also simulated considering the rotation and translation factors. An accuracy estimate was made for DSM generated from simulated images.
Ortega-Ojeda, Fernando; Calcerrada, Matías; Ferrero, Alejandro; Campos, Joaquín; Garcia-Ruiz, Carmen
2018-04-10
Ultra-weak photon emission (UPE) is the spontaneous emission from living systems mainly attributed to oxidation reactions, in which reactive oxygen species (ROS) may play a major role. Given the capability of the next-generation electron-multiplying CCD (EMCCD) sensors and the easy use of liquid crystal tunable filters (LCTF), the aim of this work was to explore the potential of a simple UPE spectrometer to measure the UPE from a human hand. Thus, an easy setup was configured based on a dark box for inserting the subject's hand prior to LCTF as a monochromator and an EMCCD sensor working in the full vertical binning mode (FVB) as a spectra detector. Under controlled conditions, both dark signals and left hand UPE were acquired by registering the UPE intensity at different selected wavelengths (400, 450, 500, 550, 600, 650, and 700 nm) during a period of 10 min each. Then, spurious signals were filtered out by ignoring the pixels whose values were clearly outside of the Gaussian distribution, and the dark signal was subtracted from the subject hand signal. The stepped spectrum with a peak of approximately 880 photons at 500 nm had a shape that agreed somewhat with previous reports, and agrees with previous UPE research that reported UPE from 420 to 570 nm, or 260 to 800 nm, with a range from 1 to 1000 photons s -1 cm -2 . Obtaining the spectral distribution instead of the total intensity of the UPE represents a step forward in this field, as it may provide extra information about a subject's personal states and relationship with ROS. A new generation of CCD sensors with lower dark signals, and spectrographs with a more uniform spectral transmittance, will open up new possibilities for configuring measuring systems in portable formats.
Analysis of crystalline lens coloration using a black and white charge-coupled device camera.
Sakamoto, Y; Sasaki, K; Kojima, M
1994-01-01
To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.
Digital holographic interferometry applied to the investigation of ignition process.
Pérez-Huerta, J S; Saucedo-Anaya, Tonatiuh; Moreno, I; Ariza-Flores, D; Saucedo-Orozco, B
2017-06-12
We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.
The TESS camera: modeling and measurements with deep depletion devices
NASA Astrophysics Data System (ADS)
Woods, Deborah F.; Vanderspek, Roland; MacDonald, Robert; Morgan, Edward; Villasenor, Joel; Thayer, Carolyn; Burke, Barry; Chesbrough, Christian; Chrisp, Michael; Clark, Kristin; Furesz, Gabor; Gonzales, Alexandria; Nguyen, Tam; Prigozhin, Gregory; Primeau, Brian; Ricker, George; Sauerwein, Timothy; Suntharalingam, Vyshnavi
2016-07-01
The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 μm thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 μm silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaugher, B.; Diehl, H. T.; Alvarez, O.
2015-11-15
The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
Flaugher, B.
2015-04-11
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
Upwelling Radiance at 976 nm Measured from Space Using a CCD Camera
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Kovalik, Joseph M.; Oaida, Bogdan V.; Abrahamson, Matthew J.; Wright, Malcolm W.
2015-01-01
The Optical Payload for Lasercomm Science (OPALS) Flight System on-board the International Space Station uses a charge coupled device (CCD) camera for receiving a beacon laser from Earth. Relative measurements of the background contributed by upwelling radiance under diverse illumination conditions and varying terrain is presented. In some cases clouds in the field-of-view allowed a comparison of terrestrial and cloud-top upwelling radiance. In this paper we will report these measurements and examine the extent of agreement with atmospheric model predictions.
STK: A new CCD camera at the University Observatory Jena
NASA Astrophysics Data System (ADS)
Mugrauer, M.; Berthold, T.
2010-04-01
The Schmidt-Teleskop-Kamera (STK) is a new CCD-imager, which is operated since begin of 2009 at the University Observatory Jena. This article describes the main characteristics of the new camera. The properties of the STK detector, the astrometry and image quality of the STK, as well as its detection limits at the 0.9 m telescope of the University Observatory Jena are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Computerized lateral-shear interferometer
NASA Astrophysics Data System (ADS)
Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.
1998-07-01
A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.
Targeted photodynamic therapy of established soft-tissue infections in mice
NASA Astrophysics Data System (ADS)
Gad, Faten; Zahra, Touqir; Hasan, Tayyaba; Hamblin, Michael R.
2004-06-01
The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. Although many workers have used photodynamic therapy (PDT) to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We have previously described the first use of PDT to treat excisional wound infections by Gram-negative bacteria in living mice. However these infected wound models used a short time after infection (30 min) before PDT. We now report on the use of PDT to treat an established soft-tissue infection in mice. We used Staphylococcus aureus stably transformed with a Photorhabdus luminescens lux operon (luxABCDE) that was genetically modified to be functional in Gram-positive bacteria. These engineered bacteria emitted bioluminescence allowing the progress of the infection to be monitored in both space and time with a lowlight imaging charged couple device (CCD) camera. One million cells were injected into one or both thigh muscles of mice that had previously been rendered neutropenic by cyclophosphamide administration. Twenty-four hours later the bacteria had multiplied more than one hundred-fold, and poly-L-lysine chlorin(e6) conjugate or free chlorin(e6) was injected into one area of infected muscle and imaged with the CCD camera. Thirty-minutes later red light from a diode laser was delivered as a surface spot or by interstitial fiber into the infection. There was a lightdose dependent loss of bioluminescence (to < 5% of that seen in control infections) not seen in untreated or light alone treated infections, but in some cases the infection recurred. Conjugate alone led to a lesser reduction in bioluminescence. Infections treated with free chlorin(e6) responded less and the infection subsequently increased over the succeeding days, probably due to PDT-mediated tissue damage. PDT-treated infected legs healed better than legs with untreated infections. This data shows that PDT may have applications in drug-resistant soft-tissue infections.
Periodicity analysis on cat-eye reflected beam profiles of optical detectors
NASA Astrophysics Data System (ADS)
Gong, Mali; He, Sifeng
2017-05-01
The cat-eye effect reflected beam profiles of most optical detectors have a certain characteristic of periodicity, which is caused by array arrangement of sensors at their optical focal planes. It is the first time to find and prove that the reflected beam profile becomes several periodic spots at the reflected propagation distance corresponding to half the imaging distance of a CCD camera. Furthermore, the spatial cycle of these spots is approximately constant, independent of the CCD camera's imaging distance, which is related only to the focal length and pixel size of the CCD sensor. Thus, we can obtain the imaging distance and intrinsic parameters of the optical detector by analyzing its cat-eye reflected beam profiles. This conclusion can be applied in the field of non-cooperative cat-eye target recognition.
LAMOST CCD camera-control system based on RTS2
NASA Astrophysics Data System (ADS)
Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng
2018-05-01
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
Mars Exploration Rover Navigation Camera in-flight calibration
NASA Astrophysics Data System (ADS)
Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.
2008-06-01
The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.
A compact multichannel spectrometer for Thomson scatteringa)
NASA Astrophysics Data System (ADS)
Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
A compact multichannel spectrometer for Thomson scattering.
Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R
2012-10-01
The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.
CCDs in the Mechanics Lab--A Competitive Alternative? (Part I).
ERIC Educational Resources Information Center
Pinto, Fabrizio
1995-01-01
Reports on the implementation of a relatively low-cost, versatile, and intuitive system to teach basic mechanics based on the use of a Charge-Coupled Device (CCD) camera and inexpensive image-processing and analysis software. Discusses strengths and limitations of CCD imaging technologies. (JRH)
Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie
2010-10-10
The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.
CCD Astrometry with Robotic Telescopes
NASA Astrophysics Data System (ADS)
AlZaben, Faisal; Li, Dewei; Li, Yongyao; Dennis, Aren Fene, Michael; Boyce, Grady; Boyce, Pat
2016-01-01
CCD images were acquired of three binary star systems: WDS06145+1148, WDS06206+1803, and WDS06224+2640. The astrometric solution, position angle, and separation of each system were calculated with MaximDL v6 and Mira Pro x64 software suites. The results were consistent with historical measurements in the Washington Double Star Catalog. Our analysis found some differences in measurements between single-shot color CCD cameras and traditional monochrome CCDs using a filter wheel.
NASA Astrophysics Data System (ADS)
Payne, L.; Haas, J. P.; Linard, D.; White, L.
1997-12-01
The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.
Using a trichromatic CCD camera for spectral skylight estimation.
López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L
2008-12-01
In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-07-08
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).
The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars
NASA Astrophysics Data System (ADS)
Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.
2017-05-01
This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.
Soft X-ray and XUV imaging with a charge-coupled device /CCD/-based detector
NASA Technical Reports Server (NTRS)
Loter, N. G.; Burstein, P.; Krieger, A.; Ross, D.; Harrison, D.; Michels, D. J.
1981-01-01
A soft X-ray/XUV imaging camera which uses a thinned, back-illuminated, all-buried channel RCA CCD for radiation sensing has been built and tested. The camera is a slow-scan device which makes possible frame integration if necessary. The detection characteristics of the device have been tested over the 15-1500 eV range. The response was linear with exposure up to 0.2-0.4 erg/sq cm; saturation occurred at greater exposures. Attention is given to attempts to resolve single photons with energies of 1.5 keV.
Sensory Interactive Teleoperator Robotic Grasping
NASA Technical Reports Server (NTRS)
Alark, Keli; Lumia, Ron
1997-01-01
As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.
An Investigation into the Spectral Imaging of Hall Thruster Plumes
2015-07-01
imaging experiment. It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus...19 mml 14c--7_0_m_m_~•... ,. ,. 50 mm I· ·I ,. 41 mm I Kodak KAF- 3200E ceo 2184 x 1472 px 14.9 x 10.0 mm 6.8 x 6.8J..Lm pixel size SBIG ST...It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus long exposure
De, Abhijit; Gambhir, Sanjiv Sam
2005-12-01
This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.
Structure of the runaway electron loss during induced disruptions in TEXTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongrach, K.; Finken, K. H.; Willi, O.
2015-10-15
The loss of runaway electrons during an induced disruption is recorded by a synchrotron imaging technique using a fast infrared CCD camera. The loss is predominantly diffuse. During the “spiky-loss phase”, when the runaway beam moves close to the wall, a narrow channel between the runaway column and a scintillator probe is formed and lasts until the runaway beam is terminated. In some cases, the processed images show a stripe pattern at the plasma edge. A comparison between the MHD dominated disruptions and the MHD-free disruption is performed. A new mechanism of plasma disruptions with the runaway electron generation andmore » a novel model which reproduces many characteristic features of the plasma beam evolution during a disruption is briefly described.« less
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish
2018-01-01
Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133
Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish
2018-01-01
The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.
Optomechanical System Development of the AWARE Gigapixel Scale Camera
NASA Astrophysics Data System (ADS)
Son, Hui S.
Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.
NASA Astrophysics Data System (ADS)
Fernández-Lajús, E.; Gamen, R.; Sánchez, M.; Scalia, M. C.; Baume, G. L.
2016-08-01
From observations made with the ``Jorge Sahade'' telescope of the Complejo Astronomico El Leoncito, the UBVRI-band extinction coeficients were measured, and some parameters and characteristics of the direct-image CCD camera ROPER 2048B were determined.
VizieR Online Data Catalog: Photometry of multiple stars at NAOR&ASV in 2015 (Cvetkovic+, 2017)
NASA Astrophysics Data System (ADS)
Cvetkovic, Z.; Pavlovic, R.; Boeva, S.
2018-05-01
This is the ninth series of CCD observations of double and multiple stars, obtained at the Bulgarian National Astronomical Observatory at Rozhen (NAOR) over five nights. As previously, the CCD camera VersArray 1300B was used, which was attached to the 2 m telescope. For each double or multiple star, five CCD frames in the Johnson B filter and five frames in the Johnson V filter were taken, which enabled us to determine the magnitude difference for these filters. In 2015 at the Astronomical Station at Vidojevica (ASV), over a total of 23 nights, observations were carried out by using the 60 cm telescope with a Cassegrain optical system. This is the fourth observational series at ASV since the work started there in 2011. In the observations we used the Apogee Alta U42 CCD camera whose characteristics can be found in the paper by Cvetkovic et al. (2016, J/AJ/151/58). Every pair was observed five times in the Cousins/Bessel B filter and five times in the Cousins/Bessel V one. (3 data files).
The Soft X-ray Imager (SXI) for the ASTRO-H Mission
NASA Astrophysics Data System (ADS)
Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.
2015-09-01
The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.
Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)
NASA Astrophysics Data System (ADS)
Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan
2011-10-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.
SOUL: the Single conjugated adaptive Optics Upgrade for LBT
NASA Astrophysics Data System (ADS)
Pinna, E.; Esposito, S.; Hinz, P.; Agapito, G.; Bonaglia, M.; Puglisi, A.; Xompero, M.; Riccardi, A.; Briguglio, R.; Arcidiacono, C.; Carbonaro, L.; Fini, L.; Montoya, M.; Durney, O.
