NASA Technical Reports Server (NTRS)
Carpenter, Paul
2003-01-01
Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Armstrong, John
2004-01-01
Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.
A Comparison of Experimental EPMA Data and Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2004-01-01
Monte Carlo (MC) modeling shows excellent prospects for simulating electron scattering and x-ray emission from complex geometries, and can be compared to experimental measurements using electron-probe microanalysis (EPMA) and phi(rho z) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been used to develop phi(rho z) correction algorithms. The accuracy of MC calculations obtained using the NIST, WinCasino, WinXray, and Penelope MC packages will be evaluated relative to these experimental data. There is additional information contained in the extended abstract.
Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser
NASA Astrophysics Data System (ADS)
Kubo, Y.
2018-01-01
Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René
2004-03-01
An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.
NASA Astrophysics Data System (ADS)
Wright, K. E.; Popa, K.; Pöml, P.
2018-01-01
Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un
2010-07-15
Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.
Ryu, JiYeon; Ro, Chul-Un
2009-08-15
This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.
Implications of Polishing Techniques in Quantitative X-Ray Microanalysis
Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude
2002-01-01
Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758
Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un
2011-10-15
Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom
2006-10-01
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.
Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un
2010-10-01
In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Pivovarova, Natalia B.; Andrews, S. Brian
2013-01-01
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079
Understanding Thermal Transport in Graded, Layered and Hybrid Materials
2014-04-01
interfacial chemistries, including metallic and carbide layers, and; (iv) mimic the observed interface structure on a TDTR specimen by manipulating the...surface carbides , which were extracted from several different composites via acid dissolution of Cu, continued throughout the last 12 months of the...effort. The previously-reported electron probe microanalysis (EPMA) based techniques were employed to estimate the interfacial carbide layer thickness
Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un
2013-11-05
Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.
Faraji, M; Katgerman, L
2010-08-01
The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René
2002-11-15
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
NASA Technical Reports Server (NTRS)
Carpenter, P. K.; Hahn, T. M.; Korotev, R. L.; Ziegler, R. A.; Jolliff, B. L.
2017-01-01
We present the first fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing numerous highland fine grained lithologies, including anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix [1]. Chips of NWA 2995, representing these diverse materials, were analyzed by INAA and fused-bead electron-probe microanalysis (EPMA); comparison of analytical data suggests grouping of lunar meteorites NWA 2995, 2996, 3190, 4503, 5151, and 5152. The mean composition of NWA 2995 corresponds to a 2:1 mixture of feldspathic and mare material, with approximately 5% KREEP component [2]. Clast mineral chemistry and petrologic interpretation of paired stone NWA 2996 has been reported by Mercer et al. [3], and Gross et al. [4]. This study combines advances in quantitative EPMA compositional mapping and data analysis, as applied to selected mafic clasts in a polished section of NWA 2995, to investigate the origin of mafic lithic components and to demonstrate a procedural framework for petrologic analysis.
Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont
Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.
2009-01-01
Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.
Wille, G; Lerouge, C; Schmidt, U
2018-01-16
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Vicenzi, Edward P.; Eggins, Stephen; Logan, Amelia; Wysoczanski, Richard
2002-01-01
An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. PMID:27446764
Sample Preparation for Electron Probe Microanalysis—Pushing the Limits
Geller, Joseph D.; Engle, Paul D.
2002-01-01
There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very important, and, under certain conditions, may even be the limiting factor in the analytical uncertainty budget. This paper considers preparing samples to get known geometries. It will not address the analysis of samples with irregular, unprepared surfaces or unknown geometries. PMID:27446757
Abandoned mine slags analysis by EPMA WDS X-ray mapping
NASA Astrophysics Data System (ADS)
Guimarães, F.; Rosado, L.; Morais, C.; Candeias, A. E.; Pinto, A. P.; Mirão, J.
2010-02-01
Mining activity on the Iberian Pyritic Belt (Portugal and Spain) started before Phoenician times, became particularly intense during the Roman occupation of the Iberian Peninsula (for gold), and after the industrial revolution (for gold, copper, zinc, lead and sulphur). The commonest ore of this region is a massive polymetalic sulphide accumulation, where pyrite (FeS2) is the main mineral, with variable concentrations of chalcopyrite (CuFeS2), sphalerite (ZnS), galena (PbS), arsenopyrite (FeAsS2), other sulphides and sulfosalts which include minor elements like Mn, Co, Ni, Se, Cd, Sb, Te, Hg and Bi. Some of the main and minor elements of these ores are hazardous and the drainage basins of pollutant source areas often induce health concerns in the resident population. Electron probe microanalysis study followed previous optical and XRD analysis of the slags. The study focused on the identification of phases how sulphide and metallic phases are distributed within the material and infer about leachable elements during weathering. Electron probe X-ray maps show evidences of different behaviour between the elements: Ca and Zn are completely leached; iron is retained in oxyhydroxides, lead and arsenic precipitate as sulphates. Electron probe microanalysis studies are essential to understand complex materials as earth materials. Nevertheless, care is required to a correct interpretation of data and most quantitative compositional data are not trustworthy.
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Jung, Hae-Jin; Eom, Hyo-Jin; Kang, Hyun-Woo; Moreau, Myriam; Sobanska, Sophie; Ro, Chul-Un
2014-08-21
In this work, quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA) (called low-Z particle EPMA), Raman microspectrometry (RMS), and attenuated total reflectance Fourier transform infrared spectroscopic (ATR-FTIR) imaging were applied in combination for the analysis of the same individual airborne particles for the first time. After examining individual particles of micrometer size by low-Z particle EPMA, consecutive examinations by RMS and ATR-FTIR imaging of the same individual particles were then performed. The relocation of the same particles on Al or Ag foils was successfully carried out among the three standalone instruments for several standard samples and an indoor airborne particle sample, resulting in the successful acquisition of quality spectral data from the three single-particle analytical techniques. The combined application of the three techniques to several different standard particles confirmed that those techniques provided consistent and complementary chemical composition information on the same individual particles. Further, it was clearly demonstrated that the three different types of spectral and imaging data from the same individual particles in an indoor aerosol sample provided richer information on physicochemical characteristics of the particle ensemble than that obtainable by the combined use of two single-particle analytical techniques.
Ansari, T M; Marr, I L; Coats, A M
2001-02-01
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
Study on the surface sulfidization behavior of smithsonite at high temperature
NASA Astrophysics Data System (ADS)
Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing
2018-04-01
Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ifka, Tomáš, E-mail: tomas.ifka@savba.sk; Palou, Martin; Baraček, Jan
2014-05-01
The formation of Portland clinker phases has taken place in thermodynamically non-equilibrium state between macro-oxides CaO, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and MgO from raw meal and P{sub 2}O{sub 5} from bone meal. The paper deals with the study of clinker minerals as solid solutions with P{sub 2}O{sub 5} during the clinkerization of raw mixture containing bone meal (BM). The ash of BM has contributed as a raw material to the formation of different clinker phases. Electron probe microanalysis (EPMA) method was used to determine the preferential distribution of P{sub 2}O{sub 5} inside calcium silicate phases andmore » its influence upon C{sub 2}S/C{sub 3}S ratio. Basing on these results, composition of solid solution of C{sub 2}S and C{sub 3}S was established.« less
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
Investigating the effect of V2O5 addition on sodium barium borosilicate glasses
NASA Astrophysics Data System (ADS)
Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.
2016-05-01
V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.
Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS
NASA Astrophysics Data System (ADS)
Sánchez-López, J. C.; Dominguez-Meister, S.; Rojas, T. C.; Colasuonno, M.; Bazzan, M.; Patelli, A.
2018-05-01
High power impulse magnetron sputtering (HiPIMS) technology has been employed to prepare TiC/a-C:H nanocomposite coatings from a titanium target in acetylene (C2H2) reactive atmospheres. Gas fluxes were varied from 1.3 to 4.4 sccm to obtain C/Ti ratios from 2 to 15 as measured by electron probe microanalysis (EPMA). X-ray diffraction and transmission electron microscopy demonstrate the presence of TiC nanocrystals embedded in an amorphous carbon-based matrix. The hardness properties decrease from 17 to 10 GPa as the carbon content increases. The tribological properties were measured using a pin-on-disk tribometer in ambient air (RH = 30-40%) at 10 cm/s with 5 N of applied load against 6-mm 100Cr6 balls. The friction coefficient and the film wear rates are gradually improved from 0.3 and 7 × 10-6 mm3/N m to 0.15 and 2 × 10-7 mm3/N m, respectively, by increasing the C2H2 flux. To understand the tribological processes appearing at the interface and to elucidate the wear mechanism, microstructural and chemical investigations of the coatings were performed before and after the friction test. EPMA, X-ray photoelectron and electron energy-loss spectroscopies were employed to obtain an estimation of the fraction of the a-C:H phase, which can be correlated with the tribological behavior. Examination of the friction counterfaces (ball and track) by Raman microanalysis reveals an increased ordering of the amorphous carbon phase concomitant with friction reduction. The tribological results were compared with similar TiC/a-C(:H) composites prepared by the conventional direct current process.
