Science.gov

Sample records for electron-neutrino scattering neutrino

  1. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, Q2. We also compute the ratio to a muon neutrino cross-section in Q2 from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  2. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  3. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $\\langle E_{\

    SciTech Connect

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, the data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  4. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $$\\langle E_{\

    DOE PAGES

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, the data are found tomore » be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.« less

  5. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  6. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  7. Short-BaseLine Electron Neutrino Disappearance

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2011-08-01

    We analyzed the electron neutrino data of the Gallium radioactive source experiments and the electron antineutrino data of the reactor Bugey and Chooz experiments in terms of neutrino oscillations. We found a hint of a CPT-violating asymmetry of the effective neutrino and antineutrino mixing angles.

  8. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨Eν⟩=3.6 GeV

    NASA Astrophysics Data System (ADS)

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Salazar, G.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zavala, G.; Zegarra, A.; Zhang, D.; Ziemer, B. P.; Minerva Collaboration

    2016-02-01

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  9. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨E_{ν}⟩=3.6  GeV.

    PubMed

    Wolcott, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Salazar, G; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zegarra, A; Zhang, D; Ziemer, B P

    2016-02-26

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{μ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  10. Interaction of electron neutrino with LSD detector

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, O. G.; Semenov, S. V.

    2016-06-01

    The interaction of electron neutrino flux, originating in the rotational collapse mechanism on the first stage of Supernova burst, with the LSD detector components, such as 56Fe (a large amount of this metal is included in as shielding material) and liquid scintillator barNnH2n+2, is being investigated. Both charged and neutral channels of neutrino reaction with 12barN and 56Fe are considered. Experimental data, giving the possibility to extract information for nuclear matrix elements calculation are used. The number of signals, produced in LSD by the neutrino pulse of Supernova 1987A is determined. The obtained results are in good agreement with experimental data.

  11. Reines-Cowan team discovery of the electron neutrino

    NASA Astrophysics Data System (ADS)

    Kruse, Herald W.

    2011-12-01

    Personal perspective and recollections by the author discuss the Reines-Cowan team discovery of the electron neutrino at a Savannah River reactor in 1956. First presented at the Neutrino Santa Fe 2006 Conference.

  12. Observation of electron neutrino appearance in a muon neutrino beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-02-14

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3)  eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L.

  13. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  14. Evidence of electron neutrino appearance in a muon neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-08-01

    The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Δm322|≈2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1σ), and a fit assuming νμ→νe oscillations with sin⁡22θ23=1, δCP=0 and |Δm322|=2.4×10-3eV2 yields sin⁡22θ13=0.088-0.039+0.049(stat+syst).

  15. Electron-neutrino survival probability from solar-neutrino data

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.; Lissia, M.

    2001-11-01

    With SNO data [SNO Collaboration, nucl-ex/0106015] on electron-neutrino flux from the sun, it is possible to derive the νe survival probability Pee(E) from existing experimental data of Super-Kamiokande, gallium experiments and Homestake. The combined data of SNO and Super-Kamiokande provide boron νe flux and the total flux of all active boron neutrinos, giving thus Pee(E) for boron neutrinos. The Homestake detector, after subtraction of the signal from boron neutrinos, gives the flux of Be/+CNO neutrinos, and Pee for the corresponding energy interval, if the produced flux is taken from the Standard Solar Model (SSM). Gallium detectors, GALLEX, SAGE and GNO, detect additionally /pp-neutrinos. The /pp flux can be calculated subtracting from the gallium signal the rate due to boron, beryllium and CNO neutrinos. The ratio of the measured /pp-neutrino flux to that predicted by the SSM gives the survival probability for /pp-neutrinos. Comparison with theoretical survival probabilities shows that the best (among known models) fit is given by LMA and LOW solutions.

  16. Next discoveries in neutrino mixing: Electron neutrino appearance

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue

    The discovery of neutrino oscillation is a clear evidence of new physics beyond the Standard Model. Measurements of electron neutrino (nu e) and electron anti-neutrino (nu e) appearances are the most important channels to complete the neutrino mixing matrix. In a nue/ nue appearance experiment, a near detector (ND) is used to constrain the neutrino flux and measure the backgrounds to the signal. Backgrounds to the nue appearance comes from Neutral Current Muon Neutrino Interactions (numu-NC), Charged Current Muon Neutrino Interactions (numu-CC), beam nu e events and outside backgrounds. The background components are then extrapolated to the far detector (FD). By looking for excess of signal nu e/nue-like events in FD, we measure the neutrino mixing angle, neutrino's mass hierarchy and the elusive CP-violation in the lepton sector. This dissertation focuses on the signals and backgrounds in nu e/nue appearance measurements. The first part of the dissertation presents an analysis of nue appearance in a large Water Cherenkov detector such as the one proposed by the LBNE collaboration. The analysis, including scanning thousands of events, aims to distinguish nu e signals from the NC backgrounds. The second part of the dissertation presents measurements of Resonance Neutrino Interactions using the NOMAD data. This process plays a critical role in not only neutrino-nuclear cross section but also in the precision analysis of the next generation of neutrino oscillation experiments such as NOnuA and LBNE. The last part of the dissertation discusses the method of using low-nu fit method to measure relative neutrino flux and constrain beam nue background.

  17. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    SciTech Connect

    Wolcott, Jeremy

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  18. Search for Electron Neutrino Appearance in MINOS

    SciTech Connect

    Orchanian, Mhair; /Caltech

    2011-09-01

    The MINOS Collaboration continues its search for {nu}{sub e} appearance in the NuMI (Neutrinos at the Main Injector) beam at Fermilab. Neutrinos in the beam interact in the Near Detector, located 1 km from the beam source, allowing us to characterize the backgrounds present in our analysis. In particular, we can estimate the number of {nu}{sub e} candidate events we expect to see in the Far Detector (735 km away, in the Soudan mine in northern Minnesota) in the presence or absence of {nu}{sub {mu}} {yields} {nu}{sub e} oscillation. Recent efforts to improve the sensitivity of the analysis, including upgrades to the event identification algorithm and fitting procedure, are discussed, and the latest results from the search are presented.

  19. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Orchanian, Mhair-armen Hagop

    2012-01-01

    This thesis describes a search for ve appearance in the two-detector long-baseline MINOS neutrino experiment at Fermilab, based on a data set representing an exposure of 8.2×1020 protons on the NuMI target. The analysis detailed herein represents an increase in sensitivity to the θ13 mixing angle of approximately 25% over previous analyses, due to improvements in the event discriminant and fitting technique. Based on our observation, we constrain the value of θ13 further, finding 2 sin2θ 23 sin2θ 13< 0.12(0.20) at the 90% confidence level for δCP = 0 and the normal (inverted) neutrino mass hierarchy. The best-fit value is 2 sin2θ 23 sin2θ 13 = 0.041+0.047 -0.031(0.079+0.071 -0.053) under the same assumptions. We exclude the θ 13 = 0 hypothesis at the 89% confidence level.

  20. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Holin, Anna Maria

    2010-02-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin213 for the rst time. Detector granularity, however, makes it very hard to distinguish any e appearance signal events characteristic of a non-zero value of θ 13 from background neutral current (NC) and short-track vμ charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from vμ-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 σ ve-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 1020 protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin213. Using the MRCC method, MINOS sets a limit of sin2 2 θ 13 < 0.265 at the 90% confidence limit for a CP-violating phase δ = 0.

  1. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    SciTech Connect

    Guo, Wan-Lei

    2016-01-21

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ→νν-bar,τ{sup +}τ{sup −},bb-bar, we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ{sup +}τ{sup −} channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV. If the νν-bar or τ{sup +}τ{sup −} channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions.

  2. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    NASA Astrophysics Data System (ADS)

    Guo, Wan-Lei

    2016-01-01

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ → νbar nu, τ+τ-, bbar b, we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νbar nu and τ+τ- channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νbar nu channel with the DM mass lighter than 6.5 GeV . If the νbar nu or τ+τ- channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions.

  3. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    SciTech Connect

    Guo, Wan-Lei

    2016-01-01

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ → νν-bar , τ{sup +}τ{sup −}, b b-bar , we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ{sup +}τ{sup −} channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV . If the νν-bar or τ{sup +}τ{sup −} channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions.

  4. Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2011-12-01

    We analyzed the electron neutrino data of the Gallium radioactive source experiments and the electron antineutrino data of the reactor Bugey and Chooz experiments in terms of neutrino oscillations. We found a hint of a CPT-violating asymmetry of the effective neutrino and antineutrino mixing angles.

  5. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    SciTech Connect

    Acciarri, R.; et al.

    2016-10-13

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  6. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.

  7. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  8. An Upper Limit on the Electron-Neutrino Flux from the HiRes Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Ben Zvi, S. Y.; Bergman, D. R.; Biesiadecka, A.; Blake, S. A.; Boyer, J. H.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.

    2008-09-01

    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultra-high-energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular data set has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron neutrinos.

  9. An upper limit on the electron-neutrino flux from the HiRes detector

    NASA Astrophysics Data System (ADS)

    Scott, Lauren

    2008-04-01

    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.

  10. An upper limit on the electron-neutrino flux from the HiRes instrument

    NASA Astrophysics Data System (ADS)

    Scott, L. M.

    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) instrument are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and the Landau-Pomeranchuk-Migdal (LPM) effect, which is responsible for a significant decrease in the cross sections for bremsstrahlung and pair production, rendering charged-current electron-neutrino-induced showers occurring deep in the Earth's crust detectable as they exit the Earth into the atmosphere. The search for upward-going neutrino-induced showers in the entire HiRes-II monocular dataset has yielded a null result. From a full LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the resulting profile of these showers in air. A full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades is described and an upper limit on the flux of electron-neutrinos is given.

  11. Hint of CPT violation in short-baseline electron neutrino disappearance data

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2010-12-01

    We analyzed the electron neutrino data of the Gallium radioactive source experiments and the electron antineutrino data of the reactor Bugey and Chooz experiments in terms of neutrino oscillations allowing for a CPT-violating difference of the squared masses and mixings of neutrinos and antineutrinos. We found that the discrepancy between the disappearance of electron neutrinos indicated by the data of the Gallium radioactive source experiments and the limits on the disappearance of electron antineutrinos given by the data of reactor experiments reveal a positive CPT-violating asymmetry of the effective neutrino and antineutrino mixing angles (with a statistical significance of about 3.5σ), whereas the squared-mass asymmetry is practically not bounded.

  12. First observation of low energy electron neutrinos in a liquid argon time projection chamber

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fitzpatrick, R. S.; Fleming, B.; Hackenburg, A.; Horton-Smith, G.; James, C.; Lang, K.; Luo, X.; Mehdiyev, R.; Page, B.; Palamara, O.; Rebel, B.; Schukraft, A.; Scanavini, G.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Yang, T.; Zeller, G. P.; ArgoNeuT Collaboration

    2017-04-01

    The capabilities of liquid argon time projection chambers (LArTPCs) to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino (νe) appearance. The LArTPC promises excellent background rejection capabilities, especially in this "golden" channel for both short and long baseline neutrino oscillation experiments. We present the first experimental observation of electron neutrinos and antineutrinos in the ArgoNeut LArTPC, in the energy range relevant to DUNE and the Fermilab Short Baseline Neutrino Program. We have selected 37 electron candidate events and 274 gamma candidate events, and measured an 80% purity of electrons based on a topological selection. Additionally, we present a separation of electrons from gammas using calorimetric energy deposition, demonstrating further separation of electrons from background gammas.

  13. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Astrophysics Data System (ADS)

    Wilson, Robert M.

    2000-12-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (greater than 0.814 MeV). The ``best fit'' values derived from these observations suggest an average daily production rate of about 0.485 37Ar atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, many researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with certain markers of the solar cycle (specifically, sunspot number and the Ap index). Indeed, previous studies, on the basis of shorter time intervals or data averaged in particular ways, often found evidence supportive for preferential behavior between the solar neutrino flux and solar activity. In this paper, using the larger ``standard data set'' and run-length-adjusted averages, the notion of preferential behavior between solar electron neutrino flux and solar activity is reexamined. The results clearly show that no statistically meaningful associations exist between the solar electron neutrino flux and any of the usual markers of solar activity, including sunspot number, the Ap index, the Deep River neutron monitor counts (cosmic rays), solar irradiance, and the number or size of solar energetic events (flares).

  14. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  15. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  16. Can the negative mass square of the electron neutrino be an indication of degenerated relic neutrinos?

    NASA Astrophysics Data System (ADS)

    Jinnouchi, O.; Homma, K.

    1998-09-01

    The unphysical result of the negative mass square of the electron neutrinos recently reported in several tritium β-decay experiments, is one of the most attractive subjects among remaining physical problems. As a possible scenario to explain the anomaly, we have assumed a reaction with relic neutrinos which are predicted by the standard big bang cosmology. If such neutrinos could exist, the interaction of the relic neutrinos with the target tritium, νe+3H-->3He+e- could be laid under the large amount of the β-decay process, 3H-->3He+e-+νē, which would cause a peak-like structure beyond the end-point in the Kurie plot. Based on the assumption, we evaluated the cross section from the event rate found in the peak by re-fitting to the 1991 data published by the Mainz Group. In this letter we will provide a scenario that can account for the evaluated cross section by introducing a spatially inhomogeneous neutrino degeneration, which would result much lower temperature than the prediction from the standard big bang cosmology.

  17. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  18. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  19. Atmospheric electron neutrinos in the MINOS far detector

    SciTech Connect

    Speakman, Benjamin Phillip

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and the

  20. Measurement of electron neutrino appearance with the MINOS experiment

    SciTech Connect

    Boehm, Joshua Adam Alpern

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the vμ oscillate to vτ but a small fraction may oscillate instead to ve. This thesis presents a measurement of the ve appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6σ excess over the expected background rate is found providing a hint of ve appearance.

  1. Electron Neutrino Appearance in the NOnuA Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Ji

    The NuMI Off-Axis nue Appearance (NOnuA) experiment is a long baseline, off-axis neutrino oscillation experiment. It is designed to search for oscillations of numu to nu e by comparing measurements of the NuMI beam composition in two detectors. These two detectors are functionally identical, nearly fully-active liquid-scintillator tracking calorimeters and located at two points along the beam line to observe the neutrinos. The Near Detector (ND), situated 1km away from the proton target at Fermilab, measures neutrinos prior to oscillation. Then the Far Detector (FD), located 810 km away at Ash River, Minnesota, measures the neutrinos after they have traveled and potentially oscillated. The neutrino beam is generated at Fermi National Accelerator Laboratory in Batavia, Illinois by the Neutrinos at the Main Injector (NuMI) facility. By observing the numu → nue oscillation, NOnuA is capable of measuring the neutrino mass hierarchy, CP violation and the octant of mixing angle theta23. This thesis presents the first measurement of nue appearance in the NOnuA detectors with 3:52 x 1020 protons-on-target (POT) data accumulated from February 2014 till May 2015. In this analysis the primary nu e CC particle selection LID observes 6 nue like events in the far detector with a background prediction of 0:99 +/- 0:11 (syst.), which corresponds to a 3:3sigma excess over the no-oscillation hypothesis. This results disfavors 0:1pi < deltacp < 0:5pi in the inverted mass hierarchy at 90% C.L with the reactor constrain on theta13.

  2. MiniBooNE: first results on the muon-to-electron neutrino oscillation search

    SciTech Connect

    Sorel, M.; /Columbia U.

    2007-10-01

    MiniBooNE's first results on a search for an electron neutrino excess in a muon neutrino beam are presented, together with an analysis of the data within a two neutrino {nu}{sub {mu}} {yields} {nu}{sub e} appearance-only oscillation context. MiniBooNE finds excellent agreement between data and Standard Model predictions in the oscillation analysis energy region. If neutrino and antineutrino oscillations are the same, MiniBooNE excludes at {approx} 98% confidence level the two neutrino {nu}{sub {mu}} {yields} {nu}{sub e} appearance-only oscillation interpretation of the LSND anomaly. MiniBooNE also finds a discrepancy at energies below the oscillation analysis range, which is currently not understood and under investigation.

  3. Electron Neutrino and Antineutrino Appearance in the MINOS Detector

    SciTech Connect

    Schreckenberger, Adam Paul

    2013-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino experiment that utilizes a particle beam and two steel-scintillator calorimeters designed to determine the parameters associated with muon neutrino disappearance. Analysis methods developed by the MINOS νe group have facilitated the placement of limits upon the mixing angle associated with νμ → νe oscillations. Since the polarity of the focusing horns can be switched, we can perform a similar analysis with an antineutrino-enriched beam to select electron antineutrino appearance candidates. Using 3.34e20 POT (protons on target) in the antineutrino mode, we exclude θ13 = 0 at the 80% C.L. A joint fit of the 3.34e20 POT antineutrino and 10.6e20 POT neutrino samples excluded θ13 = 0 at the 96% C.L. In addition, the combined data were used to produce exclusions regarding the CP-violating phase.

  4. Electron neutrino appearance in the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Catano-Mur, E.; NOvA Collaboration

    2017-09-01

    NOvA is an off-axis, two-detector experiment studying neutrino oscillations with the νµ beam from Fermilab. This paper describes the νe appearance analysis, including data-driven constraints from Near Detector measurements. The data set corresponds to an exposure equivalent to 6.05 × 1020 protons-on-target in the Far Detector. We observed 33 νe candidates with a predicted background of 8.2 ± 0.8 (syst.), for a significance of appearance higher than 8σ. Preliminary results for the allowed values of δCP and θ 23 in both hierarchies are presented.

  5. Short-baseline electron neutrino oscillation length after the Troitsk experiment

    NASA Astrophysics Data System (ADS)

    Giunti, C.; Laveder, M.; Li, Y. F.; Long, H. W.

    2013-01-01

    We discuss the implications for short-baseline electron neutrino disappearance in the 3+1 mixing scheme of the recent Troitsk bounds on the mixing of a neutrino with mass between 2 and 100 eV. Considering the Troitsk data in combination with the results of short-baseline νe and ν¯e disappearance experiments, which include the reactor and Gallium anomalies, we derive a 2σ allowed range for the effective neutrino squared-mass difference between 0.85 and 43eV2. The upper bound implies that it is likely that oscillations in distance and/or energy can be observed in radioactive source experiments. It is also favorable for the ICARUS@CERN experiment, in which it is likely that oscillations are not washed out in the near detector. We discuss also the implications for neutrinoless double-β decay.

  6. On the measurement of the electron-neutrino correlation in neutron beta decay

    SciTech Connect

    Bowman, J. D.

    2004-01-01

    A new approach to the measurement of A, the electron-neutrino correlation, in neutron beta decay is presented. A precise measurement of A can lead to a precise determination of G{sub A}/G{sub V}. Coincidences between electrons and protons are detected in a field-expansion spectrometer. Both electrons and protons are detected in segmented Si detectors. The spectrometer configuration has a long, {approx} 1 meter, drift distance for the proton. The electron energy and time of flight between the electron and proton are measured. We show that by sorting the data on proton time of flight and electron energy, A can be determined with a statistical accuracy of {approx} 5.1/{radical}n, where n is the number of decays observed. The approach has a number of advantages. Thin-dead-layer segmented Si detectors are commercially available. There are no material apertures to determine the acceptance of the apparatus. The charged particles interact only with electric and magnetic fields before striking the detectors. Coincident detection of electrons and protons reduces backgrounds, and allows the in situ determination of backgrounds. In the analysis, it is not necessary to sort on the relative electron and proton direction and hence electron back scattering does not cause systematic uncertainties. A time of flight spectrum is obtained for each electron energy. Different parts of the spectra have different sensitivities to A. The parts of the spectra that are insensitive to A can be used to verify the accuracy of the electric and magnetic field determinations.

  7. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    SciTech Connect

    Niner, Evan David

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  8. A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE

    SciTech Connect

    Monroe, Jocelyn Rebecca

    2006-01-01

    MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for vμ → ve oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a vμ beam with an average energy of ~ 0.8 GeV and an intrinsic ve content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH2, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE vμ charged current quasielastic (CCQE) scattering data. A data set with ~ 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the vμ and ve fluxes are derived using the vμ CCQE data set. A Monte Carlo study of a combined vμ disappearance and ve appearance oscillation fit is presented, which improves the vμ → ve oscillation sensitivity of MiniBooNE with respect to a ve appearance-only fit by 1.2-1.5σ, depending on the value of Δm2.

  9. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-06-25

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs.

  10. Experiment to measure the electron neutrino mass using a frozen tritium source

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; White, R.M.; Woerner, R.

    1985-03-01

    We are performing an experiment to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations can be precisely made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. We discuss the excited final molecular state calculations and describe the experimental apparatus. 2 references, 6 figures.

  11. Short-baseline electron neutrino disappearance, tritium beta decay, and neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2010-09-01

    We consider the interpretation of the MiniBooNE low-energy anomaly and the gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and gallium data are highly compatible, with close best-fit values of the effective oscillation parameters Δm2 and sin⁡22ϑ. The combined fit gives Δm2≳0.1eV2 and 0.11≲sin⁡22ϑ≲0.48 at 2σ. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in β decay obtained in the Mainz and Troitsk tritium experiments. The fit of the data of these experiments limits the value of sin⁡22ϑ below 0.10 at 2σ. Considering the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data as a statistical fluctuation, we perform a combined fit which gives Δm2≃2eV and 0.01≲sin⁡22ϑ≲0.13 at 2σ. Assuming a hierarchy of masses m1, m2, m3≪m4, the predicted contributions of m4 to the effective neutrino masses in β decay and neutrinoless double-β decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2σ. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6σ indication of a mixing angle asymmetry.

  12. Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-12-12

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³⁸ cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³⁸ cm²/nucleon and the GENIE prediction is 1.08×10⁻³⁸ cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  13. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-12-01

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  14. Experimental evidence of electron neutrino oscillations and validation of MSW-LMA model with Borexino

    NASA Astrophysics Data System (ADS)

    Avanzini, M. Buizza

    2011-04-01

    We report the real time measurements of 7Be and 8B solar neutrino fluxes performed with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. The achievement of these measurements was possible thanks to the excellent levels of the radiopurity reached. The measurement of the 7Be in real time is the first direct measurements of the survival probability for solar electron neutrinos in the vacuum region. For 8B we reached a threshold energy of 3MeV which is the lowest achieved so far in real time. For the first time, the same apparatus can measure two different oscillation regions (vacuum-driven and matter-enhanced) predicted by the MSW-LMA model. Borexino also quotes the ratio between the survival probabilities, corresponding to 1.93 ± 0.75, and validates the presence of the transition region between the two oscillation regimes, according to the MSW-LMA solution.In addition, a preliminary result on the Day-Night Asymmetry (ADN) for the 7Be neutrino flux is presented and corresponds to 0.007 ± 0.073. This measurement makes Borexino able to give once more an independent confirmation of the MSW-LMA solution.

  15. Can the Negative Mass Square of the Electron Neutrinos BE AN Indication of Interaction with Relic Neutrinos?

    NASA Astrophysics Data System (ADS)

    Homma, Kensuke; Jinnouchi, Osamu

    2003-04-01

    The unphysical result of the negative mass square of the electron neutrinos recently reported in several tritium β-decay experiments, is one of the most attractive subjects. As a possible scenario to explain the anomaly, we have assumed a reaction with relic neutrinos which are predicted by the standard big bang cosmology. If such neutrinos could exist, the interaction of the relic neutrinos with the target tritium, νe + 3H → 3He + e- could be laid under the large amount of the β-decay process, H- > He + e- + bar ν e, which would cause a peak-like structure beyond the end-point in the Kurie plot. Based on the assumption, we evaluated the cross section from the event rate found in the peak by re-fitting to the 1991 data published by Mainz Group. In this talk we will provide a scenario that could account for the evaluated cross section by assuming a coherent state of the neutrino sea, which would result much lower temperature than the prediction from the standard big bang cosmology.

  16. Conversion of experimental half-life to effective electron neutrino mass in 0nubetabeta decay

    SciTech Connect

    Smolnikov, Anatoly; Grabmayr, Peter

    2010-02-15

    The Germanium Detector Array (GERDA) collaboration will be searching for neutrinoless double beta decay of {sup 76}Ge. As a result it will measure the half-life T{sub 1/2} of this rare process; or at least a new value for the lower limit for T{sub 1/2} will be derived. The sensitivity of the GERDA experiment on the effective electron neutrino mass depends on the theoretical value for the nuclear matrix element M and the kinematical phase space factor G.In this Brief Report we focus on existing difficulties in applying the dimensionless values of M calculated by various theoretical groups, which use different methods and parametrizations. The implicit radius dependencies in M and G are discussed. Resulting values of the neutrino mass are tabulated for various representative half-lives T{sub 1/2} representing the sensitivity of the various phases of the GERDA experiment.

  17. Short-baseline electron neutrino disappearance, tritium beta decay, and neutrinoless double-beta decay

    SciTech Connect

    Giunti, Carlo; Laveder, Marco

    2010-09-01

    We consider the interpretation of the MiniBooNE low-energy anomaly and the gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and gallium data are highly compatible, with close best-fit values of the effective oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}. The combined fit gives {Delta}m{sup 2}(greater-or-similar sign)0.1 eV{sup 2} and 0.11(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.48 at 2{sigma}. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in {beta} decay obtained in the Mainz and Troitsk tritium experiments. The fit of the data of these experiments limits the value of sin{sup 2}2{theta} below 0.10 at 2{sigma}. Considering the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data as a statistical fluctuation, we perform a combined fit which gives {Delta}m{sup 2}{approx_equal}2 eV and 0.01(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.13 at 2{sigma}. Assuming a hierarchy of masses m{sub 1}, m{sub 2}, m{sub 3}<neutrino masses in {beta} decay and neutrinoless double-{beta} decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2{sigma}. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6{sigma} indication of a mixing angle asymmetry.

  18. Characterization of the 163Ho Electron Capture Spectrum: A Step Towards the Electron Neutrino Mass Determination

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.-O.; Hassel, C.; Wegner, M.; Hengstler, D.; Kempf, S.; Fleischmann, A.; Enss, C.; Gastaldo, L.; Herlert, A.; Johnston, K.

    2017-09-01

    The isotope 163Ho is in many ways the best candidate to perform experiments to investigate the value of the electron neutrino mass. It undergoes an electron capture process to 163Dy with an energy available to the decay, QEC, of about 2.8 keV. According to the present knowledge, this is the lowest QEC value for such transitions. Here we discuss a newly obtained spectrum of 163Ho, taken by cryogenic metallic magnetic calorimeters with 163Ho implanted in the absorbers and operated in anticoincident mode for background reduction. For the first time, the atomic deexcitation of the 163Dy daughter atom following the capture of electrons from the 5 s shell in 163Ho, the OI line, was observed with a calorimetric measurement. The peak energy is determined to be 48 eV. In addition, a precise determination of the energy available for the decay QEC=(2.858 ±0.01 0stat±0.0 5syst) keV was obtained by analyzing the intensities of the lines in the spectrum. This value is in good agreement with the measurement of the mass difference between 163Ho and 163Dy obtained by Penning-trap mass spectrometry, demonstrating the reliability of the calorimetric technique.

  19. Interaction of Electron Neutrinos with {sup 56}Fe in the LSD for E{sub {nu}{sub e}} {<=} 50 MeV

    SciTech Connect

    Gaponov, Yu.V.; Ryazhskaya, O.G.; Semenov, S.V.

    2004-11-01

    The neutrino pulses detected by the LSD (Liquid Scintillator Detector) on February 23, 1987, are analyzed on the basis of a two-stage model of supernova explosion. The number of events due to the electron-neutrino interaction with {sup 56}Fe in the LSD is calculated. The obtained number of signals is in agreement with experimental data.

  20. Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS

    SciTech Connect

    Bishai M.; Diwan, M.V..; Jaffe, D.E.; Ling, J.; Viren, B.; Whitehead, L.

    2011-10-28

    We report the results of a search for {nu}{sub e} appearance in a {nu}{sub {mu}} beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 10{sup 20} protons on the NuMI target at Fermilab, we find that 2sin{sup 2}({theta}{sub 23})sin{sup 2}(2{theta}{sub 13}) < 0.12(0.20) at 90% confidence level for {delta} = 0 and the normal (inverted) neutrino mass hierarchy, with a best-fit of 2sin{sup 2}({theta}{sub 23})sin{sub 2}(2{theta}{sub 13}) = 0.041{sub -0.031}{sup +0.047}(0.079{sub -0.053}{sup +0.071}). The {theta}{sub 13} = 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  1. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE PAGES

    Adamson, P.

    2011-10-27

    The authors report the results of a search for νe appearance in νμ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (θ23 sin2 (θ13) < 0.12 (0.20) at 90% confidence level for δ = 0 and the normal (inverted) neutrino mass hierarchy, with a best fit of 2 sin2θ23) sin 2 (2θ13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The θ13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  2. Improved search for Muon-neutrino to electron-neutrino oscillations in MINOS.

    PubMed

    Adamson, P; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Betancourt, M; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Cavanaugh, S; Cherdack, D; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Ochoa-Ricoux, J P; Oliver, W P; Orchanian, M; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-10-28

    We report the results of a search for ν(e) appearance in a ν(μ) beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 × 10(20) protons on the NuMI target at Fermilab, we find that 2 sin(2) (θ(23))sin(2)(2θ(13))<0.12(0.20) at 90% confidence level for δ = 0 and the normal (inverted) neutrino mass hierarchy, with a best-fit of 2sin(2) (θ(23))sin(2)(2θ(13)) = 0.041(-0.031)(+0.047) (0.079(-0.053) (+0.071)). The θ(13) = 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  3. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    SciTech Connect

    Adamson, P.

    2011-10-27

    The authors report the results of a search for νe appearance in νμ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin223 sin213) < 0.12 (0.20) at 90% confidence level for δ = 0 and the normal (inverted) neutrino mass hierarchy, with a best fit of 2 sin2θ23) sin 2 (2θ13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The θ13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  4. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam.