2016-07-01
We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5
Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi
2017-04-01
To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Lyuty, V. M.; Abdullayev, B. I.; Alekberov, I. A.; Gulmaliyev, N. I.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Short description of optical and electric scheme of CCD photometer with camera U-47 installed on the Cassegrain focus of ZEISS-600 telescope of the ShAO NAS Azerbaijan is provided. The reducer of focus with factor of reduction 1.7 is applied. It is calculated equivalent focal distances of a telescope with a focus reducer. General calculations of optimum distance from focal plane and t sizes of optical filters of photometer are presented.
A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection
NASA Astrophysics Data System (ADS)
Tomono, Akira; Iida, Muneo; Kobayashi, Yukio
1990-04-01
This paper proposes a highly efficient camera system which extracts, irrespective of background, feature points such as the pupil, corneal reflection image and dot-marks pasted on a human face in order to detect human eye movement by image processing. Two eye movement detection methods are sugested: One utilizing face orientation as well as pupil position, The other utilizing pupil and corneal reflection images. A method of extracting these feature points using LEDs as illumination devices and a new TV camera system designed to record eye movement are proposed. Two kinds of infra-red LEDs are used. These LEDs are set up a short distance apart and emit polarized light of different wavelengths. One light source beams from near the optical axis of the lens and the other is some distance from the optical axis. The LEDs are operated in synchronization with the camera. The camera includes 3 CCD image pick-up sensors and a prism system with 2 boundary layers. Incident rays are separated into 2 wavelengths by the first boundary layer of the prism. One set of rays forms an image on CCD-3. The other set is split by the half-mirror layer of the prism and forms an image including the regularly reflected component by placing a polarizing filter in front of CCD-1 or another image not including the component by not placing a polarizing filter in front of CCD-2. Thus, three images with different reflection characteristics are obtained by three CCDs. Through the experiment, it is shown that two kinds of subtraction operations between the three images output from CCDs accentuate three kinds of feature points: the pupil and corneal reflection images and the dot-marks. Since the S/N ratio of the subtracted image is extremely high, the thresholding process is simple and allows reducting the intensity of the infra-red illumination. A high speed image processing apparatus using this camera system is decribed. Realtime processing of the subtraction, thresholding and gravity position calculation of the feature points is possible.
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
Imaging Local Ca2+ Signals in Cultured Mammalian Cells
Lock, Jeffrey T.; Ellefsen, Kyle L.; Settle, Bret; Parker, Ian; Smith, Ian F.
2015-01-01
Cytosolic Ca2+ ions regulate numerous aspects of cellular activity in almost all cell types, controlling processes as wide-ranging as gene transcription, electrical excitability and cell proliferation. The diversity and specificity of Ca2+ signaling derives from mechanisms by which Ca2+ signals are generated to act over different time and spatial scales, ranging from cell-wide oscillations and waves occurring over the periods of minutes to local transient Ca2+ microdomains (Ca2+ puffs) lasting milliseconds. Recent advances in electron multiplied CCD (EMCCD) cameras now allow for imaging of local Ca2+ signals with a 128 x 128 pixel spatial resolution at rates of >500 frames sec-1 (fps). This approach is highly parallel and enables the simultaneous monitoring of hundreds of channels or puff sites in a single experiment. However, the vast amounts of data generated (ca. 1 Gb per min) render visual identification and analysis of local Ca2+ events impracticable. Here we describe and demonstrate the procedures for the acquisition, detection, and analysis of local IP3-mediated Ca2+ signals in intact mammalian cells loaded with Ca2+ indicators using both wide-field epi-fluorescence (WF) and total internal reflection fluorescence (TIRF) microscopy. Furthermore, we describe an algorithm developed within the open-source software environment Python that automates the identification and analysis of these local Ca2+ signals. The algorithm localizes sites of Ca2+ release with sub-pixel resolution; allows user review of data; and outputs time sequences of fluorescence ratio signals together with amplitude and kinetic data in an Excel-compatible table. PMID:25867132
Overview of Athena Microscopic Imager Results
NASA Technical Reports Server (NTRS)
Herkenhoff, K.; Squyres, S.; Arvidson, R.; Bass, D.; Bell, J., III; Bertelsen, P.; Cabrol, N.; Ehlmann, B.; Farrand, W.; Gaddis, L.
2005-01-01
The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on an extendable arm, the Instrument Deployment Device (IDD). The MI acquires images at a spatial resolution of 31 microns/pixel over a broad spectral range (400 - 700 nm). The MI uses the same electronics design as the other MER cameras but its optics yield a field of view of 32 32 mm across a 1024 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. The MI science objectives, instrument design and calibration, operation, and data processing were described by Herkenhoff et al. Initial results of the MI experiment on both MER rovers (Spirit and Opportunity) have been published previously. Highlights of these and more recent results are described.
Control and protection of outdoor embedded camera for astronomy
NASA Astrophysics Data System (ADS)
Rigaud, F.; Jegouzo, I.; Gaudemard, J.; Vaubaillon, J.
2012-09-01
The purpose of CABERNET- Podet-Met (CAmera BEtter Resolution NETwork, Pole sur la Dynamique de l'Environnement Terrestre - Meteor) project is the automated observation, by triangulation with three cameras, of meteor showers to perform a calculation of meteoroids trajectory and velocity. The scientific goal is to search the parent body, comet or asteroid, for each observed meteor. To install outdoor cameras in order to perform astronomy measurements for several years with high reliability requires a very specific design for the box. For these cameras, this contribution shows how we fulfilled the various functions of their boxes, such as cooling of the CCD, heating to melt snow and ice, the protecting against moisture, lightning and Solar light. We present the principal and secondary functions, the product breakdown structure, the technical solutions evaluation grid of criteria, the adopted technology products and their implementation in multifunction subsets for miniaturization purpose. To manage this project, we aim to get the lowest manpower and development time for every part. In appendix, we present the measurements the image quality evolution during the CCD cooling, and some pictures of the prototype.
Mars Exploration Rover Navigation Camera in-flight calibration
Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.
2008-01-01
The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.
Imagers for digital still photography
NASA Astrophysics Data System (ADS)
Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge
2006-04-01
This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.
Transient full-field vibration measurement using spectroscopical stereo photogrammetry.
Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan
2010-12-20
Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.
First Results of Digital Topography Applied to Macromolecular Crystals
NASA Technical Reports Server (NTRS)
Lovelace, J.; Soares, A. S.; Bellamy, H.; Sweet, R. M.; Snell, E. H.; Borgstahl, G.
2004-01-01
An inexpensive digital CCD camera was used to record X-ray topographs directly from large imperfect crystals of cubic insulin. The topographs recorded were not as detailed as those which can be measured with film or emulsion plates but do show great promise. Six reflections were recorded using a set of finely spaced stills encompassing the rocking curve of each reflection. A complete topographic reflection profile could be digitally imaged in minutes. Interesting and complex internal structure was observed by this technique.The CCD chip used in the camera has anti-blooming circuitry and produced good data quality even when pixels became overloaded.
Cat-eye effect reflected beam profiles of an optical system with sensor array.
Gong, Mali; He, Sifeng; Guo, Rui; Wang, Wei
2016-06-01
In this paper, we propose an applicable propagation model for Gaussian beams passing through any cat-eye target instead of traditional simplification consisting of only a mirror placed at the focal plane of a lens. According to the model, the cat-eye effect of CCD cameras affected by defocus is numerically simulated. An excellent agreement of experiment results with theoretical analysis is obtained. It is found that the reflectivity distribution at the focal plane of the cat-eye optical lens has great influence on the results, while the cat-eye effect reflected beam profiles of CCD cameras show obvious periodicity.
Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements
NASA Astrophysics Data System (ADS)
Piccone, A. N.; Lautenbach, J.
2017-12-01
Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.
Time-resolved imaging of the plasma development in a triggered vacuum switch
NASA Astrophysics Data System (ADS)
Park, Wung-Hoa; Kim, Moo-Sang; Son, Yoon-Kyoo; Frank, Klaus; Lee, Byung-Joon; Ackerman, Thilo; Iberler, Marcus
2017-12-01
Triggered vacuum switches (TVS) are particularly used in pulsed power technology as closing switches for high voltages and high charge transfer. A non-sealed-off prototype was designed with a side-on quartz window to investigate the evolution of the trigger discharge into the main discharge. The image acquisition was done with a fast CCD camera PI-MAX2 from Princeton Instruments. The CCD camera has a maximum exposure time of 2 ns. The electrode configuration of the prototype is a conventional six-rod gap type, a capacitor bank with C = 16.63 μF, which corresponds at 20 kV charging voltage to a total stored charge of 0.3 C or a total energy of 3.3 kJ. The peak current is 88 kA. According to the tremendously highly different light intensities during the trigger and main discharge, the complete discharge is split into three phases: a trigger breakdown phase, an intermediate phase and a main discharge phase. The CCD camera images of the first phase show instabilities of the trigger breakdown, in phase 2 three different discharge modes are observed. After the first current maximum the discharge behavior is reproducible.
Kim, Heekang; Kwon, Soon; Kim, Sungho
2016-01-01
This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Feipeng; Shi Hongjian; Bai Pengxiang
In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less
Fourier Theory Explanation for the Sampling Theorem Demonstrated by a Laboratory Experiment.
ERIC Educational Resources Information Center
Sharma, A.; And Others
1996-01-01
Describes a simple experiment that uses a CCD video camera, a display monitor, and a laser-printed bar pattern to illustrate signal sampling problems that produce aliasing or moiri fringes in images. Uses the Fourier transform to provide an appropriate and elegant means to explain the sampling theorem and the aliasing phenomenon in CCD-based…
Low-cost laser speckle contrast imaging of blood flow using a webcam.
Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.
Low-cost laser speckle contrast imaging of blood flow using a webcam
Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082
[Virtual reality in ophthalmological education].
Wagner, C; Schill, M; Hennen, M; Männer, R; Jendritza, B; Knorz, M C; Bender, H J
2001-04-01
We present a computer-based medical training workstation for the simulation of intraocular eye surgery. The surgeon manipulates two original instruments inside a mechanical model of the eye. The instrument positions are tracked by CCD cameras and monitored by a PC which renders the scenery using a computer-graphic model of the eye and the instruments. The simulator incorporates a model of the operation table, a mechanical eye, three CCD cameras for the position tracking, the stereo display, and a computer. The three cameras are mounted under the operation table from where they can observe the interior of the mechanical eye. Using small markers the cameras recognize the instruments and the eye. Their position and orientation in space is determined by stereoscopic back projection. The simulation runs with more than 20 frames per second and provides a realistic impression of the surgery. It includes the cold light source which can be moved inside the eye and the shadow of the instruments on the retina which is important for navigational purposes.
Plane development of lateral surfaces for inspection systems
NASA Astrophysics Data System (ADS)
Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.
2006-08-01
The problem of developing the lateral surfaces of a 3D object can arise in item inspection using automated imaging systems. In an industrial environment, these control systems typically work at high rate and they have to assure a reliable inspection of the single item. For compactness requirements it is not convenient to utilise three or four CCD cameras to control all the lateral surfaces of an object. Moreover it is impossible to mount optical components near the object if it is placed on a conveyor belt. The paper presents a system that integrates on a single CCD picture the images of both the frontal surface and the lateral surface of an object. It consists of a freeform lens mounted in front of a CCD camera with a commercial lens. The aim is to have a good magnification of the lateral surface, maintaining a low aberration level for exploiting the pictures in an image processing software. The freeform lens, made in plastics, redirects the light coming from the object to the camera lens. The final result is to obtain on the CCD: - the frontal and lateral surface images, with a selected magnification (even with two different values for the two images); - a gap between these two images, so an automatic method to analyse the images can be easily applied. A simple method to design the freeform lens is illustrated. The procedure also allows to obtain the imaging system modifying a current inspection system reducing the cost.
Standoff alpha radiation detection for hot cell imaging and crime scene investigation
NASA Astrophysics Data System (ADS)
Kerst, Thomas; Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha
2018-02-01
This paper presents the remote detection of alpha contamination in a nuclear facility. Alpha-active material in a shielded nuclear radiation containment chamber has been localized by optical means. Furthermore, sources of radiation danger have been identified in a staged crime scene setting. For this purpose, an electron-multiplying charge-coupled device camera was used to capture photons generated by alpha-induced air scintillation (radioluminescence). The detected radioluminescence was superimposed with a regular photograph to reveal the origin of the light and thereby the alpha radioactive material. The experimental results show that standoff detection of alpha contamination is a viable tool in radiation threat detection. Furthermore, the radioluminescence spectrum in the air is spectrally analyzed. Possibilities of camera-based alpha threat detection under various background lighting conditions are discussed.
Standoff alpha radiation detection for hot cell imaging and crime scene investigation
NASA Astrophysics Data System (ADS)
Kerst, Thomas; Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha
2018-06-01
This paper presents the remote detection of alpha contamination in a nuclear facility. Alpha-active material in a shielded nuclear radiation containment chamber has been localized by optical means. Furthermore, sources of radiation danger have been identified in a staged crime scene setting. For this purpose, an electron-multiplying charge-coupled device camera was used to capture photons generated by alpha-induced air scintillation (radioluminescence). The detected radioluminescence was superimposed with a regular photograph to reveal the origin of the light and thereby the alpha radioactive material. The experimental results show that standoff detection of alpha contamination is a viable tool in radiation threat detection. Furthermore, the radioluminescence spectrum in the air is spectrally analyzed. Possibilities of camera-based alpha threat detection under various background lighting conditions are discussed.
Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies
NASA Astrophysics Data System (ADS)
Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe
2013-09-01
The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.
Improved Measurement of Ejection Velocities From Craters Formed in Sand
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.
2014-01-01
A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.
The impact of radiation damage on photon counting with an EMCCD for the WFIRST-AFTA coronagraph
NASA Astrophysics Data System (ADS)
Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Soman, Matthew; Jordan, Douglas; Demers, Richard; Harding, Leon; Hoenk, Michael; Michaels, Darren; Nemati, Bijan; Peddada, Pavani
2015-09-01
WFIRST-AFTA is a 2.4m class NASA observatory designed to address a wide range of science objectives using two complementary scientific payloads. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view, and will gather NIR statistical data on exoplanets through gravitational microlensing. The second instrument is a high contrast coronagraph that will carry out the direct imaging and spectroscopic analysis of exoplanets, providing a means to probe the structure and composition of planetary systems. The coronagraph instrument is expected to operate in low photon flux for long integration times, meaning all noise sources must be kept to a minimum. In order to satisfy the low noise requirements, the Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras. The EMCCD was selected in comparison with other candidates because of its low effective electronic read noise at sub-electron values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterised and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Efficiency (CTE) of the device throughout the mission lifetime. Here we present our latest results from pre- and post-irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST-AFTA coronagraph instrument. A description of the detector technology is presented, alongside considerations for operation within a space environment. The results from a room temperature irradiation are discussed in context with the nominal operating requirements of AFTA-C and future work which entails a cryogenic irradiation of the CCD201-20 is presented.
High-frame-rate infrared and visible cameras for test range instrumentation
NASA Astrophysics Data System (ADS)
Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.
1995-09-01
Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.
Evaluation of the ImmerVision IMV1-1/3NI Panomorph Lens on a Small Unmanned Ground Vehicle (SUGV)
2013-07-01
360°. For the above reason, a 1.3-MP Chameleon color universal serial bus (USB) camera with a 1/3-in CCD from PGR was selected instead of...recommended qualified cameras to host the panomorph lens. Having the advantage of a small footprint, the Chameleon camera with the IMV1 lens can be easily
The upgrade of the H.E.S.S. cameras
NASA Astrophysics Data System (ADS)
Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois
2017-01-01
The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes (IACT) located in Namibia. In order to assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA, the older cameras, installed in 2003, are currently undergoing an extensive upgrade. Its goals are reducing the system failure rate, reducing the dead time and improving the overall performance of the array. All camera components have been upgraded, except the mechanical structure and the photo-multiplier tubes (PMTs). Novel technical solutions have been introduced: the upgraded readout electronics is based on the NECTAr analog memory chip; the control of the hardware is carried out by an FPGA coupled to an embedded ARM computer; the control software was re-written from scratch and it is based on modern C++ open source libraries. These hardware and software solutions offer very good performance, robustness and flexibility. The first camera was fielded in July 2015 and has been successfully commissioned; the rest is scheduled to be upgraded in September 2016. The present contribution describes the design, the testing and the performance of the new H.E.S.S. camera and its components.
Development of an EMCCD for lidar applications
NASA Astrophysics Data System (ADS)
De Monte, B.; Bell, R. T.
2017-11-01
A novel detector, incorporating e2v's L3 CCD (L3Vision™) [1] technology for use in LIDAR (Light Detection And Ranging) applications has been designed, manufactured and characterised. The most critical performance aspect was the requirement to collect charge from a 120μm square detection area for a 667ns temporal sampling window, with low crosstalk between successive samples, followed by signal readout with sub-electron effective noise. Additional requirements included low dark signal, high quantum efficiency at the 355nm laser wavelength and the ability to handle bright laser echoes, without corruption of the much fainter useful signals. The detector architecture used high speed charge binning to combine signal from each sampling window into a single charge packet. This was then passed through a multiplication register (Electron Multiplying Charge Coupled Device) operating with a typical gain of 100X to a conventional charge detection circuit. The detector achieved a typical quantum efficiency of 80% and a total noise in darkness of < 0.5 electrons rms. Development of the detector was supported by ESA (European Space Agency).
Single-Pulse Dual-Energy Mammography Using a Binary Screen Coupled to Dual CCD Cameras
1999-08-01
Fossum, "Active pixel sensors—Are CCD’s Dinosaurs ?," Proc. SPIE 1900, 2-14 (1993). "S. Mendis, S. E. Kemeny, R. Gee, B. Pain, and E. R. Fossum, "Progress...Clin Oncol 13:1470-1477, 1995 12. Wahl RL, Zasadny K, Helvie M, et al: Metabolic monitoring of breast cancer chemohormonotherapy using posi- tron
NASA Technical Reports Server (NTRS)
Mottola, Stefano; Dimartino, M.; Gonano-Beurer, M.; Hoffmann, H.; Neukum, G.
1992-01-01
This paper reports the observations of 951 Gaspra carried out at the European Southern Observatory (La Silla, Chile) during the 1991 apparition, using the DLR CCD Camera equipped with a spare set of the Galileo SSI filters. Time-resolved spectrophotometric measurements are presented. The occurrence of spectral variations with rotation suggests the presence of surface variegation.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Optical Transient Monitor (OTM) for BOOTES Project
NASA Astrophysics Data System (ADS)
Páta, P.; Bernas, M.; Castro-Tirado, A. J.; Hudec, R.
2003-04-01
The Optical Transient Monitor (OTM) is a software for control of three wide and ultra-wide filed cameras of BOOTES (Burst Observer and Optical Transient Exploring System) station. The OTM is a PC based and it is powerful tool for taking images from two SBIG CCD cameras in same time or from one camera only. The control program for BOOTES cameras is Windows 98 or MSDOS based. Now the version for Windows 2000 is prepared. There are five main supported modes of work. The OTM program could control cameras and evaluate image data without human interaction.
NASA Astrophysics Data System (ADS)
Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.
2001-08-01
The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.
NASA Technical Reports Server (NTRS)
1994-01-01
Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.
Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope
NASA Astrophysics Data System (ADS)
Robbins, M. S.; Bastable, M.; Bates, A.; Dryer, M.; Eames, S.; Fenemore-Jones, G.; Haddow, G.; Jorden, P. R.; Lane, B.; Marin-Franch, A.; Mortimer, J.; Palmer, I.; Puttay, N.; Renshaw, R.; Smith, M.; Taylor, K.; Tearle, J.; Weston, P.; Wheeler, P.; Worley, J.
2016-08-01
The J-PAS project will perform a five-year survey of the northern sky from a new 2.5m telescope in Teruel, Spain. In this paper the build and factory testing of the commercially supplied cryogenic camera is described. The 1.2 Giga-pixel focal plane is contained within a novel liquid-nitrogen cooled vacuum cryostat, which maintains the flatness for the cooled, 0.45m diameter focal plane to better than 27 μm peak to valley. The cooling system controls the focal plane to a temperature of -100°C with a variation across the focal plane of better than 2.5oC and a stability of better than +/- 0.5 °C over the long periods of operation required. The proximity drive electronics achieves total system level noise performance better than 5 e- from the 224-channel CCD system.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
A Low-Cost "Stationary Eye" in the Sky
NASA Astrophysics Data System (ADS)
Koch, R.; Lande, K.; Mitchell, R.; Wildenhain, P.; Hoang, N.; Langford, J.
1997-12-01
We are developing a stationary, near the top of the atmosphere, astronomical observing system. The platform is a high altitude robotic aircraft (THESEUS) flying in anti-sense to Earth's rotation at a latitude where the plane's speed closely matches the local ground spin velocity. Thus, either an extended day or night viewing program of a given object can be achieved. Our intention here concentrates on astronomical targets. The system consists of the following components. (1) A low cost robotic aircraft that can fly at an altitude of about 25 km. for 30 to 40 hours with differential GPS navigation. Real time control of the aircraft and the observing instruments is either by on-board computer or from the ground via low altitude, commercial satellite communications systems (Iridium, Teledesic, etc.). (2) A siderostat-fed telescope of small f-ratio is attached to the aircraft via critically damped mechanical isolators. An electronic camera at the prime focus looks at a chosen astronomical target. (3) Image smear due to aircraft engine vibration will be eliminated by a combination of critically damped mechanical isolators and electronic CCD pixel jogging. Very precise piezo- electric driven transverse translation of the CCD camera will be used to compensate for wind induced drift of the image on the focal plane. Bright field stars will be used to drive the stabilizing system. (4) Data are stored on high capacity ruggedized hard drives similar to that used by the Mars Lander. The Aurora THESEUS aircraft, whose design is based upon earlier models, is under development. The image stabilizing system components have been identified. An off-the-shelf data-storage device has been chosen. A first prototype telescope has been built and tested. Other optical configurations are possible and collaborators will be welcomed.
NASA Astrophysics Data System (ADS)
Barton, Sinead J.; Kerr, Laura T.; Domijan, Katarina; Hennelly, Bryan M.
2016-04-01
Raman micro-spectroscopy is an optoelectronic technique that can be used to evaluate the chemical composition of biological samples and has been shown to be a powerful diagnostic tool for the investigation of various cancer related diseases including bladder, breast, and cervical cancer. Raman scattering is an inherently weak process with approximately 1 in 107 photons undergoing scattering and for this reason, noise from the recording system can have a significant impact on the quality of the signal, and its suitability for diagnostic classification. The main sources of noise in the recorded signal are shot noise, CCD dark current, and CCD readout noise. Shot noise results from the low signal photon count while dark current results from thermally generated electrons in the semiconductor pixels. Both of these noise sources are time dependent; readout noise is time independent but is inherent in each individual recording and results in the fundamental limit of measurement, arising from the internal electronics of the camera. In this paper, each of the aforementioned noise sources are analysed in isolation, and used to experimentally validate a mathematical model. This model is then used to simulate spectra that might be acquired under various experimental conditions including the use of different cameras, different source wavelength, and power etc. Simulated noisy datasets of T24 and RT112 cell line spectra are generated based on true cell Raman spectrum irradiance values (recorded using very long exposure times) and the addition of simulated noise. These datasets are then input to multivariate classification using Principal Components Analysis and Linear Discriminant Analysis. This method enables an investigation into the effect of noise on the sensitivity and specificity of Raman based classification under various experimental conditions and using different equipment.
Kim, Chulhong; Zemp, Roger J; Wang, Lihong V
2006-08-15
Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.
2014-01-01
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu
2014-02-15
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less
A Three-Line Stereo Camera Concept for Planetary Exploration
NASA Technical Reports Server (NTRS)
Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon
1997-01-01
This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.
A scintillating gas detector for 2D dose measurements in clinical carbon beams.
Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B
2008-09-07
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
A scintillating gas detector for 2D dose measurements in clinical carbon beams
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.
2008-09-01
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
An Efficient Image Compressor for Charge Coupled Devices Camera
Li, Jin; Xing, Fei; You, Zheng
2014-01-01
Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977
Measurements of 42 Wide CPM Pairs with a CCD
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2015-11-01
This paper addresses the use of a Skyris 618C color CCD camera as a means of obtaining data for analysis in the measurement of wide common proper motion stars. The equipment setup is described and data collection procedure outlined. Results of the measures of 42 CPM stars are presented, showing the Skyris is a reliable device for the measurement of double stars.
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras
1990-04-01
poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital
Coaxial fundus camera for opthalmology
NASA Astrophysics Data System (ADS)
de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.
2015-09-01
A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.
de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell
2007-01-10
We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.
NASA Imaging for Safety, Science, and History
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)
2002-01-01
Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.
CCD BVI c observations of Cepheids
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.
2014-02-01
In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.
NASA Technical Reports Server (NTRS)
1992-01-01
This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.
NASA Astrophysics Data System (ADS)
Nara, Shunsuke; Takahashi, Satoru
In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.
Illumination box and camera system
Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.
2002-01-01
A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.
First Light for USNO 1.3-meter Telescope
NASA Astrophysics Data System (ADS)
Monet, A. K. B.; Harris, F. H.; Harris, H. C.; Monet, D. G.; Stone, R. C.
2001-11-01
The US Naval Observatory Flagstaff Station has recently achieved first light with its newest telescope -- a 1.3--meter, f/4 modified Ritchey-Chretien,located on the grounds of the station. The instrument was designed to produce a well-corrected field 1.7--degrees in diameter, and is expected to provide wide-field imaging with excellent astrometric properties. A number of test images have been obtained, using a temporary CCD camera in both drift and stare mode, and the results have been quite encouraging. Several astrometric projects are planned for this instrument, which will be operated in fully automated fashion. This paper will describe the telescope and its planned large-format mosaic CCD camera, and will preview some of the research for which it will be employed.
Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.