NASA Astrophysics Data System (ADS)
Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi
2018-05-01
Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide
NASA Astrophysics Data System (ADS)
Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra
2008-12-01
A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS
NASA Astrophysics Data System (ADS)
Kumar, Vinod
2016-12-01
Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.
Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
Geng, Hong; Cheng, Fangqin; Ro, Chul-Un
2011-11-01
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.
FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING
NASA Astrophysics Data System (ADS)
Du, Baoshuai
2013-06-01
Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.
Investigating the effect of V{sub 2}O{sub 5} addition on sodium barium borosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Rumu, E-mail: rumuhalder24feb@gmail.com; Sengupta, Pranesh; Dey, G. K.
2016-05-23
V{sub 2}O{sub 5} doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V{sub 2}O{sub 5} but a phase separation is observed when V{sub 2}O{sub 5} doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O{sup −} Na{sup +}/Ba{sup 2+} linkagesmore » are formed.« less
NASA Astrophysics Data System (ADS)
Tudu, Kichakeswari; Pal, Sagar; Mandre, N. R.
2018-05-01
This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.
In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite
NASA Astrophysics Data System (ADS)
Lemelle, L.; Salomé, M.; Fialin, M.; Simionovici, A.; Gillet, Ph.
2004-10-01
Microorganisms were searched for among the complex microstructures observed on the surface of a fragment of the Tatahouine meteorite inherited from the Tunisian soil in which they were buried. In this view, the chemical compositions, particularly the nitrogen, phosphorus, and sulphur compositions, including the sulphur speciation, were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA) mapping, and scanning X-ray microscopy (SXM). A few 2-μm-thick filaments, partly covered by patches of calcite ensuring they were not deposited by a laboratory contamination, were observed by SEM. The EPMA maps show that the portions free of calcite of the filaments have low but constant contents of nitrogen, sulphur, and phosphorus. The SXM maps were recorded at 2473.5, 2478, and 2482.2 eV, which are respectively characteristic for amino acid linked sulphur, sulphite (SO32-), and sulphate (SO42-). The portions of the filaments detected by EPMA are also those that are enriched in amino acid linked sulphur. The calculated (N/S) elemental ratio is consistent with the one of the dehydrated Escherichia coli matter, contrary to the much lower (P/S) elemental ratio. In living cells, the bulk N and S elements are mainly located in large polymers by covalent bonds, whereas a significant amount of P belongs to small and reactive molecules. We thus can propose that the observed microstructures are dehydrated microorganisms, in which most of the elements that were composing the polymers were retained, whereas the small electrolytes and molecules were removed.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Phase constitution characteristics of the Fe-Al alloy layer in the HAZ of calorized steel pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yajiang; Zou Zengda; Wei Xing
1997-09-01
Mechanical properties of the welding region and phase constitution characteristics in the iron-aluminum (Fe-Al) alloy layer of calorized steel pipes were researched by means of metallography, which included the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and an X-ray diffractometer. Experimental results indicated that the Fe-Al alloy layer of calorized steel pipe was mainly composed of an FeAl phase, an Fe{sub 3}Al phase and an {alpha}-Fe(Al) solid solution, and the microhardness in the Fe-Al coating was 600--310 HM from the surface layer to the inside. There were no higher aluminum content phases, suchmore » as brittle FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}. By controlling the aluminizing process parameters, the ability to bear deformation and weld-ability of the calorized steel pipe were remarkably improved.« less
Laboratory synthesis of silicate glass spherules: Application to impact ejecta
NASA Astrophysics Data System (ADS)
Stoddard, P. S.; Pahlevan, K.; Tumber, S.; Weber, R.; Lee, K. K.
2012-12-01
To investigate the process by which molten droplets of impact ejecta solidify into glassy spherule tektites, we employed laser levitation experiments to recreate the hot temperatures of falling molten rock. Following models for Earth composition based on enstatite chondrites, we levitated mixtures of oxide powders in a stream of gas and melted them with a laser, producing silicate glass beads. After quenching, we polished the ~1 mm diameter samples in cross-section and analyzed with electron probe microanalysis (EPMA). Fine and coarsely-spaced EPMA transects across each bead displayed diffusion profiles at their edges, particularly in their SiO2 and MgO content. Heating altered the beads' bulk composition as well; all of the glassy spherules were compositionally different from the initial combination of powders. By comparing these changes to the environmental factors acting on the bead (e.g., temperature, type of levitation gas, duration of heating and amount of rotation), we produced a model for how molten ejecta change chemically and physically as they solidify into a glass. We find that high temperatures likely generated on impact have a strong effect on the composition of tektites; therefore, attempts to correlate tektites to their parent rocks should correct for this effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.D.; Liu, L.M.; Shen, Y.
2008-01-15
Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets
NASA Astrophysics Data System (ADS)
Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun
2018-04-01
Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
Tanaka, Yuji; Yamashita, Takako; Nagoshi, Masayasu
2017-04-01
Hydrocarbon contamination introduced during point, line and map analyses in a field emission electron probe microanalysis (FE-EPMA) was investigated to enable reliable quantitative analysis of trace amounts of carbon in steels. The increment of contamination on pure iron in point analysis is proportional to the number of iterations of beam irradiation, but not to the accumulated irradiation time. A combination of a longer dwell time and single measurement with a liquid nitrogen (LN2) trap as an anti-contamination device (ACD) is sufficient for a quantitative point analysis. However, in line and map analyses, contamination increases with irradiation time in addition to the number of iterations, even though the LN2 trap and a plasma cleaner are used as ACDs. Thus, a shorter dwell time and single measurement are preferred for line and map analyses, although it is difficult to eliminate the influence of contamination. While ring-like contamination around the irradiation point grows during electron-beam irradiation, contamination at the irradiation point increases during blanking time after irradiation. This can explain the increment of contamination in iterative point analysis as well as in line and map analyses. Among the ACDs, which are tested in this study, specimen heating at 373 K has a significant contamination inhibition effect. This technique makes it possible to obtain line and map analysis data with minimum influence of contamination. The above-mentioned FE-EPMA data are presented and discussed in terms of the contamination-formation mechanisms and the preferable experimental conditions for the quantification of trace carbon in steels. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Titanium pigmentation. An electron probe microanalysis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, A.; Touron, P.; Daste, J.
1985-05-01
A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Corrosion behavior of low alloy steels in a wet-dry acid humid environment
NASA Astrophysics Data System (ADS)
Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu
2016-09-01
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.
NASA Astrophysics Data System (ADS)
Gopon, Phillip; Spicuzza, Michael J.; Kelly, Thomas F.; Reinhard, David; Prosa, Ty J.; Fournelle, John
2017-09-01
The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. ; Spicuzza et al. ). Additional examples of Fe-silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X-ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe-Si and Si0 minerals in lunar regolith return material. The new Fe-Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.
2013-12-15
The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less
Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Wu, C. C.; Ferng, N. J.; Gau, H. J.
2007-06-01
Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale
It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolutionmore » kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.« less
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.
1993-01-01
The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.
NASA Astrophysics Data System (ADS)
McCarty, R. J.; Stebbins, J. F.