    PubMed

    Abe, K; Abgrall, N; Ajima, Y; Aihara, H; Albert, J B; Andreopoulos, C; Andrieu, B; Aoki, S; Araoka, O; Argyriades, J; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Badertscher, A; Barbi, M; Barker, G J; Barr, G; Bass, M; Bay, F; Bentham, S; Berardi, V; Berger, B E; Bertram, I; Besnier, M; Beucher, J; Beznosko, D; Bhadra, S; Blaszczyk, F d M M; Blondel, A; Bojechko, C; Bouchez, J; Boyd, S B; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Budd, H; Calvet, D; Cartwright, S L; Carver, A; Castillo, R; Catanesi, M G; Cazes, A; Cervera, A; Chavez, C; Choi, S; Christodoulou, G; Coleman, J; Coleman, W; Collazuol, G; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davies, G S; Davis, S; Day, M; De Rosa, G; de André, J P A M; de Perio, P; Delbart, A; Densham, C; Di Lodovico, F; Di Luise, S; Dinh Tran, P; Dobson, J; Dore, U; Drapier, O; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escudero, L; Esposito, L S; Fechner, M; Ferrero, A; Finch, A J; Frank, E; Fujii, Y; Fukuda, Y; Galymov, V; Gannaway, F C; Gaudin, A; Gendotti, A; George, M A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Goldhaber, M; Gomez-Cadenas, J J; Gonin, M; Grant, N; Grant, A; Gumplinger, P; Guzowski, P; Haesler, A; Haigh, M D; Hamano, K; Hansen, C; Hansen, D; Hara, T; Harrison, P F; Hartfiel, B; Hartz, M; Haruyama, T; Hasegawa, T; Hastings, N C; Hastings, S; Hatzikoutelis, A; Hayashi, K; Hayato, Y; Hearty, C; Helmer, R L; Henderson, R; Higashi, N; Hignight, J; Hirose, E; Holeczek, J; Horikawa, S; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Iida, M; Ikeda, M; Ilic, J; Imber, J; Ishida, T; Ishihara, C; Ishii, T; Ives, S J; Iwasaki, M; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kaneyuki, K; Karlen, D; Kasami, K; Kato, I; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, J; Kim, J Y; Kim, S B; Kimura, N; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Koike, S; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kouzuma, Y; Kowalik, K; Kravtsov, V; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kulkarni, N; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lee, K P; Le, P T; Levy, J M; Licciardi, C; Lim, I T; Lindner, T; Litchfield, R P; Litos, M; Longhin, A; Lopez, G D; Loverre, P F; Ludovici, L; Lux, T; Macaire, M; Mahn, K; Makida, Y; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Maryon, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metcalf, W; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A D; Mituka, G; Miura, M; Mizouchi, K; Monfregola, L; Moreau, F; Morgan, B; Moriyama, S; Muir, A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamoto, T; Nakamura, K; Nakayama, S; Nakaya, T; Naples, D; Navin, M L; Nelson, B; Nicholls, T C; Nishikawa, K; Nishino, H; Nowak, J A; Noy, M; Obayashi, Y; Ogitsu, T; Ohhata, H; Okamura, T; Okumura, K; Okusawa, T; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Ozaki, T; Pac, M Y; Palladino, V; Paolone, V; Paul, P; Payne, D; Pearce, G F; Perkin, J D; Pettinacci, V; Pierre, F; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Qian, W; Raaf, J L; Radicioni, E; Ratoff, P N; Raufer, T M; Ravonel, M; Raymond, M; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roney, J M; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sabouri, S; Sacco, R; Sakashita, K; Sánchez, F; Sarrat, A; Sasaki, K; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shimizu, Y; Shiozawa, M; Short, S; Siyad, M; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stahl, A; Stamoulis, P; Steinmann, J; Still, B; Stone, J; Strabel, C; Sulak, L R; Sulej, R; Sutcliffe, P; Suzuki, A; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Y; Suzuki, Y; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takenaga, Y; Takeuchi, Y; Tanaka, K; Tanaka, H A; Tanaka, M; Tanaka, M M; Tanimoto, N; Tashiro, K; Taylor, I; Terashima, A; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Toki, W; Tomaru, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Walding, J J; Waldron, A V; Walter, C W; Wanderer, P J; Wang, J; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; Wendell, R; West, N; Whitehead, L H; Wikström, G; Wilkes, R J; Wilking, M J; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, S; Yamada, Y; Yamamoto, A; Yamamoto, K; Yamanoi, Y; Yamaoka, H; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2011-07-22

    The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.

  5. Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J. B.; Andreopoulos, C.; Andrieu, B.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Badertscher, A.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. D. M. M.; Blondel, A.; Bojechko, C.; Bouchez, J.; Boyd, S. B.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Budd, H.; Calvet, D.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cazes, A.; Cervera, A.; Chavez, C.; Choi, S.; Christodoulou, G.; Coleman, J.; Coleman, W.; Collazuol, G.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; de Rosa, G.; de André, J. P. A. M.; de Perio, P.; Delbart, A.; Densham, C.; di Lodovico, F.; di Luise, S.; Dinh Tran, P.; Dobson, J.; Dore, U.; Drapier, O.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Esposito, L. S.; Fechner, M.; Ferrero, A.; Finch, A. J.; Frank, E.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Gannaway, F. C.; Gaudin, A.; Gendotti, A.; George, M. A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Grant, A.; Gumplinger, P.; Guzowski, P.; Haesler, A.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hansen, D.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasegawa, T.; Hastings, N. C.; Hastings, S.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Henderson, R.; Higashi, N.; Hignight, J.; Hirose, E.; Holeczek, J.; Horikawa, S.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kato, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J.; Kim, J. Y.; Kim, S. B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kulkarni, N.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lee, K. P.; Le, P. T.; Levy, J. M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Litchfield, R. P.; Litos, M.; Longhin, A.; Lopez, G. D.; Loverre, P. F.; Ludovici, L.; Lux, T.; Macaire, M.; Mahn, K.; Makida, Y.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A. D.; Mituka, G.; Miura, M.; Mizouchi, K.; Monfregola, L.; Moreau, F.; Morgan, B.; Moriyama, S.; Muir, A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Navin, M. L.; Nelson, B.; Nicholls, T. C.; Nishikawa, K.; Nishino, H.; Nowak, J. A.; Noy, M.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Pettinacci, V.; Pierre, F.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Qian, W.; Raaf, J. L.; Radicioni, E.; Ratoff, P. N.; Raufer, T. M.; Ravonel, M.; Raymond, M.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roney, J. M.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sabouri, S.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sarrat, A.; Sasaki, K.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shimizu, Y.; Shiozawa, M.; Short, S.; Siyad, M.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Stahl, A.; Stamoulis, P.; Steinmann, J.; Still, B.; Stone, J.; Strabel, C.; Sulak, L. R.; Sulej, R.; Sutcliffe, P.; Suzuki, A.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Suzuki, Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Tanaka, K.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Tanimoto, N.; Tashiro, K.; Taylor, I.; Terashima, A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Toki, W.; Tomaru, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Walding, J. J.; Waldron, A. V.; Walter, C. W.; Wanderer, P. J.; Wang, J.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; West, N.; Whitehead, L. H.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, S.; Yamada, Y.; Yamamoto, A.; Yamamoto, K.; Yamanoi, Y.; Yamaoka, H.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2011-07-01

    The T2K experiment observes indications of νμ→νe appearance in data accumulated with 1.43×1020 protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm232|=2.4×10-3eV2, sin⁡22θ23=1 and sin⁡22θ13=0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10-3, equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04)

  6. New constraints on muon-neutrino to electron-neutrino transitions in MINOS

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Bernstein, R.H.; Betancourt, M.; Bhattarai, P.; Bishai, M.; Blake, A.; /Cambridge U. /Fermilab

    2010-06-01

    This letter reports results from a search for {nu}{sub {mu}}{yields}{nu}{sub {mu}} transitions by the MINOS experiment based on a 7 x 1020 protons-on-target exposure. Our observation of 54 candidate e events in the Far Detector with a background of 49.1 {+-} 7.0(stat.) {+-} 2.7(syst.) events predicted by the measurements in the Near Detector requires 2 sin2(2{theta}13) sin2{theta}23 < 0.12 (0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at {delta}CP = 0. The experiment sets the tightest limits to date on the value of {theta}13 for nearly all values of {delta}CP for the normal neutrino mass hierarchy and maximal sin2(2{theta}23).

  7. Why do a precision measurement of delta m(atm)**2 in the electron-neutrino and anti-electron-neutrino disappearance channel?

    SciTech Connect

    Nunokawa, H; Parke, Stephen J; Zukanovich Funchal, R

    2005-07-01

    We discuss why high precision measurements of {delta}m{sub atm}{sup 2} in the {nu}{sub e}/{bar {nu}}{sub e} disappearance channels would be desirable in conjunction with the {delta}m{sub atms}{sup 2} high precision measurements that will be performed in the {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance channels by long baseline experiments such as T2K and NOvA. We show that if these measurements can achieve the challenging precision of about 0.5%, it will be possible to determine the mass hierarchy of the neutrino sector without the need of matter effects.

  8. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  9. Neutrino oscillations and the modulation of neutrino-electron scattering

    SciTech Connect

    Rosen, S.P.; Kayser, B.

    1981-02-01

    Neutrino flavor oscillations modulate the cross section for neutrino-electron scattering. This modulation can seriously affect the interpretation of the present data on reactor-neutrino--electron scattering, and can greatly amplify the effective cross section for accelerator neutrinos.

  10. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    NASA Astrophysics Data System (ADS)

    Xue, She-Sheng

    2016-11-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν R f . Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν R f and their left-handed conjugated fields ν R fc . Light masses of gauged Majorana neutrinos in the normal hierarchy (10-5 - 10-2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of toverline{t} -production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  11. Limits on the ultra-high energy electron neutrino flux from the RICE experiment

    NASA Astrophysics Data System (ADS)

    Kravchenko, I.; Frichter, G. M.; Miller, T.; Piccirillo, L.; Seckel, D.; Spiczak, G. M.; Adams, J.; Seunarine, S.; Allen, C.; Bean, A.; Besson, D.; Box, D. J.; Buniy, R.; Drees, J.; McKay, D.; Meyers, J.; Perry, L.; Ralston, J.; Razzaque, S.; Schmitz, D. W.

    2003-11-01

    Upper limits are presented on the diffuse flux of ultra-high energy νe, based on analysis of data taken by the RICE experiment during August, 2000. The RICE receiver array at South Pole monitors cold ice for radio-wavelength Cherenkov radiation resulting from neutrino induced in-ice showers. For energies above 1 EeV, RICE is an effective detector of over 15 km 3 sr. Potential signal events are separated from backgrounds using vertex location, event reconstruction, and signal shape. These are the first terrestrial limits exploiting the physics of radio-Cherenkov emissions from charged current νe+ N→e+ N' interactions.

  12. Inelastic neutrino scattering off stable even-even Mo isotopes at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.

    2010-04-01

    Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies ( ɛi≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to 92Mo, 94Mo, 96Mo, 98Mo and 100Mo isotopes.

  13. Neutrino oscillations and neutrino-electron scattering

    SciTech Connect

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments.

  14. A Measurement of Electron Neutrino Appearance in the MINOS Experiment After Four Years of Data

    SciTech Connect

    Cavanaugh, Steven

    2010-05-01

    This work attempts to measure or set a limit on sin2(2θ13), the parameter which describes vμ → ve oscillations. The MINOS detectors at Fermilab are used to perform a search for the oscillations utilizing a beam of vμ neutrinos created in the NuMI beamline by the collisions of 120 GeV protons with a carbon target. These collisions create π± and K± which are focused with magnetic horns, are allowed to decay, and result in a beam of vμ in the energy range of 1 to 30 GeV. Two functionally identical steel-scintillator calorimetric detectors are utilized to measure the interactions of the generated neutrinos. A detector close to the NuMI beam, located 104 m underground and 1040 m from the target, is used to measure the properties of the neutrino beam, including the flux, composition, and energy spectrum. This information is used in part to generate a predicted spectrum of neutrinos in absence of vμ → ve oscillations in the detector located far from the target, at a distance of 705 m underground and 735.5 km from the target. An excess of predicted ve charged current events in this far detector will be interpreted as vμ → ve oscillations, and a measurement of sin2(2θ13) will be made using a Feldman-Cousins analysis. The measurement of vμ → ve requires the separation of ve candidates from background events. New reconstruction software was developed with a focus on identifying ve candidate events in order to reduce systematic errors. The event parameters measured by this software were used as an input to an artificial neutral network event discriminator. The details of this reconstruction software and the other steps of the analysis necessary to making the measurement will be discussed. This work builds on a previous measurement made with this

  15. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Alpert, B. K.; Becker, D. T.; Bennett, D. A.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P. K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Fumagalli, E.; Gallucci, G.; Gard, J. D.; Gatti, F.; Hays-Wehle, J. P.; Heinitz, S.; Hilton, G. C.; Köster, U.; Lusignoli, M.; Mates, J. A. B.; Nisi, S.; Nucciotti, A.; Orlando, A.; Parodi, L.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C. D.; Ribeiro Gomes, M.; Schmidt, D. R.; Schumann, D.; Siccardi, F.; Sisti, M.; Swetz, D. S.; Terranova, F.; Ullom, J. N.; Vale, L. R.

    2017-02-01

    HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV . HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a 1000 pixels array of low temperature microcalorimeters with implanted 163Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. To embed the 163Ho into the gold absorbers a custom mass separator ion implanter is being developed. The current activities are focused on the the single detector performances optimization and on the 163Ho isotope production and embedding. A preliminary measurement of a sub-array of 4× 16 detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.

  16. Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 π0 detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2015-06-01

    This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (˜85 % ) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ±0.08 (stat)±0.11 (sys) , and with the water targets emptied is 0.90 ±0.09 (stat)±0.13 (sys) . The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ±0.33 (stat)±0.21 (sys) . This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.

  17. Neutrino Scattering from 12C

    NASA Astrophysics Data System (ADS)

    Hayes, Anna

    2017-01-01

    Neutrino scattering cross-sections from 12C, which have been measure for pion decay-at-rest and pion decay-in-flight neutrino energies, are difficult to reproduce theoretically. In this talk I discuss the physics issues involved and show the importance of a proper treatment of the conservation of the vector current.

  18. Solar Neutrinos with Exotic Scattering

    NASA Astrophysics Data System (ADS)

    Pulido, João

    The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6-1.4) × 10-5 eV2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee- elastic scattering or others searching for exotic lepton decays.

  19. A Search for electron neutrino appearance at the Delta m**2 ~ 1- eV**2 scale

    SciTech Connect

    Aguilar-Arevalo, A.A.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; Djurcic, Z.; /Columbia U. /Fermilab

    2007-04-01

    The MiniBooNE Collaboration reports first results of a search for {upsilon}{sub e} appearance in a {upsilon}{sub {mu}} beam. With two largely independent analyses, we observe no significant excess of events above background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two neutrino appearance-only oscillation model.

  20. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  1. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    SciTech Connect

    Schmitz, David W.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  2. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  3. Search for a new charged heavy vector boson decaying to an electron-neutrino pair in p$\\bar{p}$ collisions at √s = 1.96 TeV

    SciTech Connect

    Kim, Jieun

    2005-06-01

    We present results on a search for a heavy charged vector boson, W', decaying to an electron-neutrino pair in p$\\bar{p}$ collisions at √s = 1.96 TeV using a data sample corresponding to an integrated luminosity of 205 pb-1. We found no evidence of this decay channel, and set 95% confidence level limits on the production cross section times branching fraction assuming the light neutrino. We also set the limit on the W' boson mass at MW' > 788 GeV/c2, assuming the standard model strength couplings.

  4. Neutrino scattering and flavor transformation in supernovae.

    PubMed

    Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-06-29

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

  5. Generalized mass ordering degeneracy in neutrino oscillation experiments

    SciTech Connect

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  6. Generalized mass ordering degeneracy in neutrino oscillation experiments

    SciTech Connect

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  7. Generalized mass ordering degeneracy in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  8. A search for muon neutrino to electron neutrino oscillations at Δm2 > 0.1 eV2

    SciTech Connect

    Patterson, Ryan Benton

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8σ-significant $\\bar{v}$e excess reported by the LSND collaboration is consistent with $\\bar{v}$μ →$\\bar{v}$e oscillations with a mass-squared splitting of Δm2 ~ 1 eV2. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.

  9. Coherent neutrino-nucleus scattering and new neutrino interactions

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2017-03-01

    We investigate the potential to probe new neutrino physics with future experiments measuring coherent neutrino-nucleus scattering. Experiments with high statistics should become feasible soon and allow to constrain parameters with unprecedented precision. Using a benchmark setup for a future experiment probing reactor neutrinos, we study the sensitivity on neutrino non-standard interactions and new exotic neutral currents (scalar, tensor, etc). Compared to Fermi interaction, percent and permille level strengths of the new interactions can be probed, superseding for some observables the limits from future neutrino oscillation experiments by up to two orders of magnitude.

  10. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  11. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  12. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  13. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  14. Search for W-prime boson decaying to electron-neutrino pairs in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-11-01

    The authors present the results of a search for W{prime} boson decaying to electron-neutrino pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using a data sample corresponding to 205 pb{sup -1} of integrated luminosity collected by the CDF II detector at Fermilab. They observe no evidence for this decay mode and set limits on the production cross section times branching fraction, assuming the neutrinos from W{prime} boson decays to be light. If they assume the manifest left-right symmetric model, they exclude a W{prime} boson with mass less than 788 GeV/c{sup 2} at the 95% confidence level.

  15. Constraints on the neutrino flux in NOvA using the near detector data

    SciTech Connect

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions of the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.

  16. Constraints on the neutrino flux in NOvA using the near detector data

    DOE PAGES

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions ofmore » the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.« less

  17. The MINERvA Neutrino Scattering Experiment

    NASA Astrophysics Data System (ADS)

    Le, Trung

    2010-11-01

    MINERvA is a neutrino scattering experiment at the NuMI beamline of FNAL which began data taking in fall 2009. MINERvA is a high resolution, fully active detector designed to study the interaction of neutrinos with nuclei. The active volume of the detector consists of 3 tons of plastic scintillator. In addition, targets of 4He, C, H2O, Fe, and Pb will allow detailed studies of the A dependence of neutrino cross sections. Some of the objectives of MINERvA are to measure the axial form factor of the neutron with unprecedented precision, measure nuclear shadowing of F2 and compare with muon scattering, study quark-hadron duality with neutrino scattering in comparison with electron scattering, and measure coherent pion production. We present an overview of the physics objectives, estimated uncertainties of the measurements, along with a description of the detector and a sample of the first measurements.

  18. Theoretical challenges in neutrino scattering studies

    NASA Astrophysics Data System (ADS)

    Nieves, J.

    2017-09-01

    New and more precise measurements of neutrino cross sections in the few GeV energy region have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This interest comes from neutrino oscillation experiments and their need to reduce systematic errors. Neutrino fluxes used in contemporary long and short baseline experiments (K2K, T2K, MINOS, NOvA, MiniBooNE, MINERvA, …) are peaked in the 1–5 GeV energy domain. In this context, I will present some details about the theoretical development in the description of (anti)neutrino-induced quasielastic scattering and the role of multi-nucleon mechanisms.

  19. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  20. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  1. The MINERvA Neutrino Scattering Experiment

    NASA Astrophysics Data System (ADS)

    Ransome, Ronald

    2012-10-01

    MINERvA part 1. MINERvA is a neutrino scattering experiment in the NuMI beamline at Fermilab. MINERvA began taking data in November, 2009. The detector is fully active and includes targets of helium, carbon, iron, and water upstream of the active region. We will describe the detector and its capabilities, including tracking resolution, energy resolution, and particle identification, and brief overview of physics objectives.

  2. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  3. Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Mart, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Palma, I.; Díaz, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijerf, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Leisos, A.; Leone, F.; Leonora, E.; Lindsey Clark, M.; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Maris, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Papaikonomou, A.; Papaleo, R.; Păvălas, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Pleinert, M.-O.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rauch, T.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Tönnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.

    2017-05-01

    Studying atmospheric neutrino oscillations in the few-GeV range with a multi-megaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice. [Figure not available: see fulltext.

  4. Neutrino-induced reactions and neutrino scattering with nuclei in low and high neutrino energy

    SciTech Connect

    Cheoun, Myung-Ki Ha, Eunja; Yang, Ghil-Seok; Kim, K. S.; Kajino, T.

    2016-06-21

    We reviewed present status regarding theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation (DWBA) for quasielastic region are presented for MiniBooNE data. We also discussed that one step-process estimated by the DWBA is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data.

  5. Implications of new GALLEX results for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Kwong, Waikwok; Rosen, S. P.

    1992-01-01

    We compare the implications for Be-7 and pp neutrinos of the two Mikheyev-Smirnov-Wolfenstein fits to the new GALLEX solar neutrino measurements. Small-mixing-angle solutions tend to suppress the former as electron neutrinos, but not the latter, and large-angle solutions tend to reduce both by about a factor of two. The consequences for BOREXINO and similar solar neutrino-electron scattering experiments are discussed.

  6. Neutrino-electron scattering. Progress report

    SciTech Connect

    White, D.H.

    1982-01-01

    We present here a progress report on an experiment to measure the cross section for nu/sub ..mu../e scattering at the Brookhaven AGS. A wide band focussing horn is used with a neutrino beam energy centered at 1.5 GeV. We have in hand measurements with nu/sub ..mu../ and anti nu/sub ..mu../ beams but we present preliminary data on the nu/sub ..mu../ beam running only. We also measure the reactions: nu/sub ..mu../ + n ..-->.. ..mu../sup -/ + p and nu/sub e/ + n ..-->.. e/sup -/ + p which will be used in normalization and in background estimation.

  7. Nuclear PDFs from neutrino deep inelastic scattering

    SciTech Connect

    I. Schienbein; J. Y. Yu; C. Keppel; J. G. Morfin; F. Olness; J.F. Owens

    2007-11-13

    We study nuclear effects in charged current deep inelastic neutrino--iron scattering in the framework of a chi^2-analysis of parton distribution functions. We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea and strange quark distributions. We compare our results with nuclear parton distribution functions from the literature and find good agreement. Our iron PDFs are used to compute nuclear correction factors which are required in global analyses of free nucleon PDFs.

  8. HOLMES: The electron capture decay of [Formula: see text]Ho to measure the electron neutrino mass with sub-eV sensitivity.

    PubMed

    Alpert, B; Balata, M; Bennett, D; Biasotti, M; Boragno, C; Brofferio, C; Ceriale, V; Corsini, D; Day, P K; De Gerone, M; Dressler, R; Faverzani, M; Ferri, E; Fowler, J; Gatti, F; Giachero, A; Hays-Wehle, J; Heinitz, S; Hilton, G; Köster, U; Lusignoli, M; Maino, M; Mates, J; Nisi, S; Nizzolo, R; Nucciotti, A; Pessina, G; Pizzigoni, G; Puiu, A; Ragazzi, S; Reintsema, C; Gomes, M Ribeiro; Schmidt, D; Schumann, D; Sisti, M; Swetz, D; Terranova, F; Ullom, J

    The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

  9. Low-energy neutral-current neutrino scattering on nuclei

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.; Wambach, J.

    2011-12-16

    Inelastic cross-sections of neutral current neutrino scattering on the {sup 40}Ar isotope, detector-medium of the ongoing ICARUS experiment, are computed in the context of the quasi-particle random phase approximation by utilizing realistic two-nucleon forces. ICARUS is a multipurpose neutrino physics experiment that includes in its objectives low-energy neutrino detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}}{<=}100 MeV), covers the laboratory low-energy beta-beam-neutrinos and pion-muon stopped neutrino-beams operating or planned to be conducted at future neutron spallation sources. One of the main goals of these neutrino beams is to measure neutrino-nucleus cross sections at low-energies.

  10. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    NASA Astrophysics Data System (ADS)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  11. Nuclear Effects in Neutrino Scattering at MINERvA

    NASA Astrophysics Data System (ADS)

    Tice, Brian

    2014-09-01

    MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino interactions. Neutrino scattering measurements complement those done with charged leptons, because neutrino scattering directly probes axial structure and is sensitive to the deep inelastic structure function F3. In addition, precise neutrino-nucleus measurements will reduce the significant nuclear model uncertainties incurred by using heavy nuclear targets to obtain high statistics in neutrino experiments. Such nuclear effects include both changes to the interaction cross section and alterations to the final state products through their interactions in the target nucleus. These uncertainties have implications for the utilization of neutrino deep inelastic scattering data in fitting parton distribution functions and for the extraction of neutrino oscillation parameters. We present three recent results from MINERvA that address this need for better knowledge of nuclear effects in neutrino scattering. First, measurements of νμ and νμ quasielastic cross sections. Then, a measurement of charged pion production from inclusive νμ interactions. Lastly, the first measurements of inclusive νμ cross section ratios of carbon, iron, and lead to scintillator as functions of neutrino energy and Bjorken-x. MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino

  12. Quasi-Elastic Scattering with Neutrinos in MINERvA

    NASA Astrophysics Data System (ADS)

    Osta, Jyotsna; Hurtado, Kenyi; Minerva Collaboration

    2014-09-01

    MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments as well as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present preliminary results from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the phase space of the muon transverse and longitudinal momenta. This analysis uses the low energy neutrino dataset recorded from November 2009 to April 2012.

  13. Hadronic energy flow in charged-current neutrino scattering

    NASA Astrophysics Data System (ADS)

    Kinnel, Timothy Scott

    1998-11-01

    We investigate hadronic energy flow in charged-current deep-inelastic scattering, using neutrinos of 30-600 GeV incident on a steel target with a fiducial mass of 625 tonnes. The target was instrumented with flash ADC- readout drift chambers which enabled us to measure the characteristic transverse energy depositions of the shower. In a data sample containing both neutrinos and antineutrinos, we observe /langle pT2/rangle and the transverse energy of the shower to increase with W2 and log Q2. Our observations, which are in a heretofore untested kinematic region for neutrino scattering, are consistent with QCD predictions.

  14. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    SciTech Connect

    Tice, Brian George

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  15. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  16. Optical scattering lengths in large liquid-scintillator neutrino detectors

    SciTech Connect

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J.; Lachenmaier, T.; Traunsteiner, C.; Undagoitia, T. Marrodan

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  17. Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra.

    PubMed

    Langanke, K; Martínez-Pinedo, G; Müller, B; Janka, H-Th; Marek, A; Hix, W R; Juodagalvis, A; Sampaio, J M

    2008-01-11

    Based on the shell model for Gamow-Teller and the random phase approximation for forbidden transitions, we calculate cross sections for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by nuclear statistical equilibrium. The cross sections are incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.

  18. Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra

    SciTech Connect

    Langanke, K.; Martinez-Pinedo, G.; Mueller, B.; Janka, H.-Th.; Marek, A.; Hix, W. R.; Juodagalvis, A.; Sampaio, J. M.

    2008-01-11

    Based on the shell model for Gamow-Teller and the random phase approximation for forbidden transitions, we calculate cross sections for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by nuclear statistical equilibrium. The cross sections are incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.

  19. Neutrino scattering rates in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Guo Hua; Liu Yuxin

    2007-03-15

    We take the {delta}-isobar degrees of freedom into account in neutron star matter and evaluate their contributions to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an effective hadronic model in the relativistic mean-field approximation. It is found that {delta} isobars may be present in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase with the increase of the density when neutrinos are trapped in the matter with {delta} isobars. The large vector coupling constant between the {delta}{sup -} and neutrino and the high spin of the {delta} influence significantly the neutrino scattering cross section and lead the contribution of the {delta}{sup -} to the dominance of the scattering rates. In neutrino-trapped case, the presence of {delta}s causes the neutrino mean free path to decrease drastically compared to that in the matter in which baryons are only nucleons.

  20. Viability of {delta}m{sup 2}{approx}1 eV{sup 2} sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines

    SciTech Connect

    Karagiorgi, G.; Conrad, J. M.; Djurcic, Z.; Shaevitz, M. H.; Sorel, M.

    2009-10-01

    This paper examines sterile neutrino oscillation models in light of recently published results from the MiniBooNE Experiment. The new MiniBooNE data include the updated neutrino results, including the low-energy region, and the first antineutrino results, as well as first results from the off-axis NuMI beam observed in the MiniBooNE detector. These new global fits also include data from LSND, KARMEN, NOMAD, Bugey, CHOOZ, CCFR84, and CDHS. Constraints from atmospheric oscillation data have been imposed. We test the validity of the three-active plus one-sterile (3+1) and two-sterile (3+2) oscillation hypotheses, and we estimate the allowed range of fundamental neutrino oscillation parameters in each case. We assume CPT-invariance throughout. However, in the case of (3+2) oscillations, CP violation is allowed. We find that, with the addition of the new MiniBooNE data sets, a (3+2) oscillation hypothesis provides only a marginally better description of all short-baseline data over a (3+1) oscillation hypothesis. In the case of (3+2) CP-violating models, we obtain good {chi}{sup 2}-probabilities in general due to the large number of fit parameters. However, we find large incompatibilities among appearance and disappearance experiments, consistent with previous analyses. Aside from LSND, the data sets responsible for this tension are the MiniBooNE neutrino data set, CDHS, and the atmospheric constraints. In addition, new incompatibilities are found between the appearance experiments themselves (MiniBooNE, LSND, KARMEN and NOMAD), independent of CP-violation assumptions. On the other hand, fits to antineutrino-only data sets, including appearance and disappearance experiments, are found significantly more compatible, even within a (3+1) oscillation scenario.

  1. Viability of Δm2˜1eV2 sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines

    NASA Astrophysics Data System (ADS)

    Karagiorgi, G.; Djurcic, Z.; Conrad, J. M.; Shaevitz, M. H.; Sorel, M.

    2009-10-01

    This paper examines sterile neutrino oscillation models in light of recently published results from the MiniBooNE Experiment. The new MiniBooNE data include the updated neutrino results, including the low-energy region, and the first antineutrino results, as well as first results from the off-axis NuMI beam observed in the MiniBooNE detector. These new global fits also include data from LSND, KARMEN, NOMAD, Bugey, CHOOZ, CCFR84, and CDHS. Constraints from atmospheric oscillation data have been imposed. We test the validity of the three-active plus one-sterile (3+1) and two-sterile (3+2) oscillation hypotheses, and we estimate the allowed range of fundamental neutrino oscillation parameters in each case. We assume CPT-invariance throughout. However, in the case of (3+2) oscillations, CP violation is allowed. We find that, with the addition of the new MiniBooNE data sets, a (3+2) oscillation hypothesis provides only a marginally better description of all short-baseline data over a (3+1) oscillation hypothesis. In the case of (3+2) CP-violating models, we obtain good χ2-probabilities in general due to the large number of fit parameters. However, we find large incompatibilities among appearance and disappearance experiments, consistent with previous analyses. Aside from LSND, the data sets responsible for this tension are the MiniBooNE neutrino data set, CDHS, and the atmospheric constraints. In addition, new incompatibilities are found between the appearance experiments themselves (MiniBooNE, LSND, KARMEN and NOMAD), independent of CP-violation assumptions. On the other hand, fits to antineutrino-only data sets, including appearance and disappearance experiments, are found significantly more compatible, even within a (3+1) oscillation scenario.

  2. Neutrino-Nucleon Deep Inelastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; Minerva Collaboration

    2015-04-01

    Neutrino-Nucleon Deep Inelastic Scattering (DIS) events provide a probe into the structure of the nucleus that cannot be accessed via charged lepton-nucleon interactions. The MINERvA experiment is stationed in the Neutrinos from the Main Injector (NuMI) beam line at Fermi National Accelerator Laboratory. The projected sensitivity of nuclear structure function analyses using MINERvA's suite of nuclear targets (C, CH, Fe and Pb) in the upgraded 6 GeV neutrino energy NuMI beam will be explored, and their impact discussed.

  3. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  4. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  5. CosI: Coherent Neutrino Scattering with Cesium Iodide

    NASA Astrophysics Data System (ADS)

    Fields, Nicole; Collar, Juan; Hossbach, Todd; Orrell, John; Perumpilly, Gopakumar

    2014-03-01

    Coherent neutrino scattering is a process predicted by the standard model of particle physics that has not yet been observed. For low enough energy neutrinos, O (10 MeV , their scattering cross section is predicted to increase with the square of the number of neutrons in a nucleus. Several difficulties must be overcome in order to observe coherent neutrino scattering, including finding a high-intensity source of these medium-energy neutrinos, a detector with a low enough threshold, and a low enough background. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a convenient source of medium-energy neutrinos and has the added benefit of a neutrino source with known time structure. CsI(Na) is an inorganic scintillator with a relatively high light yield of 39,000 photons/MeV and its emission spectrum is well matched with commonly used biakali photomultiplier tubes (PMTs). Background measurements of a 2 kg CsI(Na) crystal show that these crystals can be grown and encapsulated in a radioclean way.

  6. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  7. Charged current neutrino scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Ransome, R. D.; Minerva Collaboration

    2012-09-01

    MINERvA is a neutrino detector in the NuMI beamline of FNAL, with a central fully active scintillator detector and targets of iron, lead, carbon, water, and LHe upstream of the central detection region. MINERvA began operations in late 2009 with a partially compete detector and has been fully operational since early 2010. Data have been taken with both neutrino and anti-neutrino beams. The objective is to measure inclusive and exclusive cross sections for neutrino-nuclear interactions with unprecedented statistics and detail off a wide range of nuclear targets. We will present preliminary results for ratios of Pb/Fe/scintillator inclusive and charged current quasi-elastic scattering kinematic distributions.