1992-11-24
A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, N; Furukawa, T; Mizushima, K
2016-06-15
Purpose: To investigate the time structure of the range, we have verified the rang shift due to the betatron tune shift with several synchrotron parameters. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. Using image processing, the range was determined the 80 percent of distal dose of the depth light distribution. The root mean square error of the range measurement using the scintillator and CCD system is about 0.2 mm. Range measurement was performed at interval of 170 msec. The chromaticity of the synchrotron was changed in the range of plus ormore » minus 1% from reference chromaticity in this study. All of the particle inside the synchrotron ring were extracted with the output beam intensity 1.8×10{sup 8} and 5.0×10{sub 7} particle per sec. Results: The time strictures of the range were changed by changing of the chromaticity. The reproducibility of the measurement was sufficient to observe the time structures of the range. The range shift was depending on the number of the residual particle inside the synchrotron ring. Conclusion: In slow beam extraction for scanned carbon-ion therapy, the range shift is undesirable because it causes the dose uncertainty in the target. We introduced the time-resolved range measurement using scintillator and CCD system. The scintillator and CCD system have enabled to verify the range shift with sufficient spatial resolution and reproducibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June
An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from 0.79 to 9.52, on OH*, CH* and C{sub 2}* in laminar partially premixed flames. The signals from the electronically excited states of OH*, CH* and C{sub 2}* were detected through interference filters using a photo multiplier tube, which were processed to the intensity ratios (C{sub 2}*/CH*, C{sub 2}*/OH* and CH*/OH*) to determine a correlation with the local equivalence ratios. Furthermore, the consistency between the results of the tomographic reconstruction; Abel inversion technique, image with CCD (Couple Charged Detector) camera and the local radicalmore » intensity with PMT was investigated. The results demonstrated that (1) the flames at F=<1.36 exhibited classical double flame structure, at F>=4.76, the flames exhibited non-premixed-like flame structure and the intermediate flames at 1.36
MAPLE: reflected light from exoplanets with a 50-cm diameter stratospheric balloon telescope
NASA Astrophysics Data System (ADS)
Marois, Christian; Bradley, Colin; Pazder, John; Nash, Reston; Metchev, Stanimir; Grandmont, Frédéric; Maire, Anne-Lise; Belikov, Ruslan; Macintosh, Bruce; Currie, Thayne; Galicher, Raphaël.; Marchis, Franck; Mawet, Dimitri; Serabyn, Eugene; Steinbring, Eric
2014-08-01
Detecting light reflected from exoplanets by direct imaging is the next major milestone in the search for, and characterization of, an Earth twin. Due to the high-risk and cost associated with satellites and limitations imposed by the atmosphere for ground-based instruments, we propose a bottom-up approach to reach that ultimate goal with an endeavor named MAPLE. MAPLE first project is a stratospheric balloon experiment called MAPLE-50. MAPLE-50 consists of a 50 cm diameter off-axis telescope working in the near-UV. The advantages of the near-UV are a small inner working angle and an improved contrast for blue planets. Along with the sophisticated tracking system to mitigate balloon pointing errors, MAPLE-50 will have a deformable mirror, a vortex coronograph, and a self-coherent camera as a focal plane wavefront-sensor which employs an Electron Multiplying CCD (EMCCD) as the science detector. The EMCCD will allow photon counting at kHz rates, thereby closely tracking telescope and instrument-bench-induced aberrations as they evolve with time. In addition, the EMCCD will acquire the science data with almost no read noise penalty. To mitigate risk and lower costs, MAPLE-50 will at first have a single optical channel with a minimum of moving parts. The goal is to reach a few times 109 contrast in 25 h worth of flying time, allowing direct detection of Jovians around the nearest stars. Once the 50 cm infrastructure has been validated, the telescope diameter will then be increased to a 1.5 m diameter (MAPLE-150) to reach 1010 contrast and have the capability to image another Earth.
2D dosimetry in a proton beam with a scintillating GEM detector
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.
2009-06-01
A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Imaging monitoring techniques applications in the transient gratings detection
NASA Astrophysics Data System (ADS)
Zhao, Qing-ming
2009-07-01
Experimental studies of Degenerate four-wave mixing (DFWM) in iodine vapor at atmospheric pressure and 0℃ and 25℃ are reported. The Laser-induced grating (LIG) studies are carried out by generating the thermal grating using a pulsed, narrow bandwidth, dye laser .A new image processing system for detecting forward DFWM spectroscopy on iodine vapor is reported. This system is composed of CCD camera, imaging processing card and the related software. With the help of the detecting system, phase matching can be easily achieved in the optical arrangement by crossing the two pumps and the probe as diagonals linking opposite corners of a rectangular box ,and providing a way to position the PhotoMultiplier Tube (PMT) . Also it is practical to know the effect of the pointing stability on the optical path by monitoring facula changing with the laser beam pointing and disturbs of the environment. Finally the effects of Photostability of dye laser on the ration of signal to noise in DFWM using forward geometries have been investigated in iodine vapor. This system makes it feasible that the potential application of FG-DFWM is used as a diagnostic tool in combustion research and environment monitoring.
Report on the eROSITA camera system
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Bornemann, Walter; Coutinho, Diogo; Emberger, Valentin; Hälker, Olaf; Kink, Walter; Mican, Benjamin; Müller, Siegfried; Pietschner, Daniel; Predehl, Peter; Reiffers, Jonas
2014-07-01
The eROSITA space telescope is currently developed for the determination of cosmological parameters and the equation of state of dark energy via evolution of clusters of galaxies. Furthermore, the instrument development was strongly motivated by the intention of a first imaging X-ray all-sky survey enabling measurements above 2 keV. eROSITA is a scientific payload on the Russian research satellite SRG. Its destination after launch is the Lagrangian point L2. The observational program of the observatory divides into an all-sky survey and pointed observations and takes in total about 7.5 years. The instrument comprises an array of 7 identical and parallel aligned telescopes. Each of the seven focal plane cameras is equipped with a PNCCD detector, an enhanced type of the XMM-Newton focal plane detector. This instrumentation permits spectroscopy and imaging of X-rays in the energy band from 0.3 keV to 10 keV with a field of view of 1.0 degree. The camera development is done at the Max-Planck-Institute for extraterrestrial physics. Key component of each camera is the PNCCD chip. This silicon sensor is a back-illuminated, fully depleted and column-parallel type of charge coupled device. The image area of the 450 micron thick frame-transfer CCD comprises an array of 384 x 384 pixels, each with a size of 75 micron x 75 micron. Readout of the signal charge that is generated by an incident X-ray photon in the CCD is accomplished by an ASIC, the so-called eROSITA CAMEX. It provides 128 parallel analog signal processing channels but multiplexes the signals finally to one output which feeds the detector signals to a fast 14-bit ADC. The read noise of this system is equivalent to a noise charge of about 2.5 electrons rms. We achieve an energy resolution close to the theoretical limit given by Fano noise (except for very low energies). For example, the FWHM at an energy of 5.9 keV is approximately 140 eV. The complete camera assembly comprises the camera head with the detector as key component, the electronics for detector operation as well as data acquisition and the filter wheel unit. In addition to the on-chip light blocking filter directly deposited on the photon entrance window of the PNCCD, an external filter can be moved in front of the sensor, which serves also for contamination protection. Furthermore, an on-board calibration source emitting several fluorescence lines is accommodated on the filter wheel mechanism for the purpose of in-orbit calibration. Since the spectroscopic silicon sensors need cooling down to -95°C to mitigate best radiation damage effects, an elaborate cooling system is necessary. It consists of two different types of heat pipes linking the seven detectors to two radiators. Based on the tests with an engineering model, a flight design was developed for the camera and a qualification model has been built. The tests and the performance of this camera is presented in the following. In conclusion an outlook on the flight cameras is given.
The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.
2009-08-01
The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA and Onboard Processing. The DEA incorpo-rates the circuit elements required for data processing, compression, and buffering. It also includes all power conversion and regulation capabilities for both the DEA and the camera head. The DEA has an 8 GB non-volatile flash memory plus 128 MB volatile storage. Images can be commanded as full-frame or sub-frame and the camera has autofocus and autoexposure capa-bilities. MAHLI can also acquire 720p, ~7 Hz high definition video. Onboard processing includes options for Bayer pattern filter interpolation, JPEG-based compression, and focus stack merging (z-stacking). Malin Space Science Systems (MSSS) built and will operate the MAHLI. Alliance Spacesystems, LLC, designed and built the lens mechanical assembly. MAHLI shares common electronics, detector, and software designs with the MSL Mars Descent Imager (MARDI) and the 2 MSL Mast Cameras (Mastcam). Pre-launch images of geologic materials imaged by MAHLI are online at: http://www.msss.com/msl/mahli/prelaunch_images/.
Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam
NASA Astrophysics Data System (ADS)
Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.
2005-04-01
When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.
High precision computing with charge domain devices and a pseudo-spectral method therefor
NASA Technical Reports Server (NTRS)
Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor); Fijany, Amir (Inventor); Zak, Michail (Inventor)
1997-01-01
The present invention enhances the bit resolution of a CCD/CID MVM processor by storing each bit of each matrix element as a separate CCD charge packet. The bits of each input vector are separately multiplied by each bit of each matrix element in massive parallelism and the resulting products are combined appropriately to synthesize the correct product. In another aspect of the invention, such arrays are employed in a pseudo-spectral method of the invention, in which partial differential equations are solved by expressing each derivative analytically as matrices, and the state function is updated at each computation cycle by multiplying it by the matrices. The matrices are treated as synaptic arrays of a neural network and the state function vector elements are treated as neurons. In a further aspect of the invention, moving target detection is performed by driving the soliton equation with a vector of detector outputs. The neural architecture consists of two synaptic arrays corresponding to the two differential terms of the soliton-equation and an adder connected to the output thereof and to the output of the detector array to drive the soliton equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. L. Winston
2007-09-01
The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.
Optimum color filters for CCD digital cameras
NASA Astrophysics Data System (ADS)
Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl
1993-12-01
As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Huang, W.; Heaps, W. S.
2012-01-01
A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.
VizieR Online Data Catalog: Imaging observations of iPTF 13ajg (Vreeswijk+, 2014)
NASA Astrophysics Data System (ADS)
Vreeswijk, P. M.; Savaglio, S.; Gal-Yam, A.; De Cia, A.; Quimby, R. M.; Sullivan, M.; Cenko, S. B.; Perley, D. A.; Filippenko, A. V.; Clubb, K. I.; Taddia, F.; Sollerman, J.; Leloudas, G.; Arcavi, I.; Rubin, A.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Ofek, E. O.; Capone, J.; Kutyrev, A. S.; Toy, V.; Nugent, P. E.; Laher, R.; Surace, J.; Kulkarni, S. R.
2017-08-01
iPTF 13ajg was imaged with the Palomar 48 inch (P48) Oschin iPTF survey telescope equipped with a 12kx8k CCD mosaic camera (Rahmer et al. 2008SPIE.7014E..4YR) in the Mould R filter, the Palomar 60 inch and CCD camera (Cenko et al. 2006PASP..118.1396C) in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the 2.56 m Nordic Optical Telescope (on La Palma, Canary Islands) with the Andalucia Faint Object Spectrograph and Camera (ALFOSC) in SDSS ugriz, the 4.3 m Discovery Channel Telescope (at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS r, and with LRIS (Oke et al. 1995PASP..107..375O) and the Multi-Object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012SPIE.8446E..0JM), both mounted on the 10 m Keck-I telescope (on Mauna Kea, Hawaii), in g and Rs with LRIS and J and Ks with MOSFIRE. (1 data file).
Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan
2015-04-01
Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.
Elemental mapping and microimaging by x-ray capillary optics.
Hampai, D; Dabagov, S B; Cappuccio, G; Longoni, A; Frizzi, T; Cibin, G; Guglielmotti, V; Sala, M
2008-12-01
Recently, many experiments have highlighted the advantage of using polycapillary optics for x-ray fluorescence studies. We have developed a special confocal scheme for micro x-ray fluorescence measurements that enables us to obtain not only elemental mapping of the sample but also simultaneously its own x-ray imaging. We have designed the prototype of a compact x-ray spectrometer characterized by a spatial resolution of less than 100 microm for fluorescence and less than 10 microm for imaging. A couple of polycapillary lenses in a confocal configuration together with a silicon drift detector allow elemental studies of extended samples (approximately 3 mm) to be performed, while a CCD camera makes it possible to record an image of the same samples with 6 microm spatial resolution, which is limited only by the pixel size of the camera. By inserting a compound refractive lens between the sample and the CCD camera, we hope to develop an x-ray microscope for more enlarged images of the samples under test.
High-speed imaging using 3CCD camera and multi-color LED flashes
NASA Astrophysics Data System (ADS)
Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis
2017-11-01
This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.