2015-12-01
This research seeks to constrain the crystallographic site preferences of aluminum in forsterite, clinoenstatite and periclase, mantle minerals in which this element is only found at low concentrations. Improved site preference information will help constrain thermodynamic descriptions of the substitution mechanisms, making them more useful to geobarometric and geothermometric techniques. Using high field magic angle spinning nuclear magnetic resonance (NMR) and electron probe microanalysis (EPMA), we constrain the site preferences of minor and trace amounts (2000 to 400 mol ppm) of aluminum in extremely pure synthetic forsterite, clinoenstatite and periclase. The primary challenge of this research is determining how much of each of the aluminum species observed by NMR in the bulk sample (abundances and coordinations) resides in the major synthesized mineral. In our samples, the aluminum partitions between small amounts (often <1%) of impurity phases with high aluminum concentrations, such as glass and accessory crystals, and the major, intended phase with low aluminum concentrations. We use EPMA composition maps to locate scarce impurity phases and EPMA point analyses to determine the aluminum concentrations in both the intended major phase and in the impurity phases. Long NMR acquisitions (several days) and careful subtraction of rotor background signals (present in even 'low-Al' zirconia rotor materials) are required to obtain adequate signal-to-noise ratios at such low concentrations. Ordered octahedral aluminum has been identified in forsterite, clinoenstatite, and periclase. Disordered 4, 5 and 6 coordinated aluminum species have also been observed, but it is still unclear if the disordered species are in the major mineral phases, the impurity phases or both.
Standards for electron probe microanalysis of silicates prepared by convenient method
NASA Technical Reports Server (NTRS)
Walter, L. S.
1966-01-01
Standard compositions suitable for electron probe microanalysis of various silicates are prepared by coprecipitation of specified salts with colloidal silica to form a gel which is decomposed into a powdered oxide mixture and compressed into thin pellets. These pellets of predetermined standard are compared with a silicate sample to determine its composition.
NASA Astrophysics Data System (ADS)
Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.
2002-03-01
A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of particles originating from mine tailings on a defined river section.
Microbeam X-ray analysis in Poland - past and future
NASA Astrophysics Data System (ADS)
Kusinski, J.
2010-02-01
The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.
Effects of sol-gel processing parameters on the phases and microstructures of HA films.
Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan
2007-06-15
Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films.
Diffusion bonding of titanium to 304 stainless steel
NASA Astrophysics Data System (ADS)
Ghosh, M.; Bhanumurthy, K.; Kale, G. B.; Krishnan, J.; Chatterjee, S.
2003-11-01
Diffusion bonding between commercially pure titanium and an austenitic stainless steel (AISI 304) has been carried out in the temperature range of 850-950 °C for 2 h at uniaxial pressure of 3 MPa in vacuum. The microstructure of the diffusion zone has been analysed by optical and scanning electron microscopy (SEM). The interdiffusion of the diffusing species across the interface has been evaluated by electron probe microanalysis (EPMA). The reaction products formed at the interface have been identified by X-ray diffraction technique. It has been observed that the diffusion zone is dominated by the presence of the σ phase close to the stainless steel side and the solid solution of β-Ti (solutes are Fe, Cr and Ni) close to the titanium. The presence of Fe 2Ti and FeTi has been found in the reaction zone. It has been observed that the bond strength (˜222 MPa) is highest for the couple processed at 850 °C and this value decreases with rise in joining temperature. The variation of strength of the transition joints is co-related with the microstructural characteristics of the diffusion zone.
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.
NASA Astrophysics Data System (ADS)
Freckelton, C. N.; Flemming, R. L.
2009-05-01
This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the octahedral site. Our data are widely variable as compared to the field occupied by chromite inclusions in diamonds (high Cr and Mg (˜60 wt %) and very low Ti (˜0.40 wt %). Plots of the unit cell parameter, ao, versus composition demonstrate a decrease in unit cell size with increasing Al content (and corresponding decrease in Cr content), consistent with a smaller cation radius for Al versus Cr (Al=0.675 Å and Cr=0.905 Å). The trend in unit cell size is unlikely to be effected by Mg-Fe substitution because of the very small difference in their tetrahedral cation radii (Fe2+=0.835 Å and Mg=0.86 Å). Initial plots of composition versus unit cell parameter were clearly able to distinguish a difference between unit cell of kimberlitic chromites and non-kimberlitic chromites. The significantly higher Cr content in kimberlitic chromites (radius=0.905 Å), and correspondingly higher Al content in non-kimberlitic chromites (radius=0.675 Å), results in a striking bimodal distribution in unit cell parameter, ao, where kimberlitic chromites have a larger unit cell (> 8.3 Å) than non-kimberlitic chromites (< 8.3 Å). This preliminary data provides a useful starting point for screening minerals from naturally relevant chromite solid solutions using their corresponding unit cell parameters. Future work will examine which site substitutions (octahedral versus tetrahedral) are affecting the unit cell as well as the effect of cation order-disorder on unit cell parameters.
Hydrogen motion in Zircaloy-4 cladding during a LOCA transient
NASA Astrophysics Data System (ADS)
Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.
2016-04-01
Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.
NASA Technical Reports Server (NTRS)
Fogel, R. A.
1994-01-01
Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.
Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro
2016-10-01
The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.
2008-01-01
Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.
PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.
Van der Linden, Veerle; Meesdom, Eva; Devos, Annemie; Van Dooren, Rita; Nieuwdorp, Hans; Janssen, Elsje; Balace, Sophie; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen
2011-10-01
The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.
Structural, morphological and interfacial characterization of Al-Mg/TiC composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, A.; Angeles-Chavez, C.; Flores, O.
2007-08-15
Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al{sub 4}C{sub 3}) is formed at the interface and traces of TiAl{sub 3} in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al{sub 4}C{sub 3} at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms withmore » flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-{beta} phase was detected through XRD.« less
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
Experimental studies were undertaken to determine the gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of P(O2)'s. The experimental methodology involved high-temperature equilibration using a substrate support technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of equilibrium phases, followed by direct measurement of the chemical compositions of the phases with Electron Probe X-ray Microanalysis (EPMA). The experimental data for slag and matte were presented as a function of copper concentration in matte (matte grade). The data provided are essential for the evaluation of the effect of oxygen potential under controlled atmosphere on the matte grade, liquidus composition of slag and chemically dissolved copper in slag. The new data provide important accurate and reliable quantitative foundation for improvement of the thermodynamic databases for copper-containing systems.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe
NASA Astrophysics Data System (ADS)
Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun
2013-06-01
The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.
NASA Astrophysics Data System (ADS)
Eom, Hyo-Jin; Gupta, Dhrubajyoti; Cho, Hye-Rin; Hwang, Hee Jin; Do Hur, Soon; Gim, Yeontae; Ro, Chul-Un
2016-11-01
Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1) and 23 July 2012 in the austral winter (sample S2), when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by ˜ 19 times (2.46 vs. 0.13 µg L-1, respectively), were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, Raman microspectrometry (RMS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs); i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO3)2, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Microscopy and microanalysis 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.
1996-12-31
The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less
Standardless quantification by parameter optimization in electron probe microanalysis
NASA Astrophysics Data System (ADS)
Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.
2012-11-01
A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively.
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
PREFACE: EMAS 2011: 12th European Workshop on Modern Developments in Microbeam Analysis
NASA Astrophysics Data System (ADS)
Brisset, François; Dugne, Olivier; Robaut, Florence; Lábár, János L.; Walker, Clive T.
2012-03-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 12th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis, which took place from the 15-19 May 2011 in the Angers Congress Centre, Angers, France. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with GN-MEBA - Groupement National de Microscopie Electronique à Balayage et de microAnalysis, France. The technical programme included the following topics: the limits of EPMA, new techniques, developments and concepts in microanalysis, microanalysis in the SEM, and new and less common applications of micro- and nanoanalysis. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2012 Microscopy and Microanalysis meeting at Phoenix, Arizona. The prize went to Pierre Burdet, of the Federal Institute of Technology of Lausanne (EPFL), for his talk entitled '3D EDS microanalysis by FIB-SEM: enhancement of elemental quantification'. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 18 countries were on display at the meeting, and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters were invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 22) at Perth, Western Australia. The prize was awarded to G Samardzija of the Jozef Stefan Institute, Ljubljana, for the poster entitled: 'EPMA-WDS quantitative compositional analysis of barium titanate ceramics doped with cerium'. This proceedings volume contains the full texts of 5 of the invited plenary lectures and of 23 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2012 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to François Brisset and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The technical exhibition, which occupied 130 sq.m of floor space, was outstanding. It was very encouraging to see new instruments on display, including a FEG electron microprobe as a first worldwide presentation. Moreover, almost all the companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop: Ametek GmbH, Edax Business UnitGN-MEBA Bruker Nano GmbHJeol (Europe) SAS CamecaL'Oréal, Direction Générale Recherche et Innovation Carl Zeiss NTSNanoMEGAS sprl Commissariat à l'Energie AtomiqueOxford Instruments SAS European Institute for Transuranium Elements (Germany)Probe Software, Inc. ElexienceSAMx FEI CompanyTarget-Messtechnik Fondis Electronic SAThermo Fisher Scientific Gatan (France) Clive T. Walker EMAS President
A new basaltic glass microanalytical reference material for multiple techniques
Wilson, Steve; Koenig, Alan; Lowers, Heather
2012-01-01
The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.