  8. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  9. Coherent Elastic Neutrino Nucleus Scattering (CENNS) Experiment at the Fermilab Booster Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Tayloe, Rex; Cenns Collaboration

    2015-04-01

    The coherent elastic neutrino-nucleus scattering (CENNS) process is important to understand supernovae, nuclear form factors, and low-energy behavior of the Standard Model. It will also become more important as a background in direct-detection dark matter experiments. The process has yet to be observed because of the low-energy detection thresholds and neutron background reduction required. Recent advances in cryogenic detector technology now make it possible. The CENNS collaboration proposes to deploy a 1-ton-scale, single-phase, liquid argon scintillation detector near the Fermilab Booster Neutrino Beam (BNB) for a first measurement. A detector near the neutrino production target at 90 degrees off-axis will observe a low-energy flux of 10-50 MeV stopped-pion neutrinos for CENNS. The details of this effort including prototype detectors and neutron background measurements will be presented.

  10. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  11. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-10-01

    MINERvA part 3. The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview and status of the analysis for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  12. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-03-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  13. Meson Productions in Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. This is an extension of the DCC model that we have previously developed through an analysis of πN, γp → πN, ηN, KΛ, KΣ reaction data for W ≤ 2.1 GeV. The vector current form factors up to Q2 ≤ 3.0 (GeV/c)2 are determined by analyzing electron-induced reaction data for both proton and neutron targets. Within the DCC model, axial-current matrix elements and the πN interactions are related by the Partially Conserved Axial Current (PCAC). As a result, the interference pattern between resonant and non-resonant amplitudes is uniquely fixed. We find that neutrino-induced single-pion production cross sections from the DCC model are consistent with available data. Double-pion production cross sections in the resonance region are also calculated, for the first time, with relevant resonance contributions and channel couplings.

  14. Sensitivity to Z -prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Mahapatra, Rupak; Strigari, Louis E.; Walker, Joel W.

    2016-01-01

    We discuss prospects for probing Z -prime and nonstandard neutrino interactions using neutrino-nucleus coherent scattering with ultralow energy (˜10 eV ) threshold Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and referencing available technology based upon economical and scalable detector arrays. For expected exposures, we show that sensitivity to the Z -prime mass is on the order of several TeV and is complementary to the LHC search with low-mass detectors in the near term. This technology is also shown to provide sensitivity to the neutrino magnetic moment, at a level that surpasses terrestrial limits, and is competitive with more stringent astrophysical bounds. We demonstrate the benefits of combining silicon and germanium detectors for distinguishing between classes of models of new physics and for suppressing correlated systematic uncertainties.

  15. Neutrino scattering on atomic electrons in searches for the neutrino magnetic moment.

    PubMed

    Voloshin, M B

    2010-11-12

    The scattering of a neutrino on atomic electrons is considered in the situation where the energy transferred to the electrons is comparable to the characteristic atomic energies, as relevant to the current experimental search for the neutrino magnetic moment. The process is induced by the standard electroweak interaction as well as by the possible neutrino magnetic moment. Quantum-mechanical sum rules are derived for the inclusive cross section at a fixed energy deposited in the atomic system, and it is shown that the differential over the energy transfer cross section is given, modulo very small corrections, by the same expression as for free electrons, once all possible final states of the electronic system are taken into account. Thus, the atomic effects effectively cancel in the inclusive process.

  16. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    NASA Astrophysics Data System (ADS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T. J.; Cesar, J.; Cushman, P.; Dent, J. B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H. R.; Hays, C. C.; Iyer, V.; Jastram, A.; Kadribasic, F.; Kennedy, A.; Kubik, A.; Lang, K.; Mahapatra, R.; Mandic, V.; Marianno, C.; Martin, R. D.; Mast, N.; McDeavitt, S.; Mirabolfathi, N.; Mohanty, B.; Nakajima, K.; Newhouse, J.; Newstead, J. L.; Ogawa, I.; Phan, D.; Proga, M.; Rajput, A.; Roberts, A.; Rogachev, G.; Salazar, R.; Sander, J.; Senapati, K.; Shimada, M.; Soubasis, B.; Strigari, L.; Tamagawa, Y.; Teizer, W.; Vermaak, J. I. C.; Villano, A. N.; Walker, J.; Webb, B.; Wetzel, Z.; Yadavalli, S. A.

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5-20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  17. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE PAGES

    Li, Yi; Liou, M. K.; Schreiber, W. M.; ...

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  18. Quark Models of Duality in Electron and Neutrino Scattering

    SciTech Connect

    Wally Melnitchouk

    2006-02-01

    Results of recent analyses of electromagnetic structure functions in the resonance region suggest that duality-violating higher twists are small above Q^2 ~ 1 GeV^2. We analyze the systematics of local duality within a quark model framework for various modes of spin-flavor symmetry breaking. On the basis of these models we discuss expectations for the workings of duality in neutrino scattering.

  19. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  20. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  1. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  2. Exact expressions and improved approximations for interaction rates of neutrinos with free nucleons in a high-temperature, high-density gas

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.

    1990-01-01

    The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.

  3. Exact expressions and improved approximations for interaction rates of neutrinos with free nucleons in a high-temperature, high-density gas

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.

    1990-01-01

    The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.

  4. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.; SNO Collaboration

    1999-12-01

    The Sudbury Neutrino Observatory (SNO) is a 1,000 tonne heavy water Cerenkov detector situated 2,000 meters underground in INCO's Creighton mine near Sudbury, Ontario, Canada. The project is a Canadian, US and UK collaboration. Through the use of heavy water SNO will be able to detect a number of neutrino reactions, including one sensitive specifically to solar electron neutrinos and another to all active neutrino types. With these two reactions the detector will be able to search for neutrino flavor change without the requirement of electron neutrino flux normalization by solar model calculations. It will have a relatively high counting rate, on the order of 10 per day for solar neutrinos, and will also provide unusual sensitivity for measurements of other solar neutrino properties, atmospheric neutrinos and suprenova neutrinos. For supernova neutrinos, SNO will have high sensitivity for muon and tau neutrinos and anti-neutrinos as well as specific sensitivity for electron neutrinos and anti-neutrinos. It will have excellent timing and moderate directional sensitivity. The observatory has been in almost continuous operation since May, 1999. SNO Collaboration: Queen's University, University of British Columbia, CRPP at Carleton University, University of Guelph, Laurentian University, Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Pennsylvania, University of Washington, Oxford University.

  5. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-07-01

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the /4σ level, in favour of neutrino oscillations.

  6. Measurement of the Solar Neutrino Energy Spectrum Using Neutrino-Electron Scattering

    SciTech Connect

    Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Nakahata, M.; Nakayama, S.; Okada, A.; Okumura, K.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; .Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Kearns, E.; Messier, M.D.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.; Goldhaber, M.; Barszczak, T.; Casper, D.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Haines, T.J.; Kielczewska, D.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Mine, S.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A.T.; Haines, T.J.; and others

    1999-03-01

    A measurement of the energy spectrum of recoil electrons from solar neutrino scattering in the Super-Kamiokande detector is presented. The results shown here were obtained from 504 days of data taken between 31 May 1996 and 25 March 1998. The shape of the measured spectrum is compared with the expectation for solar {sup 8}B neutrinos. The comparison takes into account both kinematic and detector related effects in the measurement process. The spectral shape comparison between the observation and the expectation gives a {chi}{sup 2} of 25.3 with 15 degrees of freedom, corresponding to a 4.6{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society}

  7. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-01

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering N N ν ν ¯ (n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ ) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated N N ν ν ¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an one-pion-exchange (OPE) model. Purpose: We investigate the free N N ν ν ¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Method: We employ a realistic one-boson-exchange (ROBE) model for N N scattering and combine those strong scattering amplitudes with the well-known nucleon weak interaction vertices to construct weak bremsstrahlung amplitudes. Using the resulting N N ν ν ¯ amplitudes we investigate the relative importance of the vector (ΓVμ) , axial vector (ΓAμ) , and tensor (ΓTμ) terms. The ROBE model bremsstrahlung amplitudes are also used as a two-nucleon dynamical model with which we calculate the cross sections d/σ d ω for n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Results: The three free N N ν ν ¯ cross sections d/σ d ω are of similar order of magnitude. Each increases with increasing neutrino-pair energy ω . For the neutrino-pair energy of ω =1 MeV our n n ν ν ¯ results are in quantitative agreement with those previously reported by Timmermans et al. [Phys. Rev. C 65, 064007 (2002), 10.1103/PhysRevC.65.064007], who used the leading-order term of the soft-neutrino-pair bremsstrahlung amplitude to calculate the cross sections. Differences between the n n ν ν ¯ and p p ν ν ¯ cross section are not discernible over the nucleon-nucleon incident energy region considered, due to the

  8. Constraints on dark photon from neutrino-electron scattering experiments

    NASA Astrophysics Data System (ADS)

    Bilmiş, S.; Turan, I.; Aliev, T. M.; Deniz, M.; Singh, L.; Wong, H. T.

    2015-08-01

    A possible manifestation of an additional light gauge boson A', named a dark photon, associated with a group U (1 )B -L , is studied in neutrino-electron scattering experiments. The exclusion plot on the coupling constant gB -L and the dark photon mass MA' is obtained. It is shown that the contributions of interference terms between the dark photon and the Standard Model are important. The interference effects are studied and compared with data sets from TEXONO, GEMMA, BOREXINO, and LSND, as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.

  9. Generalized mass ordering degeneracy in neutrino oscillation experiments

    DOE PAGES

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrinomore » NC scattering experiments.« less

  10. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  11. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  12. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Duncan, Fraser; SNO Collaboration

    2000-12-01

    Located 2,000 meters below the surface of the earth in the Creighton Nickel Mine near Sudbury, Ontario, Canada, is the Sudbury Neutrino Observatory (SNO). Operational for almost a year now, SNO is a 1000 tonne heavy water Cerenkov detector designed to observe solar neutrinos. The use of heavy water allows SNO to detect neutrinos with an interaction sensitive only to electron neutrinos and with another interaction that is sensitive to all neutrino flavors. SNO's unique ability to separately measure the total solar neutrino flux and electron neutrino fluxes allows the experiment to make a search for flavor oscillations in solar neutrinos in a model independent fashion. The status of the experiment will be described.

  13. Anti-Neutrino Quasi-Elastic Scattering at MINERvA

    NASA Astrophysics Data System (ADS)

    Maher, Emily

    2012-10-01

    Quasi-elastic neutrino scattering provides a means of measuring the axial form factor of the nucleon, and is a valuable tool for determining the neutrino beam energy in oscillation experiments. There are disagreements between measurements for neutrino energies below 1 GeV on scintillator and those at higher energies. MINERvA provides a bridge between the two regimes. Preliminary results for charge current quasi-elastic scattering results for anti-neutrinos (νμ+ p ->&+circ;+ n) on scintillator will be presented.

  14. Probing neutrino nature at Borexino detector with chromium neutrino source

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-10-01

    In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

  15. Projections for Measuring the Size of the Solar Core with Neutrino-Electron Scattering.

    PubMed

    Davis, Jonathan H

    2016-11-18

    We quantify the amount of data needed in order to measure the size and position of the ^{8}B neutrino production region within the solar core, for experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos; however, this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different neutrino production profiles, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that with approximately 20 years worth of data the Super Kamiokande experiment could constrain the central radius of the shell in which ^{8}B neutrinos are produced to be less than 0.22 of the total solar radius at 95% confidence.

  16. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  17. Charged-current neutrino-nucleus scattering off 95,97Mo

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Suhonen, J.

    2013-03-01

    Background: Reliable cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for various applications in neutrino physics and astrophysics (e.g., supernova mechanisms). Studies of the nuclear responses for the stable molybdenum isotopes are of great interest for the planned MOON (Mo Observatory of Neutrinos) experiment.Purpose: The purpose of the present work is, thus, to perform a detailed study of the charged-current nuclear responses to supernova neutrinos for the stable odd molybdenum isotopes. A special effort will be devoted to discuss in detail the structures of the most relevant final states in the corresponding proton-odd nucleus.Method: The cross sections are computed by using the well-established framework for studies of semileptonic processes in nuclei developed by Donnelly and Walecka. The nuclear wave functions of the initial and the final nuclear states are computed by using the microscopic quasiparticle-phonon model. The nuclear responses to supernova neutrinos are subsequently estimated by folding the cross sections with realistic energy profiles for the incoming neutrinos.Results: We present results for the cross sections of the charged-current neutrino and antineutrino scatterings off 95Mo and 97Mo. Nuclear responses to supernova neutrinos (both nonoscillating and oscillating ones) are also given. The inclusion of neutrino oscillations enhances significantly the neutrino and antineutrino cross sections.Conclusions: We have found that the most important transitions are the Gamow-Teller-like ones which are mediated by the 1+ multipole. Furthermore, the three-quasiparticle degrees of freedom are essential in order to describe quantitatively the neutrino-nucleus scattering off odd open-shell nuclei.

  18. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Saleem, M.; Aleem, F.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  19. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Aleem, F.

    1985-08-01

    An analytic expression for the neutrino charged current structure function F2 (x, Q2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  20. Electroweak radiative corrections to neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo

    The main subject of this thesis is to study the impact of electroweak O (alpha) corrections on neutrino-nucleon scattering processes, in particular on the extraction of electroweak parameters at the NuTeV experiment. The Standard Model (SM) represents the best current understanding of electroweak and strong interactions of elementary particles. In recent years it has been impressively confirmed experimentally through the precise determination of W and Z boson properties at the CERN LEP and the Stanford Linear e+e - colliders, and the discovery of the top quark at the Fermilab Tevatron pp collider. The W boson mass (MW) is one of the fundamental parameters in electroweak theory. A precise measurement of MW does not only provide a further precisely known SM input parameter, but significantly improves the indirect limit on the Higgs-boson mass obtained by comparing SM predictions with electroweak precision data. MW is measured directly at the CERN LEP2 e+e- and the Fermilab Tevatron pp colliders. A measurement of MW can also be extracted from a measurement of the sine squared of the weak mixing angle, i.e. sin 2 thetaW, via the well-known relation between the W and Z boson mass, M2W=M2Z (1 - sin2 thetaW). The NuTeV collaboration [20] extracts sin2 theta W, and thus MW, from the ratio of neutral and charged-current neutrino and anti-neutrino cross sections. Their result differs from direct measurements performed at LEP2 and the Fermilab Tevatron by about 3sigma. Much effort both experimental and theoretical has gone into understanding this discrepancy. These efforts include QCD corrections, parton distribution functions, and nuclear structure [21]. However, the effect of electroweak radiative corrections has not been fully studied yet. In the extraction of MW from NuTeV data, only part of the electroweak corrections have been included [20]. Although the complete calculation of these corrections is available in [17] and [18], their impact on the NuTeV measurement of MW

  1. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  2. The MINERvA Neutrino Scattering Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Schmitz, David W.

    2011-11-01

    The MINERνA experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINERνA makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  3. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    SciTech Connect

    Chvojka, Jesse John

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  4. Detailed study of the neutral-current neutrino-nucleus scattering off the stable Mo isotopes

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Balasi, K. G.; Kosmas, T. S.; Suhonen, J.

    2012-12-01

    For neutrino detection and for various applications in astrophysics the knowledge of the nuclear responses to astrophysical neutrinos is crucial. Recent studies of neutrino interactions with the 100Mo nucleus and the other stable molybdenum isotopes are important for the planned MOON (Mo Observatory of Neutrinos) detector. To this aim, in the present work we perform detailed nuclear structure calculations for the neutral-current neutrino-nucleus scattering off the stable molybdenum isotopes. We focus on the differential and total neutrino-nucleus cross sections as well as on flux averaged cross sections to various supernova neutrino spectra. We also propose a more efficient method for the computations of the corresponding nuclear matrix elements. By employing this method we extend our previous calculations for the odd isotopes (95Mo and 97Mo) where also couplings to high-lying QRPA (quasiparticle random-phase approximation) phonons are included in the quasiparticle-phonon basis. It is established in this work that the inclusion of high-lying QRPA excitations are essential for the description of the neutrino-nucleus scattering off open-shell odd-mass nuclei.

  5. Nonadiabatic three-neutrino oscillations in matter

    SciTech Connect

    DOlivo, J.C.; Oteo, J.A.

    1996-07-01

    Oscillations of three neutrinos in matter are analyzed by using the Magnus expansion for the time-evolution operator. We derive a simple expression for the electron-neutrino survival probability which is applied to the examination of the effect of a third neutrino on the nonadiabatic flavor transformations. {copyright} {ital 1996 The American Physical Society.}

  6. Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Wu, Xiao-Hong; Zhou, Hang

    2014-05-01

    In a previous work, we showed that it is possible to detect keV scale sterile neutrino dark matter νs in a β decay experiment using radioactive sources such as T3 or Ru106. The signals of this dark matter candidate are monoenergetic electrons produced in the neutrino capture process νs+ N'→N+e-. These electrons have energy greater than the maximum energy of the electrons produced in the associated decay process N'→N+e-+ν ¯e. Hence, signal electron events are well beyond the end point of the β decay spectrum and are not polluted by the β decay process. Another possible background, which is a potential threat to the detection of νs dark matter, is the electron event produced by the scattering of solar neutrinos with electrons in target matter. In this article, we study in detail this possible background and discuss its implications for the detection of keV scale sterile neutrino dark matter. In particular, bound state features of electrons in Ru atoms are considered with care in the scattering process when the kinetic energy of the final electron is the same order of magnitude of the binding energy.

  7. Anti-Neutrino Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Chvojka, Jesse; Minerva Collaboration

    2011-04-01

    We present recent measurements of anti-neutrino quasi-elastic scattering (nubar_mu+p- >mu+n) at energies of a few GeV which is an important interaction channel and energy range for measuring leptonic CP violation with neutrino oscillation. The interactions were observed in the NuMI beam at Fermilab by the MINERvA detector. We discuss sample selection and reconstruction techniques and show data and simulation comparisons.

  8. First Measurement of Electron Neutrino Appearance in NOvA.

    PubMed

    Adamson, P; Ader, C; Andrews, M; Anfimov, N; Anghel, I; Arms, K; Arrieta-Diaz, E; Aurisano, A; Ayres, D S; Backhouse, C; Baird, M; Bambah, B A; Bays, K; Bernstein, R; Betancourt, M; Bhatnagar, V; Bhuyan, B; Bian, J; Biery, K; Blackburn, T; Bocean, V; Bogert, D; Bolshakova, A; Bowden, M; Bower, C; Broemmelsiek, D; Bromberg, C; Brunetti, G; Bu, X; Butkevich, A; Capista, D; Catano-Mur, E; Chase, T R; Childress, S; Choudhary, B C; Chowdhury, B; Coan, T E; Coelho, J A B; Colo, M; Cooper, J; Corwin, L; Cronin-Hennessy, D; Cunningham, A; Davies, G S; Davies, J P; Del Tutto, M; Derwent, P F; Deepthi, K N; Demuth, D; Desai, S; Deuerling, G; Devan, A; Dey, J; Dharmapalan, R; Ding, P; Dixon, S; Djurcic, Z; Dukes, E C; Duyang, H; Ehrlich, R; Feldman, G J; Felt, N; Fenyves, E J; Flumerfelt, E; Foulkes, S; Frank, M J; Freeman, W; Gabrielyan, M; Gallagher, H R; Gebhard, M; Ghosh, T; Gilbert, W; Giri, A; Goadhouse, S; Gomes, R A; Goodenough, L; Goodman, M C; Grichine, V; Grossman, N; Group, R; Grudzinski, J; Guarino, V; Guo, B; Habig, A; Handler, T; Hartnell, J; Hatcher, R; Hatzikoutelis, A; Heller, K; Howcroft, C; Huang, J; Huang, X; Hylen, J; Ishitsuka, M; Jediny, F; Jensen, C; Jensen, D; Johnson, C; Jostlein, H; Kafka, G K; Kamyshkov, Y; Kasahara, S M S; Kasetti, S; Kephart, K; Koizumi, G; Kotelnikov, S; Kourbanis, I; Krahn, Z; Kravtsov, V; Kreymer, A; Kulenberg, Ch; Kumar, A; Kutnink, T; Kwarciancy, R; Kwong, J; Lang, K; Lee, A; Lee, W M; Lee, K; Lein, S; Liu, J; Lokajicek, M; Lozier, J; Lu, Q; Lucas, P; Luchuk, S; Lukens, P; Lukhanin, G; Magill, S; Maan, K; Mann, W A; Marshak, M L; Martens, M; Martincik, J; Mason, P; Matera, K; Mathis, M; Matveev, V; Mayer, N; McCluskey, E; Mehdiyev, R; Merritt, H; Messier, M D; Meyer, H; Miao, T; Michael, D; Mikheyev, S P; Miller, W H; Mishra, S R; Mohanta, R; Moren, A; Mualem, L; Muether, M; Mufson, S; Musser, J; Newman, H B; Nelson, J K; Niner, E; Norman, A; Nowak, J; Oksuzian, Y; Olshevskiy, A; Oliver, J; Olson, T; Paley, J; Pandey, P; Para, A; Patterson, R B; Pawloski, G; Pearson, N; Perevalov, D; Pershey, D; Peterson, E; Petti, R; Phan-Budd, S; Piccoli, L; Pla-Dalmau, A; Plunkett, R K; Poling, R; Potukuchi, B; Psihas, F; Pushka, D; Qiu, X; Raddatz, N; Radovic, A; Rameika, R A; Ray, R; Rebel, B; Rechenmacher, R; Reed, B; Reilly, R; Rocco, D; Rodkin, D; Ruddick, K; Rusack, R; Ryabov, V; Sachdev, K; Sahijpal, S; Sahoo, H; Samoylov, O; Sanchez, M C; Saoulidou, N; Schlabach, P; Schneps, J; Schroeter, R; Sepulveda-Quiroz, J; Shanahan, P; Sherwood, B; Sheshukov, A; Singh, J; Singh, V; Smith, A; Smith, D; Smolik, J; Solomey, N; Sotnikov, A; Sousa, A; Soustruznik, K; Stenkin, Y; Strait, M; Suter, L; Talaga, R L; Tamsett, M C; Tariq, S; Tas, P; Tesarek, R J; Thayyullathil, R B; Thomsen, K; Tian, X; Tognini, S C; Toner, R; Trevor, J; Tzanakos, G; Urheim, J; Vahle, P; Valerio, L; Vinton, L; Vrba, T; Waldron, A V; Wang, B; Wang, Z; Weber, A; Wehmann, A; Whittington, D; Wilcer, N; Wildberger, R; Wildman, D; Williams, K; Wojcicki, S G; Wood, K; Xiao, M; Xin, T; Yadav, N; Yang, S; Zadorozhnyy, S; Zalesak, J; Zamorano, B; Zhao, A; Zirnstein, J; Zwaska, R

    2016-04-15

    We report results from the first search for ν_{μ}→ν_{e} transitions by the NOvA experiment. In an exposure equivalent to 2.74×10^{20} protons on target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99±0.11(syst) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07±0.14(syst). The 3.3σ excess of events observed in the primary analysis disfavors 0.1π<δ_{CP}<0.5π in the inverted mass hierarchy at the 90% C.L.

  9. First Measurement of Electron Neutrino Appearance in NOvA

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Ader, C.; Andrews, M.; Anfimov, N.; Anghel, I.; Arms, K.; Arrieta-Diaz, E.; Aurisano, A.; Ayres, D. S.; Backhouse, C.; Baird, M.; Bambah, B. A.; Bays, K.; Bernstein, R.; Betancourt, M.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Blackburn, T.; Bocean, V.; Bogert, D.; Bolshakova, A.; Bowden, M.; Bower, C.; Broemmelsiek, D.; Bromberg, C.; Brunetti, G.; Bu, X.; Butkevich, A.; Capista, D.; Catano-Mur, E.; Chase, T. R.; Childress, S.; Choudhary, B. C.; Chowdhury, B.; Coan, T. E.; Coelho, J. A. B.; Colo, M.; Cooper, J.; Corwin, L.; Cronin-Hennessy, D.; Cunningham, A.; Davies, G. S.; Davies, J. P.; Del Tutto, M.; Derwent, P. F.; Deepthi, K. N.; Demuth, D.; Desai, S.; Deuerling, G.; Devan, A.; Dey, J.; Dharmapalan, R.; Ding, P.; Dixon, S.; Djurcic, Z.; Dukes, E. C.; Duyang, H.; Ehrlich, R.; Feldman, G. J.; Felt, N.; Fenyves, E. J.; Flumerfelt, E.; Foulkes, S.; Frank, M. J.; Freeman, W.; Gabrielyan, M.; Gallagher, H. R.; Gebhard, M.; Ghosh, T.; Gilbert, W.; Giri, A.; Goadhouse, S.; Gomes, R. A.; Goodenough, L.; Goodman, M. C.; Grichine, V.; Grossman, N.; Group, R.; Grudzinski, J.; Guarino, V.; Guo, B.; Habig, A.; Handler, T.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Howcroft, C.; Huang, J.; Huang, X.; Hylen, J.; Ishitsuka, M.; Jediny, F.; Jensen, C.; Jensen, D.; Johnson, C.; Jostlein, H.; Kafka, G. K.; Kamyshkov, Y.; Kasahara, S. M. S.; Kasetti, S.; Kephart, K.; Koizumi, G.; Kotelnikov, S.; Kourbanis, I.; Krahn, Z.; Kravtsov, V.; Kreymer, A.; Kulenberg, Ch.; Kumar, A.; Kutnink, T.; Kwarciancy, R.; Kwong, J.; Lang, K.; Lee, A.; Lee, W. M.; Lee, K.; Lein, S.; Liu, J.; Lokajicek, M.; Lozier, J.; Lu, Q.; Lucas, P.; Luchuk, S.; Lukens, P.; Lukhanin, G.; Magill, S.; Maan, K.; Mann, W. A.; Marshak, M. L.; Martens, M.; Martincik, J.; Mason, P.; Matera, K.; Mathis, M.; Matveev, V.; Mayer, N.; McCluskey, E.; Mehdiyev, R.; Merritt, H.; Messier, M. D.; Meyer, H.; Miao, T.; Michael, D.; Mikheyev, S. P.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mufson, S.; Musser, J.; Newman, H. B.; Nelson, J. K.; Niner, E.; Norman, A.; Nowak, J.; Oksuzian, Y.; Olshevskiy, A.; Oliver, J.; Olson, T.; Paley, J.; Pandey, P.; Para, A.; Patterson, R. B.; Pawloski, G.; Pearson, N.; Perevalov, D.; Pershey, D.; Peterson, E.; Petti, R.; Phan-Budd, S.; Piccoli, L.; Pla-Dalmau, A.; Plunkett, R. K.; Poling, R.; Potukuchi, B.; Psihas, F.; Pushka, D.; Qiu, X.; Raddatz, N.; Radovic, A.; Rameika, R. A.; Ray, R.; Rebel, B.; Rechenmacher, R.; Reed, B.; Reilly, R.; Rocco, D.; Rodkin, D.; Ruddick, K.; Rusack, R.; Ryabov, V.; Sachdev, K.; Sahijpal, S.; Sahoo, H.; Samoylov, O.; Sanchez, M. C.; Saoulidou, N.; Schlabach, P.; Schneps, J.; Schroeter, R.; Sepulveda-Quiroz, J.; Shanahan, P.; Sherwood, B.; Sheshukov, A.; Singh, J.; Singh, V.; Smith, A.; Smith, D.; Smolik, J.; Solomey, N.; Sotnikov, A.; Sousa, A.; Soustruznik, K.; Stenkin, Y.; Strait, M.; Suter, L.; Talaga, R. L.; Tamsett, M. C.; Tariq, S.; Tas, P.; Tesarek, R. J.; Thayyullathil, R. B.; Thomsen, K.; Tian, X.; Tognini, S. C.; Toner, R.; Trevor, J.; Tzanakos, G.; Urheim, J.; Vahle, P.; Valerio, L.; Vinton, L.; Vrba, T.; Waldron, A. V.; Wang, B.; Wang, Z.; Weber, A.; Wehmann, A.; Whittington, D.; Wilcer, N.; Wildberger, R.; Wildman, D.; Williams, K.; Wojcicki, S. G.; Wood, K.; Xiao, M.; Xin, T.; Yadav, N.; Yang, S.; Zadorozhnyy, S.; Zalesak, J.; Zamorano, B.; Zhao, A.; Zirnstein, J.; Zwaska, R.; NOvA Collaboration

    2016-04-01

    We report results from the first search for νμ→νe transitions by the NOvA experiment. In an exposure equivalent to 2.74 ×1020 protons on target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99 ±0.11 (syst) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07 ±0.14 (syst) . The 3.3 σ excess of events observed in the primary analysis disfavors 0.1 π <δC P<0.5 π in the inverted mass hierarchy at the 90% C.L.

  10. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  11. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGES

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  12. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    SciTech Connect

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  13. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    SciTech Connect

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  14. Neutrino scattering off the stable even-even Mo isotopes

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.

    2009-11-01

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo92, Mo94, Mo96, Mo98 and Mo100. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III).

  15. Neutrino scattering from hydrodynamic modes in hot and dense neutron matter

    NASA Astrophysics Data System (ADS)

    Shen, Gang; Reddy, Sanjay

    2014-03-01

    We calculate the scattering rate of low-energy neutrinos in hot and dense neutron matter encountered in neutrons stars and supernovae in the hydrodynamic regime. We find that the Brillouin peak, associated with the sound mode, and the Rayleigh peak, associated with the thermal diffusion mode, dominate the dynamic structure factor. Although the total scattering cross section is constrained by the compressibility sum rule, the differential cross section calculated using the hydrodynamic response function differs from results obtained in approximate treatments often used in astrophysics such as random phase approximations. We identified these differences and discuss their implications for neutrino transport in supernovae.

  16. Why black hole production in scattering of cosmic ray neutrinos is generically suppressed.

    PubMed

    Stojkovic, Dejan; Starkman, Glenn D; Dai, De-Chang

    2006-02-03

    It has been argued that neutrinos originating from ultrahigh energy cosmic rays can produce black holes deep in the atmosphere in models with TeV-scale quantum gravity. Such black-hole events could be observed at the Auger Observatory. However, any phenomenologically viable model with a low scale of quantum gravity must explain how to preserve protons from rapid decay. We argue that the suppression of proton decay will also suppress lepton-nucleon scattering and hence black-hole production by scattering of ultrahigh energy cosmic ray neutrinos in the atmosphere. We discuss explicitly the split fermion solution to the problem of fast proton decay.

  17. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    NASA Astrophysics Data System (ADS)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-01

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  18. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    SciTech Connect

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  19. Agreement of neutrino deep inelastic scattering data with global fits of parton distributions.

    PubMed

    Paukkunen, Hannu; Salgado, Carlos A

    2013-05-24

    The compatibility of neutrino-nucleus deep inelastic scattering data within the universal, factorizable nuclear parton distribution functions has been studied independently by several groups in the past few years. The conclusions are contradictory, ranging from a violation of the universality up to a good agreement, most of the controversy originating from the use of the neutrino-nucleus data from the NuTeV Collaboration. Here, we pay attention to non-negligible differences in the absolute normalization between different neutrino data sets. We find that such variations are large enough to prevent a tensionless fit to all data simultaneously and could therefore misleadingly point towards nonuniversal nuclear effects. We propose a concrete method to deal with the absolute normalization and show that an agreement between independent neutrino data sets is established.

  20. A precise measurement of the weak mixing angle in neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Zeller, Geralyn P.