NASA Astrophysics Data System (ADS)
Mikhalev, Aleksandr; Podlesny, Stepan; Stoeva, Penka
2016-09-01
To study dynamics of the upper atmosphere, we consider results of the night sky photometry, using a color CCD camera and taking into account the night airglow and features of its spectral composition. We use night airglow observations for 2010-2015, which have been obtained at the ISTP SB RAS Geophysical Observatory (52° N, 103° E) by the camera with KODAK KAI-11002 CCD sensor. We estimate the average brightness of the night sky in R, G, B channels of the color camera for eastern Siberia with typical values ranging from ~0.008 to 0.01 erg*cm-2*s-1. Besides, we determine seasonal variations in the night sky luminosities in R, G, B channels of the color camera. In these channels, luminosities decrease in spring, increase in autumn, and have a pronounced summer maximum, which can be explained by scattered light and is associated with the location of the Geophysical Observatory. We consider geophysical phenomena with their optical effects in R, G, B channels of the color camera. For some geophysical phenomena (geomagnetic storms, sudden stratospheric warmings), we demonstrate the possibility of the quantitative relationship between enhanced signals in R and G channels and increases in intensities of discrete 557.7 and 630 nm emissions, which are predominant in the airglow spectrum.
3D digital image correlation using a single 3CCD colour camera and dichroic filter
NASA Astrophysics Data System (ADS)
Zhong, F. Q.; Shao, X. X.; Quan, C.
2018-04-01
In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.
Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Haugh and M. B. Schneider
2008-10-31
The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
NASA Astrophysics Data System (ADS)
Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.
2008-02-01
We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.
MOSES: a modular sensor electronics system for space science and commercial applications
NASA Astrophysics Data System (ADS)
Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard
1999-10-01
The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi
A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energymore » electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.« less
Software and hardware complex for observation of star occultations by asteroids
NASA Astrophysics Data System (ADS)
Karbovsky, V.; Kleshchonok, V.; Buromsky, M.
2017-12-01
The preparation to the program for observation of star occultations by asteroids on the AZT-2 telescope was started in 2016. A new method for registration of occultation with a CCD camera in the synchronous transfer mode was proposed and developed. The special program was written to control the CCD camera and record images during such observations. The speed of image transfer can vary within wide limits, which makes it possible to carry out observations in a wide range of stellar magnitudes. The telescope AZT-2 is used, which has the largest mirror diameter in Kiev (D = 0.7 m. F = 10.5 m). A 3-fold optical reducer was produced, which providing a field of view with a CCD camera Apogee Alta U47 10 arcminutes and the equivalent focal length of the telescope 3.2 meters. The results of test observations are presented. The program is implemented jointly by the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. Regular observations of star occultation by asteroids are planned with the help of this complex. % Z https://occultations.org Kleshchonok,V.V.,Buromsky,M. I. 2005, Kinematics and Physics of Celestial Bodies, 21, 5, 405 Kleshchonok, V.V., Buromskii, N. I., Khat’ko,I.V.2008, Kinematics and Physics of Celestial Bodies, 24, 2, 114
Research on automatic Hartmann test of membrane mirror
NASA Astrophysics Data System (ADS)
Zhong, Xing; Jin, Guang; Liu, Chunyu; Zhang, Peng
2010-10-01
Electrostatic membrane mirror is ultra-lightweight and easy to acquire a large diameter comparing with traditional optical elements, so its development and usage is the trend of future large mirrors. In order to research the control method of the static stretching membrane mirror, the surface configuration must be tested. However, membrane mirror's shape is always changed by variable voltages on the electrodes, and the optical properties of membrane materials using in our experiment are poor, so it is difficult to test membrane mirror by interferometer and null compensator method. To solve this problem, an automatic optical test procedure for membrane mirror is designed based on Hartmann screen method. The optical path includes point light source, CCD camera, splitter and diffuse transmittance screen. The spots' positions on the diffuse transmittance screen are pictured by CCD camera connected with computer, and image segmentation and centroid solving is auto processed. The CCD camera's lens distortion is measured, and fixing coefficients are given to eliminate the spots' positions recording error caused by lens distortion. To process the low sampling Hartmann test results, Zernike polynomial fitting method is applied to smooth the wave front. So low frequency error of the membrane mirror can be measured then. Errors affecting the test accuracy are also analyzed in this paper. The method proposed in this paper provides a reference for surface shape detection in membrane mirror research.
Measurement of an Evaporating Drop on a Reflective Substrate
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Nengli
2004-01-01
A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.
High-Voltage Clock Driver for Photon-Counting CCD Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert
2013-01-01
A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.
New low noise CCD cameras for Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.
2006-10-01
Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.
SHOK—The First Russian Wide-Field Optical Camera in Space
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.
2018-02-01
Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.
A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer
NASA Technical Reports Server (NTRS)
Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.
1993-01-01
A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.
Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.
2016-10-09
We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
NASA Astrophysics Data System (ADS)
Dani, Tiar; Rachman, Abdul; Priyatikanto, Rhorom; Religia, Bahar
2015-09-01
An increasing number of space junk in orbit has raised their chances to fall in Indonesian region. So far, three debris of rocket bodies have been found in Bengkulu, Gorontalo and Lampung. LAPAN has successfully developed software for monitoring space debris that passes over Indonesia with an altitude below 200 km. To support the software-based system, the hardware-based system has been developed based on optical instruments. The system has been under development in early 2014 which consist of two systems: the telescopic system and wide field system. The telescopic system uses CCD cameras and a reflecting telescope with relatively high sensitivity. Wide field system uses DSLR cameras, binoculars and a combination of CCD with DSLR Lens. Methods and preliminary results of the systems will be presented.
Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka
2018-06-01
The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.
X-ray diagnostic development for measurement of electron deposition to the SABRE anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, J.S.; Derzon, M.S.; Cuneo, M.E.
Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conder, A.; Mummolo, F. J.
The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.
Opto-mechanical design of the G-CLEF flexure control camera system
NASA Astrophysics Data System (ADS)
Oh, Jae Sok; Park, Chan; Kim, Jihun; Kim, Kang-Min; Chun, Moo-Young; Yu, Young Sam; Lee, Sungho; Nah, Jakyoung; Park, Sung-Joon; Szentgyorgyi, Andrew; McMuldroch, Stuart; Norton, Timothy; Podgorski, William; Evans, Ian; Mueller, Mark; Uomoto, Alan; Crane, Jeffrey; Hare, Tyson
2016-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.
1990-07-01
electrohtic dissociation of the electrode mate- pedo applications seem to be still somewhat rial, and to provide a good gas evolution wlhich out of the...rod cathode. A unique feature of this preliminary experiment was the use of a prototype gated, intensified video camera. This camera is based on a...microprocessor controlled microchannel plate intensifier tube. The intensifier tube image is focused on a standard CCD video camera so that the object
Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2017-02-01
A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.
A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA
NASA Astrophysics Data System (ADS)
Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred
2016-08-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.
OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis
NASA Technical Reports Server (NTRS)
Collins, Nick
2009-01-01
The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. A preliminary estimate of the decay timescale for one detector is that a drop of 0.1-0.2% occurs over a ten day period, indicating that relatively infrequent cal lamp exposures can mitigate the behavior to extremely low levels.
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
A comparison of imaging methods for use in an array biosensor
NASA Technical Reports Server (NTRS)
Golden, Joel P.; Ligler, Frances S.
2002-01-01
An array biosensor has been developed which uses an actively-cooled, charge-coupled device (CCD) imager. In an effort to save money and space, a complementary metal-oxide semiconductor (CMOS) camera and photodiode were tested as replacements for the cooled CCD imager. Different concentrations of CY5 fluorescent dye in glycerol were imaged using the three different detection systems with the same imaging optics. Signal discrimination above noise was compared for each of the three systems.
Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji
2016-04-01
Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.
Automatic vision system for analysis of microscopic behavior of flow and transport in porous media
NASA Astrophysics Data System (ADS)
Rashidi, Mehdi; Dehmeshki, Jamshid; Dickenson, Eric; Daemi, M. Farhang
1997-10-01
This paper describes the development of a novel automated and efficient vision system to obtain velocity and concentration measurement within a porous medium. An aqueous fluid lace with a fluorescent dye to microspheres flows through a transparent, refractive-index-matched column packed with transparent crystals. For illumination purposes, a planar sheet of laser passes through the column as a CCD camera records all the laser illuminated planes. Detailed microscopic velocity and concentration fields have been computed within a 3D volume of the column. For measuring velocities, while the aqueous fluid, laced with fluorescent microspheres, flows through the transparent medium, a CCD camera records the motions of the fluorescing particles by a video cassette recorder. The recorded images are acquired automatically frame by frame and transferred to the computer for processing, by using a frame grabber an written relevant algorithms through an RS-232 interface. Since the grabbed image is poor in this stage, some preprocessings are used to enhance particles within images. Finally, these enhanced particles are monitored to calculate velocity vectors in the plane of the beam. For concentration measurements, while the aqueous fluid, laced with a fluorescent organic dye, flows through the transparent medium, a CCD camera sweeps back and forth across the column and records concentration slices on the planes illuminated by the laser beam traveling simultaneously with the camera. Subsequently, these recorded images are transferred to the computer for processing in similar fashion to the velocity measurement. In order to have a fully automatic vision system, several detailed image processing techniques are developed to match exact images that have different intensities values but the same topological characteristics. This results in normalized interstitial chemical concentrations as a function of time within the porous column.
Dynamic light scattering microscopy
NASA Astrophysics Data System (ADS)
Dzakpasu, Rhonda
An optical microscope technique, dynamic light scattering microscopy (DLSM) that images dynamically scattered light fluctuation decay rates is introduced. Using physical optics we show theoretically that within the optical resolution of the microscope, relative motions between scattering centers are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The time scale for these intensity fluctuations is predicted. The spatial coherence distance defining the average distance between constructive and destructive interference in the image plane is calculated and compared with the pixel size. We experimentally tested DLSM on polystyrene latex nanospheres and living macrophage cells. In order to record these rapid fluctuations, on a slow progressive scan CCD camera, we used a thin laser line of illumination on the sample such that only a single column of pixels in the CCD camera is illuminated. This allowed the use of the rate of the column-by-column readout transfer process as the acquisition rate of the camera. This manipulation increased the data acquisition rate by at least an order of magnitude in comparison to conventional CCD cameras rates defined by frames/s. Analysis of the observed fluctuations provides information regarding the rates of motion of the scattering centers. These rates, acquired from each position on the sample are used to create a spatial map of the fluctuation decay rates. Our experiments show that with this technique, we are able to achieve a good signal-to-noise ratio and can monitor fast intensity fluctuations, on the order of milliseconds. DLSM appears to provide dynamic information about fast motions within cells at a sub-optical resolution scale and provides a new kind of spatial contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
Back-illuminate fiber system research for multi-object fiber spectroscopic telescope
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Liu, Zhigang; Hu, Hongzhuan; Wang, Jianping; Zhai, Chao; Chu, Jiaru
2016-07-01
In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. A set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare with the integrating sphere, meet the conditions of fiber position measurement.Using parallel controlled fiber positioner as the spectroscopic receiver is an efficiency observation system for spectra survey, has been used in LAMOST recently, and will be proposed in CFHT and rebuilt telescope Mayall. In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. After many years on these research, the back illuminated fiber measurement was the best method to acquire the precision position of fibers. In LAMOST, a set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement and was controlled by high-level observation system which could shut down during the telescope observation. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare the integrating sphere, meet the conditions of fiber position measurement.
Evaluation of COTS Rad Detection Apps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Eric
2014-02-01
Mobile applications are currently under distribution to smart phones utilizing the built-in charge coupled-device (CCD) camera as a radiation detector. The CCD detector has a very low but measurable gamma interaction cross section so the mechanism is feasible, especially for higher dose rate environments. Given that in a large release of radioactive material these ‘crowd sourced’ measurements will be put forth for consideration, a testing and evaluation of the accuracy and uncertainty of the Apps is a critical endeavor. Not only is the accuracy of the reported measurement of concern to the immediate user’s safety, a quantitative uncertainty is requiredmore » for a government response such as the Federal Radiological Monitoring and Assessment Center (FRMAC) to accept the values for consideration in the determination of regions exceeding protective action guidelines. Already, prompted by the Fukushima nuclear material releases, several repositories of this crowd-sourced data have been created (http://japan.failedrobot.com, http://www.stubbytour.com/nuc/index_en.asp, and http://www.rdtn.org) although the question remains as to the reliability of measurements incorporated into these repositories. In cases of conflict between the real-time published crowd-sourced data and governmental protective actions prepared literature should be on-hand documenting why the difference, if any, exists. Four applications for iOS devices were obtained along with hardware to benchmark their performance. Gamma/X-Ray Detector by Stephan Hotto, Geiger Camera by Senscare, and RadioactivityCounter App by Hotray LTD are all the applications available for distribution within the US that utilize the CCD camera sensor for detection of radiation levels. The CellRad app under development by Idaho National Laboratory for the Android platform was evaluated. In addition, iRad Geiger with the associated hardware accessory was also benchmarked. Radiation fields were generated in a Cs-137 JL Shepherd Model 89 shielded calibration range. The accuracy of the exposure rate within the box calibrator is +/- 5% of the system settings and NIST traceable. This is the same calibration unit utilized for calibration of US DOE exposure rate meters. Measurements were performed from 0.2 to 40,000 mR/hr. Included in the following sections are discussions on each of the evaluated applications and their performance in reporting radiation field measurements. Unfortunately the applications do not provide a readily identifiable quality of the measurement in order to produce error bars or even out of range conditions. In general all the CCD based applications had issues detecting consistent measurements in radiation fields less than 5 mR/hr. This is most likely attributable to the electronic noise level on the CCD’s becoming comparable to the signal level due to the ionizing radiation photons.« less
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres
NASA Technical Reports Server (NTRS)
Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.