Scanning Electron Microscopy | Materials Science | NREL
platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative
Distribution and mode of occurrence of uranium in bottom ash derived from high-germanium coals.
Sun, Yinglong; Qi, Guangxia; Lei, Xuefei; Xu, Hui; Li, Lei; Yuan, Chao; Wang, Yi
2016-05-01
The radioactivity of uranium in radioactive coal bottom ash (CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride (HF) leaching, Siroquant (Rietveld) quantification, magnetic separation, and electron probe microanalysis (EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe-Mn oxide fractions was dominant (59.1% and 34.9%, respectively). The former was mainly incorporated into aluminosilicates, retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite (Fe3O4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment. Copyright © 2015. Published by Elsevier B.V.
Nepheline structural and chemical dependence on melt composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcial, José; Crum, Jarrod; Neill, Owen
Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize largemore » fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.« less
Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition
NASA Astrophysics Data System (ADS)
Kao, Szu-Tsung; Lin, Yung-Chi; Duh, Jenq-Gong
2006-03-01
Nanosized Cu6Sn5 dispersoids were incorporated into Sn and Ag powders and milled together to form Sn-3Ag-0.5Cu composite solders by a mechanical alloying process. The aim of this study was to investigate the interfacial reaction between SnAgCu composite solder and electroless Ni-P/Cu UBM after heating for 15 min. at 240°C. The growth of the IMCs formed at the composite solder/EN interface was retarded as compared to the commercial Sn3Ag0.5Cu solder joints. With the aid of the elemental distribution by x-ray color mapping in electron probe microanalysis (EPMA), it was revealed that the SnAgCu composite solder exhibited a refined structure. It is proposed that the Cu6Sn5 additives were pinned on the grain boundary of Sn after heat treatment, which thus retarded the movement of Cu toward the solder/EN interface to form interfacial compounds. In addition, wetting is an essential prerequisite for soldering to ensure good bonding between solder and substrate. It was demonstrated that the contact angles of composite solder paste was <25°, and good wettability was thus assured.
Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi
2014-01-01
Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Analytical Microscopy and Imaging Science | Materials Science | NREL
Microanalysis (EPMA) for quantitative compositional analysis. It relies on wavelength-dispersive spectroscopy to Science group in NREL's Materials Science Center. Mowafak Al-Jassim Group Manager Dr. Al-Jassim manages the Analytical Microscopy and Imaging Science group with the Materials Science Center. Email | 303-384
NASA Astrophysics Data System (ADS)
Colomer, M. T.; Kilner, J. A.
2015-08-01
This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La0.90Sr0.10GaO3.00-δ. Independently of the sintering time, La0.90Sr0.10Ga1-xNixO3.00-δ (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa3.00O7.00 (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggest that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La4.00Ga2.00O9.00 (nominal composition) is also observed as second phase when samples are treated for 48 h.
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches
NASA Astrophysics Data System (ADS)
Esteves, Hugo; Fernandes, Isabel; Janeiro, Ana; Santos Silva, António; Pereira, Manuel; Medeiros, Sara; Nunes, João Carlos
2017-12-01
Several concrete structures show signs of deterioration resulting from internal chemical reactions, such as the alkali-silica reaction (ASR). It is well known that these swelling reactions occur in the presence of moisture, between some silica mineral phases present in the aggregates and the alkalis of the concrete, leading to the degradation of concrete structures and consequently compromising their safety. In most of the cases, rehabilitation, demolition or even rebuilding of such structures is needed and the effective costs can be very high. Volcanic rocks are commonly used as aggregates in concrete, and they are sometimes the only option due to the unavailability of other rock types. These rocks may contain different forms of silica that are deleterious to concrete, such as opal, chalcedony, cristobalite, tridymite and micro- to cryptocrystalline quartz, as well as Si-rich volcanic glass. Volcanic rocks are typically very finegrained and their constituting minerals are usually not distinguished under optical microscopy, thus leading to using complementary methods. The objective of this research is to find the more adequate analytical methods to identify silica phases that might be present in volcanic aggregates and cause ASR. The complementary methods used include X-Ray Diffraction (XRD), mineral acid digestion and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry (SEM/EDS), as well as Electron Probe Micro-Analysis (EPMA).
Reactions in the Tuyere Zone of Ironmaking Blast Furnace
NASA Astrophysics Data System (ADS)
Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Lee, Hae-Geon; Zhao, Baojun
2018-02-01
A series of slags can be formed in the lower part of the ironmaking blast furnace that play important roles in smooth furnace operation, and in determining iron quality and productivity. The final slag tapped from the BF has been investigated extensively as it can be collected directly. Unfortunately, difficulties in accessing the interiors of the blast furnace limit the full understanding of other slags such as primary and bosh slags. In this study, different types of samples directly obtained from the tuyere zone of the blast furnace have been systematically analyzed and characterized using scanning electron microscopy (SEM), electron probe X-ray microanalysis (EPMA), and X-ray fluorescence (XRF), with focus on the characteristics of slags formed in the tuyere level. The samples were identified into three groups according to their morphological, mineralogical, and chemical properties: (1) tuyere slags originating from the reactions between ash and dripping slags; (2) bosh slags in the CaO-SiO2-Al2O3-MgO-FeO system, with a CaO/SiO2 weight ratio of around 1.50, and Al2O3 and MgO concentrations close to those of final slags; and (3) coke ash that did not react with bosh slags. These findings will provide useful information on the evaluation of slags inside the blast furnace and the reactions in the tuyere zone.
Ellipsometric porosimetry on pore-controlled TiO2 layers
NASA Astrophysics Data System (ADS)
Rosu, Dana-Maria; Ortel, Erik; Hodoroaba, Vasile-Dan; Kraehnert, Ralph; Hertwig, Andreas
2017-11-01
The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials' porosity. Determining the porosity in a fast and non-destructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems.
Li, Jingyuan; Lai, Huiying; Xu, Yuzhao
2018-01-01
The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894
Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong
2010-07-01
In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.
Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.
McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L
2015-11-01
A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; Couzi, Michel; Goldner, Philippe; Delmas, Claude
2014-10-01
AFe3O(PO4)3 (A = Ca, Sr and Pb) powder compounds were studied by means of X-ray diffraction (XRD), electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A = Sr, Ca and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32-8 K temperature range. Room temperature Mössbauer spectroscopy and associated DFT calculations confirm the existence of three crystallographically non equivalent Fe3+ sites in the three compounds. Mössbauer spectra recorded as a function of temperature in the PbFe3O(PO4)3 compound also establishes the occurrence of two purely magnetic and reversible phase transitions at 32 and 10 K. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ∼10-20 cm2 typical of spin-forbidden and forced electric dipole intraconfigurational transitions.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang
2017-12-01
We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.
Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy
NASA Astrophysics Data System (ADS)
Batanova, V. G.; Sobolev, A. V.; Magnin, V.
2018-01-01
Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.
Water-bearing, high-pressure Ca-silicates
NASA Astrophysics Data System (ADS)
Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.
2017-07-01
Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this phase, implying the water content, at least in the quenched glass, is below the limit of detection (100-1000 ppm). We conclude that at high pressure, as at ambient pressure, some calcium silicates have a high affinity for H2O and high dehydration temperatures. The thermal stability of these hydrous phases suggests that they could exist along a typical mantle geotherm and thus they might be relevant for understanding the mineralogy and water content of Earth's mantle.
Laser Processing of Metals and Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singaravelu, Senthilraja
2012-05-01
A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applicationsmore » starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.« less
NASA Astrophysics Data System (ADS)
Ostos, C.; Martínez-Sarrión, M. L.; Mestres, L.; Delgado, E.; Prieto, P.