    This dissertation reports a precise determination of the weak mixing angle, sin2 thetaW, from measurement of the ratios of neutral current to charged current neutrino deep inelastic cross sections. High statistics samples of separately collected neutrino and antineutrino events, resulting from exposure to the Fermilab neutrino beam during the period from 1996 to 1997, allowed the reduction of systematic errors associated with charm production and other sources. The final value, sin 2 thetaW(on shell) = 0.2277 +/- 0.0013 (stat) +/- 0.0009 (syst), lies three standard deviations above the standard model prediction. The measurement is currently the most precise determination of sin2 theta W in neutrino-nucleon scattering, surpassing its predecessors by a factor of two in precision. A model independent analysis recasts the same data into a measurement of effective left and right handed neutral current quark couplings.

  1. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  2. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  3. Neutrino oscillations in the presence of super-light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Divari, Paraskevi; Vergados, John

    2016-07-01

    In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.

  4. Recent advances and open questions in neutrino-induced quasi-elastic scattering and single photon production

    NASA Astrophysics Data System (ADS)

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-01

    The study of neutrino-nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron-nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations. A recent workshop hosted by the Institute of Nuclear Theory at the University of Washington (INT-13-54W) examined experimental and theoretical developments in neutrino-nucleus interactions and related measurements from electron and pion scattering. We summarize the discussions at the workshop pertaining to the aforementioned issues in quasi-elastic scattering and single photon production, particularly where there was consensus on the highest priority issues to be resolved and the path towards resolving them.

  5. Neutrinos

    NASA Astrophysics Data System (ADS)

    Murthy, P. V. R.

    The astrophysics and high energy physics of neutrinos are discussed. The former includes the topics of solar neutrinos, gravitational stellar collapses, neutrinos at high and superhigh energies, and DUMAND and related topics. Experimental results from the Homestake mine chlorine-37 experiment on solar neutrinos are shown. The solar neutrino puzzle is assessed, the economic aspects of DUMAND are discussed, and expectations for related projects are examined. For high energy physics, the discussion includes DUMAND and related projects, neutrino oscillations, the resolution of the puzzles of the measurement of the stopping muon flux and of the cosmic ray event time intervals, and the proton decay experiments.

  6. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    SciTech Connect

    Dorman, Mark Edward

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  7. Heavy quark production in neutrino deep-inelastic scattering

    SciTech Connect

    Johnson, J.A.; Vakili, M.; Wu, V.; Bazarko, A.O.; Conrad, J.M.; Formaggio, J.A.; Kim, J.H.; King, B.J.; Koutsoliotas, S.; McNulty, C.; Mishra, S.R.; Romosan, A.; Sculli, F.J.; Seligman, W.G.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Tamminga, B.M.; Vaitaitis, A.; Bugel, L.; Lamm, M.J.; Marsh, M.; Nienaber, P.; Yu, J.; Alton, A.; Bolton, T.; Goldman, J.; Goncharov, M.; Naples, D.; Buchholz, D.; Harris, D.A.; Schellman, H.M.; Zeller, G.P.; Drucker, R.B.; Frey, R.; Mason, D.; de Barbaro, P.; Bodek, A.; Budd, H.; McFarland, K.S.; Sakumoto, W.K.; Yang, U.K.; Smith, W.H.

    1999-02-01

    Charm production by neutrino charged-current interactions produces two muon (dimuon) events which are easily identified. This signal provides an important method to measure the strange sea and the mass of the charm quark. Several experiments, including CCFR, CDHS and CHARM II, have performed analyses of such events. The results of these analyses are summarized with emphasis on CCFR and improvements made by NuTeV. {copyright} {ital 1999 American Institute of Physics.}

  8. Heavy quark production in neutrino deep-inelastic scattering

    SciTech Connect

    Adams, T.; Alton, A.; Bolton, T.; Goldman, J.; Goncharov, M.; Naples, D.; Arroyo, C. G.; Bazarko, A. O.; Conrad, J. M.; Formaggio, J. A.; Kim, J. H.; King, B. J.; Koutsoliotas, S.; McNulty, C.; Mishra, S. R.; Romosan, A.; Sculli, F. J.; Seligman, W. G.; Shaevitz, M. H.; Spentzouris, P.

    1999-02-17

    Charm production by neutrino charged-current interactions produces two muon (dimuon) events which are easily identified. This signal provides an important method to measure the strange sea and the mass of the charm quark. Several experiments, including CCFR, CDHS and CHARM II, have performed analyses of such events. The results of these analyses are summarized with emphasis on CCFR and improvements made by NuTeV.

  9. Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Gao, Yu; Kubik, Andrew; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E.; Walker, Joel W.

    2016-11-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultralow energy (˜10 - 100 eV ) recoil threshold cryogenic Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references developing technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as about 2 m from the reactor core, and is moreover variable, extending continuously up to a range of about 10 m. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source and environment. With 100 eV sensitivity, for exposures on the order of 200 kg .y , we project an estimated sensitivity to first and fourth neutrino oscillation with a mass gap Δ m2˜1 eV2 at an amplitude sin22 θ ˜10-1, or Δ m2˜0.2 eV2 at unit amplitude. Larger exposures, around 5000 kg .y , together with 10 eV sensitivity are capable of probing more than an additional order of magnitude in amplitude.

  10. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  11. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; Donnelly, T. W.; González-Jiménez, R.; Ivanov, M.; Udías, J. M.

    2015-05-01

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  12. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex

    NASA Astrophysics Data System (ADS)

    Billard, J.; Carr, R.; Dawson, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Gascon, J.; Heine, S. T.; De Jesus, M.; Johnston, J.; Lasserre, T.; Leder, A.; Palladino, K. J.; Sibille, V.; Vivier, M.; Winslow, L.

    2017-10-01

    We present the potential sensitivity of a future recoil detector for a first detection of the process of coherent elastic neutrino nucleus scattering (CEνNS). We use the Chooz reactor complex in France as our luminous source of reactor neutrinos. Leveraging the ability to cleanly separate the rate correlated with the reactor thermal power against (uncorrelated) backgrounds, we show that a 10 kg cryogenic bolometric array with 100 eV threshold should be able to extract a CEνNS signal within one year of running.

  13. A phenomenological study of photon production in low energy neutrino nucleon scattering

    SciTech Connect

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  14. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    SciTech Connect

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-10-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors.

  15. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  16. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  17. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to "see" the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562 keV plus the electron neutrino rest mass. The "KArlsruhe TRItium Neutrino" (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜1.95K) + 3H → 3He + e-(Q = 18.6keV + mνec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  18. Neutrino-nucleon scattering in supernova matter from the virial expansion

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Caballero, O. L.; Lin, Zidu; O'Connor, Evan; Schwenk, A.

    2017-02-01

    We extend our virial approach to study the neutral-current neutrino response of nuclear matter at low densities. In the long-wavelength limit, the virial expansion makes model-independent predictions for neutrino-nucleon scattering rates and the density SV and spin SA responses. We find that SA is significantly reduced from one even at low densities. We provide a simple fit SAf(n ,T ,Yp) of the axial response as a function of density n , temperature T , and proton fraction Yp, which can be incorporated into supernova simulations in a straightforward manner. This fit reproduces our virial results at low densities and the Burrows and Sawyer random-phase approximation (RPA) model calculations at high densities. Preliminary one-dimensional supernova simulations suggest that the virial reduction in the axial response may enhance neutrino heating rates in the gain region during the accretion phase of a core-collapse supernovae.

  19. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  20. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  1. Spectral Study of a Broad Energy HPGe Detector for First Measurement of Coherent Neutrino Scattering

    NASA Astrophysics Data System (ADS)

    Surbrook, Jason; Green, Matthew

    2014-09-01

    Intense neutrino flux at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) in the energy domain below Eν = 50 MeV makes SNS a suitable location for measurement of Coherent Neutrino Scattering. Coherent scattering is assumed to occupy vital roles in supernovae (SN) events and measurement offers promising insight into SN mechanics and advancements in SN- ν detection. Furthermore, this interaction is well-calculable and therefore, a strong test of the Standard Model. P-Type Point Contact High-purity germanium detectors are excellent candidates for this measurement due to their sensitivity to low-energy nuclear recoils. One such, a Canberra Broad Energy HPGe detector, was tested for quality degradation from exposure to fast neutrons in the SNS target building, to assess usefulness in a future coherent scattering experiment. Analysis of the lead-shielded spectra was handled using tools developed for the Majorana Demonstrator neutrinoless double-beta decay experiment. Broad spectrum energy resolution and 68Ge decay rates were calculated. This poster will present findings that will help determine this detector's eligibility and exposure limitations for measurement in a future coherent neutrino scattering experiment at the SNS.

  2. Muon Neutrino Disappearance Measurement at MINOS+

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas; Minos+ Collaboration

    2017-01-01

    The MINOS experiment ran from 2003 until 2012 and produced some of the best precision measurements of the atmospheric neutrino oscillation parameters Δm322 and θ23 using muon neutrino disappearance of beam and atmospheric neutrinos and electron neutrino appearance of beam neutrinos. The MINOS+ experiment succeeded MINOS in September 2013. For almost three years MINOS+ collected data from the Medium Energy NuMI neutrino beam at Fermilab. Results of the muon neutrino disappearance analysis from the first two years of MINOS+ data will be presented. These results will be compared to and combined with the MINOS measurement.

  3. RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu; Berdnikova, A. K.; Belov, V. A.; Bolozdynya, A. I.; Burenkov, A. A.; Efremenko, Yu V.; Gusakov, Yu V.; Etenko, A. V.; Kaplin, V. A.; Khromov, A. V.; Konovalov, A. M.; Kovalenko, A. G.; Kozlova, E. S.; Kumpan, A. V.; Krakhmalova, T. D.; Melikyan, Yu A.; Naumov, P. P.; Rudik, D. G.; Shafigullin, R. R.; Shakirov, A. V.; Simakov, G. E.; Sosnovtsev, V. V.; Stekhanov, V. N.; Tobolkin, A. A.; Tolstukhin, I. A.

    2016-02-01

    The RED-100 (Russian Emission Detector) is being constructed for the experiment to search for elastic coherent neutrino scattering off atomic nuclei. This fundamental process was predicted several decades ago by the Standard Model of electroweak interactions but has not been discovered yet. The RED-100 is a two-phase emission xenon detector containing ∼200 kg of the liquid Xe (∼ 100 kg of that is in a fiducial volume). One of the possible sites to carry out the experiment is the SNS (Spallation Neutron Source) facility at Oak Ridge National Laboratory, USA. SNS is the world's most intense pulsed source of neutrinos and unique place to study neutrino properties. The energy spectrum of neutrinos produced at the SNS extends up to ∼ 50 MeV and satisfies coherence condition. These neutrinos give kinetic energies of Xe recoils up to a few tens of keV where the response of nuclear recoils is well-known from neutron calibrations of dark matter detectors. The detector will be deployed in the basement under the experimental hall at a distance of ∼30 meters from the SNS target. The expected signal and background (neutron and gamma) are estimated for this specific location. The detector details, current status and future plans are provided.

  4. Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration

    2017-03-01

    The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.

  5. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  6. Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors

    SciTech Connect

    Kumar, J.; Sandick, P. E-mail: sandick@physics.utah.edu

    2015-06-01

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for m{sub X} ∼< 15 Gev. KamLAND's sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass O(10) GeV.

  7. Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors

    SciTech Connect

    Kumar, J.; Sandick, P.

    2015-06-22

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for m{sub X}≲15 Gev. KamLAND’s sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass O(10) GeV.

  8. Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    SciTech Connect

    Martinez, M. C.; Udias, J. M.; Caballero, J. A.; Donnelly, T. W.

    2008-02-08

    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. The relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e{sup '}) scaling function -- is used to illustrate our findings. While NC reactions are apparently not well suited for scaling analyses, to a large extent, the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e{sup '}) one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.

  9. Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Grebe, Heather

    2013-10-01

    Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.

  10. Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production

    SciTech Connect

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.

  11. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to “see” the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562keV plus the electron neutrino rest mass. The “KArlsruhe TRItium Neutrino” (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜ 1.95K) +3H →3He + e‑(Q = 18.6keV + m νec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  12. Gaseous detector of ionizing radiation for registration of coherent neutrino scattering on nuclei

    NASA Astrophysics Data System (ADS)

    Kopylov, A. V.; Orekhov, I. V.; Petukhov, V. V.; Solomatin, A. E.

    2014-03-01

    A method for registration of the coherent scattering reactor antineutrino on nuclei using a three-section low-background proportional counter was proposed. It is planned to use argon and xenon as the working substance. As has been shown on a test bench, pulse shape discrimination can effectively suppress the background from electromagnetic interference and microphonic effects in the energy range from 20 to 100 eV where the effect of coherent scattering of neutrinos on nuclei is expected with a factor of about 103. Problems of the neutron background generated by cosmic-ray muons are analyzed. The scheme of the experimental setup is presented.

  13. Neutrino Induced Doppler Broadening

    PubMed Central

    Jolie, J.; Stritt, N.

    2000-01-01

    When a nucleus undergoes beta decay via the electron capture reaction, it emits an electron neutrino. The neutrino emission gives a small recoil to the atom, which can be experimentally observed as a Doppler broadening on subsequently emitted gamma rays. Using the two-axis flat-crystal spectrometer GAMS4 and the electron capture reaction in 152Eu, the motion of atoms having an excess kinetic energy of 3 eV in the solid state was studied. It is shown how the motion of the atom during the first hundreds of femtoseconds can be reconstructed. The relevance of this knowledge for a new neutrino helicity experiment is discussed. PMID:27551591

  14. Muon Neutrino on Electron Elastic Scattering in the NOvA Near Detector and its Applications Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Bian, Jianming; Coan, Thomas E.; Kotelnikov, Sergey; Duyang, Hongyue; Hatzikoutelis, Athanasios; NOvA Collaboration

    2017-09-01

    Using the NuMI beam at Fermilab and the NOvA near detector, we study the process by which a muon neutrino elastically scatters off an electron in the detector to produce a very forward going electromagnetic shower. By comparing dE/dx for various particle hypotheses for both longitudinal and transverse directions in a multilayer perceptron neural network, we trained a Particle ID algorithm to identify the scattered electron in an inclusive dataset. Muon-neutrino-on-e elastic scattering provides a clean, purely leptonic process free from nuclear effects for understanding neutral current scattering and constraining the NuMI beam flux. Also, this technique can be applied in two broad areas of beyond the standard model physics: a large neutrino transition magnetic moment and light dark matter particles produced in the NuMI target, both of which would create an energy dependent enhancement in the elastic scattering cross section.

  15. Charged current quasi elastic scattering of muon neutrino with nuclei

    NASA Astrophysics Data System (ADS)

    Saraswat, Kapil; Shukla, Prashant; Kumar, Vineet; Singh, Venktesh

    2017-08-01

    We present a study on the charge current quasi elastic scattering of ν _μ from nucleon and nuclei which gives a charged muon in the final state. To describe nuclei, the Fermi Gas model has been used with proposed Pauli suppression factor. The diffuseness parameter of the Fermi distribution has been obtained using experimental data. We also investigate different parametrizations for electric and magnetic Sach's form factors of nucleons. Calculations have been made for CCQES total and differential cross-sections for the cases of ν _{μ }-N , ν _{μ }-{^{12}}C and ν _{μ }-{^{56}}Fe scatterings and are compared with the data for different values of the axial mass. The present model gives excellent description of measured differential cross-section for all the systems.

  16. Influence of solar flares on behavior of solar neutrino flux

    NASA Astrophysics Data System (ADS)

    Boyarkin, O. M.; Boyarkina, G. G.

    2016-12-01

    Limiting ourselves to two flavor approximation the motion of the neutrino flux in the solar matter and twisting magnetic field is considered. For the neutrino system described by the 4-component wave function ΨT =(νeL ,νXL ,νbareL ,νbarXL) , where X = μ , τ , an evolution equation is found. Our consideration carries general character, that is, it holds for any SM extensions with massive neutrinos. The resonance transitions of the electron neutrinos are investigated. Factors which influence on the electron neutrino flux, crossing a region of solar flares (SF) are defined. When the SF is absent a terrestrial detector records the electron neutrino flux weakened at the cost both of vacuum oscillations and of the MSW resonance conversion only. On the other hand, the electron neutrino flux passed the SF region in preflare period proves to be further weakened in so far as it undergoes one (Majorana neutrino) or two (Dirac neutrino) additional resonance conversions, apart from the MSW resonance and vacuum oscillations. The hypothesis of the νe-induced decays which states that decreasing the beta decay rates of some elements of the periodic table is caused by reduction of the solar neutrino flux is discussed as well.

  17. Direct measurements of neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

  18. Theoretical study of neutrino scattering off the stable even Mo isotopes at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Ydrefors, E.; Kosmas, T. S.

    2011-10-01

    A systematic study of the cross sections of neutral-current neutrino scattering off the stable even Mo isotopes (mass number A=92,94,96,98,100), at low and intermediate neutrino energies ( E⩽130 MeV), is presented and discussed. The required wave functions for the initial (ground state) and all accessible final nuclear states are constructed in the context of the quasi-particle random-phase approximation (QRPA) and tested against data on the low-lying energy spectra of the isotopes in question. The individual contributions coming from the polar-vector and axial-vector components of the hadronic current for the coherent and incoherent channels of each isotope are investigated. The studied Mo isotopes are contents of the detector of the MOON experiment operating at Japan with a hybrid aim to search for neutrinoless double beta decay events and to detect low- and intermediate-energy astrophysical neutrinos (solar, supernova, geo-neutrinos), and also of the NEMO neutrinoless double beta decay detector in Modane at France. For such purposes our cross section calculations are of significant importance.

  19. Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.; /SLAC

    2006-08-01

    We study the inverse Compton scattering of solar photons by Galactic cosmic-ray electrons. We show that the {gamma}-ray emission from this process is significant with the maximum flux in the direction of the Sun; the angular distribution of the emission is broad. This previously neglected foreground should be taken into account in studies of the diffuse Galactic and extragalactic {gamma}-ray emission. Furthermore, observations by GLAST can be used to monitor the heliosphere and determine the electron spectrum as a function of position from distances as large as Saturn's orbit down to close proximity of the Sun, thus enabling studies of solar modulation in the most extreme case. This paves the way for the determination of other Galactic cosmic-ray species, primarily protons, near the solar surface leading to accurate predictions of {gamma}-rays from pp-interactions in the solar atmosphere. These albedo {gamma}-rays will be observable by GLAST, allowing the study of deep atmospheric layers, magnetic field(s), and cosmic-ray cascade development. The latter is necessary to calculate the neutrino flux from pp-interactions at higher energies (>1 TeV). The corresponding neutrino flux from the Sun can be used as a ''standard candle'' for upcoming km{sup 3} neutrino detectors, such as IceCube. Since the solar core is opaque for very high-energy neutrinos, it may be possible to directly study the mass distribution of the Sun.

  20. Influence of short-range correlations in neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N.

    2016-08-01

    Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton-nucleus cross sections as computed in the impulse approximation (IA). Purpose: We want to investigate the influence of SRCs on the one-nucleon (1 N ) and two-nucleon (2 N ) knockout channels for muon-neutrino induced processes on a 12 target at energies relevant for contemporary measurements. Method: The model adopted in this work corrects the impulse approximation for SRCs by shifting the complexity induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued that the expansion of these operators can be truncated at a low order. Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear current as well as the central, tensor, and spin-isospin parts of the SRCs are studied. Conclusions: Nuclear SRCs affect the 1 N knockout channel and give rise to 2 N knockout. The exclusive neutrino-induced 2 N knockout cross section of SRC pairs is shown and the 2 N knockout contribution to the QE signal is calculated. The strength occurs as a broad background which extends into the dip region.

  1. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  2. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  3. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  4. Evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGES

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which ismore » a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.« less

  5. Evidence of coherent $K^{+}$ meson production in neutrino-nucleus scattering

    SciTech Connect

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.

  6. Evidence of Coherent K^{+} Meson Production in Neutrino-Nucleus Scattering.

    PubMed

    Wang, Z; Marshall, C M; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Solano Salinas, C J; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-08-05

    Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance.

  7. Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.

    1985-03-01

    We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.

  8. Evidence of coherent $K^{+}$ meson production in neutrino-nucleus scattering

    SciTech Connect

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.

  9. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  10. Data Driven Study of Neutron Response Using Quasielastic Neutrino Scattering in the Minerva Experiment

    NASA Astrophysics Data System (ADS)

    Peters, Evan; Minerva Collaboration

    2016-09-01

    Understanding how particles behave in detectors is a critical part of analyzing data from neutrino experiments, but neutral particles are difficult to characterize. The purpose of this project was to calibrate the neutron response in Quasielastic antineutrino scattering (QE) events in the Minerva detector. We applied quasi-elastic assumptions to estimate the outgoing neutron kinematics in QE scattering, and then added modifications to improve the model's predictions for neutron response in data. We compared these kinematic predictions of neutron energy and angle to Monte Carlo simulations of QE scattering and to the behavior of reconstructed energy ``blobs'' that characterize neutral particle behavior in simulated and real Minerva data. Filtering events for neutron energy, angle, and distance from the interaction vertex, we derive calibration functions for both the simulation and real data. Future work will include potential changes to the blobbing algorithms and refinement of the calibration technique using rigorous statistical methods.

  11. Atmospheric Tau Neutrino Appearance Analysis with IceCube/DeepCore

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; IceCube Collaboration

    2017-01-01

    DeepCore is the low-energy subarray of the IceCube Neutrino Observatory at the South Pole, and provides sensitivity in the neutrino energy range above roughly 10 GeV, where Earth-crossing neutrinos experience oscillations. These neutrinos are muon and electron neutrinos produced in Earth's atmosphere via decays of particles from interactions between cosmic rays and the atmosphere. While tau neutrino interactions in DeepCore cannot be distinguished from those of electron neutrinos at these energies, a statistical separation of these two event classes can be made based on the reconstructed energy and zenith distribution. Therefore, tau neutrino appearance, mainly from muon neutrino to tau neutrino oscillations, can be measured with high significance using IceCube/DeepCore data. We present preliminary results of a tau neutrino appearance analysis using several years of IceCube/DeepCore data.

  12. Comparison of the structure function F2 as measured by charged lepton and neutrino scattering from iron targets

    NASA Astrophysics Data System (ADS)

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    2017-09-01

    A comparison study of world data for the structure function F2 for iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing-antishadowing transition region where the Bjorken scaling variable x is <0.15 . This observation is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are presented here.

  13. Comparison of the structure function F2 as measured by charged lepton and neutrino scattering from iron targets

    DOE PAGES

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    2017-09-12

    A comparison study of world data for the structure function F2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observation ismore » indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less

  14. Core-collapse supernova neutrinos and neutrino properties

    SciTech Connect

    Gava, J.; Volpe, C.

    2008-08-29

    Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

  15. Precision measurement of the (7)Be solar neutrino interaction rate in Borexino.

    PubMed

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Peña-Garay, C; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2011-09-30

    The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10)  cm(-2) s(-1) and Φ(CNO)<1.3×10(9)  cm(-2) s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  16. Measurement of the High Energy Neutrino-Nucleon Cross Section with IceCube

    NASA Astrophysics Data System (ADS)

    Xu, Yiqian; Kiryluk, Joanna; IceCube Collaboration

    2015-04-01

    IceCube is a 1km3 neutrino detector located at the South Pole. It detects all-sky neutrinos of all flavors. IceCube has measured atmospheric muon and electron neutrino fluxes, and has recently discovered a flux of high energy extraterrestrial diffuse neutrinos. We present a novel analysis method and performance studies to determine the neutrino-nucleon cross section at high energies. It uses atmospheric and extraterrestrial neutrino-induced electromagnetic and hadronic showers (cascades) in the TeV-PeV energy range. In this method, uncertainties associated with the flux are canceled by using the ratio of yields from the Southern and Northern hemispheres in the Sky. At the energies in this study, the yields are sensitive to the deep-inelastic scattering cross-section and nucleon structure in a region of kinematic overlap with HERA and with the LHC. Their actual measurement forms a valuable proof-of-concept towards future measurements in the Extremely-High-Energy regime, which will provide sensitivity to new physics with unique neutrino probes. We have performed and will present an initial sensitivity study for determining the cross section from 5 years of data with the complete IceCube detector, as well as for the proposed IceCube-Gen2 high-energy extension. This work is supported by the National Science Foundation Grant No. 1205796.

  17. Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    NASA Astrophysics Data System (ADS)

    Megias, G. D.; Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2013-08-01

    We compare the predictions of the SuperScaling model for charged-current quasielastic muonic neutrino and antineutrino scattering from 12C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti)neutrino cross sections relevant for the νSTORM facility.

  18. Investigation of quasielastic muon-neutrino scattering on nuclei at E{sub v} < 1 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A. Karamyan, Zh.; Korotkov, B. A.

    2007-10-15

    Quasielastic muon-neutrino scattering on nuclei of propane-Freon mixture at energies in the range E{sub v} < 1 GeV is studied. The multiplicity, momentum, and emission-angle distributions of final protons are measured along with the dependence of the mean values for these distributions on the neutrino energy in the range 0.2 < E{sub v} < 1 GeV.

  19. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  20. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    SciTech Connect

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  1. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    SciTech Connect

    Bélanger, G.; Silva, J. Da; Perrillat-Bottonet, T.; Pukhov, A.

    2015-12-17

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  2. Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

    NASA Astrophysics Data System (ADS)

    Patton, Kelly; McLaughlin, Gail; Scholberg, Kate; Engel, Jon; Schunck, Nicolas

    2017-01-01

    Coherent elastic neutrino-nucleus scattering is a potential probe of nuclear neutron form factors. We show that the neutron root-mean-square (RMS) radius can be measured with tonne-scale detectors of argon, germanium, or xenon. In addition, the fourth moment of the neutron distribution can be studied experimentally using this method. The impacts of both detector size and detector shape uncertainty on such a measurement were considered. The important limiting factor was found to be the detector shape uncertainty. In order to measure the neutron RMS radius to 5%, comparable to current experimental uncertainties, the detector shape uncertainty needs to be known to 1% or better.

  3. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Baroni, A.; Schiavilla, R.

    2017-07-01

    Cross sections for inclusive neutrino scattering off the deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range 0-150 MeV. The cutoff dependence is negligible, and the predicted cross sections are within ˜2 % of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange frameworks.

  4. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    SciTech Connect

    Bélanger, G.; Perrillat-Bottonet, T.; Silva, J. Da; Pukhov, A. E-mail: dasilva@lapth.cnrs.fr E-mail: pukhov@lapth.cnrs.fr

    2015-12-01

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  5. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  6. Measuring the Low Energy Nuclear Quenching Factor in Liquid Argon for a Coherent Neutrino Scatter Detector

    NASA Astrophysics Data System (ADS)

    Foxe, M.; Bernstein, A.; Hagmann, C.; Joshi, T.; Jovanovic, I.; Kazkaz, K.; Sangiorgio, S.

    2012-08-01

    Coherent neutrino-nucleus scattering (CNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model [D. Freedman, Phys. Rev. D 9 (5) (1974) 1389-1392]. One of the primary reasons the CNS interaction has yet to be observed is the very low energy depositions (less than 1 keV for MeV-energy neutrinos) [A. Drukier, L. Stodolsky, Phys. Rev. D 30 (11) (1984) 2295-2309]. An additional challenge in detecting CNS is nuclear quenching, which is a phenomenon encountered in many detection materials in which nuclear recoils produce less observable energy per unit energy deposited than electronic recoils. The ratio observed signal for nuclear recoils to electronic recoils or nuclear ionization quench factor, is presently unknown in argon at typical CNS energies [C. Hagmann, A. Bernstein, IEEE Trans. on Nucl. Sci. 51 (5) (2004) 2151-2155]. Here we present plans for using the Gamma or Neutron Argon Recoils Resulting in Liquid Ionization (G/NARRLI) detector to measure the nuclear ionization quench factor at ˜8 keV.

  7. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  8. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, V.; Popov, B.; Kim, J. J.; Camilleri, L.; Levy, J.-M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Kustov, D.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mishra, S. R.; Moorhead, G. F.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2009-10-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  9. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, Vladimir

    2009-11-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (vμn→μ-p and v¯μp→μ+n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total vμ (v¯μ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <σqel>vμ = (0.92±0.02(stat)±0.06(syst))×10-38 cm2 and <σqel>v¯μ = (0.81±0.05(stat)±0.09(syst))×10-38 cm2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is MA = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q2 shape analysis of the high purity sample of vμ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of MA is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on MA, these results are compatible with the more precise NOMAD value.

  10. Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Amaro, J. E.; Ruiz Arriola, E.

    2016-03-01

    The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the theoretical cross section due to uncertainties of GA remains to be established. Conversely, the extraction of GA from the neutrino nucleus cross section suffers from large systematic errors due to nuclear model dependencies, while the use of single-parameter dipole fits underestimates the errors and prevents an identification of the relevant kinematics for this determination. We propose to use a generalized axial-vector-meson dominance in conjunction with large-Nc and high-energy QCD constraints to model the nucleon axial form factor, as well as the half-width rule as an a priori uncertainty estimate. The minimal hadronic ansatz comprises the sum of two monopoles corresponding to the lightest axial-vector mesons being coupled to the axial current. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons as obtained from the averaged Particle Data Group values. By applying the half-width rule in a Monte Carlo simulation, a distribution of theoretical predictions can then be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the (νμ,μ ) quasielastic cross section from 12 for the kinematics of the MiniBooNE experiment. The resulting predictions have no free parameters. We find that the relativistic Fermi gas model globally reproduces the experimental data, giving χ2/# bins=0.81 . A Q2-dependent error analysis of the neutrino data shows that the uncertainties in the axial form factor GA(Q2) are comparable to the ones induced by the a priori half-width rule. We identify the most sensitive region to be in the range 0.2 ≲Q2≲0.6 GeV2 .

  11. Solar Neutrino Physics

    SciTech Connect

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  12. The Sudbury Neutrino Observatory

    DOE PAGES

    Bellerive, Alain; Klein, J. R.; McDonald, A. B.; ...

    2016-04-27

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. Thismore » review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.« less

  13. Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERvA experiment

    NASA Astrophysics Data System (ADS)

    Schellman, Heidi; Minerva Collaboration

    2016-09-01

    We present a new preliminary measurement of the charge-current quasi-elastic scattering cross section for anti-neutrinos on scintillator (CH) over the energy range 1.5-10 GeV. The data were taken with the MINERvA detector in the NuMI beamline at Fermilab and cover the energy range of interest for the proposed DUNE long-baseline neutrino oscillation experiment and of JLAB elastic scattering experiments. Of particular interest to the nuclear community are possible signatures for short range correlations and/or meson exchange currents in these data. We present comparisons to a range of nuclear models.

  14. Exchange current corrections to neutrino-nucleus scattering. I. Nuclear matter

    NASA Astrophysics Data System (ADS)

    Umino, Y.; Udias, J. M.

    1995-12-01

    Relativistic exchange current corrections to the impulse approximation in low and intermediate energy neutrino-nucleus scattering are presented assuming nonvanishing strange quark form factors for constituent nucleons. Two-body exchange current operators which treat all SU(3) vector and axial currents on an equal footing are constructed by generalizing the soft-pion dominance method of Chemtob and Rho. For charged current reactions, exchange current corrections can reduce the impulse approximation results by 5 to 10 % depending on the nuclear density. A finite strange quark form factor may change the total cross section for neutral current scattering by 20% while exchange current corrections are found to be sensitive to the nuclear density. Implications on the current LSND experiment to extract the strange quark axial form factor of the nucleon are discussed.

  15. Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Sevda, B.; Şen, A.; Demirci, M.; Deniz, M.; Agartioglu, M.; Ajjaq, A.; Kerman, S.; Singh, L.; Sonay, A.; Wong, H. T.; Zeyrek, M.