1992-01-01
On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.
The Global Coronal Structure Investigation
NASA Technical Reports Server (NTRS)
Golub, Leon
1998-01-01
During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).
Camera for detection of cosmic rays of energy more than 10 Eev on the ISS orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garipov, G. K.; Khrenov, B. A.; Panasyuk, M. I.
1998-06-15
Concept of the EHE CR observation from the ISS orbit is discussed. A design of the camera at the Russian segment of the ISS comprising a large area (60 m{sup 2}) parabolic mirror with a photo multiplier pixel retina in its focal plane is described.
Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X.; Nornberg, M. D., E-mail: mdnornberg@wisc.edu; Den Hartog, D. J.
2016-11-15
A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened H{sub β} emission and the spectrum of Doppler-shifted H{sub α} emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietri, G.
1977-02-01
The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.
NASA Technical Reports Server (NTRS)
Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.
1992-01-01
A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.
Quasi-Speckle Measurements of Close Double Stars With a CCD Camera
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2017-01-01
CCD measurements of visual double stars have been an active area of amateur observing for several years now. However, most CCD measurements rely on “lucky imaging” (selecting a very small percentage of the best frames of a larger frame set so as to get the best “frozen” atmosphere for the image), a technique that has limitations with regards to how close the stars can be and still be cleanly resolved in the lucky image. In this paper, the author reports how using deconvolution stars in the analysis of close double stars can greatly enhance the quality of the autocorellogram, leading to a more precise solution using speckle reduction software rather than lucky imaging.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...
2017-09-26
Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
NASA Astrophysics Data System (ADS)
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-01
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-29
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
NASA Astrophysics Data System (ADS)
Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.
2016-08-01
SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI
NASA Technical Reports Server (NTRS)
Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick
2014-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Viles, C L; Sieracki, M E
1992-01-01
Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183
Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer
NASA Technical Reports Server (NTRS)
Wattson, R. B.; Rappaport, S.
1977-01-01
An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.
Gallegos, Cenobio H.; Ogle, James W.; Stokes, John L.
1992-01-01
A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.
Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua
2017-03-01
Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.
CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models
NASA Astrophysics Data System (ADS)
Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli
2011-02-01
Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.
A CCD Spectrometer for One Dollar
NASA Astrophysics Data System (ADS)
Beaver, J.; Robert, D.
2011-09-01
We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.
Development, characterization, and modeling of a tunable filter camera
NASA Astrophysics Data System (ADS)
Sartor, Mark Alan
1999-10-01
This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide background for the design requirements for the TFC development, the mission and principles of operation behind the multi-channel system will be reviewed. Given the combination of the flexibility, simplicity, and sensitivity, the TFC and its multiple-channel extension can play a significant role in the next generation of remote-sensing instruments.
Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application
2007-08-12
deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution
Development of a CCD based solar speckle imaging system
NASA Astrophysics Data System (ADS)
Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.
1986-02-01
A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.
NASA Technical Reports Server (NTRS)
Buratti, B. J.; Dunbar, R. S.; Tedesco, E. F.; Gibson, J.; Marcialis, R. L.; Wong, F.; Bennett, S.; Dobrovolskis, A.
1995-01-01
We present observations of 15 Pluto-Charon mutual events which were obtained with the 60 in. telescope at Palomar Mountain Observatory. A CCD camera and Johnson V filter were used for the observations, except for one event that was observed with a Johnson B filter, and another event that was observed with a Gunn R filter. We observed two events in their entirety, and three pairs of complementary mutual occultation-transit events.
NASA Astrophysics Data System (ADS)
Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.
2016-06-01
We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).
1984-02-01
RFWAL-TR-83-4108 UNCLASSIFIED F33 5-8i--50 5 S F/ 2/12 NL Lmmhhhhml 1.2 11. . .4 ’sqo ItI -.9 .9 D’ ’-3.,= 1111 III1 ,1 MICROCOP REOUTO TES3 AR...is compatible with conventional charge-coupled device (CCD) signal processing, dopant and impurity uniformity is inherently superior to compound
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
The kinelite project. A new powerful motion analyser for spacelab and space station
NASA Astrophysics Data System (ADS)
Venet, M.; Pinard, H.; McIntyre, J.; Berthoz, A.; Lacquaniti, F.
The goal of the Kinelite Project is to develop a space qualified motion analysis system to be used in space by the scientific community, mainly to support neuroscience protocols. The measurement principle of the Kinelite is to determine, by triangulation mean, the 3D position of small, lightweight, reflective markers positionned at the different points of interest. The scene is illuminated by Infra Red flashes and the reflected light is acquired by up to 8 precalibrated and synchronized CCD cameras. The main characteristics of the system are: - Camera field of view: 45 °, - Number of cameras: 2 to 8, - Acquisition frequency: 25, 50, 100 or 200 Hz, - CCD format: 256 × 256, - Number of markers: up to 64, - 3D accuracy: 2 mm, - Main dimensions: 45 cm × 45 cm × 30 cm, - Mass: 23 kg, - Power consumption: less than 200 W. The Kinelite will first fly aboard the NASA Spacelab; it will be used, during the NEUROLAB mission (4/98), to support the "Frames of References and Internal Models" (Principal Investigator: Pr. A.BERTHOZ, Co Investigators: J. Mc INTYRE, F. LACQUANITI).
Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
Barnett, Patrick D; Angel, S Michael
2017-05-01
A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.
New technology and techniques for x-ray mirror calibration at PANTER
NASA Astrophysics Data System (ADS)
Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin
2008-07-01
The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.
2015-04-01
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.
Inverted-V events simultaneously observed with the Freja satellite and from the ground
NASA Astrophysics Data System (ADS)
Haerendel, G.; Frey, H. U.; Bauer, O. H.; Rieger, E.; Clemmons, J.; Boehm, M. H.; Wallis, D. D.; Lühr, H.
The paper reports data received from the Freja satellite during two passes over broad auroral arc systems or inverted-V events above Gillam/Manitoba when special wide-angle CCD cameras were operated at this location in addition to the CANOPUS network. Detailed comparisons of the visible structures with modulations of the primary electron fluxes are performed. Motions of this fine structures are interpreted in terms of high-altitude electric fields shielded from the lower ionosphere. Simultaneous readings of current density, accelerating voltage and energy flux, the latter determined both from particle and auroral brightness measurements, are found to be internally consistent. We calculate from these data the effective resistance encountered by the electric currents and find agreement with the kinetic theory of the mirror impedance, if we allow for substantial variations in density and energy of the source electrons in the magnetosphere.
Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J.; Schneider, M. B.
2008-10-15
The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
A new method to calibrate the absolute sensitivity of a soft X-ray streak camera
NASA Astrophysics Data System (ADS)
Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali
2016-12-01
In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.
Precise Determination of the Orientation of the Solar Image
NASA Astrophysics Data System (ADS)
Győri, L.
2010-12-01
Accurate heliographic coordinates of objects on the Sun have to be known in several fields of solar physics. One of the factors that affect the accuracy of the measurements of the heliographic coordinates is the accuracy of the orientation of a solar image. In this paper the well-known drift method for determining the orientation of the solar image is applied to data taken with a solar telescope equipped with a CCD camera. The factors that influence the accuracy of the method are systematically discussed, and the necessary corrections are determined. These factors are as follows: the trajectory of the center of the solar disk on the CCD with the telescope drive turned off, the astronomical refraction, the change of the declination of the Sun, and the optical distortion of the telescope. The method can be used on any solar telescope that is equipped with a CCD camera and is capable of taking solar full-disk images. As an example to illustrate the method and its application, the orientation of solar images taken with the Gyula heliograph is determined. As a byproduct, a new method to determine the optical distortion of a solar telescope is proposed.
SONTRAC: A High Efficiency Solar Neutron Telescope
NASA Astrophysics Data System (ADS)
Wunderer, C. B.; Macri, J.; McConnell, M. L.; Ryan, J. M.; Baltgalvis, J.; Holslin, D.; Polichar, A.; Jenkins, T.
1997-05-01
Solar flare neutron emission between 20 and 100 MeV comes from a portion of the energetic proton spectrum that is poorly sampled by both nuclear-line and pion- decay gamma rays. SONTRAC is a new generation solar neutron telescope/spectrometer consisting of densely packed, alternating orthogonal layers of scintillating plastic fibers. The fibers in both dimensions are viewed by image intensifiers and CCD cameras. Incident neutrons scatter off hydrogen in the plastic scintillator. The resulting ionizing proton tracks can be reconstructed in three dimensions using the two planar CCD track images. Two neutron-proton scatters provide sufficient information to reconstruct the energy and direction of the incident neutron. Photomultiplier tubes view the other sides of the fiber scintillator array. The signals from the PMTs are used to give an additional measure of the proton energies and to provide a trigger for the CCD cameras. Recent technological advances have allowed us to construct an affordable working prototype instrument that consists of all the essential technical elements mentioned above. We will present images of tracks produced by minimum ionizing muons and energetic neutrons. We will also present efficiency estimates for SONTRAC's ability to detect and measure gamma rays above 10 MeV.
World's fastest and most sensitive astronomical camera
NASA Astrophysics Data System (ADS)
2009-06-01
The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these corrections to be done at an even higher rate, more than one thousand times a second, and this is where OCam is essential. "The quality of the adaptive optics correction strongly depends on the speed of the camera and on its sensitivity," says Philippe Feautrier from the LAOG, France, who coordinated the whole project. "But these are a priori contradictory requirements, as in general the faster a camera is, the less sensitive it is." This is why cameras normally used for very high frame-rate movies require extremely powerful illumination, which is of course not an option for astronomical cameras. OCam and its CCD220 detector, developed by the British manufacturer e2v technologies, solve this dilemma, by being not only the fastest available, but also very sensitive, making a significant jump in performance for such cameras. Because of imperfect operation of any physical electronic devices, a CCD camera suffers from so-called readout noise. OCam has a readout noise ten times smaller than the detectors currently used on the VLT, making it much more sensitive and able to take pictures of the faintest of sources. "Thanks to this technology, all the new generation instruments of ESO's Very Large Telescope will be able to produce the best possible images, with an unequalled sharpness," declares Jean-Luc Gach, from the Laboratoire d'Astrophysique de Marseille, France, who led the team that built the camera. "Plans are now underway to develop the adaptive optics detectors required for ESO's planned 42-metre European Extremely Large Telescope, together with our research partners and the industry," says Hubin. Using sensitive detectors developed in the UK, with a control system developed in France, with German and Spanish participation, OCam is truly an outcome of a European collaboration that will be widely used and commercially produced. More information The three French laboratories involved are the Laboratoire d'Astrophysique de Marseille (LAM/INSU/CNRS, Université de Provence; Observatoire Astronomique de Marseille Provence), the Laboratoire d'Astrophysique de Grenoble (LAOG/INSU/CNRS, Université Joseph Fourier; Observatoire des Sciences de l'Univers de Grenoble), and the Observatoire de Haute Provence (OHP/INSU/CNRS; Observatoire Astronomique de Marseille Provence). OCam and the CCD220 are the result of five years work, financed by the European commission, ESO and CNRS-INSU, within the OPTICON project of the 6th Research and Development Framework Programme of the European Union. The development of the CCD220, supervised by ESO, was undertaken by the British company e2v technologies, one of the world leaders in the manufacture of scientific detectors. The corresponding OPTICON activity was led by the Laboratoire d'Astrophysique de Grenoble, France. The OCam camera was built by a team of French engineers from the Laboratoire d'Astrophysique de Marseille, the Laboratoire d'Astrophysique de Grenoble and the Observatoire de Haute Provence. In order to secure the continuation of this successful project a new OPTICON project started in June 2009 as part of the 7th Research and Development Framework Programme of the European Union with the same partners, with the aim of developing a detector and camera with even more powerful functionality for use with an artificial laser star. This development is necessary to ensure the image quality of the future 42-metre European Extremely Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Non-cross talk multi-channel photomultiplier using guided electron multipliers
Gomez, J.; Majewski, S.; Weisenberger, A.G.
1995-09-26
An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.
Non cross talk multi-channel photomultiplier using guided electron multipliers
Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.
1995-01-01
An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.
2004-04-15
Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.
Comby, G.
1996-10-01
The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)
Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav
2014-12-04
A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.
Improved Space Object Orbit Determination Using CMOS Detectors
NASA Astrophysics Data System (ADS)
Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.
2014-09-01
CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.
A protection system for the JET ITER-like wall based on imaging diagnostics.
Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D
2012-10-01
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.