2009-10-01
Rare-earth ( RE) doped Ba(Zr,Ti)O 3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba 0.90Ln0.067Zr 0.09Ti 0.91O 3 ( Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO 3, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2 p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO 3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO 6-octahedra distortion ( M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/ RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
The Nanocrystalline State of Narrow Gap Semiconducting Chalcogenides
2010-08-23
using a 1 nm scanning probe and the EDS microanalysis . For Annealing studies nanocrystal powder samples were placed in ceramic crucibles and annealed...nanocrystals are homogenous single phase EDS spectral images were collected in scanning transmission electron microcopy using a 1 nm electron probe...explorations with alio-valent elements (e.g. Sb3+, Ag+ doping in PbTe). • Perform chemical and physical characterization to demonstrate that nanocrystals are
Mercury speciation and selenium in toothed-whale muscles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp; Itai, Takaaki; Yasutake, Akira
2015-11-15
Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hgmore » decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.« less
Electron Probe Microanalysis | Materials Science | NREL
surveys of the area of interest before performing a more accurate quantitative analysis with WDS. WDS - Four spectrometers with ten diffracting crystals. The use of a single-channel analyzer allows much
Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K
2016-05-10
B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.
NASA Astrophysics Data System (ADS)
Guggino, S. N.; Hervig, R. L.
2010-12-01
Fluorine (F) is a volatile constituent of magmas and hydrous minerals, and trace amounts of F are incorporated into nominally anhydrous minerals such as olivine and clinopyroxene. Microanalytical techniques are routinely used to measure trace amounts of F at both high sensitivity and high spatial resolution in glasses and crystals. However, there are few well-established F concentrations for the glass standards routinely used in microanalytical laboratories, particularly standards of low silica, basaltic composition. In this study, we determined the F content of fourteen commonly used microanalytical glass standards of basaltic, intermediate, and rhyolitic composition. To serve as calibration standards, five basaltic glasses with ~0.2 to 2.5 wt% F were synthesized and characterized. A natural tholeiite from the East Pacific Rise was mixed with variable amounts of CaF2. The mixture was heated in a 1 atmosphere furnace to 1440 °C at fO2 = NNO for 30 minutes and quenched in water. Portions of the run products were studied by electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The EPMA used a 15 µm diameter defocused electron beam with a 15 kV accelerating voltage and a 25 nA primary current, a TAP crystal for detecting FKα X-rays, and Biotite 3 as the F standard. The F contents by EPMA agreed with the F added to the basalts after correction for mass loss during melting. The SIMS analyses used a primary beam of 16O- and detection of low-energy negative ions (-5 kV) at a mass resolution that resolved 18OH. Both microanalytical techniques confirmed homogeneity, and the SIMS calibration defined by EPMA shows an excellent linear trend with backgrounds of 2 ppm or less. Analyses of basaltic glass standards based on our synthesized calibration standards gave the following F contents and 2σ errors (ppm): ALV-519 = 83 ± 3; BCR-2G = 359 ± 6; BHVO-2G = 322 ± 15; GSA-1G = 10 ± 1; GSC-1G = 11 ± 1; GSD-1G = 19 ± 2; GSE-1G = 173 ± 1; KL2G (MPI-DING) = 101 ± 1; ML3B-G (MPI-DING) = 49 ± 17. These values are lower than published values for BCR-2 and BHVO-2 (unmelted powders) and the “information values” for the MPI-DING glass standards. Proton Induced Gamma ray Emission (PIGE) was tested for the high silica samples. PIGE analyses (1.7 MeV Tandem Accelerator; reaction type: 19F(p, αγ)16O; primary current = 20-30 nA; incident beam voltage = 1.5 MeV) were calibrated with a crystal of fluor-topaz (F = 20.3 wt%) and gave F values of: NIST 610 = 266 ± 14 ppm; NIST 620 = 54 ± 5 ppm; and UTR-2 = 1432 ± 32 ppm. SIMS calibration defined by the PIGE analyses shows an excellent linear trend with low background similar to the basaltic calibration. The F concentrations of intermediate MPI-DING glasses were determined based on SIMS calibration generated from the PIGE analysis above. The F concentrations and 2σ errors (ppm) are: T1G = 219.9 ± 6.8; StHs/680-G = 278.0 ± 2.0 ppm. This study revealed a large matrix effect between the high-silica and basaltic glasses, thus requiring the use of appropriate standards and separate SIMS calibrations when analyzing samples of different compositions.
NASA Astrophysics Data System (ADS)
Geng, Hong; Jin, Chun-Song; Zhang, Dong-Peng; Wang, Shu-Rong; Xu, Xiao-Tian; Wang, Xu-Ran; Zhang, Yuan; Wu, Li; Ro, Chul-Un
2017-07-01
The aim of the study is to characterize the size-resolved urban haze particles and investigate their modification in morphology and composition in summer and winter using the semi-quantitative electron probe X-ray microanalysis (EPMA) based on both scanning and transmission electron microscopies equipped with ultrathin-window energy dispersive X-ray spectrometers (SEM-EDX and TEM-EDX). The haze and non-haze particles were collected through a seven-stage May cascade impactor on Dec. 29-30, 2009 and Jan. 8-9 and July 11-14, 2010 in Taiyuan, a typical inland city in the North China Plain. Approximately 3752 atmospheric particles in the size ranges of 4-2 μm, 2-1 μm, 1-0.5 μm, and 0.5-0.25 μm in aerodynamic diameter were measured and identified according to their secondary electron or TEM images and elemental atomic concentrations calculated through a Monte Carlo simulation program. Results show that on the haze days many reacted or aged mineral dust particles were encountered, in which the sulfate-containing ones outnumbered the nitrate-containing ones in the winter samples while it was on the contrary in the summer samples, suggesting different haze formation and evolution mechanisms in summer and winter. Furthermore, in the haze events (especially in summer), many CNOS-rich particles, likely mixtures of water-soluble organic carbon with (NH4)2SO4 or NH4HSO4, were observed not only in the submicron but also in the super-micron fractions. The simultaneous observation of the fresh and aged CNOS-rich particles in the same SEM or TEM images implied that the status and components of secondary particles were complicated and changeable. The significant increase of both elemental concentration ratios of [N]/[S] and [C]/[S] in the aged ones compared to the fresh ones indicated that NH4NO3 and secondary organic matter were likely absorbed onto (NH4)2SO4 or NH4HSO4 particles and mixed with them. K-rich, Fe-rich, and heavy metal-containing particles in TEM-EDX measurement were detected more in the winter haze samples than in the summer ones, suggesting that they tend to be smaller in size and mainly derive from anthropogenic biomass burning and coal combustion. It was concluded that the combined use of SEM-EDX and TEM-EDX can identify both submicron and super-micron urban haze particles in a straightforward way and trace their modifications in size, shape, mixing state, and chemical compositions in different seasons, helping address their evolution processes and hazards on human health.
Study of silicon carbide formation by liquid silicon infiltration of porous carbon structures
NASA Astrophysics Data System (ADS)
Margiotta, Jesse C.
Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making fully dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure followed by conversion of this carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low reactivity and porosity, and cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose:resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800°C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process were studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Such knowledge can be used to further refine the LSI technique. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. Thus, SiC made by our LSI process is an ideally suited material for use in high temperature heat exchanger applications. Electron probe microanalysis (EPMA) and Auger electron spectroscopy (AES) were used to study the chemical composition of LSI SiC materials. Optimized low voltage microanalysis conditions for EPMA of SiC were theoretically determined. EPMA and AES measurements indicate that the SiC phase in our materials is slightly carbon rich. Carbon contamination was identified as a possible source of error during EPMA of SiC, and this error was corrected by using high purity SiC standards. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp 2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin.
NASA Astrophysics Data System (ADS)
Sheibani, Hamdi
2002-01-01
Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques. The growth rates achieved can even be higher for higher electric current and magnetic field intensities. (Abstract shortened by UMI.)
Assawincharoenkij, Thitiphan; Hauzenberger, Christoph; Ettinger, Karl; Sutthirat, Chakkaphan
2018-02-01
Waste rocks from gold mining in northeastern Thailand are classified as sandstone, siltstone, gossan, skarn, skarn-sulfide, massive sulfide, diorite, and limestone/marble. Among these rocks, skarn-sulfide and massive sulfide rocks have the potential to generate acid mine drainage (AMD) because they contain significant amounts of sulfide minerals, i.e., pyrrhotite, pyrite, arsenopyrite, and chalcopyrite. Moreover, both sulfide rocks present high contents of As and Cu, which are caused by the occurrence of arsenopyrite and chalcopyrite, respectively. Another main concern is gossan contents, which are composed of goethite, hydrous ferric oxide (HFO), quartz, gypsum, and oxidized pyroxene. X-ray maps using electron probe micro-analysis (EPMA) indicate distribution of some toxic elements in Fe-oxyhydroxide minerals in the gossan waste rock. Arsenic (up to 1.37 wt.%) and copper (up to 0.60 wt.%) are found in goethite, HFO, and along the oxidized rim of pyroxene. Therefore, the gossan rock appears to be a source of As, Cu, and Mn. As a result, massive sulfide, skarn-sulfide, and gossan have the potential to cause environmental impacts, particularly AMD and toxic element contamination. Consequently, the massive sulfide and skarn-sulfide waste rocks should be protected from oxygen and water to avoid an oxidizing environment, whereas the gossan waste rocks should be protected from the formation of AMD to prevent heavy metal contamination.