    2017-08-01

    Constraints on couplings of several beyond-Standard-Model-physics scenarios, mediated by massive intermediate particles including (1) an extra Z-prime, (2) a new light spin-1 boson, and (3) a charged Higgs boson, are placed via the neutrino-electron scattering channel to test the Standard Model at a low energy-momentum transfer regime. Data on ν¯e-e and νe-e scattering from the TEXONO and LSND, respectively, are used. Upper bounds to coupling constants of the flavor-conserving and flavor-violating new light spin-1 boson and the charged Higgs boson with respect to different mediator masses are determined. The relevant parameter spaces are extended by allowing light mediators. New lower mass limits for extra Z-prime gauge boson models are also placed.

  16. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  17. Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering

    SciTech Connect

    Adam, B; Celeste, W; Christian, H; Wolfgang, S; Norman, M

    2007-04-16

    This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d {approx} 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear

  18. Neutrino flavor evolution in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  19. Search for muon-neutrino to electron-neutrino transitions in MINOS

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes, P.D., Jr.; Barr, G.; Barrett, W.L.; Becker, B.R.; /Minnesota U. /Rutherford

    2009-09-01

    This letter reports on a search for {nu}{sub {mu}} {yields} {nu}{sub e} transitions by the MINOS experiment based on a 3.14 x 10{sup 20} protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27 {+-} 5(stat.) {+-} 2(syst.) events predicted by the measurements in the Near Detector. If interpreted in terms of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, this 1.5 {sigma} excess of events is consistent with sin{sup 2}(2{theta}{sub 13}) comparable to the CHOOZ limit when |{Delta}m{sup 2}| = 2.43 x 10{sup -3} eV{sup 2} and sin{sup 2} (2{theta}{sub 23}) = 1.0 are assumed.

  20. Search for muon-neutrino to electron-neutrino transitions in MINOS.

    PubMed

    Adamson, P; Andreopoulos, C; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barnes, P D; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Betancourt, M; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Boehm, J; Boehnlein, D J; Bogert, D; Bower, C; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coelho, J A B; Coleman, S J; Cronin-Hennessy, D; Culling, A J; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Howcroft, C; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Krahn, Z; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlović, Z; Pawloski, G; Pearce, G F; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, A; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Toner, R; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; West, N; White, C; Whitehead, L; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zheng, H; Zois, M; Zwaska, R

    2009-12-31

    This Letter reports on a search for nu(mu) --> nu(e) transitions by the MINOS experiment based on a 3.14x10(20) protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27+/-5(stat)+/-2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of nu(mu) --> nu(e) oscillations, this 1.5sigma excess of events is consistent with sin2(2theta(13)) comparable to the CHOOZ limit when |Delta m2|=2.43x10(-3) eV2 and sin2(2theta(23))=1.0 are assumed.

  1. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  2. Reaction cross section for solar flare neutrinos with Cl-37 and O-16 targets

    SciTech Connect

    Fukugita, M.; Kohyama, Y.; Kubodera, K.; Kuramoto, T.

    1989-02-01

    Neutrino reaction cross sections are calculated for Cl-37 (electron neutrino, electron) Ar-37 and electron neutrino + O-16 yields electron + anything for the neutrino energy range 50-200 MeV. If the excess neutrino captures observed in the Davis experiment, which seem to correspond to the period during which large solar flares were recorded, are ascribed to the solar-flare neutrinos, 5000 (300) recoil electron events are expected in a 1000-ton water Cerenkov detector, if neutrino energy is 100 (50) MeV. Such detectors have a sensitivity to monitor the solar-flare neutrino event to the level of the maximum theoretical estimate for the flare neutrino flux. 22 refs.

  3. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  4. a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.

    NASA Astrophysics Data System (ADS)

    Brooks, George Alfred

    Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1

  5. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory

    DOE PAGES

    Baroni, A.; Schiavilla, R.

    2017-07-19

    Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less

  6. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    SciTech Connect

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  7. Parametrized relativistic dynamical framework for neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Fanchi, John R.

    2017-05-01

    Mass state transitions are a key feature of parametrized relativistic dynamics (PRD). PRD is a manifestly covariant quantum theory with invariant evolution parameter. The theory has been applied to neutrino flavor oscillations between two mass states. It is generalized to transitions between three mass states and applied to the survival of electron neutrinos. The analysis shows that significant differences exist between theoretical results of the conventional model and the PRD model.

  8. Low-energy sterile neutrinos: Theory

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-04-01

    Several experimental anomalies seem to point towards the existence of light sterile neutrinos. We focus on the low-energy anomalous results (the so-called gallium and reactor anomalies), which indicate a non-zero admixture U of the electron neutrino with a fourth (mostly) sterile mass eigenstate ν4. We point out that solar sector data, in combination with the precision measurement of θ13, provide the constraint |<0.041 (90% C.L.), independent of the reactor flux determinations.

  9. Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

    SciTech Connect

    Takei, Hideyuki

    2009-02-01

    In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor GA(Q2) as well as electromagnetic form factors unlike electromagnetic interaction. GA is propotional to strange part of nucleon spin (Δs) in Q2 → 0 limit. Measurement of NC elastic cross-section with smaller Q2 enables us to access Δs. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q2 > 0.4 GeV2 region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In vp → vp process, the recoil proton is detected. On the other hand, most of vn → vn is

  10. Higgs production through sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-10-01

    In scenarios with sterile (right-handed) neutrinos with an approximate “lepton-number-like” symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos’ masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

  11. Neutrino propagation in a random magnetic field

    SciTech Connect

    Sahu, S.

    1997-10-01

    The active-sterile neutrino conversion probability is calculated for a neutrino propagating in a medium in the presence of random magnetic field fluctuations. A necessary condition for the probability to be positive definite is obtained for active-sterile electron neutrino conversion in the early universe hot plasma and in a supernova. The neutrino magnetic moment obtained from the positive definiteness of the conversion probability defines the range of validity of our approximation, rather than putting any physical bound on it. {copyright} {ital 1997} {ital The American Physical Society}

  12. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in SNO

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.; Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. D.; Black, R. A.; Blevis, I.; Boardman, R. J.; Boger, J.; Bonvin, E.; Boulay, M. G.; Bowler, M. G.; Bowles, T. J.; Brice, S. J.; Browne, M. C.; Bullard, T. V.; Bühler, G.; Cameron, J.; Chan, Y. D.; Chen, H. H.; Chen, M.; Chen, X.; Cleveland, B. T.; Clifford, E. T. H.; Cowan, J. H. M.; Cowen, D. F.; Cox, G. A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W. F.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Dunmore, J. A.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Ferraris, A. P.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Frame, K.; Frank, E. D.; Frati, W.; Gagnon, N.; Germani, J. V.; Gil, S.; Graham, K.; Grant, D. R.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamer, A. S.; Hamian, A. A.; Handler, W. B.; Haq, R. U.; Hargrove, C. K.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hepburn, J. D.; Heron, H.; Hewett, J.; Hime, A.; Howe, M.; Hykawy, J. G.; Isaac, M. C. P.; Jagam, P.; Jelley, N. A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P. T.; Klein, J. R.; Knox, A. B.; Komar, R. J.; Kouzes, R.; Kutter, T.; Kyba, C. C. M.; Law, J.; Lawson, I. T.; Lay, M.; Lee, H. W.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H. B.; Maneira, J.; Manor, J.; Marino, A. D.; McCauley, N.; McDonald, D. S.; McFarlane, K.; McGregor, G.; Meijer Drees, R.; Mifflin, C.; Miller, G. G.; Milton, G.; Moffat, B. A.; Moorhead, M.; Nally, C. W.; Neubauer, M. S.; Newcomer, F. M.; Ng, H. S.; Noble, A. J.; Norman, E. B.; Novikov, V. M.; O'Neill, M.; Okada, C. E.; Ollerhead, R. W.; Omori, M.; Orrell, J. L.; Oser, S. M.; Poon, A. W. P.; Radcliffe, T. J.; Roberge, A.; Robertson, B. C.; Robertson, R. G. H.; Rosendahl, S. S. E.; Rowley, J. K.; Rusu, V. L.; Saettler, E.; Schaffer, K. K.; Schwendener, M. H.; Schülke, A.; Seifert, H.; Shatkay, M.; Simpson, J. J.; Sims, C. J.; Sinclair, D.; Skensved, P.; Smith, A. R.; Smith, M. W. E.; Spreitzer, T.; Starinsky, N.; Steiger, T. D.; Stokstad, R. G.; Stonehill, L. C.; Storey, R. S.; Sur, B.; Tafirout, R.; Tagg, N.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Thornewell, P. M.; Trent, P. T.; Tserkovnyak, Y. I.; van Berg, R.; van de Water, R. G.; Virtue, C. J.; Waltham, C. E.; Wang, J.-X.; Wark, D. L.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wittich, P.; Wouters, J. M.; Yeh, M.

    2002-12-01

    The Sudbury Neutrino Observatory (SNO) is a 1,000 tonne heavy water Cerenkov-based neutrino detector situated 2,000 meters underground in INCO's Creighton Mine near Sudbury, Ontario, Canada. For the neutrinos from 8B decay in the Sun SNO observes the Charged Current neutrino reaction sensitive only to electron neutrinos and others (Neutral Current and Elastic Scattering) sensitive to all active neutrino types and thereby can search for direct evidence of neutrino flavor change. Using these reactions and assuming the standard 8B shape, the ve component of the 8B solar flux is φe = 1.76- 0.05+0.05(stat.)- 0.09+0.09 (syst.) × 106 cm-2s-1 for a kinetic energy threshold of 5 MeV. The non-ve component is fgr μτ = 3.41- 0.45+0.45(stat.)- 0.45+0.48 (syst.) × 106 cm-2s-1, 5.3σ greater than zero, providing strong evidence for solar ve flavor transformation. The total flux measured with the NC reaction is fgr NC = 5.09- 0.43+0.44(stat.)- 0.43+0.46 (syst.) × 106 cm-2s-1, consistent with solar models. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0% +/- 6.3%-1.4+1.5% of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the ve asymmetry is found to be 7.0% +/- 4.9%-1.2+1.3%. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.

  13. Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source

    NASA Astrophysics Data System (ADS)

    Collar, J. I.; Fields, N. E.; Hai, M.; Hossbach, T. W.; Orrell, J. L.; Overman, C. T.; Perumpilly, G.; Scholz, B.

    2015-02-01

    We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino-nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated ~ 7 keVnr low-energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the 208Pb(νe ,e-)208Bi reaction, of interest for future supernova neutrino detection, can be simultaneously obtained.

  14. Determination of sin/sup 2/THETA/sub w/ and rho in deep inelastic neutrino-nucleon scattering

    SciTech Connect

    Bogert, D.; Burnstein, R.; Fisk, R.; Fuess, S.; Morfin, J.; Ohska, T.; Stutte, L.; Walker, J.K.; Bofill, J.; Busza, W.

    1985-06-01

    We have determined the electroweak parameters sin/sup 2/THETA/sub w/ and rho by a measurement of deep inelastic neutrino-nucleon scattering using a fine grained neutrino detector exposed to a narrow band neutrino beam at Fermilab. The unique sampling properties of our detector have permitted neutral current and charged current events to be unambiguously identified over a wide kinematic range, thereby allowing a determination of sin/sup 2/THETA/sub w/ and rho to be made with good statistics and small systematic errors. We have found sin/sup 2/THETA/sub w/ = 0.246 +- 0.012 +- 0.013 in a single parameter fit. The details of the experimental and theoretical systematic errors are given. 17 refs., 2 figs., 2 tabs.

  15. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  16. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  17. Non-equilibrium Neutrino in the Early Universe Plasma

    SciTech Connect

    Kirilova, D.

    2009-04-26

    We discuss the evolution of cosmic neutrinos, participating in neutrino oscillations and interacting with the fermions of the hot plasma during pre-BBN and BBN epoch. The neutrino evolution and the neutrino oscillations effects depend on the type of oscillations: oscillation channels, the degree of equilibrium of oscillating neutrinos and on the plasma characteristics. Neutrino spectrum distortion by neutrino oscillations in medium is discussed in detail. Non-equilibrium decays and their effect on electron neutrino spectrum distortion and nucleons kinetics during pre-BBN epoch are briefly discussed. BBN model with such decays and active-inert neutrino oscillations may resolve the tension between BBN and LSS preferred numbers of neutrino types. Cosmological constraints on neutrino characteristics are presented.

  18. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

    SciTech Connect

    Gavrin, V. N.

    2013-10-15

    The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

  19. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  20. Low Energy Solar Neutrino Spectroscopy:. Results from the Borexino Experiment

    NASA Astrophysics Data System (ADS)

    D'Angelo, D.

    2011-03-01

    Till very recent the real-time solar neutrino experiments were detecting the tiny fraction of about 0.01% of the total neutrino flux above some MeV energy, the sub-MeV region remained explored only by radiochemical experiments without spectroscopical capabilities. The Borexino experiment, an unsegmented large volume liquid scintillator detector located in the Gran Sasso National Laboratory in central Italy, is at present the only experiment in the world acquiring the real-time solar neutrino data in the low-energy region, via the elastic scattering on electrons in the target mass. The data taking campaign started in 2007 and rapidly lead to the first independent measurement of the mono-cromatic line of 7Be of the solar neutrino spectrum at 862keV, which is of special interest because of the very loose limits coming from existing experiments. The latest measurement, after 41.3t · yr of exposure, is (49 ± 3stat ± 4syst)c/(day · 100t) and leaves the hypothesis of no oscillation inconsistent with data at 4σ level. It also represents the first direct measurement of the survival probability for solar ν e (P{7 Be}ee = 0.56 ± 0.10) in the vacuum-dominates oscillation regime. Recently Borexino was also able to measure of the 8B solar neutrinos interaction rate down to the threshold energy of 3 MeV, the lowest achieved so far. The inferred electron neutrino flux is Φ {8 B}ES = (2.7 ± 0.4stat ± 0.1syst ) × 106 cm{ - 2} s{ - 1} . The corresponding mean electron neutrino survival probability, is P{8 B}ee = 0.29 ± 0.10 at the effective energy of 8.9 MeV. Both measurements are in good agreement with other existing measurements and with predictions from the SSM in the hypothesis of MSW-LMA oscillation scenario. For the first time, thanks to the unprecedented radio-purity of the Borexino target and construction materials, we confirm with a single detector, the presence of a transition between the low energy vacuum-dominated and the high-energy matter-enhanced solar

  1. Search for neutrino oscillations at the AGS with the narrow band beam

    SciTech Connect

    Chi, C.; Kondakis, N.; Lee, W.; O'Brien, E.; O'Halloran, T.; Reardon, K.; Salman, S.; Blumenfeld, B.; Chichura, L.; Chien, C.Y.

    1987-01-01

    We have taken neutrino data with the Narrow Band Beam (NBB) at Brookhaven National Laboratory (BNL) in the summer and fall of 1985. We are in the process of completing the analysis of the NBB data. In this paper we present preliminary results of this analysis. We observe an anomalous appearance of electron neutrinos above the expected background. 3 refs., 16 figs., 3 tabs.

  2. Review of Low Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2007-04-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

  3. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  4. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  5. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  6. Solar Neutrino flare detection in Hyperkamiokande and SK

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The possible buid and near activity of a Megaton neutrino detection in HyperKamiokande and the older SK implementation by Gadolinium liqid might open to future detection of largest solar flare (pion trace at tens MeV) electron neutrino and antineutrino. The multiwave detection of X-gamma and neutrino event might offer a deep view of such solar acelleration and of neutrino flavor mix along its flight. The possoble near future discover of such events will open a third neutrino astronomy windows after rarest SN 1987A and persistent Solar nuclear signals.

  7. Atmospheric neutrinos, ν e- ν s oscillations and a novel neutrino evolution equation

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny

    2016-08-01

    If a sterile neutrino ν s with an eV-scale mass and a sizeable mixing to the electron neutrino exists, as indicated by the reactor and gallium neutrino anomalies, a strong resonance enhancement of ν e -ν s oscillations of atmospheric neutrinos should occur in the TeV energy range. At these energies neutrino flavour transitions in the 3+1 scheme depend on just one neutrino mass squared difference and are fully described within a 3-flavour oscillation framework. We demonstrate that the flavour transitions of atmospheric ν e can actually be very accurately described in a 2-flavour framework, with neutrino flavour evolution governed by an inhomogeneous Schrödinger-like equation. Evolution equations of this type have not been previously considered in the theory of neutrino oscillations.

  8. Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    SciTech Connect

    Diener, K.-P.O.; Dittmaier, S.; Hollik, W.

    2005-11-01

    A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.

  9. Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; E Amaro, J.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Donnelly, T. W.

    2017-06-01

    We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and Δ-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the nonlinear σ-model together with weak excitation of the {{Δ }}(1232) resonance and its subsequent decay into Nπ . With these currents we compute the five 2p-2h response functions contributing to ({ν }l,{l}-) and ({\\overline{ν }}l,{l}+) reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace et al (2003 Nucl. Phys. A 726 303). Thus, our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.

  10. Off-Axis Neutrino Scattering in Gamma-Ray Burst Central Engines

    NASA Astrophysics Data System (ADS)

    Miller, Warner A.; George, Nathan D.; Kheyfets, Arkady; McGhee, John M.

    2003-02-01

    The search for an understanding of an energy source great enough to explain the gamma-ray burst (GRB) phenomenon has attracted much attention from the astrophysical community since its discovery. In this paper we extend the work of Asano and Fukuyama, and Salmonson and Wilson and analyze the off-axis contributions to the energy-momentum deposition rate (MDR) from the ν-ν collisions above a rotating black hole/thin accretion disk system. Our calculations are performed by imaging the accretion disk at a specified observer using the full geodesic equations and calculating the cumulative MDR from the scattering of all pairs of neutrinos and antineutrinos arriving at the observer. Our results shed light on the beaming efficiency of GRB models of this kind. Although we confirm Asano and Fukuyama's conjecture as to the constancy of the beaming for small angles away from the axis, we find that the dominant contribution to the MDR comes from near the surface of the disk with a tilt of approximately π/4 in the direction of the disk's rotation. We find that the MDR at large radii is directed outward in a conic section centered around the symmetry axis and is larger by a factor of 10-20 than the on-axis values. By including this off-axis disk source, we find a linear dependence of the MDR on the black hole angular momentum.

  11. An ''archaeological'' quest for galactic supernova neutrinos

    SciTech Connect

    Lazauskas, Rimantas; Volpe, Cristina E-mail: Cecilia.Lunardini@asu.edu

    2009-04-15

    We explore the possibility to observe the effects of electron neutrinos from past galactic supernovae, through a geochemical measurement of the amount of Technetium 97 produced by neutrino-induced reactions in a Molybdenum ore. The calculations we present take into account the recent advances in our knowledge of neutrino interactions, of neutrino oscillations inside a supernova, of the solar neutrino flux at Earth and of possible failed supernovae. The predicted Technetium 97 abundance is of the order of 10{sup 7} atoms per 10 kilotons of ore, which is close to the current geochemical experimental sensitivity. Of this, {approx} 10-20% is from supernovae. Considering the comparable size of uncertainties, more precision in the modeling of neutrino fluxes as well as of neutrino cross sections is required for a meaningful measurement.

  12. First search for the EMC effect and nuclear shadowing in neutrino nucleus deep inelastic scattering at MINERVA

    NASA Astrophysics Data System (ADS)

    Mousseau, Joel A.

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets. The MINERνA (Main Injector Experiment ν-A) experiment, located in the Neutrinos at the Main Injector (NuMI) facility at Fermilab, is designed explicitly to measure these kind of effects with neutrinos. MINEνA is equipped with solid targets of graphite, iron, lead and plastic scintillator. The plastic scintillator region provides excellent particle tracking capabilities, and the MINOS (Main Injector Neutrino Oscillation Search) near detector is used as a downstream muon spectrometer. The exposure of multiple nuclear targets to an identical neutrino beam allows for a systematic study of these nuclear effects. An analysis of the MINERνA DIS data on carbon, iron, lead and plastic scintillator has been conducted in the energy region 5 ≤ E ν < 50 GeV and thetamu < 17°. The data are presented as ratios of the total cross section (sigma(E ν)) as well as the differential cross section with respect to Bjorken-x (dsigma/dxbj) of carbon, iron and lead to scintillator. The total cross section data is useful for deciphering gross nuclear effects which effect neutrino energy reconstruction. No significant differences between simulation and MINνA DIS data are observed in the total cross section. The ratios of the xbj differential ratios however, may provide clues for decoding long standing questions about the EMC effect. The MINERνA data tend to

  13. Measuring the neutrino mass using intense photon and neutrino beams

    NASA Astrophysics Data System (ADS)

    Dicus, Duane A.; Repko, Wayne W.; Vega, Roberto

    2000-11-01

    We compute the cross section for neutrino-photon scattering taking into account a neutrino mass. We explore the possibility of using intense neutrino beams, such as those available at proposed muon colliders, together with high powered lasers to probe the neutrino mass in photon-neutrino collisions.

  14. CosI: Development of a low threshold detector for the observation of coherent elastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Fields, Nicole Elizabeth

    I present the development of an experimental setup designed to measure CENNS (coherent elastic neutrino-nucleus scattering), a process that has never been experimentally observed. CosI (Coherent Neutrino Scattering with Cesium Iodide) uses a sodium doped cesium iodide detector intended to be able to observe CENNS at the SNS (Spallation Neutron Source) in Oak Ridge, TN. This thesis describes the experimental design and construction of the CosI apparatus, while sited at the University of Chicago. This thesis also presents the screening of materials for radioactivity in conjunction with simulations of the background contributions from various experimental components to CosI. Background measurements were performed at the University of Chicago with a 2 kg prototype CosI crystal, and those results are presented here. I also present neutrino signal calculations for the full size 15 kg CosI crystal which is to be installed at the SNS. Finally, the feasibility of a CENNS detection at the SNS using the CosI apparatus is discussed. This thesis also makes a contribution to the ongoing search for WIMP (weakly interacting massive particle) dark matter. I present a data-driven method for applying a surface event correction to CoGeNT (Coherent Germanium Neutrino Technology) data. After applying this correction, I then calculate new dark matter limits using the 807 day CoGeNT data set. In addition, I also perform a two dimensional maximum likelihood analysis of low energy CDMS (Cryogenic Dark Matter Search) data. The maximum likelihood analysis reveals a strong preference for a population of nuclear recoil events in the CDMS data set.

  15. Measurement of theta{sub 13} with reactor neutrinos

    SciTech Connect

    Heeger, Karsten M.; Freedman, Stuart J.; Kadel, Richard W.; Luk, Kam-Biu

    2004-07-13

    Recent experimental results have provided unambiguous evidence that neutrinos have a small but finite mass and mix from one type into another. The phenomenon of neutrino mixing is characterized by the coupling between the neutrino flavor (nu{sub e,mu,tau}) and mass eigenstates (nu{sub 1,2,3}) and the associated mixing angles. Previous neutrino oscillation experiments have determined two of the three mixing angles in the neutrino mixing matrix, U{sub MNSP}. Using multiple neutrino detectors placed at different distances from a nuclear power plant, a future reactor neutrino experiment has the potential to discover and measure the coupling of the electron neutrino flavor to the third mass eigenstate, U{sub e3}, the last undetermined element of the neutrino mixing matrix.

  16. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  17. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  18. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  19. Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Yudin, A. V.; Nadyozhin, D. K.; Khruschov, V. V.; Fomichev, S. V.

    2016-12-01

    The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in corematter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. The contributions of sterile neutrinos to the collapse dynamics and the total flux of neutrinos produced during collapse have been shown to be relatively small. The total luminosity of sterile neutrinos is considerably lower than the luminosity of electron neutrinos, but their spectrum is considerably harder at high energies.

  20. Solar neutrino spectroscopy

    NASA Astrophysics Data System (ADS)

    Wurm, Michael

    2017-04-01

    More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand multi-kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low-threshold analysis. The current experimental results on the fluxes, spectra and time variation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next generation of experiments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics.

  1. One-loop correction effects on supernova neutrino fluxes: a new possible probe for Beyond Standard Models

    SciTech Connect

    Gava, J.

    2010-05-01

    We present the consequences of a large radiative correction term coming from Supersymmetry (SUSY) upon the electron neutrino fluxes streaming off a core-collapse supernova using a 3-flavour neutrino-neutrino interaction code. We explore the interplay between the neutrino-neutrino interaction and the effects of the resonance associated with the μ−τ neutrino index of refraction. We find that sizeable effects may be visible in the flux on Earth and, consequently, on the number of events upon the energy signal of electron neutrinos in a liquid argon detector. Such effects could lead to a probe for Beyond Standard Model (BSM) physics and, ideally, to constraints in the SUSY parameter space.

  2. Direct detection of relic active and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2016-05-01

    Both active and sterile sub-eV neutrinos can form the cosmic neutrino background in the early Universe. We consider the beta-decaying (e.g., 3H) and EC-decaying (e.g., 163Ho) nuclei as the promising targets to capture relic neutrinos in the laboratory. We calculate the capture rates of relic electron neutrinos and antineutrinos against the corresponding beta decay or electron capture (EC) decay backgrounds in the (3+Ns) flavor mixing scheme, and discuss the future prospect in terms of the PTOLEMY project. We stress that such direct measurements of hot DM might not be hopeless in the long term.

  3. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. Low-energy ionization yield in liquid argon for a coherent neutrino-nucleus scatter detector

    NASA Astrophysics Data System (ADS)

    Foxe, Michael P.

    A mode of interaction predicted by the Standard Model of particle physics, but not yet observed, is coherent neutrino-nucleus scattering (CNNS). CNNS results from the neutrino (or antineutrino) scattering coherently with the entire nucleus rather than a single nucleon. The leading challenge in detecting CNNS is the resulting sub-keV nuclear recoil energies, producing little ionization in the detector medium. In order to detect the CNNS interaction, it is beneficial to first measure the nuclear ionization yield for the chosen detector medium. The ionization yield represents the expected number of electrons produced by a nuclear recoil, and it depends both on the recoil energy and on the detector medium in which the recoil occurs. Additionally, the ionization yield depends on the applied electron drift electric field, and for this reason it should be measured directly in the detector type anticipated for future CNNS measurements. This dissertation is focused on making the prediction and measurement of the ionization yield in LAr using a dual-phase Ar detector. Due to the complexity of measuring the ionization yield at various energies, it is beneficial to also construct a predictive model for the ionization yield. In this dissertation, the prediction of the ionization yield is made on the basis of a simulation of a two-stage process. The number of ionizations generated from Ar recoil of a given energy is simulated using a Monte Carlo atomic collision model, along with the cross sections for ionization and excitation in Ar + Ar collisions. After the electrons are generated, a fraction of them recombine with the initially generated ion cloud. The electron recombination fraction is simulated by assigning the emitted electrons either 1 or 10 eV of initial kinetic energy and transporting the electrons under the influence of Coulomb forces of the ion cloud and an applied external electric field. The simulation predicts the energy dependent ionization yield, with a value of

  5. Tau neutrinos underground: Signals of νμ-->ντ oscillations with extragalactic neutrinos

    NASA Astrophysics Data System (ADS)

    Dutta, Sharada Iyer; Reno, Mary Hall; Sarcevic, Ina

    2000-12-01

    The appearance of high energy tau neutrinos due to νμ-->ντ oscillations of extragalactic neutrinos can be observed by measuring the neutrino induced upward hadronic and electromagnetic showers and upward muons. We evaluate quantitatively the tau neutrino regeneration in the Earth for a variety of extragalactic neutrino fluxes. Charged-current interactions of the upward tau neutrinos below and in the detector, and the subsequent tau decay, create muons or hadronic and electromagnetic showers. The background for these events are muon neutrino and electron neutrino charged-current and neutral-current interactions, where in addition to extragalactic neutrinos, we consider atmospheric neutrinos. We find significant signal to background ratios for the hadronic combined with electromagnetic showers with energies above 10-100 TeV initiated by the extragalactic neutrinos. We show that the tau neutrinos from point sources also have the potential for discovery above a 1 TeV threshold. A kilometer-size neutrino telescope has a very good chance of detecting the appearance of tau neutrinos when both muon and hadronic combined with electromagnetic showers are detected.

  6. Study of scintillation, fluorescence and scattering in mineral oil for the MiniBooNE neutrino detector

    SciTech Connect

    Brown, Bruce C.; Brice, Stephen; Hawker, Eric; Maza, Shannon; Meyer, Hans-Otto; Pla-Dalmau, Anna; Tayloe, Rex; Tanaka, Hirohisa A.; Toptygin, Dmitri; /Fermilab /Western Illinois U. /Indiana U. /Princeton U. /Johns Hopkins U.

    2004-11-01

    The MiniBooNE neutrino detector at Fermilab (FNAL) is filled with 250,000 gallons of pure mineral oil. The principal signal for MiniBooNE is light observed in a prompt Cherenkov cone. Scattering and fluorescence modify our detection of this light. Scintillation is also created by ionization in the oil. Studies of fluorescence of this oil have been carried out over a wide spectrum of exciting light and time resolved fluorescence with a narrower range of excitation. Polarized scattering measurements have been carried out at longer wavelengths. Time resolved and spectrally resolved scintillation has been studied with a 200 MeV Proton beam at the Indiana University Cyclotron Facility. Results of these studies will be reported.

  7. Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-11-01

    We report the first measurement of the flux-averaged cross section for charged current coherent π+ production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al. models.

  8. Measurement of Coherent π^{+} Production in Low Energy Neutrino-Carbon Scattering.

    PubMed

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Campbell, T; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Harada, J; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent π^{+} production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al.

  9. Neutrino-pair bremsstrahlung from nucleon-α versus nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Bacca, Sonia; Schwenk, A.

    2015-04-01

    We study the impact of the nucleon-α P -wave resonances on neutrino-pair bremsstrahlung. Because of the noncentral spin-orbit interaction, these resonances lead to an enhanced contribution to the nucleon spin structure factor for temperatures T ≲4 MeV. If the α -particle fraction is significant and the temperature is in this range, this contribution is competitive with neutron-neutron bremsstrahlung. This may be relevant for neutrino production in core-collapse supernovae or other dense astrophysical environments. Similar enhancements are expected for resonant noncentral nucleon-nucleus interactions.

  10. Charged-current quasielastic scattering of muon antineutrino and neutrino in the MINERvA experiment

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.

    2015-07-01

    One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays a pivotal role in reproducing the experimental data.

  11. Measurement of the total flux averaged neutrino induced neutral current elastic scattering cross section with the T2K Pi-Zero detector

    NASA Astrophysics Data System (ADS)

    Ruterbories, Daniel

    Tokai-to-Kamioka (T2K) is a second generation accelerator neutrino oscillation experiment. T2K uses a high intensity proton beam produced at the Japan Proton Accelerator Research Complex (J-PARC) incident on a carbon target and focused with three magnetic horns to produce a high intensity and nearly pure muon neutrino beam with a peak energy of 600 MeV at a 2.5º axis angle. The muon neutrino beam travels 295 km across Japan to the Super Kamiokande (SK) water Cherenkov detector in the Kamioka mine. The neutrino beam is also sampled by a complex of near detectors 280 m downstream of the carbon target located both on and off the beam axis. These detectors measure the neutrino beam before neutrino oscillations occur to provide input constraints to oscillation searches using SK. The off-axis near detector, ND280, is a composite detector made up of a tracker section and a Pi-Zero detector (POD), all surrounded by an electromagnetic calorimeter. The entire detector is enclosed in a dipole magnet with a field of 0.2 T. The primary purpose of the tracker section is to measure neutrino induced charged current events characterized by the production of muons. The POD is primarily designed to detect electromagnetic showers and to measure interactions on water through the use of a removable water target. In addition to these measurements, the ND280 detector is also used to study the cross sections of neutrino interactions on the various materials in the detectors. Limited knowledge of the cross sections in this neutrino energy regime are an important source of systematic error in neutrino oscillation measurements. This thesis presents a measurement of one neutrino interaction channel in the POD, neutral current elastic scattering (NCE). In this process a neutrino elastically scatters off a proton or neutron in the target nucleus producing a proton or neutron with higher energy. The signature of this process is a single proton track. A particle identification algorithm (PID) was

  12. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  13. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  14. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments

    DOE PAGES

    Minakata, Hisakazu; Parke, Stephen J.