A protection system for the JET ITER-like wall based on imaging diagnosticsa)
NASA Astrophysics Data System (ADS)
Arnoux, G.; Devaux, S.; Alves, D.; Balboa, I.; Balorin, C.; Balshaw, N.; Beldishevski, M.; Carvalho, P.; Clever, M.; Cramp, S.; de Pablos, J.-L.; de la Cal, E.; Falie, D.; Garcia-Sanchez, P.; Felton, R.; Gervaise, V.; Goodyear, A.; Horton, A.; Jachmich, S.; Huber, A.; Jouve, M.; Kinna, D.; Kruezi, U.; Manzanares, A.; Martin, V.; McCullen, P.; Moncada, V.; Obrejan, K.; Patel, K.; Lomas, P. J.; Neto, A.; Rimini, F.; Ruset, C.; Schweer, B.; Sergienko, G.; Sieglin, B.; Soleto, A.; Stamp, M.; Stephen, A.; Thomas, P. D.; Valcárcel, D. F.; Williams, J.; Wilson, J.; Zastrow, K.-D.; JET-EFDA Contributors
2012-10-01
The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.
Miniaturized High-Speed Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)
2015-01-01
A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.
Single Particle Damage Events in Candidate Star Camera Sensors
NASA Technical Reports Server (NTRS)
Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott
2005-01-01
Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of temperature while the CCD was warmed to a sequence of temperatures up to a maximum of +30C. The device was then cooled back down to -83 and re-measured. Hot pixel populations were tracked during the warm-up and cool-down. Hot pixel annealing began below 40C and the anneal process was largely completed before the detector reached +3OC. There was no apparent sharp temperature dependence in the annealing. Although a large fraction of the hot pixels fell below the threshold to be counted as a hot pixel, they nevertheless remained warmer than the remaining population. The details of the mechanism for the formation and annealing of hot pixels is not presently understood, but it appears likely that hot pixels are associated with displacement damage occurring in high electric field regions.
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
Improved Scanners for Microscopic Hyperspectral Imaging
NASA Technical Reports Server (NTRS)
Mao, Chengye
2009-01-01
Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.
Modular Scanning Confocal Microscope with Digital Image Processing.
Ye, Xianjun; McCluskey, Matthew D
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.
VizieR Online Data Catalog: BVIc light curves of 57 Cepheids (Berdnikov+,
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.
2014-04-01
In 2008-2013, we obtained 11333 CCD BV Ic frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South AfricanAstronomicalObservatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Catolica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0.05mag in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids. (2 data files).
Thomas, R.E.
1959-08-25
An electronic multiplier circuit is described in which an output voltage having an amplitude proportional to the product or quotient of the input signals is accomplished in a novel manner which facilitates simplicity of circuit construction and a high degree of accuracy in accomplishing the multiplying and dividing function. The circuit broadly comprises a multiplier tube in which the plate current is proportional to the voltage applied to a first control grid multiplied by the difference between voltage applied to a second control grid and the voltage applied to the first control grid. Means are provided to apply a first signal to be multiplied to the first control grid together with means for applying the sum of the first signal to be multiplied and a second signal to be multiplied to the second control grid whereby the plate current of the multiplier tube is proportional to the product of the first and second signals to be multiplied.
X-ray imaging using digital cameras
NASA Astrophysics Data System (ADS)
Winch, Nicola M.; Edgar, Andrew
2012-03-01
The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.
Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A
2014-05-01
An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baksht, E Kh; Burachenko, A G; Lomaev, M I
2015-04-30
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of themore » plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)« less
15 CFR 740.19 - Consumer Communications Devices (CCD).
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (11) Memory devices classified under ECCN 5A992 or designated EAR99; (12) “Information security... 5D992 or designated EAR99; (13) Digital cameras and memory cards classified under ECCN 5A992 or...
A CCD search for geosynchronous debris
NASA Technical Reports Server (NTRS)
Gehrels, Tom; Vilas, Faith
1986-01-01
Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.
Method to implement the CCD timing generator based on FPGA
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin
2010-07-01
With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.
Measurement system for 3-D foot coordinates and parameters
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi
2008-12-01
The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.
VizieR Online Data Catalog: AQ Boo VRI differential light curves (Wang+, 2016)
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Pi, Q.; Han, X. L.; Zhang, X.; Lu, H.; Wang, D.; Li, T.
2016-11-01
On March 22 and April 19 in 2014, we observed AQ Boo with the 60cm telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). The CCD camera on this telescope has a resolution of 1024 x 1024 pixels and its corresponding field of view is 17'x17' (Yang, 2013NewA...25..109Y). The other three days of data were obtained using the 1-m telescope at Yunnan Observatory of Chinese Academy of Sciences, on January 20, 21 and February 28 in 2015. The CCD camera on this telescope has a resolution of 2048x2048 pixels and its corresponding field of view is 7.3'x7.3'. Bessel VRI filters were used. The exposure times are 100-170s, 50-100s and 50-80s in the V, R, I bands, respectively. (1 data file).
NASA Astrophysics Data System (ADS)
Blain, Pascal; Michel, Fabrice; Piron, Pierre; Renotte, Yvon; Habraken, Serge
2013-08-01
Noncontact optical measurement methods are essential tools in many industrial and research domains. A family of new noncontact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow one to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a charge-coupled device (CCD) camera. This optical measurement system is called a shearography interferometer and allows one to measure microdisplacements between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young's interference patterns with this interferometer, and using a CCD camera, it is possible to build a three-dimensional structured light profilometer.
Pi of the Sky full system and the new telescope
NASA Astrophysics Data System (ADS)
Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; Majczyna, A.; Malek, K.; Nawrocki, K.; Obara, L.; Opiela, R.; Piotrowski, L. W.; Siudek, M.; Sokolowski, M.; Wawrzaszek, R.; Wrochna, G.; Zaremba, M.; Żarnecki, A. F.
2014-12-01
The Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12(m}-13({m)) and with time resolution of the order of 1 - 10 seconds. The system design and observation strategy were successfully tested with a prototype detector operational at Las Campanas Observatory, Chile from 2004-2009 and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed at the INTA El Arenosillo Test Centre in Spain. In July 2013 three more units (12 CCD cameras) were commissioned and installed, together with the first one, on a new platform in INTA, extending sky coverage to about 6000 square degrees.
Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera
NASA Astrophysics Data System (ADS)
Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji
1999-10-01
A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.
Development of Next Generation Lifetime PSP Imaging Systems
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Jordan, Jeffrey D.; Leighty, Bradley D.; Ingram, JoAnne L.; Oglesby, Donald M.
2002-01-01
This paper describes a lifetime PSP system that has recently been developed using pulsed light-emitting diode (LED) lamps and a new interline transfer CCD camera technology. This system alleviates noise sources associated with lifetime PSP systems that use either flash-lamp or laser excitation sources and intensified CCD cameras for detection. Calibration curves have been acquired for a variety of PSP formulations using this system, and a validation test was recently completed in the Subsonic Aerodynamic Research Laboratory (SARL) at Wright-Patterson Air Force Base (WPAFB). In this test, global surface pressure distributions were recovered using both a standard intensity-based method and the new lifetime system. Results from the lifetime system agree both qualitatively and quantitatively with those measured using the intensity-based method. Finally, an advanced lifetime imaging technique capable of measuring temperature and pressure simultaneously is introduced and initial results are presented.
On the Temporal Evolution of Red Sprites, Runaway Theory Versus Data
NASA Technical Reports Server (NTRS)
Yukhimuk, V.; Roussel-Dupre, R. A.; Symbalisty, E. M. D.
1999-01-01
The results of numerical simulations of red sprite discharges, namely the temporal evolutions of optical emissions, are presented and compared with observations. The simulations are done using the recently recalculated runaway avalanche rates. The temporal evolution of these simulations is in good agreement with ground-based photometer and CCD TV camera observations of red sprites. Our model naturally explains the "hairline" of red sprites as a boundary between the region where the intensity of optical emissions associated with runaway breakdown has a maximum and the region where the intensity of optical emissions caused by conventional breakdown and ambient electron heating has a maximum. We also present for the first time simulations of red sprites with a daytime conductivity profile.
On the development of new SPMN diurnal video systems for daylight fireball monitoring
NASA Astrophysics Data System (ADS)
Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.
2008-09-01
Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM, University of Huelva), in the environment of Doñana Natural Park (Huelva province). In this way, both stations, which are separated by a distance of 75 km, will work as a double video station system in order to provide trajectory and orbit information of mayor bolides and, thus, increase the chance of meteorite recovery in the Iberian Peninsula. The new diurnal SPMN video stations are endowed with different models of Mintron cameras (Mintron Enterprise Co., LTD). These are high-sensitivity devices that employ a colour 1/2" Sony interline transfer CCD image sensor. Aspherical lenses are attached to the video cameras in order to maximize image quality. However, the use of fast lenses is not a priority here: while most of our nocturnal cameras use f0.8 or f1.0 lenses in order to detect meteors as faint as magnitude +3, diurnal systems employ in most cases f1.4 to f2.0 lenses. Their focal length ranges from 3.8 to 12 mm to cover different atmospheric volumes. The cameras are arranged in such a way that the whole sky is monitored from every observing station. Figure 1. A daylight event recorded from Sevilla on May 26, 2008 at 4h30m05.4 +-0.1s UT. The way our diurnal video cameras work is similar to the operation of our nocturnal systems [1]. Thus, diurnal stations are automatically switched on and off at sunrise and sunset, respectively. The images taken at 25 fps and with a resolution of 720x576 pixels are continuously sent to PC computers through a video capture device. The computers run a software (UFOCapture, by SonotaCo, Japan) that automatically registers meteor trails and stores the corresponding video frames on hard disk. Besides, before the signal from the cameras reaches the computers, a video time inserter that employs a GPS device (KIWI-OSD, by PFD Systems) inserts time information on every video frame. This allows us to measure time in a precise way (about 0.01 sec.) along the whole fireball path. EPSC Abstracts, Vol. 3, EPSC2008-A-00319, 2008 European Planetary Science Congress, Author(s) 2008 However, one of the issues with respect to nocturnal observing stations is the high number of false detections as a consequence of several factors: higher activity of birds and insects, reflection of sunlight on planes and helicopters, etc. Sometimes some of these false events follow a pattern which is very similar to fireball trails, which makes absolutely necessary the use of a second station in order to discriminate between them. Other key issue is related to the passage of the Sun before the field of view of some of the cameras. In fact, special care is necessary with this to avoid any damage to the CCD sensor. Besides, depending on atmospheric conditions (dust or moisture, for instance), the Sun may saturate most of the video frame. To solve this, our automated system determines which camera is pointing towards the Sun at a given moment and disconnects it. As the cameras are endowed with autoiris lenses, its disconnection means that the optics is fully closed and, so, the CCD sensor is protected. This, of course, means that when this happens the atmospheric volume covered by the corresponding camera is not monitored. It must be also taken into account that, in general, operation temperatures are higher for diurnal cameras. This results in higher thermal noise and, so, poses some difficulties to the detection software. To minimize this effect, it is necessary to employ CCD video cameras with proper signal to noise ratio. Refrigeration of the CCD sensor with, for instance, a Peltier system, can also be considered. The astrometric reduction procedure is also somewhat different for daytime events: it requires that reference objects are located within the field of view of every camera in order to calibrate the corresponding images. This is done by allowing every camera to capture distant buildings that, by means of said calibration, would allow us to obtain the equatorial coordinates of the fireball along its path by measuring its corresponding X and Y positions on every video frame. Such calibration can be performed from stars positions measured from nocturnal images taken with the same cameras. Once made, if the cameras are not moved it is possible to estimate the equatorial coordinates of any future fireball event. We don't use any software for automatic astrometry of the images. This crucial step is made via direct measurements of the pixel position as in all our previous work. Then, from these astrometric measurements, our software estimates the atmospheric trajectory and radiant for each fireball ([10] to [13]). During 2007 and 2008 the SPMN has also setup other diurnal stations based on 1/3' progressive-scan CMOS sensors attached to modified wide-field lenses covering a 120x80 degrees FOV. They are placed in Andalusia: El Arenosillo (Huelva), La Mayora (Málaga) and Murtas (Granada). They have also night sensitivity thanks to a infrared cut filter (ICR) which enables the camera to perform well in both high and low light condition in colour as well as provide IR sensitive Black/White video at night. Conclusions First detections of daylight fireballs by CCD video camera are being achieved in the SPMN framework. Future expansion and set up of new observing stations is currently being planned. The future establishment of additional diurnal SPMN stations will allow an increase in the number of daytime fireballs detected. This will also increase our chance of meteorite recovery.
Accurate estimation of camera shot noise in the real-time
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.
2017-10-01
Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the accuracy of the obtained temporal noise values was estimated.
Effect of camera resolution and bandwidth on facial affect recognition.