Particulate matter analysis at elementary schools in Curitiba, Brazil.
Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M
2008-06-01
The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark
2017-12-01
In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, O.; Walz, B.; Somlyo, A.V.
Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguouslymore » that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.« less
NASA Technical Reports Server (NTRS)
Panda, Binayak; Gorti, Sridhar
2013-01-01
A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.
Determination of low-Z elements in individual environmental particles using windowless EPMA.
Ro, C U; Osán, J; Van Grieken, R
1999-04-15
The determination of low-Z elements such as carbon, nitrogen, and oxygen in atmospheric aerosol particles is of interest in studying environmental pollution. Conventional electron probe microanalysis technique has a limitation for the determination of the low-Z elements, mainly because the Be window in an energy-dispersive X-ray (EDX) detector hinders the detection of characteristic X-rays from light elements. The feasibility of low-Z element determination in individual particles using a windowless EDX detector is investigated. To develop a method capable of identifying chemical species of individual particles, both the matrix and the geometric effects of particles have to be evaluated. X-rays of low-Z elements generated by an electron beam are so soft that important matrix effects, mostly due to X-ray absorption, exist even within particles in the micrometer size range. Also, the observed radiation, especially that of light elements, experiences different extents of absorption, depending on the shape and size of the particles. Monte Carlo calculation is applied to explain the variation of observed X-ray intensities according to the geometric and chemical compositional variation of individual particles, at different primary electron beam energies. A comparison is carried out between simulated and experimental data, collected for standard individual particles with chemical compositions as generally observed in marine and continental aerosols. Despite the many fundamental problematic analytical factors involved in the observation of X-rays from low-Z elements, the Monte Carlo calculation proves to be quite reliable to evaluate those matrix and geometric effects. Practical aspects of the Monte Carlo calculation for the determination of light elements in individual particles are also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celada-Casero, C., E-mail: c.celada@cenim.csic.es
The primary objective of this work is to obtain fundamental insights on phase transformations, with focus on the reaustenitization process (α′→γ transformation), of a cold-rolled (CR) semi-austenitic metastable stainless steel upon different isochronal conditions (0.1, 1, 10 and 100 °C/s). For this purpose, an exhaustive microstructural characterization has been performed by using complementary experimental such as scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), micro-hardness Vickers and magnetization measurements. It has been detected that all microstructural changes shift to higher temperatures as the heating rate increases. The reaustenitization occurs in two-steps formore » all heating rates, which is attributed to the chemical banding present in the CR state. The α′→γ transformation is controlled by the migration of substitutional alloying elements across the austenite/martensite (γ/α′) interface, which finally leads to ultrafine-grained reaustenitized microstructures (440–280 nm). The morphology of the martensite phase in the CR state has been found to be the responsible for such a grain refinement, along with the presence of χ-phase and nanometric Ni{sub 3}(Ti,Al) precipitates that pin the austenite grain growth, especially upon slowly heating at 0.1 °C/s. - Highlights: •Ultrafine-grained austenite structures are obtained isochronally at 0.1–100 °C/s •The α′→γ transformation occurs in two steps due to the initial chemical banding •A diffusional mechanism governs the α′→γ transformation for all heating rates •The dislocation-cell-type of martensite promotes a diffusional mechanism •Precipitates located at α′/γ interfaces hinder the austenite growth.« less
Electron microprobe analysis program for biological specimens: BIOMAP
NASA Technical Reports Server (NTRS)
Edwards, B. F.
1972-01-01
BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Fang, H.; Fu, X.
The oxidation behavior of a new type of wrought Ni-Fe-Cr-Al superalloys has been investigated systematically in the temperature range of 1,100 to 1,300 C. Results are compared with those of alloy 214, Inconel 600, and GH 3030. It is shown that the oxidation resistance of the new superalloys is excellent and much better than that of the comparison alloys. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD) experiments reveal that the excellent oxidation resistance of the new superalloy is due to the formation of a dense, stable and continuous Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}more » oxide layer at high temperatures. Differential thermal analysis (DTA) shows that the formation of Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} oxide layers on the new superalloy reaches a maximum at 1,060 and 1,356 C, respectively. The Cr{sub 2}O{sub 3} layer peels off easily, and the single dense Al{sub 2}O{sub 3} layer remains, giving good oxidation resistance at temperatures higher than 1,150 C. In addition, the new superalloy possesses high mechanical strength at high temperatures. On-site tests showed that the new superalloy has ideal oxidation resistance and can be used at high temperatures up to 1,300 C in various oxidizing and corrosion atmospheres, such as those containing SO{sub 2}, CO{sub 2} etc., for long periods.« less
The Role of Materials Degradation and Analysis in the Space Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
McDanels, Steven J.
2006-01-01
The efforts following the loss of the Space Shuttle Columbia included debris recovery, reconstruction, and analysis. The debris was subjected to myriad quantitative and semiquantitative chemical analysis techniques, ranging from examination via the scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) to X-Ray diffraction (XRD) and electron probe micro-analysis (EPMA). The results from the work with the debris helped the investigators determine the location where a breach likely occurred in the leading edge of the left wing during lift off of the Orbiter from the Kennedy Space Center. Likewise, the information evidenced by the debris was also crucial in ascertaining the path of impinging plasma flow once it had breached the wing. After the Columbia Accident Investigation Board (CAIB) issued its findings, the major portion of the investigation was concluded. However, additional work remained to be done on many pieces of debris from portions of the Orbiter which were not directly related to the initial impact during ascent. This subsequent work was not only performed in the laboratory, but was also performed with portable equipment, including examination via portable X-Ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR). Likewise, acetate and silicon-rubber replicas of various fracture surfaces were obtained for later macroscopic and fractographic examination. This paper will detail the efforts and findings from the initial investigation, as well as present results obtained by the later examination and analysis of debris from the Orbiter including its windows, bulkhead structures, and other components which had not been examined during the primary investigation.
The soda-ash roasting of chromite ore processing residue for the reclamation of chromium
NASA Astrophysics Data System (ADS)
Antony, M. P.; Tathavadkar, V. D.; Calvert, C. C.; Jha, A.
2001-12-01
Sodium chromate is produced via the soda-ash roasting of chromite ore with sodium carbonate. After the reaction, nearly 15 pct of the chromium oxide remains unreacted and ends up in the waste stream, for landfills. In recent years, the concern over environmental pollution from hexavalent chromium (Cr6+) from the waste residue has become a major problem for the chromium chemical industry. The main purpose of this investigation is to recover chromium oxide present in the waste residue as sodium chromate. Cr2O3 in the residue is distributed between the two spinel solid solutions, Mg(Al,Cr)2O4 and γ-Fe2O3. The residue from the sodium chromate production process was analyzed both physically and chemically. The compositions of the mineral phases were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The influence of alkali addition on the overall reaction rate is examined. The kinetics of the chromium extraction reaction resulting from the residue of the soda-ash roasting process under an oxidizing atmosphere is also investigated. It is shown that the experimental results for the roasting reaction can be best described by the Ginstling and Brounshtein (GB) equation for diffusion-controlled kinetics. The apparent activation energy for the roasting reaction was calculated to be between 85 and 90 kJ·mol-1 in the temperature range 1223 to 1473 K. The kinetics of leaching of Cr3+ ions using the aqueous phase from the process residue is also studied by treating the waste into acid solutions with different concentrations.
Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.
1986-01-01
The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caiazza, S.; Falcinelli, G.; Pintucci, S.