    2013-06-04

    Precision measurement of the leptonic CP violating phase δ will suffer from the, then surviving, large uncertainty of sin2θ23 of 10–20% in the experimentally interesting region near maximal mixing of θ23. We advocate a new method for determination of both θ23 and δ at the same time using only the νe and ν̄e appearance channels and show that sin2θ23 can be determined automatically with much higher accuracy, approximately a factor of six, than sinδ. In this method, we identify a new degeneracy for the simultaneous determination of θ23 and δ, the θ23 intrinsic degeneracy, which must be resolved in ordermore » to achieve precision measurement of these two parameters. Spectral information around the vacuum oscillation maxima is shown to be the best way to resolve this degeneracy.« less

  15. Electron neutrino and antineutrino appearance in the full MINOS data sample.

    PubMed

    Adamson, P; Anghel, I; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Cherdack, D; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Ochoa-Ricoux, J P; O'Connor, J; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2013-04-26

    We report on ν(e) and ν(e) appearance in ν(μ) and ν(μ) beams using the full MINOS data sample. The comparison of these ν(e) and ν(e) appearance data at a 735 km baseline with θ13 measurements by reactor experiments probes δ, the θ23 octant degeneracy, and the mass hierarchy. This analysis is the first use of this technique and includes the first accelerator long-baseline search for ν(μ) → ν(e). Our data disfavor 31% (5%) of the three-parameter space defined by δ, the octant of the θ23, and the mass hierarchy at the 68% (90%) C.L. We measure a value of 2sin(2)(2θ13)sin(2)(θ23) that is consistent with reactor experiments.

  16. Limit on electron neutrino mass from observation of the beta decay of molecular tritium

    SciTech Connect

    Wilkerson, J.F.; Bowles, T.J.; Friar, J.L.; Robertson, R.G.H.; Stephenson, G.J. Jr.; Wark, D.L. ); Knapp, D.A. )

    1990-01-01

    We report the most sensitive upper limit set on the mass of the electron antineutrino. The upper limit of 9.4 eV (95% confidence level) was obtained from a study of the shape of the beta decay spectrum of free molecular tritium. Achieving such a level of sensitivity required precise determinations of all processes that modify the shape of the observed spectrum. This result is in clear disagreement with a reported value for the mass of 26(5) eV. 30 refs., 3 figs., 2 tabs.

  17. Library Event Matching event classification algorithm for electron neutrino interactions in the NOνA detectors

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Patterson, R. B.

    2015-04-01

    We describe the Library Event Matching classification algorithm implemented for use in the NOνA νμ →νe oscillation measurement. Library Event Matching, developed in a different form by the earlier MINOS experiment, is a powerful approach in which input trial events are compared to a large library of simulated events to find those that best match the input event. A key feature of the algorithm is that the comparisons are based on all the information available in the event, as opposed to higher-level derived quantities. The final event classifier is formed by examining the details of the best-matched library events. We discuss the concept, definition, optimization, and broader applications of the algorithm as implemented here. Library Event Matching is well-suited to the monolithic, segmented detectors of NOνA and thus provides a powerful technique for event discrimination.

  18. Expression of Interest for Neutrinos Scattering on Glass: NuSOnG

    SciTech Connect

    Adams, T.; Bugel, L.; Conrad, J.M.; Fisher, P.H.; Formaggio, J.A.; de Gouvea, A.; Loinaz, W.A.; Karagiorgi, G.; Kobilarcik, T.R.; Kopp, S.; Kyle, G.; /New Mexico State U. /Fermilab /MIT /Fermilab

    2009-07-01

    We propose a 3500 ton (3000 ton fiducial volume) SiO{sub 2} neutrino detector with sampling calorimetry, charged particle tracking, and muon spectrometers to run in a Tevatron Fixed Target Program. Improvements to the Fermilab accelerator complex should allow substantial increases in the neutrino flux over the previous NuTeV quad triplet beamline. With 4 x 10{sup 19} protons on target/year, a 5 year run would achieve event statistics more than 100 times higher than NuTeV. With 100 times the statistics of previous high energy neutrino experiments, the purely weak processes {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub {mu}} + e{sup -} and {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub e} + {mu}{sup -} (inverse muon decay) can be measured with high accuracy for the first time. The inverse muon decay process is independent of strong interaction effects and can be used to significantly improve the flux normalization for all other processes. The high neutrino and antineutrino fluxes also make new searches for lepton flavor violation and neutral heavy leptons possible. In this document, we give a first look at the physics opportunities, detector and beam design, and calibration procedures.

  19. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  20. Radiochemical solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Cleveland, B. T.

    2011-12-01

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p→d+e++νe, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of ϕpp♁=(3.41-0.77+0.76)×1010/(cm-s), which agrees well with the prediction from a detailed solar model of ϕpp♁=(3.30-0.14+0.13)×1010/(cm-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  1. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    SciTech Connect

    Marino, Alysia

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  2. Status of neutrino mass experiments

    SciTech Connect

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs.

  3. The future of reactor neutrino experiments: A novel approach to measuring theta{sub 13}

    SciTech Connect

    Heeger, Karsten M.; Freedman, Stuart J.; Luk, Kam-Biu

    2003-08-24

    Results from non-accelerator neutrino oscillation experiments have provided evidence for the oscillation of massive neutrinos. The subdominant oscillation, the coupling of the electron neutrino flavor to the third mass eigenstate, has not been measured yet. The size of this coupling U{sub e3} and its corresponding mixing angle theta{sub 13} are critical for CP violation searches in the lepton sector and will define the future of accelerator neutrino physics. The current best limit on U{sub e3} comes from the CHOOZ reactor neutrino disappearance experiment. In this talk we review proposals for future measurements of theta-13 with reactor antineutrinos.

  4. Right-Handed Neutrinos and the 2 TeV $W'$ Boson

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Lopez-Pavon, Jacobo

    2015-12-30

    The CMS e+e-jj events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron-neutrino can be the right-handed tau-neutrino. Furthermore, a prediction of this model is that the sum of the τ+e+jj and τ-e-jj signal cross sections equals twice that for e+e-jj. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data.

  5. REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, Ol'ga G.

    2006-10-01

    The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.

  6. BEST sensitivity to O(1) eV sterile neutrino

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2016-04-01

    Numerous anomalous results in neutrino oscillation experiments can be attributed to the interference of an ˜1 eV sterile neutrino. The Baksan Experiment on Sterile Transitions (BEST), specially designed to fully explore the Gallium anomaly, starts next year. We investigate the sensitivity of BEST in search of a sterile neutrino mixed with an electron neutrino. Then, performing the combined analysis of all the Gallium experiments (SAGE, GALLEX, BEST), we find the region in the model parameter space (sterile neutrino mass and mixing angle) which will be excluded if BEST agrees with no sterile neutrino hypothesis. For the opposite case, if BEST observes the signal as it follows from the sterile neutrino explanation of the Gallium (SAGE and GALLEX) anomaly, we show how BEST will improve upon the present estimates of the model parameters.

  7. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  8. Towards the resolution of the solar neutrino problem

    SciTech Connect

    Friedland, Alexander

    2000-08-01

    A number of experiments have accumulated over the years a large amount of solar neutrino data. The data indicate that the observed solar neutrino flux is significantly smaller than expected and, furthermore, that the electron neutrino survival probability is energy dependent. This ''solar neutrino problem'' is best solved by assuming that the electron neutrino oscillates into another neutrino species. Even though one can classify the solar neutrino deficit as strong evidence for neutrino oscillations, it is not yet considered a definitive proof. Traditional objections are that the evidence for solar neutrino oscillations relies on a combination of hard, different experiments, and that the Standard Solar Model (SSM) might not be accurate enough to precisely predict the fluxes of different solar neutrino components. Even though it seems unlikely that modifications to the SSM alone can explain the current solar neutrino data, one still cannot completely discount the possibility that a combination of unknown systematic errors in some of the experiments and certain modifications to the SSM could conspire to yield the observed data. To conclusively demonstrate that there is indeed new physics in solar neutrinos, new experiments are aiming at detecting ''smoking gun'' signatures of neutrino oscillations, such as an anomalous seasonal variation in the observed neutrino flux or a day-night variation due to the regeneration of electron neutrinos in the Earth. In this dissertation we study the sensitivity reach of two upcoming neutrino experiments, Borexino and KamLAND, to both of these effects. Results of neutrino oscillation experiments for the case of two-flavor oscillations have always been presented on the (sin2 2θ, Δm2) parameter space. We point out, however, that this parameterization misses the half of the parameter space π/4 < θ < π/2, which is physically inequivalent to the region 0 < θ < π/4 in the presence of matter effects. The MSW

  9. Aspects of neutrino interactions (scatterings at the low Q{sup 2}-region)

    SciTech Connect

    Hoinka, T.; Paschos, E. A.; Thomas, L.

    2015-10-15

    The article begins with a description of chiral symmetry and its application to neutrino induced reactions. For small Q{sup 2} (forward direction) the process is dominated by the amplitute with helicity zero where the pion pole disappears when multiplied with the polarization vector. The remaining part of the amplitude is determined by PCAC. For E{sub ν} > 2 GeV the computed cross sections are in good agreement with data. In coherent pion production we expect equal yields for neutrinos and antineutrinos a relation which for E{sub ν} > 2 GeV is fulfilled. We discuss specific features of the data and suggest methods for improving them by presenting new estimates for the incoherent background.

  10. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    SciTech Connect

    Khruschov, V. V. Fomichev, S. V. Titov, O. A.

    2016-09-15

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal active neutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a{sub 2} type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  11. Neutrino mass^2 inferred from the cosmic ray spectrum and tritium beta decay

    NASA Astrophysics Data System (ADS)

    Ehrlich, R.

    2000-11-01

    An earlier prediction of a cosmic ray neutron line right at the energy of the knee of the cosmic ray spectrum was based on the speculation that the electron neutrino is a tachyon whose mass is reciprocally related to the energy of the knee, $E_k$. Given the large uncertainty in $E_k$, the values of ${m_\

  12. Status report on the Livermore-Rockefeller-Fermilab neutrino mass experiment

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; White, R.M.; Woerner, R.

    1986-03-01

    An experiment is being performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source.

  13. Search for B --> mu anti-muon-neutrino gamma and B --> e anti-electron-neutrino gamma

    SciTech Connect

    Jessop, Colin P.

    2003-05-16

    We have searched for the decays B {yields} {mu}{bar {nu}}{sub {mu}}{gamma} and B {yields} e{bar {nu}}{sub e}{gamma} in a sample of 2.7 million charged B decays collected with the CLEO II detector. In the muon channel, we observe no candidates in the signal region and set an upper limit on the branching fraction of {Beta}(B {yields} {mu}{bar {nu}}{sub {mu}}{gamma}) < 5.2 x 10{sup -5} at the 90% confidence level. In the electron channel, we observe 5 candidates in the signal region and set an upper limit on the branching fraction of {Beta}(B {yields} e{bar {nu}}{sub e}{gamma}) < 2.0 x 10{sup -4} at the 90% confidence level.

  14. Pseudo Dirac neutrinos in the seesaw model

    NASA Astrophysics Data System (ADS)

    Dutta, Gautam; Joshipura, Anjan S.

    1995-04-01

    A specific class of textures for the Dirac and Majorana mass matrices in the seesaw model leading to a pair of almost degenerate neutrinos is discussed. These textures can be obtained by imposing a horizontal U(1) symmetry. A specific model is discussed in which (1) all three neutrino masses are similar in magnitude and could lie around 1 eV providing the hot component of the dark matter in the Universe, (2) two of these are highly degenerate and their (mass)2 difference could solve the solar neutrino problem through the large angle MSW solution, and (3) the electron neutrino mass may be observable through a Kurie plot as well as through a search of the neutrinoless double β decay.

  15. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  16. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab.

  17. Neutral-current detectors for the Sudbury Neutrino Observatory

    SciTech Connect

    Hime, A.; SNO Collaboration

    1997-09-01

    With its heavy water target, the Sudbury Neutrino Observatory has the unique opportunity to measure both the {sup 8}B flux of electron neutrinos from the Sun and the flux of all active neutrino species independently, thus offering a direct and model-independent test of a neutrino oscillation solution to the solar neutrino problem. The authors report on the physics intent and design of a discrete method of neutral-current detection in the Sudbury neutrino observatory that will utilize ultra-low background {sup 3}He proportional counters dispersed throughout the heavy water volume. Projections of background in all components of the detector are considered in an analysis of the ability to extract the neutral-current signal and the neutral-current to charged-current ratio.

  18. The COHERENT collaboration: an effort to observe coherent, elastic, neutral-current neutrino-nucleus scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Coherent Collaboration

    2014-09-01

    The phenomenon of coherent, neutral-current scattering of neutrinos from nuclei was first proposed by D.Z. Freedman in 1974, who posited that an effort to observe this effect experimentally ``may be an act of hubris'' owing to extreme experimental difficulties. Taking advantage of technologies which have come to maturity and new experience gained in the intervening 40 years, the newly-formed COHERENT collaboration seeks to measure for the first time coherent, elastic neutrino-nucleus scattering (CE ν NS). Using neutrinos created by stopped pions at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory, several detector systems will be deployed to limit systematic uncertainties and unambiguously observe the N2 -dependence on the cross section. The current status of the efforts of the collaboration will be addressed, focusing on detector technologies and calibration of these detectors for low-energy nuclear recoils. We will also discuss the longer-term physics goals of the collaboration, including astrophysical implications of the measurements and the use CE ν NS as a probe to search for non-standard neutrino interactions and as a way to measure the weak mixing angle.

  19. How neutrino oscillations can induce an effective neutrino number of less than three during big bang nucleosynthesis

    SciTech Connect

    Foot, R.; Volkas, R.R.

    1997-11-01

    Ordinary-sterile neutrino oscillations can generate significant neutrino asymmetry in the early Universe. In this paper we extend this work by computing the evolution of neutrino asymmetries and light element abundances during the big bang nucleosynthesis (BBN) epoch. We show that a significant electron-neutrino asymmetry can be generated in a way that is approximately independent of the oscillation parameters {delta}m{sup 2} and sin{sup 2}2{theta} for a range of parameters in an interesting class of models. The numerical value of the asymmetry leads to the {ital prediction} that the effective number of neutrino flavors during BBN is either about 2.5 or 3.4, depending on the sign of the asymmetry. Interestingly, one class of primordial deuterium abundance data favors an effective number of neutrino flavors during the epoch of BBN of less than 3. {copyright} {ital 1997} {ital The American Physical Society}

  20. Strangeness in the Nucleon, Cold Dark Matter in the Universe, and Neutrino Scattering off Liquid Argon

    SciTech Connect

    Papavassiliou, V.

    2010-03-30

    The strangeness content of the nucleon and the contribution of strange quarks to various nucleon quantum numbers, besides being of fundamental interest, also affects calculations of cross sections of processes that are important in searches for new physics. Here we focus on direct searches for cold dark matter, in the scenario in which the lightest supersymmetric neutral particle dominates the CDM density in the universe and point out that interpretation of searches, as well as the choice of optimal materials for future experiments, are hobbled by uncertainties in the contribution of strange quarks to the nucleon spin. We show how a future low-energy neutrino experiment using a liquid-Ar TPC can make important contributions in determining this quantity with much better precision and reduced theoretical uncertainties.

  1. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    SciTech Connect

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-10-15

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  2. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    SciTech Connect

    Izmaylov, A. O. Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T.

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  3. Impact of CP-violation on neutrino lepton number asymmetries revisited

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Park, Wan-Il

    2017-02-01

    We revisit the effect of the (Dirac) CP-violating phase on neutrino lepton number asymmetries in both mass- and flavor-basis. We found that, even if there are sizable effects on muon- and tau-neutrino asymmetries, the effect on the asymmetry of electron-neutrinos is at most similar to the upper bound set by BBN for initial neutrino degeneracy parameters smaller than order unity. We also found that, for the asymmetries in mass-basis, the changes caused by CP-violation is of sub-% level which is unlikely to be accessible neither in the current nor in the forthcoming experiments.

  4. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  5. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  6. Scattering rates for leptogenesis: Damping of lepton flavour coherence and production of singlet neutrinos

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Glowna, Frank; Schwaller, Pedro

    2013-12-01

    Using the Closed Time Path (CTP) approach, we perform a systematic leading order calculation of the relaxation rate of flavour correlations of left-handed Standard Model leptons. This quantity is of pivotal relevance for flavoured leptogenesis in the Early Universe, and we find it to be 5.19×10-3T at T=107 GeV and 4.83×10-3T at T=1013 GeV, in substantial agreement with estimates used in previous phenomenological analyses. These values apply to the Standard Model with a Higgs-boson mass of 125 GeV. The dependence of the numerical coefficient on the temperature T is due to the renormalisation group running. The leading linear and logarithmic dependencies of the flavour relaxation rate on the gauge and top-quark couplings are extracted, such that the results presented in this work can readily be applied to extensions of the Standard Model. We also derive the production rate of light (compared to the temperature) sterile right-handed neutrinos, a calculation that relies on the same methods. We confirm most details of earlier results, but find a substantially larger contribution from the t-channel exchange of fermions.

  7. Improved Determination of {ital {alpha}}{sub {ital s}} From Neutrino-Nucleon Scattering

    SciTech Connect

    Johnson, R.A.; Vakili, M.; Seligman, W.G.; Arroyo, C.G.; Bazarko, A.O.; Conrad, J.; Kim, J.H.; King, B.J.; Lefmann, W.C.; McNulty, C.; Mishra, S.R.; Quintas, P.Z.; Romosan, A.; Sciulli, F.J.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Bernstein, R.H.; Lamm, M.J.; Marsh, W.; McFarland, K.S.; Yu, J.; Bolton, T.; Naples, D.; de Barbaro, L.; Schellman, H.; de Barbaro, P.; Bodek, A.; Budd, H.; Harris, D.A.; Sakumoto, W.K.; Yang, U.K.; Kinnel, T.; Smith, W.H.

    1997-08-01

    We present an improved determination of the proton structure functions F{sub 2} and xF{sub 3} from the Columbia-Chicago-Fermilab-Rochester Collaboration {nu}{minus}Fe deep inelastic scattering experiment. Comparisons to corrected high-statistics charged-lepton scattering results for F{sub 2} from the NMC, E665, SLAC, and BCDMS experiments indicate good agreement for x{gt}0.1 but some discrepancy at lower x . The Q{sup 2} evolution of both the F{sub 2} and xF{sub 3} structure functions yields a value of the strong coupling constant at the scale of mass of the Z boson of {alpha}{sub s}(M{sup 2}{sub Z})=0 .119{plus_minus}0.002(expt){plus_minus}0.004( theory) . This is one of the most precise measurements of this quantity. {copyright} {ital 1997} {ital The American Physical Society}

  8. The Search for Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Gershun, Daniel

    2011-01-01

    Neutrinos offer insight into such fundamental questions as the dominance of matter over antimatter, the dynamics of supernovae, and the large scale structure of the universe. NOvA (NUMI Off-axis Neutrino Oscillations) is an experiment that will measure crucial neutrino properties using a Near Detector at Fermilab, where the neutrinos are generated in the NuMI beam, and a large Far Detector in Ash River, MN, 735 km from Fermilab. The main objective of this experiment is the measurement of the parameters associated with the oscillation of muon to electron neutrinos. Indiana University with funding from the NSF and DOE are responsible for building and testing the water-cooled heat sinks required for the thermal and environmental control of the Avalanche Photodiodes used in the light detection generated in the Liquid Scintillator. The heat sinks have a brass body with a TEC chip that cools the APD to -15 C. The water system that conducts the 5 W generated by the thermal control has been designed to withstand a maximum pressure of 100 psi. Several of the construction techniques and QC tests performed will be described.

  9. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  10. Muon neutrino and anti-neutrino selection in the tracker of the T2K off-axis near detector

    NASA Astrophysics Data System (ADS)

    Przewlocki, Pawel; Riccio, Ciro; T2K Collaboration

    2017-09-01

    T2K (Tokai to Kamioka) is a long-baseline neutrino oscillation experiment located in Japan. Since its discovery of electron neutrino appearance in 2013 excluding θ 13 = 0 with a significance of 7.3σ, T2K has switched its beam magnet polarities to run in anti-neutrino beam mode in order to enhance its sensitivity to measure anti-electron neutrino appearence. The beam is dominated by muon antineutrinos; however it also contains a sizable contamination from muon neutrinos. The analysis of both νµ and {\\bar{ν }}μ interactions in the off-axis near detector ND280, provides a significant reduction of the flux prediction and cross-section modelling systematic uncertainties in the oscillation analysis. ND280 data also gives us the opportunity to measure cross-sections for processes that have not yet been thoroughly studied for antineutrinos at the energy range of ∼1 GeV. The second largest reaction type at this energy range after the charged-current (CC) quasi-elastic reaction are processes involving pion production. The poster will present the selections of CC interactions of both antineutrinos and neutrinos in the ND280 tracker. It will also cover the separation into three sub-samples of the CC sample based on the pion content in each event.

  11. Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination

    NASA Astrophysics Data System (ADS)

    Welker, A.; Filianin, P.; Althubiti, N. A. S.; Atanasov, D.; Blaum, K.; Cocolios, T. E.; Eliseev, S.; Herfurth, F.; Kreim, S.; Lunney, D.; Manea, V.; Neidherr, D.; Novikov, Yu.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-07-01

    Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between 202Pb and 202Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value Q_{EC} = 38.8(43) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of 163Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in 202Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter.

  12. Understanding the Earth’s Composition through Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Lowell, Beverly; de Gouvêa, André

    2017-01-01

    While our understanding of the cosmos has improved dramatically in the last decades, we still only have limited knowledge of the inside of our own planet. In particular, we only have indirect information regarding the composition or size of the Earth’s core. We do, however, know neutrinos interact with electrons and therefore their oscillations change as they propagate through matter. We theoretically examine how solar neutrinos propagating through the Earth can offer a look into the composition of its layers. We investigate if neutrinos can detect the Earth’s core by numerically calculating the probability of finding an electron-neutrino and adjusting parameters such as electron density and the radius of the core. It is determined that changing both of these parameters significantly affect the probability, such that neutrinos could be used experimentally to detect the size of a hard, dense core.

  13. Omnibus experiment: CPT and CP violation with sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Loo, K. K.; Novikov, Yu N.; Smirnov, M. V.; Trzaska, W. H.; Wurm, M.

    2017-09-01

    The verification of the sterile neutrino hypothesis and, if confirmed, the determination of the relevant oscillation parameters is one of the goals of the neutrino physics in near future. We propose to search for the sterile neutrinos with a high statistics measurement utilizing the radioactive sources and oscillometric approach with large liquid scintillator detector like LENA, JUNO, or RENO-50. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 + 1 scenario) and requiring at least 5σ confidence level, we estimate that we would be able to detect differences in the mass squared differences Δ m41^2 of electron neutrinos and electron antineutrinos of the order of 1% or larger. That would allow to probe the CPT symmetry with neutrinos with an unprecedented accuracy.

  14. The ν -cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-08-01

    We discuss a small-scale experiment, called ν -cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO_4 and Al_2O_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ , neutron and surface backgrounds. A first prototype Al_2O_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of {˜ }20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ ) within a measuring time of {≲ }2 weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.

  15. Neutrino Interactions with Matter by a New Neutrino Source From the Isotope Radioactive Decay Produced by the Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Park, Tae-Sun; Kajino, Toshitaka; Cheoun, Myung-Ki

    A new neutrino source for future's neutrino experiments is suggested in this work. Unstable isotope, 27Si, can be produced when 27Al target is bombarded by 15 MeV proton beams. Through the decay of the 27Si, a new electron-neutrino source in the 0-5.0 MeV energy range is obtained. Production of the neutrino source is studied by using GEANT4 code with JENDL-4.0/HE. For radioactive decay processes, we use "G4RadioactiveDecay" model based on the Evaluated Nuclear Structure Data File (ENSDF). As for the detection system of the new neutrino source, we evaluate reaction or event rates for available radiochemical detectors and LENA type scintillator detector.

  16. A Search for Neutrino Induced Coherent NC($\\pi^{0}$) Production in the MINOS Near Detector

    SciTech Connect

    Cherdack, Daniel David

    2011-02-01

    The production of single, highly forward π0 mesons by NC coherent neutrino-nucleus interactions (νμ + N → νμ + N + π0) is a process which probes fundamental aspects of the weak interaction. This reaction may also pose as a limiting background for long baseline searches for νμ → νe oscillations if the neutrino mixing angle θ13 is very small. The high-statistics sample of neutrino interactions recorded by the MINOS Near Detector provides an opportunity to measure the cross section of this coherent reaction on a relatively large-A nucleus at an average Ev = 4.9 GeV. A major challenge for this measurement is the isolation of forward-going electromagnetic (EM) showers produced by the relatively rare coherent NC(π0) process amidst an abundant rate of incoherently produced EM showers. The backgrounds arise from single π0 dominated NC events and also from quasi-elastic-like CC scattering of electron neutrinos. In this Thesis the theory of coherent interactions is summarized, and previous measurements of the coherent NC(π0) cross section are reviewed. Then, methods for selecting a sample of coherent NC(π0) like events, extracting the coherent NC(π0) event rate from that sample, estimating the analysis uncertainties, and calculating a cross section, are presented. A signal for neutrino-induced NC(π0) production is observed in the relevant kinematic regime as an excess of events of three standard deviations above background. The reaction cross sections, averaged over an energy window of 2.5 ≤ Ev ≤ 9.0 GeV is determined to be (31.6±10.5) x 10-40 cm2/nucleus. The result is the first evidence obtained for neutrino-nucleus coherent NC(π0) scattering on iron, and is the first measurement on an average nuclear target above A = 30. The cross section measurement

  17. Light dark matter in neutrino beams: Production modeling and scattering signatures at MiniBooNE, T2K, and SHiP

    NASA Astrophysics Data System (ADS)

    deNiverville, Patrick; Chen, Chien-Yi; Pospelov, Maxim; Ritz, Adam

    2017-02-01

    We analyze the prospects for detection of light sub-GeV dark matter produced in experiments designed to study the properties of neutrinos, such as MiniBooNE, T2K, SHiP, DUNE etc. We present an improved production model, when dark matter couples to hadronic states via a dark photon or baryonic vector mediator, incorporating bremsstrahlung of the dark vector. In addition to elastic scattering, we also study signatures of light dark matter undergoing deep inelastic or quasielastic NC π0 -like scattering in the detector producing neutral pions, which for certain experiments may provide the best sensitivity. Supplemental Material provides extensive documentation for a publicly available simulation tool BdNMC that can be applied to determine the hidden sector dark matter production and scattering rate at a range of proton fixed target experiments.

  18. First demonstration of a scintillating xenon bubble chamber for detecting dark matter and coherent elastic neutrino-nucleus scattering

    DOE PAGES

    Baxter, D.; Chen, C. J.; Crisler, M.; ...

    2017-06-08

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to amore » $$^{252}$$Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is $$19\\pm6$$ keV (1$$\\sigma$$ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of $$6.3\\times10^{-7}$$ bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF$$_3$$I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. Finally, these measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.« less

  19. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  20. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering.

    PubMed

    Baxter, D; Chen, C J; Crisler, M; Cwiok, T; Dahl, C E; Grimsted, A; Gupta, J; Jin, M; Puig, R; Temples, D; Zhang, J

    2017-06-09

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19±6  keV (1σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3×10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_{3}I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  1. The Sudbury Neutrino Observatory: Observation of Flavor Change for Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.

    2016-03-01

    The Sudbury Neutrino Observatory (SNO) detector was developed by an international scientific collaboration (Canada, US, UK) to use 1000 tonnes of heavy water 2 km underground in ultra-clean conditions to observe flavor change for solar neutrinos from 8B decay in the sun. A clear observation of neutrino change was obtained by comparing two neutrino reactions on deuterium, one sensitive only to electron flavor neutrinos and one sensitive equally to all active neutrino types. The design and construction and the operation and data analysis for the three separate phases of the experiment will be described. The initial phase with pure heavy water provided conclusive evidence for flavor change and hence finite mass for neutrinos. Subsequent phases within added NaCl and with an array of neutron detectors provided improved accuracy for the measurements of oscillation parameters. The observed total flux of 8B solar electron neutrinos is in excellent agreement with and more accurate than solar models. Modification of the SNO detector to create SNO + and expansion of the laboratory to create a long-term international underground laboratory, SNOLAB, will be briefly described.

  2. Neutrino properties and fundamental symmetries

    SciTech Connect

    Bowles, T.J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

  3. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N.

    2016-11-01

    Background: Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. Purpose: Confront our calculations of charged-current quasielastic cross sections with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. Method: The model takes the mean-field approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. Results: We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. Conclusions: The HF and CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy HF-CRPA nuclear excitations (ω <50 MeV) account for nearly 50% of the flux-folded cross section. This extra low-energy strength is a feature of the detailed microscopic nuclear model used here, that is not accessed in a Fermi-gas based approach.

  4. How large is the {sup 7}Be neutrino flux from the Sun?

    SciTech Connect

    Wolfenstein, L.; Krastev, P.I.

    1997-04-01

    On the basis of present solar neutrino observations and relaxing the constraints from solar models it is possible that most (or nearly all) of the flux of electron neutrinos detected comes from electron capture in {sup 7}Be. These solutions arise from neutrino oscillations in which {nu}{sub e}-{nu}{sub {tau}} mixing suppresses high energy {nu}{sub e} and {nu}{sub e}-{nu}{sub {mu}} mixing suppresses low energy {nu}{sub e} as qualitatively suggested from some SO(10) grand unified models. The importance of future observations is emphasized. {copyright} {ital 1997} {ital The American Physical Society}

  5. Can electron capture tell us the mass of the neutrino?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Šimkovic, F.

    2016-04-01

    The neutrino masses are one of the most important open problems in particle physics. Presently major efforts are underway to measure the electron antineutrino-mass by the triton beta decay [1] and the effective Majorana neutrino mass by the double beta decay [2]. The best way to determine the neutrino mass by electron capture was assumed to be in {}163{Ho}. The total decay energy of the excited daughter atom has for all excitations the same upper energy limit of the Q-value minus the mass of the electron neutrino. Recently Robertson [3] claimed, that the excitation of the two-hole states makes the determination of the neutrino mass by this method practically impossible. But Faessler and Simkovic [4] showed, that the influence of the two-hole states is less than 1% near the Q-value, the area relevant for the determination of the neutrino mass. Even weaker are the contributions of the three-hole states [5]. The upper end of the calorimetric deexcitation spectrum of Dy is dominated by the highest energy one-hole resonance. With a Lorentzian profile of this resonance one has to fit after including the experimental sensitivity four parameters: (1) the neutrino mass, (2) the Q-value, (3) the width of the resonance and (4) its strength. This contribution discusses the problems of the determination of the neutrino mass by electron capture in {}163{Ho}. The conclusion of this work is, that the determination of the electron neutrino mass by electron capture in {}163{Ho} is difficult, but (probably) not impossible.

  6. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  7. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M ⊙ progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  8. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  9. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    SciTech Connect

    Diaz, Enrique Arrieta

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  10. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  11. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling.