Cruz, Mario; Cruz, Robyn Flaum; Krupinski, Elizabeth A; Lopez, Ana Maria; McNeeley, Richard M; Weinstein, Ronald S
2004-01-01
This preliminary study explored the effect of camera resolution and bandwidth on facial affect recognition, an important process and clinical variable in mental health service delivery. Sixty medical students and mental health-care professionals were recruited and randomized to four different combinations of commonly used teleconferencing camera resolutions and bandwidths: (1) one chip charged coupling device (CCD) camera, commonly used for VHSgrade taping and in teleconferencing systems costing less than $4,000 with a resolution of 280 lines, and 128 kilobytes per second bandwidth (kbps); (2) VHS and 768 kbps; (3) three-chip CCD camera, commonly used for Betacam (Beta) grade taping and in teleconferencing systems costing more than $4,000 with a resolution of 480 lines, and 128 kbps; and (4) Betacam and 768 kbps. The subjects were asked to identify four facial affects dynamically presented on videotape by an actor and actress presented via a video monitor at 30 frames per second. Two-way analysis of variance (ANOVA) revealed a significant interaction effect for camera resolution and bandwidth (p = 0.02) and a significant main effect for camera resolution (p = 0.006), but no main effect for bandwidth was detected. Post hoc testing of interaction means, using the Tukey Honestly Significant Difference (HSD) test and the critical difference (CD) at the 0.05 alpha level = 1.71, revealed subjects in the VHS/768 kbps (M = 7.133) and VHS/128 kbps (M = 6.533) were significantly better at recognizing the displayed facial affects than those in the Betacam/768 kbps (M = 4.733) or Betacam/128 kbps (M = 6.333) conditions. Camera resolution and bandwidth combinations differ in their capacity to influence facial affect recognition. For service providers, this study's results support the use of VHS cameras with either 768 kbps or 128 kbps bandwidths for facial affect recognition compared to Betacam cameras. The authors argue that the results of this study are a consequence of the VHS camera resolution/bandwidth combinations' ability to improve signal detection (i.e., facial affect recognition) by subjects in comparison to Betacam camera resolution/bandwidth combinations.
Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M
2006-02-01
Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.
Advances in Heavy Ion Beam Probe Technology and Operation on MST
NASA Astrophysics Data System (ADS)
Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.
2003-10-01
A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
1979-12-01
used to reduce costs ). The orbital data from the prototype ion composi- tion telescope will not only be of great scientific interest -pro- viding for...active device whose transfer function may be almost arbitrarily defined, and cost and production trends permit contemplation of networks containing...developing solid-state television camera systems based on CCD imagers. RICA hopes to produce a $500 color camera for consumer use. Fairchild and Texas
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
Replacing a technology - The Large Space Telescope and CCDs
NASA Astrophysics Data System (ADS)
Smith, R. W.; Tatarewicz, J. H.
1985-07-01
The technological improvements, design choices and mission goals which led to the inclusion of CCD detectors in the wide field camera of the Large Space Telescope (LST) to be launched by the STS are recounted. Consideration of CCD detectors began before CCDs had seen wide astronomical applications. During planning for the ST, in the 1960s, photographic methods and a vidicon were considered, and seemed feasible provided that periodic manual maintenance could be performed. The invention of CCDs was first reported in 1970 and by 1973 the CCDs were receiving significant attention as potential detectors instead of a vidicon, which retained its own technological challenges. The CCD format gained new emphasis when success was achieved in developments for planetary-imaging spacecraft. The rapidity of progress in CCD capabilities, coupled with the continued shortcomings of the vidicon, resulted in a finalized choice for a CCD device by 1977. The decision was also prompted by continuing commercial and military interest in CCDs, which was spurring the development of the technology and improving the sensitivities and reliability while lowering the costs.
Final Report, January 1991 - July 1992
NASA Astrophysics Data System (ADS)
Ferrara, Jon
1992-07-01
This report covers final schedules, expenses and billings, monthly reports, testing, and deliveries for this contract. The goal of the detector development program for the Solar and Heliospheric Spacecraft (SOHO) EUV Imaging Telescope (EIT) is an Extreme UltraViolet (EUV) CCD (Change Collecting Device) camera. As a part of the CCD screening effort, the quantum efficiency (QE) of a prototype CCD has been measured in the NRL EUV laboratory over the wavelength range of 256 to 735 Angstroms. A simplified model has been applied to these QE measurements to illustrate the relevant physical processes that determine the performance of the detector. The charge transfer efficiency (CTE) characteristics of the Tektronix 1024 X 1024 CCD being developed for STIS/SOHO space imaging applications have been characterized at different signal levels, operating conditions, and temperatures using a variety of test methods. A number of CCD's have been manufactured using processing techniques developed to improve CTE, and test results on these devices will be used in determining the final chip design. In this paper, we discuss the CTE test methods used and present the results and conclusions of these tests.
First Carlsberg Meridian Telescope (CMT) CCD Catalogue.
NASA Astrophysics Data System (ADS)
Bélizon, F.; Muiños, J. L.; Vallejo, M.; Evans, D. W.; Irwin, M.; Helmer, L.
2003-11-01
The Carlsberg Meridian Telescope (CMT) is a telescope owned by Copenhagen University Observatory (CUO). It was installed in the Spanish observatory of El Roque de los Muchachos on the island of La Palma (Canary Islands) in 1984. It is operated jointly by the CUO, the Institute of Astronomy, Cambridge (IoA) and the Real Instituto y Observatorio de la Armada of Spain (ROA) in the framework of an international agreement. From 1984 to 1998 the instrument was provided with a moving slit micrometer and with its observations a series of 11 catalogues were published, `Carlsberg Meridian Catalogue La Palma (CMC No 1-11)'. Since 1997, the telescope has been controlled remotely via Internet. The three institutions share this remote control in periods of approximately three months. In 1998, the CMT was upgraded by installing as sensor, a commercial Spectrasource CCD camera as a test of the possibility of performing meridian transits observed in drift-scan mode. Once this was shown possible, in 1999, a second model of CCD camera, built in the CUO workshop with a better performance, was installed. The Spectrasource camera was loaned to ROA by CUO and is now installed in the San Fernando Automatic Meridian Circle in San Juan (CMASF). In 1999, the observations were started of a sky survey from -3deg to +30deg in declination. In July 2002, a first release of the survey was published, with the positions of the observed stars in the band between -3deg and +3deg in declination. This oral communication will present this first release of the survey.
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Eliminating Bias In Acousto-Optical Spectrum Analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Lesh, James R.
1992-01-01
Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.
1996-01-01
multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX
New disk nova candidate in M 31
NASA Astrophysics Data System (ADS)
Henze, M.; Pietsch, W.; Burwitz, V.; Rodriguez, J.; Bochinski, J.; Busuttil, R.; Haswell, C. A.; Holmes, S.; Kolb, U.
2012-02-01
We report the discovery of a possible nova in the south-western disk of M 31 on a 5x120s dithered stacked CCD image obtained with the Open University PIRATE Planewave CDK17 0.43m Dall-Kirkham f/6.7 telescope at the Observatorio Astronomico de Mallorca (Costitx, Spain), using an SBIG STX 16803 CCD Camera (with a Kodak 4k x 4k chip with 9 microns sq. pixels) and Baader clear filter, on 2012 Feb 15.803 UT with a R magnitude of 17.5 (accuracy of 0.2 mag).
Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system
NASA Astrophysics Data System (ADS)
Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.
2004-10-01
Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.
New optical nova candidate in the M 31 disk
NASA Astrophysics Data System (ADS)
Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.; Pietsch, W.,
2014-07-01
We report the discovery of a possible nova in the disk of M 31 on two 4x200s stacked R filter CCD images, obtained with the the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq.
Neal, Daniel R.
2000-01-01
A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.
NASA Astrophysics Data System (ADS)
Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan
2008-03-01
A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system matched the clinical results. Digital image measurement of specimen deformation based on CCD cameras and Image J software has good perspective for application in biomechanical research, which has the advantage of simple optical setup, no-contact, high precision, and no special requirement of test environment.
The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
Automated Meteor Detection by All-Sky Digital Camera Systems
NASA Astrophysics Data System (ADS)
Suk, Tomáš; Šimberová, Stanislava
2017-12-01
We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneja, S; Fru, L Che; Desai, V
Purpose: It is now commonplace to handle treatments of hyperthyroidism using iodine-131 as an outpatient procedure due to lower costs and less stringent federal regulations. The Nuclear Regulatory Commission has currently updated release guidelines for these procedures, but there is still a large uncertainty in the dose to the public. Current guidelines to minimize dose to the public require patients to remain isolated after treatment. The purpose of this study was to use a low-cost common device, such as a cell phone, to estimate exposure emitted from a patient to the general public. Methods: Measurements were performed using an Applemore » iPhone 3GS and a Cs-137 irradiator. The charge-coupled device (CCD) camera on the phone was irradiated to exposure rates ranging from 0.1 mR/hr to 100 mR/hr and 30-sec videos were taken during irradiation with the camera lens covered by electrical tape. Interactions were detected as white pixels on a black background in each video. Both single threshold (ST) and colony counting (CC) methods were performed using MATLAB®. Calibration curves were determined by comparing the total pixel intensity output from each method to the known exposure rate. Results: The calibration curve showed a linear relationship above 5 mR/hr for both analysis techniques. The number of events counted per unit exposure rate within the linear region was 19.5 ± 0.7 events/mR and 8.9 ± 0.4 events/mR for the ST and CC methods respectively. Conclusion: Two algorithms were developed and show a linear relationship between photons detected by a CCD camera and low exposure rates, in the range of 5 mR/hr to 100-mR/hr. Future work aims to refine this model by investigating the dose-rate and energy dependencies of the camera response. This algorithm allows for quantitative monitoring of exposure from patients treated with iodine-131 using a simple device outside of the hospital.« less
Head-coupled remote stereoscopic camera system for telepresence applications
NASA Astrophysics Data System (ADS)
Bolas, Mark T.; Fisher, Scott S.
1990-09-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H.S.; Ables, E.; Bionta, R.M.
GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less
NASA Astrophysics Data System (ADS)
Scaduto, L. C. N.; Carvalho, E. G.; Modugno, R. G.; Cartolano, R.; Evangelista, S. H.; Segoria, D.; Santos, A. G.; Stefani, M. A.; Castro Neto, J. C.
2017-11-01
The purpose of this paper is to present the optical system developed for the Wide Field imaging Camera - WFI that will be integrated to the CBERS 3 and 4 satellites (China Brazil Earth resources Satellite). This camera will be used for remote sensing of the Earth and it is aimed to work at an altitude of 778 km. The optical system is designed for four spectral bands covering the range of wavelengths from blue to near infrared and its field of view is +/-28.63°, which covers 866 km, with a ground resolution of 64 m at nadir. WFI has been developed through a consortium formed by Opto Electrônica S. A. and Equatorial Sistemas. In particular, we will present the optical analysis based on the Modulation Transfer Function (MTF) obtained during the Engineering Model phase (EM) and the optical tests performed to evaluate the requirements. Measurements of the optical system MTF have been performed using an interferometer at the wavelength of 632.8nm and global MTF tests (including the CCD and signal processing electronic) have been performed by using a collimator with a slit target. The obtained results showed that the performance of the optical system meets the requirements of project.
Video-based beam position monitoring at CHESS
NASA Astrophysics Data System (ADS)
Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.
2012-10-01
CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.
Activities of JAXA's Innovative Technology Center on Space Debris Observation
NASA Astrophysics Data System (ADS)
Yanagisawa, T.; Kurosaki, H.; Nakajima, A.
The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the first night must pass through the position in the second night. The rough orbit is determined from two nights' data. The test observation showed that this method was able to detect many GEO objects and determined their orbits by three nights' observations. We also joined the campaign observations of IADC(Inter-Agency Space Debris Coordination Committee). By analyzing the observed data with the method that we developed, 88 catalogued and 38 un-catalogued objects were detected. The magnitude of the faintest object detected in this campaign observation was 18.5. The object is un-detectable by human inspection.
Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments
NASA Astrophysics Data System (ADS)
Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete
2002-04-01
New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.
Diffraction-based optical sensor detection system for capture-restricted environments
NASA Astrophysics Data System (ADS)
Khandekar, Rahul M.; Nikulin, Vladimir V.
2008-04-01
The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.
NASA Astrophysics Data System (ADS)
Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.
2017-01-01
Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.
Measurement of vibration using phase only correlation technique
NASA Astrophysics Data System (ADS)
Balachandar, S.; Vipin, K.
2017-08-01
A novel method for the measurement of vibration is proposed and demonstrated. The proposed experiment is based on laser triangulation: consists of line laser, object under test and a high speed camera remotely controlled by a software. Experiment involves launching a line-laser probe beam perpendicular to the axis of the vibrating object. The reflected probe beam is recorded by a high speed camera. The dynamic position of the line laser in camera plane is governed by the magnitude and frequency of the vibrating test-object. Using phase correlation technique the maximum distance travelled by the probe beam in CCD plane is measured in terms of pixels using MATLAB. An actual displacement of the object in mm is measured by calibration. Using displacement data with time, other vibration associated quantities such as acceleration, velocity and frequency are evaluated. The preliminary result of the proposed method is reported for acceleration from 1g to 3g, and from frequency 6Hz to 26Hz. The results are closely matching with its theoretical values. The advantage of the proposed method is that it is a non-destructive method and using phase correlation algorithm subpixel displacement in CCD plane can be measured with high accuracy.
Modular Scanning Confocal Microscope with Digital Image Processing
McCluskey, Matthew D.
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052
Lacroix, Fréderic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A Sam; Beaulieu, Luc
2008-08-01
A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (+/-0.8%) in-field and good accuracy (+/-1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.