    PubMed

    Martínez-Pinedo, G; Fischer, T; Lohs, A; Huther, L

    2012-12-21

    We perform three-flavor Boltzmann neutrino transport radiation hydrodynamics simulations covering a period of 3 s after the formation of a protoneutron star in a core-collapse supernova explosion. Our results show that a treatment of charged-current neutrino interactions in hot and dense matter as suggested by Reddy et al. [Phys. Rev. D 58, 013009 (1998)] has a strong impact on the luminosities and spectra of the emitted neutrinos. When compared with simulations that neglect mean-field effects on the neutrino opacities, we find that the luminosities of all neutrino flavors are reduced while the spectral differences between electron neutrinos and antineutrinos are increased. Their magnitude depends on the equation of state and in particular on the symmetry energy at subnuclear densities. These modifications reduce the proton-to-nucleon ratio of the outflow, increasing slightly their entropy. They are expected to have a substantial impact on nucleosynthesis in neutrino-driven winds, even though they do not result in conditions that favor an r process. Contrary to previous findings, our results show that the spectra of electron neutrinos remain substantially different from those of other (anti)neutrino flavors during the entire deleptonization phase of the protoneutron star. The obtained luminosity and spectral changes are also expected to have important consequences for neutrino flavor oscillations and neutrino detection on Earth.

  12. Propagation of neutrinos through magnetized gamma-ray burst fireball

    SciTech Connect

    Sahu, Sarira; Fraija, Nissim; Keum, Yong-Yeon E-mail: nissim.ilich@nucleares.unam.mx

    2009-11-01

    The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order M{sub W}{sup −4}. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5–30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.

  13. Neutrino induced vorticity, Alfvén waves and the normal modes

    NASA Astrophysics Data System (ADS)

    Bhatt, Jitesh R.; George, Manu

    2017-08-01

    We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfvén wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfvén waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfvén velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background.

  14. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  15. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  16. Physics of neutrino flavor transformation through matter–neutrino resonances

    DOE PAGES

    Wu, Meng -Ru; Duan, Huaiyu; Qian, Yong -Zhong

    2015-11-17

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino for-ward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mecha-nism. As a result, we find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absentmore » for the inverted hierarchy.« less

  17. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Bing; Li, Ye; Ma, Ren-Yi; Xue, Li

    2016-06-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/antineutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050- 1051 erg s-1 peaking at ˜10 MeV , making NDAFs potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed gamma-ray burst (GRB) event rate in the local universe and requiring that at least three neutrinos are detected to claim a detection, we estimate a detection rate up to ˜(0.10 - 0.25 ) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ˜(1 - 3 ) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the Universe.

  18. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  19. Astrophysics and cosmology closing in on neutrino masses

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1990-01-01

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m(nu sub mu) and m(nu sub tau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m(nu sub e) can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m(nu sub e) of about 10 to the -8th electron volts, m(nu sub mu) of about 0.001 electron volts, and m(nu sub tau) of about 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.

  20. High-energy neutrino fluxes and flavor ratio in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Sinegovskaya, T. S.; Morozova, A. D.; Sinegovsky, S. I.

    2015-03-01

    We calculate the atmospheric neutrino fluxes in the energy range 100 GeV-10 PeV with the use of several known hadronic models and a few parametrizations of the cosmic-ray spectra which take into account the knee. The calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube, and ANTARES. An analytic description is presented for the conventional (νμ+ν¯ μ ) and (νe+ν¯e) energy spectra, averaged over zenith angles, which can be used to obtain test data of the neutrino event reconstruction in neutrino telescopes. The sum of the calculated atmospheric νμ flux and the IceCube best-fit astrophysical flux gives the evidently higher flux as compared to the IceCube59 data, giving rise the question concerning the hypothesis of the equal flavor composition of the high-energy astrophysical neutrino flux. Calculations show that the transition from the atmospheric electron neutrino flux to the predominance of the astrophysical neutrinos occurs at 30-100 TeV if the prompt neutrino component is taken into consideration. The neutrino flavor ratio, extracted from the IceCube data, does not tend to increase with the energy as is expected for the conventional neutrino flux in the energy range 100 GeV-30 TeV. A depression of the ratio Rνμ/νe possibly indicates that the atmospheric electron neutrino flux obtained in the IceCube experiment contains an admixture of the astrophysical neutrinos in the range 10-50 TeV.

  1. Current status of new SAGE project with 51Cr neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V.; Cleveland, B.; Danshin, S.; Elliott, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Knodel, T.; Kozlova, Yu.; Malyshkin, Yu.; Matveev, V.; Mirmov, I.; Nico, J.; Robertson, R. G. H.; Shikhin, A.; Sinclair, D.; Veretenkin, E.; Wilkerson, J.

    2015-03-01

    A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ˜3 MCi to search for transitions of active neutrinos to sterile states with Δ m 2 ˜1 eV2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements.

  2. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  3. The Project 8 Radiofrequency Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Monreal, Benjamin

    The Project 8 experiment aims to determine the electron neutrino mass by measuring the spectrum of tritium beta decay electrons near the 18.6 keV endpoint. Unlike past tritium experiments, which used electrostatic and magnetostatic spectrometers, Project 8 will detect decay electrons nondestructively via their cyclotron radiation emission in a magnetic field. An individual electron is expected to emit a detectable pulse of microwaves at a frequency which depends on the electron energy. Precise measurement of these pulse frequencies is a novel spectroscopy technique particularly well-suited for the high rate, high precision, low background needs of a tritium experiment. The collaboration is currently operating a prototype designed to detect single 83mKr conversion electron decays in an 0.9T magnetic field. We report on recent activities on the prototype, and on progress towards the design of a large tritium experiment with new neutrino-mass sensitivity.

  4. Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Hulth, P. O.; Botner, O.; Carlson, P.; Ohlsson, T.

    2006-03-01

    J. N. Bahcall (1934-2005) -- Preface -- List of participants -- Committees -- Nobel symposium on neutrino physics - program -- The history of neutrino oscillations / S. M. Bilenky -- Super-Kamiokande results on neutrino oscillations / Y. Suzuki -- Sudbury neutrino observatory results / A. B. McDonald -- Results from KamLAND reactor neutrino detection / A. Suzuki -- New opportunities for surprise / J. Conrad -- Solar models and solar neutrinos / J. N. Bahcall -- Atmospheric neutrino fluxes / T. K. Gaisser -- The MSW effect and matter effects in neutrino oscillations / A. Yu. Smirnov -- Three-flavour effects and CP- and T-violation in neutrino oscillations / E. Kh. Akhmedov -- Global analysis of neutrino data / M. C. Gonzalez-Garcia -- Future precision neutrino oscillation experiments and theoretical implications / M. Lindner -- Experimental prospects of neutrinoless double beta decay / E. Fiorini -- Theoretical prospects of neutrinoless double beta decay / S. T. Petcov -- Supernova neutrino oscillations / G. G. Raffelt -- High-energy neutrino astronomy / F. Halzen -- Neutrino astrophysics in the cold: Amanda, Baikal and IceCube / C. Spiering -- Status of radio and acoustic detection of ultra-high energy cosmic neutrinos and a proposal on reporting results / D. Saltzberg -- Detection of neutrino-induced air showers / A. A. Watson -- Prospect for relic neutrino searches / G. B. Gelmini -- Leptogenesis in the early universe / T. Yanagida -- Neutrinos and big bang nucleosynthesis / G. Steigman -- Extra galactic sources of high energy neutrinos / E. Waxman -- Cosmological neutrino bounds for non-cosmologists / M. Tegmark -- Neutrino intrinsic properties: the neutrino-antineutrino relation / B. Kayser -- NuTeV and neutrino properties / M. H. Shaevitz -- Absolute masses of neutrinos - experimental results and future possibilities / C. Weinheimer -- Flavor theories and neutrino masses / P. Ramond -- Neutrino mass models and leptogenesis / S. F. King -- Neutrino mass and

  5. Cosmic neutrino cascades from secret neutrino interactions

    NASA Astrophysics Data System (ADS)

    Ng, Kenny C. Y.; Beacom, John F.

    2014-09-01

    The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the cosmic neutrino background (CνB) is particularly useful for directly testing secret neutrino interactions (νSI) that would cause neutrino-neutrino elastic scattering at a larger rate than the usual weak interactions. We show that IceCube can provide competitive sensitivity to νSI compared to other astrophysical and cosmological probes, which are complementary to laboratory tests. We study the spectral distortions caused by νSI with a large s-channel contribution, which can lead to a dip, bump, or cutoff on an initially smooth spectrum. Consequently, νSI may be an exotic solution for features seen in the IceCube energy spectrum. More conservatively, IceCube neutrino data could be used to set model-independent limits on νSI. Our phenomenological estimates provide guidance for more detailed calculations, comparisons to data, and model building.

  6. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  7. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  8. HALO the helium and lead observatory for supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Duba, C. A.; Duncan, F.; Farine, J.; Habig, A.; Hime, A.; Robertson, R. G. H.; Scholberg, K.; Shantz, T.; Virtue, C. J.; Wilkerson, J. F.; Yen, S.

    2008-11-01

    The Helium and Lead Observatory (HALO) is a supernova neutrino detector under development for construction at SNOLAB. It is intended to fulfill a niche as a long term, low cost, high livetime, and low maintenance, dedicated supernova detector. It will be constructed from 80 tonnes of lead, from the decommissioning of the Deep River Cosmic Ray Station, and instrumented with approximately 384 meters of 3He neutron detectors from the final phase of the SNO experiment. Charged- and Neutral-Current neutrino interactions in lead expel neutrons from the lead nuclei making a burst of detected neutrons the signature for the detection of a supernova. Existing neutrino detectors are mostly of the water Cerenkov and liquid scintillator types, which are primarily sensitive to electron anti-neutrinos via charged-current interactions on the hydrogen nuclei in these materials. By contrast, the large neutron excess of a heavy nucleus like Pb acts to Pauli-block pranglen transitions induced by electron anti-neutrinos, making HALO primarily sensitive to electron neutrinos. While any supernova neutrino data would provide an invaluable window into supernova dynamics, the electron neutrino CC channel has interesting sensitivity to particle physics through flavour-swapping and spectral splitting due to MSW-like collective neutrino-neutrino interactions in the core of the supernova, the only place in the universe where there is a sufficient density of neutrinos for this to occur. Such data could provide a test for θ13 ≠ 0 and an inverted neutrino mass hierarchy. In addition, the ratio of 1-neutron to 2-neutron events would be a measure of the temperature of the cooling neutron star. For the 80 tonne detector, a supernova at 10 kpc is estimated to produce 43 detected neutrons in the absence of collective ν-ν interactions, and many more in their presence. The high neutrino cross-section and low neutron absorption cross-section of lead, along with the modest cost of lead, makes this

  9. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments

    SciTech Connect

    Minakata, Hisakazu; Parke, Stephen J.

    2013-06-04

    Precision measurement of the leptonic CP violating phase δ will suffer from the, then surviving, large uncertainty of sin2θ23 of 10–20% in the experimentally interesting region near maximal mixing of θ23. We advocate a new method for determination of both θ23 and δ at the same time using only the νe and ν̄e appearance channels and show that sin2θ23 can be determined automatically with much higher accuracy, approximately a factor of six, than sinδ. In this method, we identify a new degeneracy for the simultaneous determination of θ23 and δ, the θ23 intrinsic degeneracy, which must be resolved in order to achieve precision measurement of these two parameters. Spectral information around the vacuum oscillation maxima is shown to be the best way to resolve this degeneracy.

  10. A search for neutral D meson decaying to kaon electron anti-electron neutrino (via mixing) at CLEO

    NASA Astrophysics Data System (ADS)

    Sedlack, Christopher

    I provide a general overview of particle physics, including a brief introduction to the Standard Model. I describe the theory behind the phenomenon of charm mixing and present a method of searching for D0 - D0 mixing using the CLEO detector at the Cornell Electron Storage Ring. Analyzing the 9.0fb-1 CLEO II.V, I find a value for the mixing rate, Rmix = 1.10% +/- 76%(stat.) +/- .68%(syst.). This corresponds to a limit of Rmix < 3.24% at the 95% confidence level.

  11. Theory of oscillations and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2014-11-01

    We present a concise review of the theoretical status of neutrino oscillations within the (standard) 3-flavor framework and the (non-standard) 4-flavor scheme endowed with one additional sterile species (the so-called 3+1 scheme). We emphasize the slight overall preference that recently emerged for CP-violation in the 3-flavor analysis and highlight the unique role of the global data combination in the near future. After a brief introduction of the motivations for light (eV) sterile neutrinos, we discuss the bounds on their mixing with the electron neutrinos, attainable from the solar sector. The upper limit so obtained is independent of the reactor neutrino fluxes, whose calculations are affected by systematic uncertainties not completely under control. Finally, we highlight the possibility to explore sub-eV "super-light" sterile neutrinos exploiting the θ13-dedicated reactor experiments also commenting on the robustness of the 3- flavor results within the enlarged 3+1 scheme.

  12. A Study of the Nuclear-Medium Influence on Transverse Momentum of Hadrons Produced in Deep-Inelastic Neutrino Scattering

    SciTech Connect

    Agababyan, N.M.; Ammosov, V.V.; Ivanilov, A.A.; Korotkov, V.A.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Karamyan, Zh.

    2005-07-01

    The influence of nuclear effects on the transverse momentum (p{sub T}) of neutrino-produced hadrons is investigated using the data obtained with the SKAT propane-freon bubble chamber irradiated in the neutrino beam (with E{sub {nu}} = 3-30 GeV) at the Serpukhov accelerator. It has been observed that the nuclear effects cause an enhancement of of hadrons produced in the target fragmentation region at low invariant mass of the hadronic system (2 < W < 4 GeV) and at low energies transferred to the hadrons (2 < {nu} < 9 GeV). At higher W and {nu}, no influence of nuclear effects on is observed. Measurement results are compared with predictions of a simple model, incorporating secondary intranuclear interactions of hadrons, which qualitatively reproduces the main features of the data.

  13. Yet another possible explanation of the solar-neutrino puzzle

    SciTech Connect

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-04-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m/sub 2//sup 2/ - m /sub 1//sup 2/ approx. = 6 x 10/sup -5/ eV/sup 2/, and the mixing angle satisfies sin theta/sub v/ > 0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0 x 10/sup -8/ < (m/sub 2//sup 2/ - m/sub 1//sup 2/) (sin/sup 2/ 2theta/sub v//cos 2theta/sub v/) < 6.1 x 10/sup -8/ eV/sup 2/. Our solutions result in a much smaller flux of neutrinos from the p - p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p - process that is about the same as standard solar models.

  14. Splitting Neutrino masses and Showering into Sky

    NASA Astrophysics Data System (ADS)

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.

    2007-06-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  15. Right-Handed Neutrinos and the 2 TeV $W'$ Boson

    SciTech Connect

    Coloma, Pilar; Dobrescu, Bogdan A.; Lopez-Pavon, Jacobo

    2015-12-30

    The CMS e+e-jj events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron-neutrino can be the right-handed tau-neutrino. Furthermore, a prediction of this model is that the sum of the τ+e+jj and τ-e-jj signal cross sections equals twice that for e+e-jj. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data.

  16. Atmospheric neutrino oscillation analysis using Fluka three-dimensional flux and Super-Kamiokande data

    NASA Astrophysics Data System (ADS)

    Kibayashi, Atsuko

    A new neutrino oscillation analysis was carried out with the atmospheric neutrino data taken by the Super-Kamiokande detector. The updated 1489 live-days of data, or 91.6 kton-yr exposure, has been compared to a new 3-dimensional atmospheric flux calculation. The resulting best-fit oscillation parameters are (sin2 2theta, Delta m2) = (1.00, 2.51 x 10-3 eV2). At 90% C.L., the allowed region parameters are sin2(2theta) > 0.90 and 1.7 x 10-3 < Deltam2 < 4.2 x 10 -3. No flux model dependence on the results were seen. Results are considered with muon-tau neutrino mixing alone. Some admixture of sterile and electron neutrinos remains permissible, but oscillations of muon to tau neutrinos, as opposed to alternative solutions, seems inescapable.

  17. Neutrino Oscillations with Reactor Neutrinos

    NASA Astrophysics Data System (ADS)

    Cabrera, Anatael

    2007-06-01

    Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

  18. Interaction of the intermediate energy neutrino with nuclei

    NASA Technical Reports Server (NTRS)

    Bugayev, E. V.; Rudzskiy, M. A.; Bisnovatyy-Kogan, G. S.; Seidov, Z. F.

    1980-01-01

    The interaction of the electronic neutrino with nuclei C-12, O-16, Ci-37, Fe-56, Ga-71, and Br81 is considered for neutrino energy up to 300 MeV. The nuclei are described by single-particle shell-model with Woods-Saxon potential. The parameters of the potential are specially chosen for each nuclei in order to describe correctly the upper occupied single particle levels of the nuclei. The cross sections for inelastic and elastic interactions of neutrino with nuclei are calculated within this model, taking into account charged and neutral current of weak interaction. The neutral currents are described by Weinberg theory. The results of the cross section calculations are presented and the comparisons with the results of the other authors are given. The possibilities of improvement of the exactness of obtained results are discussed. Some details of the calculations are included.

  19. Effect of the charged-lepton's mass on the quasielastic neutrino cross sections

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.

    2017-09-01

    Martini et al. [Phys. Rev. C 94, 015501 (2016), 10.1103/PhysRevC.94.015501] recently observed that when the produced-lepton's mass plays an important role, the charged-current quasielastic cross section for muon neutrinos can be higher than that for electron neutrinos. Here I argue that this effect appears solely in the theoretical descriptions of nuclear effects in which nucleon knockout requires the energy and momentum transfers to lie in a narrow range of the kinematically allowed values.

  20. Stability of Gd-loaded liquid scintillator for reactor neutrino detection

    NASA Astrophysics Data System (ADS)

    Katsumata, M.; Miyata, H.; Tamura, N.; Kawasaki, T.

    2011-02-01

    Gd-loaded liquid scintillators are promising tools for detection of anti-electron neutrinos, yet their stability remains a concern for neutrino experiments. This study investigated the instability of a Gd-loaded liquid scintillator and found that Gd precipitated and light yield decreased due to oxidation. The precipitation not only reduced transmission but also decreased the Gd concentration. However, when the antioxidant 2,6-di- tert-butyl-4-methylphenol (BHT) was added to the liquid scintillator, we obtained a stable liquid scintillator at room temperature.

  1. Neutrino physics

    SciTech Connect

    Peccei, R. D.

    1999-10-25

    These lectures describe some aspects of the physics of massive neutrinos. After a brief introduction of neutrinos in the Standard Model, I discuss possible patterns for their masses. In particular, I show how the presence of a large Majorana mass term for the right-handed neutrinos can engender tiny neutrino masses for the observed neutrinos. If neutrinos have mass, different flavors of neutrinos can oscillate into one another. To analyze this phenomena, I develop the relevant formalism for neutrino oscillations, both in vacuum and in matter. After reviewing the existing (negative) evidence for neutrino masses coming from direct searches, I discuss evidence for, and hints of, neutrino oscillations in the atmosphere, the sun, and at accelerators. Some of the theoretical implications of these results are emphasized. I close these lectures by briefly outlining future experiments which will shed further light on atmospheric, accelerator and solar neutrino oscillations. A pedagogical discussion of Dirac and Majorana masses is contained in an appendix.

  2. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  3. A Sterile-Neutrino Search with the MINOS Experiment

    SciTech Connect

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  4. Upper limit on the cross section for elastic neutralino-nucleon scattering in a neutrino experiment at the Baksan Underground Scintillator Telescope

    SciTech Connect

    Suvorova, O. V. Boliev, M. M. Demidov, S. V. Mikheyev, S. P.

    2013-11-15

    The results of a neutrino experiment that involved 24.12 yr of live time of observation of muons from the lower Earth's hemisphere with the aid of the Baksan Underground Scintillator Telescope are presented. In the problem of searches for a signal from the annihilation of dark matter in the Sun, an upper limit on the cross section for the elastic scattering of a weakly interacting massive particle (WIMP) on a nucleon was obtained at a 90% confidence level from an analysis of data accumulated within 21.15 yr of live time of observation. A neutralino in a nonminimal supersymmetric theory was considered for a WIMP. The best limit at the Baksan Underground Scintillator Telescope on the cross section for spin-dependent neutralino interactionwith a proton corresponds to 3 Multiplication-Sign 10{sup -4} pb for the neutralino mass of 210 GeV/c{sup 2}. This limit is three orders of magnitude more stringent than similar limits obtained in experiments that detected directly WIMP scattering on target nuclei.

  5. First Neutrino Observations from the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.; Boulay, M. G.; Bovin, E.; Chen, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Hallin, A. L.; Harvey, P. J.; Hepburn, J. D.; Jillings, C.; Lee, H. W.; Leslie, J. R.; Mak, H. B.; McDonald, A. B.; McLatchie, W.; Moffat, B. A.; Robertson, B. C.; Skensved, P.; Sur, B.; Blevis, I.; Dalnoki-Veress, F.; Davidson, W.; Farine, J.; Grant, D. R.; Hargrove, C. K.; Levine, I.; McFarlane, K.; Noble, T.; Novikov, V. M.; O'Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Andersen, T.; Chon, M. C.; Jagam, P.; Law, J.; Lawson, I. T.; Ollerhead, R. W.; Simpson, J. J.; Tagg, N.; Wang, J. X.; Bigu, J.; Cowan, J. H. M.; Hallman, E. D.; Haq, R. U.; Hewett, J.; Hykawy, J. G.; Jonkmans, G.; Roberge, A.; Saettler, E.; Schwendener, M. H.; Seifert, H.; Tafirout, R.; Virtue, C. J.; Gil, S.; Heise, J.; Helmer, R.; Komar, R. J.; Kutter, T.; Nally, C. W.; Ng, H. S.; Schubank, R.; Tserkovnyak, Y.; Waltham, C. E.; Beier, E. W.; Cowen, D. F.; Frank, E. D.; Frati, W.; Keener, P. T.; Klein, J. R.; Kyba, C.; McDonald, D. S.; Neubauer, M. S.; Newcomer, F. M.; Rusu, V.; Van Berg, R.; Van de Water, R. G.; Wittich, P.; Bowles, T. J.; Brice, S. J.; Dragowsky, M.; Fowler, M. M.; Goldschmidt, A.; Hamer, A.; Hime, A.; Kirch, K.; Wilhelmy, J. B.; Wouters, J. M.; Chan, Y. D.; Chen, X.; Isaac, M. C. P.; Lesko, K. T.; Marino, A. D.; Norman, E. B.; Okada, C. E.; Poon, A. W. P.; Smith, A. R.; Schuelke, A.; Stokstad, R. G.; Ahmad, Q. R.; Browne, M. C.; Bullard, T. V.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Fardon, R.; Germani, J. V.; Hamian, A. A.; Heeger, K. M.; Drees, R. Meijer; Orrell, J.; Robertson, R. G. H.; Schaffer, K.; Smith, M. W. E.; Steiger, T. D.; Wilkerson, J. F.; Barton, J. C.; Biller, S.; Black, R.; Boardman, R.; Bowler, M.; Cameron, J.; Cleveland, B.; Doucas, G.; Ferraris; Fergami, H.; Frame, K.; Heron, H.; Howard, C.; Jelley, N. A.; Knox, A. B.; Lay, M.; Locke, W.; Lyon, J.; McCaulay, N.; Majerus, S.; MacGregor, G.; Moorhead, M.; Omori, M.; Tanner, N. W.; Taplin, R.; Thorman, M.; Trent, P. T.; Wark, D. L.; West, N.; Boger, J.; Hahn, R. L.; Rowley, J. K.; Yeh, M.; Allen, R. G.; Buhler, G.; Chen, H. H.

    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.

  6. Search for the admixture of heavy neutrinos in the recoil spectra of {sup 37}Ar decay

    SciTech Connect

    Hindi, M.M.; Kozub, R.L.; Miocinovic, P.; Avci, R.; Zhu, L.; Hussein, A.H.

    1998-10-01

    Neutrino-induced recoil spectra of {sup 37}Cl ions produced in the electron capture (EC) decay of {sup 37}Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of {sup 37}Ar were physisorbed on Au and on several underlayers of {sup 40}Ar adsorbed on both Au and graphite substrates cooled to {le}20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370{endash}640 keV mass range. These limits vary from 1 to 4{percent}, at the 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society}

  7. The KATRIN neutrino mass experiment

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim; Katrin Collaboration

    2010-11-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) aims to determine the electron neutrino mass from tritium decay in a model-independent way, by a kinematic measurement of the energy of β-electrons. The unprecedented sensitivity of 0.2 eV/c2 will improve present limits by one order of magnitude. The decay electrons will originate from a 10 m long windowless gaseous tritium source. Super-conducting magnets will guide the electrons through a differential and cryogenic pumping section to the electro-static tandem spectrometer (MAG-E-filter), where the kinetic energy will be measured. The experiment is presently being built at the Forschungszentrum Karlsruhe by an international collaboration of more than 120 scientists. The largest component, the 1240 m3 main spectrometer, was delivered end of 2006 and first commissioning tests have been performed. This paper gives an overview of the goals and technological challenges of the experiment and reports on the progress in commissioning first major components. The start of first measurements is expected in 2012.

  8. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  9. High-energy neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  10. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  11. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE PAGES

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; ...

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons inmore » the final state.« less

  12. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect

    Ling, Jiajie

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  13. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  14. Anti-neutrino imprint in solar neutrino flare

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  15. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  16. Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    NASA Astrophysics Data System (ADS)

    Lu, X.-G.; Pickering, L.; Dolan, S.; Barr, G.; Coplowe, D.; Uchida, Y.; Wark, D.; Wascko, M. O.; Weber, A.; Yuan, T.

    2016-07-01

    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.

  17. Neutrino Oscillations at the Intensity Frontier: The NOvA Experiment

    NASA Astrophysics Data System (ADS)

    Hatzikoutelis, Athanasios

    2013-02-01

    The "NuMI Off-Axis electron-neutrino Appearance" (NOvA) is a second generation, long- baseline, neutrino oscillation, experiment. It is made of two detectors, a large Far detector (14 ktons) and a similar Near detector (222 tons), both made of mostly active scintillator and separated by 810 km. Along with the 700 kW NuMI-beam upgrade (a prelude to the Intensity Frontier), it will be the leading neutrino experiment at Fermilab. In the wake of the recent measurement of the θ13 mixing angle, NOvA is positioned to see evidence of the neutrino mass hierarchy, possibly to resolve the θ23 octant ambiguity, and begin the study of the CP violation at the lepton sector. The experiment is under construction. The design and potential of this experiment is presented here along with the current status.

  18. The supernova neutrino readout of MicroBooNE

    NASA Astrophysics Data System (ADS)

    Crespo Anadon, Jose Ignacio; MicroBooNE Collaboration

    2017-01-01

    The MicroBooNE detector is currently the largest liquid argon time projection chamber (LArTPC) operative worldwide. In the case of a nearby (a few kiloparsecs away) core-collapse supernova, the emitted neutrinos would induce on the order of tens of interactions within the MicroBooNE TPC. This would constitute the first detection of supernova neutrinos with the LArTPC technology, offering a unique sensitivity to the electron neutrino flux. Due to the low energy of the events (tens of MeV), the detector size (89 tons of active volume) and the location near surface, MicroBooNE cannot trigger on supernova neutrinos and therefore relies on an external alert generated by other neutrino detectors (the SuperNova Early Warning System, or SNEWS). A continuous readout is being commissioned in MicroBooNE in which the data are temporarily stored in buffers, waiting for the SNEWS alert to save them permanently. In order to cope with the large data rate produced by the TPC and the PMT systems, online zero-suppression algorithms have been developed. This talk will explain the continuous supernova readout of MicroBooNE, which is of interest to the future short and long baseline neutrino programs which will bring additional LArTPCs online in the coming years.

  19. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  20. New neutrino source for the study of solar neutrino physics in the vacuum-matter transition region

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Cheoun, Myung-Ki; Park, Tae-Sun; Kajino, Toshitaka

    2016-10-01

    Production of a neutrino source through a proton-induced reaction is studied by using the particle transport code geant4. Unstable isotopes such as 27Si can be produced when the 27Al target is bombarded by 15-MeV energetic proton beams. Through the β -decay process of the unstable isotope, a new electron-neutrino source in the 0-5.0 MeV energy range is obtained. Proton-induced reactions are simulated with JENDL-4.0 High Energy File (JENDL-4.0/HE). For radioactive decay processes, we use the G4 radioactive decay model based on the Evaluated Nuclear Structure Data File (ENSDF). We suggest detailed target systems required for future solar neutrino experiments, in particular for the vacuum-matter transition region. As for a detection system of the new neutrino source, we evaluate reaction or event rates for available radiochemical detectors and Low Energy Neutrino Astronomy (LENA)-type scintillator detector and discuss effects due to possible sterile neutrinos as an application.

  1. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    SciTech Connect

    Kneller, James P.

    2016-10-12

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  2. Neutrino properties deduced from the study of lepton number violating processes at low and high energies

    SciTech Connect

    Stoica, Sabin

    2012-11-20

    There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

  3. Neutrino mass, electron capture, and the shake-off contributions

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Gastaldo, Loredana; Šimkovic, Fedor

    2017-04-01

    Electron capture can determine the electron neutrino mass, while the β decay of tritium measures the electron antineutrino mass and the neutrinoless double β decay observes the Majorana neutrino mass. In electron capture, e.g., Ho16367+e-→Dy16366*+νe , one can determine the electron neutrino mass from the upper end of the decay spectrum of the excited Dy, which is given by the Q value minus the neutrino mass. The excitation of Dy is described by one, two, and even three hole excitations limited by the Q value. These states decay by x-ray and Auger electron emissions. The total decay energy is measured in a bolometer. These excitations have been studied by Robertson and by Faessler et al. In addition the daughter atom Dy can also be excited by moving in the capture process one (or more) electrons into the continuum. The escape of these continuum electrons is automatically included in the experimental bolometer spectrum. Recently a method developed by Intemann and Pollock was used by DeRujula and Lusignoli for a rough estimate of this shake-off process for "s " wave electrons in capture on 163Ho. The purpose of the present work is to give a more reliable description of "s " wave shake-off in electron capture on holmium. One uses the sudden approximation to calculate the spectrum of the decay of Dy16366* after electron capture on Ho16367. For that one needs very accurate atomic wave functions of Ho in its ground state and excited atomic wave functions of Dy including a description of the continuum electrons. DeRujula and Lusignoli use screened nonrelativistic Coulomb wave functions for the Ho electrons 3 s and 4 s and calculate the Dy* states by first-order perturbation theory based on Ho. In the present approach the wave functions of Ho and Dy* are determined self-consistently with the antisymmetrized relativistic Dirac-Hartree-Fock approach. The relativistic continuum electron wave functions for the ionized Dy* are obtained in the corresponding self

  4. Neutrino physics with DARWIN

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  5. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  6. Primordial nucleosynthesis and neutrino physics

    NASA Astrophysics Data System (ADS)

    Smith, Christel Johanna

    calculations and have made it available to the community. We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner Big Bang Nucleosynthesis (BBN) code. We have also added the zero temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest ˜ 0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the Coulomb correction in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.

  7. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  8. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  9. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  10. Neutrino phenomenology

    SciTech Connect

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  11. Neutrino Telescopes

    SciTech Connect

    Hernandez-Rey, Juan Jose

    2006-11-28

    We review the present status of high energy neutrino astronomy. The advantages of neutrinos as extra-terrestrial messengers are recalled and their possible extra-terrestrial sources examined. We review as well the status of present and future neutrino telescopes and summarize the results obtained so far in this field.

  12. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  13. Neutrino phenomenology

    DOE PAGES

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  14. A quantum-information theoretic analysis of three-flavor neutrino oscillations: Quantum entanglement, nonlocal and nonclassical features of neutrinos.

    PubMed

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R; Hiesmayr, Beatrix C

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.

  15. New limits on the neutrino mass, lepton conservation, and no-neutrino double beta decay of /sup 76/Ge

    SciTech Connect

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-03-07

    A continuing search for the no-neutrino mode of the double beta decay of /sup 76/Ge has resulted in a new lower limit T/sub 1/2//sup 0nu/ > or =1.7 x 10/sup 22/ yr. This value corresponds to a 90% confidence level determined with a maximum-likelihood analysis of the energy interval 2041 +- 2 keV. Combined with recent shell-model calculations, the data imply m/sub ..nu../< or =10 eV and a limit on lepton nonconservation Vertical BaretaVertical Bar< or =2.4 x 10/sup -5/. In the context of the shell model, the data imply that the electron neutrino is not a Majorana mass eigenstate.

  16. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  17. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  18. Neutrino interactions at ultrahigh energies

    SciTech Connect

    Gandhi, R.; Quigg, C.; Reno, M.H.; Sarcevic, I.

    1998-11-01

    We report new calculations of the cross sections for deeply inelastic neutrino-nucleon scattering at neutrino energies between 10{sup 9}thinspeV and 10{sup 21}thinspeV. We compare with results in the literature and assess the reliability of our predictions. For completeness, we briefly review the cross sections for neutrino interactions with atomic electrons, emphasizing the role of the W-boson resonance in {bar {nu}}{sub e}e interactions for neutrino energies in the neighborhood of 6.3 PeV. Adopting model predictions for extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray bursters, and the collapse of topological defects, we estimate event rates in large-volume water {hacek C}erenkov detectors and large-area ground arrays. {copyright} {ital 1998} {ital The American Physical Society}

  19. Sudbury Neutrino Observatory. Annual technical progress report, July 1, 1991--June 30, 1992

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  20. Movable detector to search for neutrino oscillations in the BNL neutrino beam

    SciTech Connect

    Bozoki, G.; Fainberg, A.; Weygand, D.; Fagg, L.; Uberall, H.; Goldberg, M.; Meadows, B.; Saenz, A.W.; Seeman, N.

    1980-01-01

    A simple, straightforward, and economic experiment utilizing a set of water Cherenkov counters is proposed to search for neutrino oscillations in the AGS neutrino beam. The detector will be movable and will be able to provide reasonable counting rates up to 2 km downstream of the pion decay tunnel. Whereas previous accelerator experiments have sought to increase the ratio l/p (with l the neutrino path length and p its momentum) by decreasing p, increasing l is suggested instead. Further, by making measurements at several different values of l with the same apparatus, many sources of systematic error are eliminated. The experiment will measure beam-associated muon- and electron-type events at each position. A change in the ratio of muon- to electron-type events as a function of position would be evidence for ..nu../sub ..mu../ + ..nu../sub e/ oscillations. Sensitivity in terms of (..delta..m)/sup 2/ (the square of the mass difference in the mass eigenstates) can be as low as 0.1 eV/sup 2/, for full mixing, which is below the most probable value found by Reines et al for ..delta..m/sup 2/ in their electron neutrino reactor experiment. This experiment would be parasitic, running behind the usual neutrino beam experiments, assuming the nominal beam energy (peaked at 1 GeV), and would thus make a minimal demand on AGS support. It is suggested that the first two measurements be made inside the Isabelle tunnel at the points of intersection with the AGS neutrino beam. No further excavations would be required, and the data could be taken before ISA equipment is installed.

  1. Neutrinos from type II supernovae - The first 100 milliseconds

    NASA Technical Reports Server (NTRS)

    Myra, Eric S.; Burrows, Adam

    1990-01-01

    The collapse of a 1.17 solar mass iron core is numerically followed through infall to 100 ms past core bounce, and the emergent neutrino spectra during each phase are highlighted. It is found that, even with fairly optimistic conditions for producing a strong, sustained core-bounce shock wave, the prompt shock stalls within 9 ms of core bounce at a radius of less than 250 km. It appears that a radical change in the character of the progenitor core or in our understanding of the relevant physics of stellar collapse is needed before the direct mechanism for type II supernovae can become viable. Expanding the number of neutrino types from one to six magnifies the debilitating effect of neutrino loss on shock propagation. At shock breakout, prompt bursts of all neutrino types are observed. The luminosities of the nonelectron types show a sudden turn-on in luminosity while that of the electron neutrinos steadily increases throughout infall as a result of accelerating electron capture.

  2. Neutrinos from type II supernovae - The first 100 milliseconds

    NASA Technical Reports Server (NTRS)

    Myra, Eric S.; Burrows, Adam

    1990-01-01

    The collapse of a 1.17 solar mass iron core is numerically followed through infall to 100 ms past core bounce, and the emergent neutrino spectra during each phase are highlighted. It is found that, even with fairly optimistic conditions for producing a strong, sustained core-bounce shock wave, the prompt shock stalls within 9 ms of core bounce at a radius of less than 250 km. It appears that a radical change in the character of the progenitor core or in our understanding of the relevant physics of stellar collapse is needed before the direct mechanism for type II supernovae can become viable. Expanding the number of neutrino types from one to six magnifies the debilitating effect of neutrino loss on shock propagation. At shock breakout, prompt bursts of all neutrino types are observed. The luminosities of the nonelectron types show a sudden turn-on in luminosity while that of the electron neutrinos steadily increases throughout infall as a result of accelerating electron capture.

  3. The status of the study of solar CNO neutrinos in the Borexino experiment

    SciTech Connect

    Lukyanchenko, G. A.; Collaboration: Borexino Collaboration

    2015-12-15

    Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.

  4. NOvA Short-Baseline Tau-Neutrino Appearance Search

    NASA Astrophysics Data System (ADS)

    Keloth, Rijeesh

    2017-01-01

    Three-flavor neutrino oscillations have successfully explained a wide range of neutrino oscillation experiment results. However, anomalous results, such as the electron-antineutrino appearance excess seen by LSND and MiniBooNE, do not fit the three-flavor paradigm and can be explained by the addition of a sterile neutrino at a larger mass scale than the existing three flavor mass states. The NOvA experiment consists of two finely segmented, liquid scintillator detectors operating 14.6 mrad off-axis from the NuMI muon-neutrino beam. The Near Detector is located on the Fermilab campus, 1 km from the NuMI target, while the Far Detector is located at Ash River, MN, 810 km from the NuMI target. The NOvA experiment is primarily designed to measure electron-neutrino appearance at the Far Detector using the Near Detector to control systematic uncertainties; however, the Near Detector is well suited for searching for anomalous short-baseline oscillations. I will present a novel method for selecting tau neutrino interactions with high purity at the Near Detector using a convolutional neural network. Using this method, the sensitivity to anomalous short-baseline tau-neutrino appearance due to sterile neutrino oscillations will be presented.

  5. Recent developments in neutrino physics

    NASA Astrophysics Data System (ADS)

    Garvey, G. T.

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar-nu(sub e) mass via beta endpoint studies; status of solar neutrino observations; status of '17 keV neutrino' reports; and the use of (nu)p elastic scattering to determine the 'strange quark' content of the proton.

  6. Investigation of a Possibility of Chromium-51 Accumulation in the SM-3 Reactor to Fabricate a Neutrino Source

    NASA Astrophysics Data System (ADS)

    Romanov, E. G.; Gavrin, V. N.; Tarasov, V. A.; Malkov, A. P.; Kupriyanov, A. V.; Danshin, S. N.; Veretenkin, E. P.

    2017-01-01

    Compact high intensity neutrino sources based on 51Cr isotope are demanded for very short baseline neutrino experiments. In particular, a 3 MCi 51Cr neutrino source is needed for the experiment BEST on search for transitions of electron neutrinos to sterile states. The paper presents the results of the analysis of options of the irradiation of highly enriched 50Cr in the existing trap of thermal neutrons of high-flux reactor SM–3, as well as using the most promising variants of the trap after upcoming reconstruction of the reactor. It is shown that it is possible to to obtain the intensity of 51Cr up to 3.85 MCi at the end of irradiation of 50Cr enriched to 97% in the high-flux reactor SM–3 of the JSC “SSC NIIAR”.

  7. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  8. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  9. Inclusive Neutrino Cross Section Measurements at MINERvA

    NASA Astrophysics Data System (ADS)

    Tice, Brian

    2012-10-01

    MINERvA part 4. The knowledge of inclusive neutrino cross sections is valuable for neutrino oscillation experiments. Determination of the A dependence of the cross section can help determine the role of nuclear effects in neutrino scattering, which is poorly known and difficult to model. Preliminary ratios of cross sections on carbon, iron and lead will be shown.

  10. Active-sterile neutrino transformation and r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    McLaughlin, G. C.

    2000-12-01

    The type II supernova is considered as a candidate site for the production of heavy elements. Since the supernova produces an intense neutrino flux, neutrino scattering processes will impact element formation. We examine active-sterile neutrino conversion in this environment and find that it may help to produce the requisite neutron-to-seed ratio for synthesis of the r-process elements. .

  11. Neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed.

  12. Analysis Techniques to Measure Charged Current Inclusive Water Cross Section and to Constrain Neutrino Oscillation Parameters using the Near Detector (ND280) of the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi

    2014-03-01

    The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to precisely measure multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam with an energy that peaks at 600 MeV is generated at the JPARC facility and directed towards the kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. The rates of electron neutrino and muon neutrino interactions are measured at SK and compared with expected model values. This yields a measurement of the neutrino oscillation parameters sinq and sinq. Measurements from a Near Detector that is 280 m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a measurement of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. Finally, we describe a ``forward-fitting'' technique that is used to constrain the beam flux and cross section as an input for the neutrino oscillation analysis and also to extract a flux-averaged inclusive charged current cross section on water.

  13. Muon and Tau Neutrinos Spectra from Solar Flares

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Moscato, Federica

    2003-12-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The 4th November event was the most powerful X event in the highest known rank category X28 just at horizons. The observed and estimated total flare energy (EFL ≃ 1031div 1033 erg) should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be observed, in a few neutrino clustered events, in present or future largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the X-Radio flare. The onset in time correlation has great statistical significance. Our first estimate on the neutrino number events detection at the Super-Kamiokande II Laboratory for horizontal or hidden flare is found to be few events: NeV_bar{ν}_e≃ 0.63&etae ()/(35 MeV) ()/(1031 erg); and NeV_bar{ν}μ ≃ 3.58()/(200 MeV) ()/(1031erg) η,SUB>μ, where η≃ 1, Eνμ > 113 MeV. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with X, gamma, radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold Eν ≃ 113 MeV energy, or above the pion and Δ ° thresholds (Eν≃ 151 and 484 MeV). Any large neutrino flare event record might also verify the expected neutrino flavour mixing leading to a few as well as a comparable

  14. Determination of |Vub| from measurements of the electron and neutrino momenta in inclusive semileptonic B decays.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Vazquez, W P; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S; Thompson, J M; Va'vra, J; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Neal, H

    2005-09-09

    We present a determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vub| based on the analysis of semileptonic B decays from a sample of 88 x 10(6) Gamma(4S) decays collected with the BABAR detector at the SLAC PEP-II e+e- storage ring. Charmless semileptonic B decays are selected using measurements of the electron energy and the invariant mass squared of the electron-neutrino pair. We obtain |Vub| =(3.95 +/- 0.26(+0.58)(-0.42) +/- 0.25) x 10(-3), where the errors represent experimental uncertainties, heavy quark parameter uncertainties, and theoretical uncertainties, respectively.

  15. A novel approach for measuring the beta-neutrino angular correlation in nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Beck, M.; Ames, F.; Beck, D.; Delauré, B.; Deutsch, J.; Bollen, G.; Forstner, O.; Phalet, T.; Quint, W.; Schmidt, P.; Schuurmans, P.; Severijns, N.; Vereecke, B.; Versyck, S.

    2000-12-01

    The experiment described here will search for deviations from the V-A structure of the standard electroweak model. It is based on measuring the recoil energy spectrum in nuclear beta decay which is determined by the electron-neutrino angular correlation. For pure Fermi decays this is exactly known in the standard model and any deviation will point to additional scalar interaction. The experiment consists of a Penning trap coupled to a retardation spectrometer to measure the energy of the recoiling daughter nuclei. The current status will be presented.

  16. Developing novel techniques for readout, calibration and event selection in the NOvA long-baseline neutrino experiment

    SciTech Connect

    Patterson, Ryan; Backhouse, Christopher; Bays, Kirk; Lozier, Joseph; Pershey, Daniel

    2016-10-01

    The NOvA long-baseline neutrino experiment uses a fine-grained, low-Z, fully active detector that offers unprecedented electron neutrino identification capabilities for a detector of its scale. In this award’s proposal, the PI outlined the development and implementation of novel techniques for channel readout, detector calibration, and event reconstruction that make full use of the strengths of the NOvA detector technology. In particular, this included designing custom event reconstruction algorithms that utilize the rich information available in the substructure of hadronic and electromagnetic showers. Exploiting this information provides not only substantial improvement in background rejection for the electron neutrino search but also better shower energy resolution (improving the precision on measured oscillation parameters) and a high-energy electromagnetic calibration source (through neutral pion events). The PI further proposed developing and deploying a new electronics readout scheme compatible with the existing hardware that can reduce near detector event pile-up and can offer powerful timing information to the reconstruction, allowing for cosmic ray muon tagging via track direction determination, among other things. In conjunction with the above, the PI proposed leading the calibration of the NOvA detectors, including characterizing individual electronics channels, correcting for spatial variations across the detector, and establishing absolute event energy scales. All three of these lines of effort have been successfully completed, feeding directly into the NOvA’s recent exciting neutrino oscillation results. The techniques developed under this award are detailed in this final technical report.

  17. Testing Non-Universal Neutrino Couplings with the Super-Kamiokande Solar Data

    SciTech Connect

    Bolanos, A.

    2008-07-02

    We present a phenomenological analysis of the non-universal flavor conserving neutrino couplings in the framework of non-standard neutrino interactions. We use the neutrino scattering off electrons in the Super-Kamiokande solar neutrino data. We show that it is possible to obtain constraints that are complementary to the current bounds.

  18. Nonstandard neutrino-neutrino refractive effects in dense neutrino gases

    SciTech Connect

    Blennow, Mattias; Mirizzi, Alessandro; Serpico, Pasquale D.; /CERN /Fermilab

    2008-10-01

    We investigate the effects of nonstandard four-fermion neutrino-neutrino interactions on the flavor evolution of dense neutrino gases. We find that in the regions where the neutrino-neutrino refractive index leads to collective flavor oscillations, the presence of new neutrino interactions can produce flavor equilibration in both normal and inverted neutrino mass hierarchy. In realistic supernova environments, these effects are significant if the nonstandard neutrino-neutrino interaction strength is comparable to the one expected in the standard case, dominating the ordinary matter potential. However, very small nonstandard neutrino-neutrino couplings are enough to trigger the usual collective neutrino flavor transformations in the inverted neutrino mass hierarchy, even if the mixing angle vanishes exactly.

  19. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  20. Neutrino factory in stages: Low energy, high energy, off-axis

    SciTech Connect

    Tang Jian; Winter, Walter

    2010-02-01

    We discuss neutrino oscillation physics with a neutrino factory in stages, including the possibility of upgrading the muon energy within the same program. We point out that a detector designed for the low energy neutrino factory may be used off axis in a high energy neutrino factory beam. We include the re-optimization of the experiment depending on the value of {theta}{sub 13} found. As upgrade options, we consider muon energy, additional baselines, a detector mass upgrade, an off-axis detector, and the platinum (muon to electron neutrino) channels. In addition, we test the impact of Daya Bay data on the optimization. We find that for large {theta}{sub 13} ({theta}{sub 13} discovered by the next generation of experiments), a low energy neutrino factory might be the most plausible minimal version to test the unknown parameters. However, if a higher muon energy is needed for new physics searches, a high energy version including an off-axis detector may be an interesting alternative. For small {theta}{sub 13} ({theta}{sub 13} not discovered by the next generation), a plausible program could start with a low energy neutrino factory, followed by energy upgrade, and then baseline or detector mass upgrade, depending on the outcome of the earlier phases.

  1. Collective flavor oscillations of supernova neutrinos and r-process nucleosynthesis

    SciTech Connect

    Chakraborty, Sovan; Kar, Kamales; Goswami, Srubabati E-mail: sandhya@hri.res.in E-mail: kamales.kar@saha.ac.in

    2010-06-01

    Neutrino-neutrino interactions inside core-collapse supernovae may give rise to collective flavor oscillations resulting in swap between flavors. These oscillations depend on the initial energy spectra, and relative fluxes or relative luminosities of the neutrinos. It has been observed that departure from energy equipartition among different flavors can give rise to one or more sharp spectral swap over energy, termed as splits. We study the occurrence of splits in the neutrino and antineutrino spectra, varying the initial relative fluxes for different models of initial energy spectrum, in both normal and inverted hierarchy. These initial relative flux variations give rise to several possible split patterns whereas variation over different models of energy spectra give similar results. We explore the effect of these spectral splits on the electron fraction, Y{sub e}, that governs r-process nucleosynthesis inside supernovae. Since spectral splits modify the electron neutrino and antineutrino spectra in the region where r-process is postulated to happen, and since the pattern of spectral splits depends on the initial conditions of the spectra and the neutrino mass hierarchy, we show that the condition Y{sub e} < 0.5 required for successful r-process nucleosynthesis will lead to constraints on the initial spectral conditions, for a given neutrino mass hierarchy.

  2. Neutrino magnetohydrodynamics

    SciTech Connect

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  3. Low Temperature Magnetic Calorimeters For Neutrino Mass Direct Measurement

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Porst, J. P.; von Seggern, F.; Kirsch, A.; Ranitzsch, P.; Fleischmann, A.; Enss, C.; Seidel, G. M.

    2009-12-01

    In the last years the mixing of the three neutrino flavor eigenstates through a unitary matrix has been experimentally proved. Presently one of the greatest challenges in neutrino physics is to establish the absolute value of the masses of the three neutrino mass eigenstates. The kinematic determination of electron neutrino and antineutrino mass by means of the analysis of calorimetric spectra of isotopes which undergo a beta or electron-capture decay, with especially low energy available for the decay itself, represents an interesting method. In fact this method is less affected by theoretical models defining branching ratio among different decay modes. For the beta decay the isotope with the lowest Q-value present in nature is the 187Re (Q about 2.5 keV) while for the electron capture decay the best candidate known is the 163Ho (Q about 2.5 keV). Since those experiments need to be extremely precise, they might suffer from unexpected systematic errors. It is therefore important to investigate in detail the performance of the detectors and the calorimetric spectrum. We present our results obtained with low temperature magnetic calorimeters designed for measuring low energy beta and electron capture spectra. We also discuss problematic and the possibly present systematic uncertainties using this kind of detectors.

  4. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  5. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  6. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  7. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGES

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  8. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas

    DOE PAGES

    Cirigliano, Vincenzo; Paris, Mark W.; Shalgar, Shashank

    2017-09-25

    We investigate the stability, with respect to spatial inhomogeneity, of a two-dimensional dense neutrino gas. The system exhibits growth of seed inhomogeneity due to nonlinear coherent neutrino self-interactions. In the absence of incoherent collisional effects, we also observe a dependence of this instability growth rate on the neutrino mass spectrum: the normal neutrino mass hierarchy exhibits spatial instability over a larger range of neutrino number density compared to that of the inverted case. Furthermore, we consider the effect of elastic incoherent collisions of the neutrinos with a static background of heavy, nucleon-like scatterers. At small scales, the growth of flavormore » instability can be suppressed by collisions. At large length scales we find, perhaps surprisingly, that for inverted neutrino mass hierarchy incoherent collisions fail to suppress flavor instabilities, independent of the coupling strength.« less

  9. New bounds on neutrino electric millicharge from limits on neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2014-07-01

    Using the new limit on the neutrino anomalous magnetic moment recently obtained by the GEMMA experiment on measurements of the cross-section for the reactor antineutrino scattering on free electrons, we get, by comparing the neutrino magnetic moment and millicharge contributions to the total cross-section at the electron recoil energy threshold of the experiment, an order-of-magnitude estimation for a possible new direct upper bound on the neutrino electric millicharge \\mid q_{\

  10. Boltzmann hierarchy for interacting neutrinos I: formalism

    SciTech Connect

    Oldengott, Isabel M.; Rampf, Cornelius; Wong, Yvonne Y.Y. E-mail: cornelius.rampf@port.ac.uk

    2015-04-01

    Starting from the collisional Boltzmann equation, we derive for the first time and from first principles the Boltzmann hierarchy for neutrinos including interactions with a scalar particle. Such interactions appear, for example, in majoron-like models of neutrino mass generation. We study two limits of the scalar mass: (i) An extremely massive scalar whose only role is to mediate an effective 4-fermion neutrino-neutrino interaction, and (ii) a massless scalar that can be produced in abundance and thus demands its own Boltzmann hierarchy. In contrast to, e.g., the first-order Boltzmann hierarchy for Thomson-scattering photons, our interacting neutrino/scalar Boltzmann hierarchies contain additional momentum-dependent collision terms arising from a non-negligible energy transfer in the neutrino-neutrino and neutrino-scalar interactions. This necessitates that we track each momentum mode of the phase space distributions individually, even if the particles were massless. Comparing our hierarchy with the commonly used (c{sub eff}{sup 2},c{sub vis}{sup 2})-parameterisation, we find no formal correspondence between the two approaches, which raises the question of whether the latter parameterisation even has an interpretation in terms of particle scattering. Lastly, although we have invoked majoron-like models as a motivation for our study, our treatment is in fact generally applicable to all scenarios in which the neutrino and/or other ultrarelativistic fermions interact with scalar particles.

  11. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  12. The Fermilab main injector neutrino program

    SciTech Connect

    Morfin, Jorge G.; /Fermilab

    2007-01-01

    The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

  13. Resonant oscillations of massless neutrinos in matter

    NASA Astrophysics Data System (ADS)

    Valle, J. W. F.

    1987-12-01

    Oscillations of neutrinos propagating in matter do not require that neutrinos are massive, at a fundamental level. Even if neutrinos are massless as a consequence of an exact symmetry - such as total lepton number - they can oscillate into one another if the weak interaction has a small non-universal component, whose existence would signal physics beyond the standard model. The experimental constraints and theoretical plausibility of the mechanism are discussed. Coherent neutrino and antineutrino scattering could substantially affect the late thermal phase neutrino signal from a supernova explosion. I am thankful to Peter Rosen and Lincoln Wolfenstein, organizers of the Workshop on Solar and Astrophysical neutrinos, for the hospitality extended to me Aspen, where this work was partially done. I am also sincerely indebted to Sergey Petcov for help in deriving the evolution equation, Joe Schechter and Lincoln Wolfenstein for valuable discussions and to James Wilson and George Fuller for discussions on the Dynamics of supernovae.

  14. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  15. Neutrino '88. Proceedings.

    NASA Astrophysics Data System (ADS)

    Schneps, J.; Kafka, T.; Mann, W. A.; Nath, P.

    Contents: 1. Neutrino mass. 2. Neutrino oscillations. 3. Double beta decay. 4. Solar neutrinos. 5. Neutrinos from supernovae. 6. Neutrino interactions at accelerators. 7. New detectors for neutrino processes. 8. Neutrino interactions at accelerators II. 9. W, Z, and the standard model. 10. "Fred Reines at 70" Fest. 11. Nucleon decay, the standard model, and beyond. 12. Neutrinos: Earth, atmosphere, Sun, and galaxies. 13. Dark matter and cosmology. 14. Theoretical topics. 15. Future prospects.

  16. Neutrino physics, superbeams and the neutrino factory

    SciTech Connect

    Boris Kayser

    2003-10-14

    We summarize what has been learned about the neutrino mass spectrum and neutrino mixing, identify interesting open questions that can be answered by accelerator neutrino facilities of the future, and discuss the importance and physics of answering them.

  17. Neutrino physics

    SciTech Connect

    Haxton, Wick C.; Holstein, Barry R.

    2000-01-01

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers.

  18. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Gu, Pei-Hong

    2017-02-01

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  19. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  20. Neutrino quantum kinetic equations: The collision term

    SciTech Connect

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.

  1. Neutrino quantum kinetic equations: The collision term

    SciTech Connect

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.

  2. Sterile neutrinos

    SciTech Connect

    Kopp, J.; Machado, P. A. N.

    2016-06-21

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  3. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  4. Geometric phases in neutrino oscillations with nonlinear refraction

    NASA Astrophysics Data System (ADS)

    Johns, Lucas; Fuller, George M.

    2017-02-01

    Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive effects due to neutrino-neutrino forward scattering. We study geometric phases in neutrino oscillations that arise out of cyclic evolution of the potential generated by these forward-scattering processes. We perform several calculations, exact and perturbative, that illustrate the robustness of such phases, and of geometric effects more broadly, in the flavor evolution of neutrinos. The scenarios we consider are highly idealized in order to make them analytically tractable, but they suggest the possible presence of complicated geometric effects in realistic astrophysical settings. We also point out that in the limit of extremely high neutrino densities, the nonlinear potential in three flavors naturally gives rise to non-Abelian geometric phases. This paper is intended to be accessible to neutrino experts and nonspecialists alike.

  5. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  6. Weak Deeply Virtual Compton Scattering

    SciTech Connect

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2007-03-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.

  7. Neutrino flavor evolution in binary neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Frensel, Maik; Wu, Meng-Ru; Volpe, Cristina; Perego, Albino

    2017-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti)neutrino absorption rates on free nucleons and may thus impact the r -process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  8. Calculation of molecular final states and their effect on a precision neutrino mass experiment

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; Winter, N.; Woerner, R.

    1984-02-01

    An experiment to determine the electron neutrino mass is being performed with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint. At the few electron volt level, a major consideration in the choice of a tritium source is the effect of excited final atomic or molecular states on the beta decay distribution. It is important to choose a source for which the initial and final states can be accurately calculated. Frozen tritium was chosen as the source since the states of molecular tritium and those of the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. The effects of final excited states on the neutrino mass determination and the results of these calculations are described.

  9. Is a massive tau neutrino just what cold dark matter needs?

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Gyuk, Geza; Turner, Michael S.

    1994-01-01

    The cold dark matter (CDM) scenario for structure formation in the Universe is very attractive and has many successes; however, when its spectrum of density perturbations is normalized to the COBE anisotropy measurement the level of inhomogeneity predicted on small scales is too large. This can be remedied by a tau neutrino of mass 1 MeV - 10MeV and lifetime 0.1 sec - 100 sec whose decay products include electron neutrinos because it allows the total energy density in relativistic particles to be doubled without interfering with nucleosynthesis. The anisotropies predicted on the degree scale for 'tau CDM' are larger than standard CDM. Experiments at e(sup +/-) collides may be able to probe such a mass range.

  10. The acceleration and storage of radioactive ions for a neutrino factory

    SciTech Connect

    B. Autin et al.

    2003-12-23

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for {sup 6}He and 60 for {sup 18}Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  11. Exploring the neutrino mass hierarchy probability with meteoritic supernova material, ν-process nucleosynthesis, and θ13 mixing

    NASA Astrophysics Data System (ADS)

    Mathews, G. J.; Kajino, T.; Aoki, W.; Fujiya, W.; Pitts, J. B.

    2012-05-01

    There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced ν-process B11 and or Li7 encapsulated in the grains. The synthesis of B11 and Li7 via neutrino-induced nucleon emission (the ν process) in supernovas is sensitive to the neutrino mass hierarchy for finite sin⁡22θ13>0.001. This sensitivity arises because, when there is 13 mixing, the average electron neutrino energy for charged-current neutrino reactions is larger for a normal mass hierarchy than for an inverted hierarchy. Recent constraints on θ13 from the Daya Bay, Double Chooz, MINOS, RENO, and T2K collaborations all suggest that indeed sin⁡22θ13>0.001. We examine the possible implications of these new results based upon a Bayesian analysis of the uncertainties in the measured meteoritic material and the associated supernova nucleosynthesis models. We show that although the uncertainties are large, they hint at a marginal preference for an inverted neutrino mass hierarchy. We discuss the possibility that an analysis of more X grains enriched in Li and B along with a better understanding of the relevant stellar nuclear and neutrino reactions could eventually reveal the neutrino mass hierarchy.

  12. Interactions of neutrinos with matter

    NASA Astrophysics Data System (ADS)

    Vannucci, F.

    2017-07-01

    Neutrinos are elementary particles electrically neutral which belong to the family of leptons. As a consequence and in first approximation they only undergo weak processes. This gives them very special properties. They are ideal tools to study precisely the weak interactions, but there is a price to pay: neutrinos are characterized by extremely low probabilities of interactions, they easily penetrate large amount of matter without being stopped. Consequently, it is hard to perform neutrino physics measurements. In practice the difficulty is twofold: in order to accumulate enough statistics, experiments must rely on huge fluxes traversing huge detectors, the number of interactions being obviously proportional to these two factors. As a corollary, backgrounds are difficult to handle because they appear much more commonly than good events. Nevertheless, neutrino interactions have been detected from a variety of sources, both man-made and natural, from very low to very large energies. The aim of this review is to survey our current knowledge about interaction cross sections of neutrinos with matter across all pertinent energy scales. We will see that neutrino interactions cover a large range of processes: nuclear capture, inverse beta-decay, quasi-elastic scattering, resonant pion production, deep inelastic scattering and ultra-high energy interactions. All the gathered information will be used to study weak properties of matter but it will also allow to explore the properties of the neutrinos themselves. In particular, the known three different flavors of neutrinos have different behaviors inside matter and this will be relevant to give some precious understanding about their intrinsic parameters in particular their masses and mixings. As a second order process, neutrinos can undergo electromagnetic interactions. This will also be discussed. Although the corresponding phenomena are not yet experimentally proven by actual measurements, the theory is able to calculate

  13. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  14. Neutrinos and duality

    SciTech Connect

    Lalakulich, O.; Leitner, T.; Buss, O.; Mosel, U.; Praet, Ch.; Jachowicz, N.; Ryckebusch, J.

    2009-11-25

    A phenomenological study of Bloom-Gilman duality is performed in electron and neutrino scattering on nuclei. In the resonance region the structure functions are calculated within the phenomenological models of Ghent and Giessen groups, where only the resonance contribution is taken into account, and the background one is neglected. Structure functions F{sub 2} in the resonance region are compared with the DIS ones, extracted directly from the experimental data. The results show, that within the models considered the Bloom-Gilman duality does not work well for nuclei: the integrated strength in the resonance region is considerably lower than in the DIS one.

  15. Solar neutrino detectors as sterile neutrino hunters

    NASA Astrophysics Data System (ADS)

    Pallavicini, Marco; Borexino-SOX Collaboration; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cloué, O.; Cribier, M.; D’Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Ortica, F.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Reinert, Y.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-09-01

    The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a 144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a 51Cr neutrino source.

  16. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  17. Solar neutrino physics with low-threshold dark matter detectors

    NASA Astrophysics Data System (ADS)

    Billard, J.; Strigari, L. E.; Figueroa-Feliciano, E.

    2015-05-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could improve on the current measurement of the normalization of the B 8 Solar neutrino flux down to 3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints on both the high- and low-energy survival probability and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of 2. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as long as the signal-to-noise ratio is better than 0.1.

  18. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  19. Future long-baseline neutrino oscillations: View from North America

    NASA Astrophysics Data System (ADS)

    Wilson, Robert J.

    2015-07-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  20. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.