1990-01-01
This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, J.; Behnamian, Y.; Mostafaei, A., E-mail: amir.mostafaei@gmail.com
2015-03-15
Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigatemore » the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical studies including metallography, XRD, SEM-EDS, and EPMA • Mechanical property tests such as stress–strain curves, failure load and hardness • IMCs as Al{sub 3}Mg{sub 2} and Al{sub 12}Mg{sub 17} were identified in weld nugget and at Al/Mg interface.« less
Zhang, Yuexia; Yang, Zhenhua; Li, Ruijin; Geng, Hong; Dong, Chuan
2015-02-01
The aim of the study is to investigate chemical compositions of fine chalk dust particles (chalk PM2.5) and examine their adverse effects on alveolar macrophages (AMs) in vitro. Morphologies and element concentrations of individual chalk particles were analyzed by using the quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA). The oxidative response of AMs and the potential to generate nitric oxide (NO) by luminol-dependent chemiluminescence (CL) and nitrate reductase method were assessed 4h following the treatment of AMs with differing dosages of fine chalk particles, respectively. Oxidative stress and cytotoxicity elicited by chalk PM2.5 were also examined. The results showed that fine chalk particles were mainly composed of gypsum, calcite, dolomite and a little amount of organic adhesives. Exposure to chalk PM2.5 at 100 μg mL(-1) or 300 μg mL(-1) significantly increased intracellular catalase, malondialdehyde, and NO levels and decreased superoxide dismutase level in AMs, leading to leakage of lactate dehydrogenase (LDH) and reduction of the cell viability. Furthermore, luminol-dependent CL from respiratory burst in AMs was enhanced. It was suggested that chalk PM2.5 could make oxidative damages on AMs and result in cytotoxicity, being likely attributed to excessive reactive oxygen species or reactive nitrogen species induced by mixture of fine gypsum and calcite/dolomite particles. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni
2018-02-01
The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.
Mercury speciation and selenium in toothed-whale muscles.
Sakamoto, Mineshi; Itai, Takaaki; Yasutake, Akira; Iwasaki, Toshihide; Yasunaga, Genta; Fujise, Yoshihiro; Nakamura, Masaaki; Murata, Katsuyuki; Chan, Hing Man; Domingo, José L; Marumoto, Masumi
2015-11-01
Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90-100% to 20-40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-04-01
To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.
Hirano, Taizou; Numakura, Tadahisa; Moriyama, Hiroshi; Saito, Ryoko; Shishikura, Yutaka; Shiihara, Jun; Sugiura, Hisatoshi; Ichinose, Masakazu
2018-05-22
Occupational lung diseases, such as pneumoconiosis, are one of the health problems of dental workers that have been receiving increasing interest. Pulmonary amyloidosis is a heterogenous group of diseases, and can be classified into primary (idiopathic) and secondary (associated with various inflammatory diseases, hereditary, or neoplastic). To date, the development of pulmonary amyloidosis in dental workers has not been reported. A 58-year-old Japanese female presented with chest discomfort and low-grade fever that has persisted for 2 months. She was a dental technician but did not regularly wear a dust mask in the workplace. Chest X ray and computed tomography revealed multiple well-defined nodules in both lungs and fluorodeoxyglucose (FDG)-positron emission tomography revealed abnormal FDG uptake in the same lesions with a maximal standardized uptake value (SUV [max]) of 5.6. We next performed thoracoscopic partial resection of the lesions in the right upper and middle lobes. The histological examination of the specimens revealed granuloma formation with foreign body-type giant cells and amyloid deposition that was confirmed by Congo red staining and direct fast scarlet (DFS) staining that produce apple-green birefringence under crossed polarized light. Because there were no other causes underlying the pulmonary amyloidosis, we performed electron probe X-ray microanalysis (EPMA) of the specimens and the result showed silica deposition in the lesions. Based on these results, we finally diagnosed the patient with pulmonary granulomas with amyloid deposition caused by chronic silica exposure. Afterward, her symptoms were improved and the disease has not progressed for 2 years since proper measures against additional occupational exposure were implemented. Our case presented three important clinical insights: First, occupational exposure to silica in a dental workplace could be associated with the development of amyloid deposition in lung. Second, EPMA was useful to reveal the etiology of amyloid deposition in the lungs. Last, proper protection against silica is important to prevent further progression of the disease. In conclusion, our case suggested that occupational exposure to silica should be considered when amyloid deposition of unknown etiology is found in the lungs of working or retired adults.
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
Sub-micrometer particles produced by a low-powered AC electric arc in liquids.
Jaworski, Jacek A; Fleury, Eric
2012-01-01
The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.
NASA Astrophysics Data System (ADS)
Narayanan, Sumaletha
The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.
Ke, Jinhuan; He, Fupo; Ye, Jiandong
2017-05-17
Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.
Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint
NASA Astrophysics Data System (ADS)
Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.
2006-12-01
Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.
NASA Astrophysics Data System (ADS)
Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.
2017-11-01
The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.
Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
Landis, W J
1979-01-01
The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.
Stettler, L E; Groth, D H; MacKay, G R
1977-02-01
Open lung biopsy specimens from two welders and air samples from their workplace environments were examined with the electron probe microanalyzer. X-ray analysis showed that the majority of particles found in the lung tissue from both workers and in the air samples to be composed of varying amounts of iron, chromium, manganese and nickel, the major components of some types of stainless steel. Based upon these analyses, it was concluded that the majority of the particles in both biopsy specimens were a result of the workplace environment.
Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis
NASA Astrophysics Data System (ADS)
Delhaise, André M.; Perovic, Doug D.
2018-03-01
Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.
Naturally Occurring Asbestos in the Southern Nevada Region: Potential for Human Exposure
NASA Astrophysics Data System (ADS)
Buck, B. J.; Metcalf, R. V.; Berry, D.; McLaurin, B.; Kent, D.; Januch, J.; Goossens, D.
2015-12-01
Naturally occurring fibrous actinolite, winchite, magnesioriebeckite, richterite, magnesiohornblende, and erionite have been found in rock, soil, and dust in southern Nevada and northwestern Arizona. The areas containing naturally occurring asbestos (NOA) include urban areas (e.g. Boulder City) and rural areas where people routinely enjoy outdoor activities including horseback riding, running, hiking, bicycling, and off-road-vehicle (ORV) recreation. A recent study showing mesothelioma in young people and women suggests some form of environmental exposure. Rock, soil, dust and clothing were analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS); additional rock samples were analyzed using wavelength dispersive electron probe microanalysis (EPMA); additional soil samples were analyzed using PLM (polarizing light microscopy) and TEM (transmission electron microscopy) using the Fluidized Bed Asbestos Segregator preparation method. Winds have transported and mixed the Ca-amphiboles, which are primarily from Nevada, with the Na-amphiboles that are primarily from northwestern Arizona. Erionite, which has not previously been reported in this area, was a common soil component found in 5 of 6 samples. The erionite source has not yet been determined. Winds have transported the amphibole and erionite particles into the Nellis Dunes Recreation Area - an ORV recreation area located 35 km north of Boulder City that otherwise would not be geologically predicted to contain fibrous amphiboles. In Boulder City, wind directions are primarily bimodal N-NE and S-SW with the strongest winds in the spring coming from the S-SW. The arid climate in this part of the Mojave Desert greatly increases the potential for wind erosion and human exposures. These results suggest that the entire Las Vegas Basin has, at times, received these particles through wind transport. Because the most likely human exposure pathway is through inhalation of dust, the Las Vegas metropolitan area, with over 1.9 million people, may be subject to exposure.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, A. K.
1998-03-01
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.
Cunha, L; Vaz, F; Moura, C; Munteanu, D; Ionescu, C; Rivière, J P; Le Bourhis, E
2010-04-01
Ti-Si-C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney's equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase (alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCI TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10(3) omega/sq for low non-metal concentration, up to 10(6) omega/sq for the highest metalloid concentration. A strong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings.
Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P
2015-12-01
Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro
2006-01-01
This paper provides the results of studies on the characteristics of novel material derived from pyrolysis/melting treatment of municipal solid waste in Japan. Slag products from pyrolysis/melting plants were sampled for the purpose of detailed phase analysis and characterization of heavy metal-containing phases using optical microscopy, electron probe microanalysis (EPMA), XRF and XRD. The study revealed that the slag material contains glass (over 95%), oxide and silicate minerals (spinel, melilite, pseudowollastonite), as well as individual metallic inclusions as the major constituents. A distinct chemical diversity was discovered in the interstitial glass in terms of silica content defined as low and high silica glass end members. Elevated concentrations of Zn, Cr, Cu, Pb and Ba were recorded in the bulk composition. Cu, Pb and Ba behave as incompatible elements since they have been markedly characterized as part of polymetallic alloys and insignificantly sulfides in the form of spherical metallic inclusions associated with tracer amounts of other elements such as Sb, Sn, Ni, Zn, Al, P and Si. In contrast, an appreciable amount of Zn is retained by zinc-rich end members of spinel and partially by melilite and silica glass. Chromium exhibits similar behavior, and is considerably held by Cr-rich spinel. The intense incorporation of Zn and Cr into spinel indicates the very effective enrichment of these two elements into phases more environmentally resistant than glass. There was no evidence, however, that Cu and Pb enter into the structure of the crystalline silicates or oxides that may lead to their easier leachability upon exposure to the environment.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
The majority of primary pyrometallurgical copper making processes involve the formation of two immiscible liquid phases, i.e., matte product and the slag phase. There are significant gaps and discrepancies in the phase equilibria data of the slag and the matte systems due to issues and difficulties in performing the experiments and phase analysis. The present study aims to develop an improved experimental methodology for accurate characterisation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system under controlled atmospheres. The experiments involve high-temperature equilibration of synthetic mixtures on silica substrates in CO/CO2/SO2/Ar atmospheres, rapid quenching of samples into water, and direct composition measurement of the equilibrium phases using Electron Probe X-ray Microanalysis (EPMA). A four-point-test procedure was applied to ensure the achievement of equilibrium, which included the following: (i) investigation of equilibration as a function of time, (ii) assessment of phase homogeneity, (iii) confirmation of equilibrium by approaching from different starting conditions, and (iv) systematic analysis of the reactions specific to the system. An iterative improved experimental methodology was developed using this four-point-test approach to characterize the complex multi-component, multi-phase equilibria with high accuracy and precision. The present study is a part of a broader overall research program on the characterisation of the multi-component (Cu-Fe-O-S-Si-Al-Ca-Mg), multi-phase (gas/slag/matte/metal/solids) systems with minor elements (Pb, Zn, As, Bi, Sn, Sb, Ag, and Au).
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Ageev, E. V.; Latypova, G. R.; Altukhov, A. Yu.; Ageeva, E. V.
2017-12-01
The powder fabricated by electric discharge dispersion of the wastes of a VK8 hard alloy is studied by electron-probe microanalysis. This powder formed by electric discharge dispersion in kerosene mainly contains tungsten and carbon and has low contents of oxygen, cobalt, and iron.
Laser nitriding for niobium superconducting radio-frequency accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley
2010-10-01
Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appearsmore » to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant value to depths greater than the SRF active layer thickness. Certain irradiation conditions resulted in values consistent with formation of delta NbN. Under certain irradiation conditions, XRD data were consistent only with delta NbN on top of Nb metal. Funding: authored by Jefferson Science Associates LLC under US DOE Contract De-AC05-06OR23177. We are indebted to Prof. P. Schaaf (Goettingen) for the simulation code and helpful discussions.« less
Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath
NASA Astrophysics Data System (ADS)
Mohanty, Jayashree
2012-05-01
Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.
1992-10-01
An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatorymore » and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.« less
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Roul, B. K.; Singh, S. K.; Srinivasu, V. V.
2018-02-01
We report on the possible observation of Griffith phase in a wide range of temperature (>272-378 K) in the 2.5 min plasma sintered La0.67Ca0.33MnO3 (LCMO) as deduced from careful electron spin resonance studies. This is 106 K higher than the paramagnetic to ferromagnetic transition (Curie transition ∼272 K) temperature. The indication of Griffith phase in such a wide range is not reported earlier by any group. We purposefully prepared LCMO samples by plasma sintering technique so as to create a disordered structure by rapid quenching which we believe, is the prime reason for the observation of Griffith Phase above the Curie transition temperature. The inverse susceptibility curve represents the existence of ferromagnetic cluster in paramagnetic region. The large resonance peak width (40-60 mT) within the temperature range 330-378 K confirms the sample magnetically inhomogeneity which is also established from our electron probe microstructure analysis (EPMA). EPMA establishes the presence of higher percentage of Mn3+ cluster in comparison to Mn4+. This is the reason for which Griffith state is enhanced largely to a higher range of temperature.
The Chemical Vapor Deposition of Thin Metal Oxide Films
NASA Astrophysics Data System (ADS)
Laurie, Angus Buchanan
1990-01-01
Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).
NASA Astrophysics Data System (ADS)
Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon
2018-01-01
Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which fluid has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and hydration in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the hydrated part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of hydration. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid phases whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of phase equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku
2017-04-01
Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science Foundation projects (GACR 13-17501S and 16-13142S).
The neodymium-gold phase diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccone, A.; Maccio, D.; Delfino, S.
The Nd-Au phase diagram was studied in the 0 to 100 at. pct Au composition range by differential thermal analysis (DTA), X-ray diffraction (XRD), optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Six intermetallic phases were identified, the crystallographic structures were determined or confirmed, and the melting behavior was determined, as follows: Nd{sub 2}Au, orthorhombic oP12-Co{sub 2}Si type, peritectic decomposition at 810 C; NdAu, R.T. form, orthorhombic oP8-FeB type, H.T. forms, orthorhombic oC8-CrB type and, at a higher temperature, cubic cP2-CsCl type, melting point 1470 C; Nd{sub 3}Au{sub 4}, trigonal hR42-Pu{sub 3}Pd{sub 4} type, peritectic decompositionmore » at 1250 C; Nd{sub 17}Au{sub 36}, tetragonal tP106-Nd{sub 17}Au{sub 36} type, melting point 1170 C; Nd{sub 14}Au{sub 51}, hexagonal hP65-Gd{sub 14}Ag{sub 51} type, melting point 1210 C; and NdAu{sub 6}, monoclinic mC28-PrAu{sub 6} type, peritectic decomposition at 875 C. Four eutectic reactions were found, respectively, at 19.0 at. pct Au and 655 C, at 63.0 at. pct Au and 1080 C, at 72.0 at. pct Au and 1050 C, and, finally, at 91.0 at. pct Au and 795 C. A catatectic decomposition of the ({beta}Nd) phase, at 825 C and {approx}1 at. pct Au, was also found. The results are briefly discussed and compared to those for the other rare earth-gold (R-Au) systems. A short discussion of the general alloying behavior of the coinage metals (Cu, Ag, and Au) with the rare-earth metals is finally presented.« less
Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling
Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.
2015-11-05
Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less
Biodistribution of strontium and barium in the developing and mature skeleton of rats.
Panahifar, Arash; Chapman, L Dean; Weber, Lynn; Samadi, Nazanin; Cooper, David M L
2018-06-19
Bone acts as a reservoir for many trace elements. Understanding the extent and pattern of elemental accumulation in the skeleton is important from diagnostic, therapeutic, and toxicological perspectives. Some elements are simply adsorbed to bone surfaces by electric force and are buried under bone mineral, while others can replace calcium atoms in the hydroxyapatite structure. In this article, we investigated the extent and pattern of skeletal uptake of barium and strontium in two different age groups, growing, and skeletally mature, in healthy rats. Animals were dosed orally for 4 weeks with either strontium chloride or barium chloride or combined. The distribution of trace elements was imaged in 3D using synchrotron K-edge subtraction micro-CT at 13.5 µm resolution and 2D electron probe microanalysis (EPMA). Bulk concentration of the elements in serum and bone (tibiae) was also measured by mass spectrometry to study the extent of uptake. Toxicological evaluation did not show any cardiotoxicity or nephrotoxicity. Both elements were primarily deposited in the areas of active bone turnover such as growth plates and trabecular bone. Barium and strontium concentration in the bones of juvenile rats was 2.3 times higher, while serum levels were 1.4 and 1.5 times lower than adults. In all treatment and age groups, strontium was preferred to barium even though equal molar concentrations were dosed. This study displayed spatial co-localization of barium and strontium in bone for the first time. Barium and strontium can be used as surrogates for calcium to study the pathological changes in animal models of bone disease and to study the effects of pharmaceutical compounds on bone micro-architecture and bone remodeling in high spatial sensitivity and precision.
NASA Astrophysics Data System (ADS)
Korir, Peter C.; Dejene, Francis B.
2018-04-01
In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.
Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.
Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less
Investigation of the Effects of Biodiesel-based Na on Emissions Control Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookshear, D. William; Nguyen, Ke; Toops, Todd J
2012-01-01
A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented acceleratedmore » Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.« less
Nanoindentation on SnAgCu lead-free solder joints and analysis
NASA Astrophysics Data System (ADS)
Xu, Luhua; Pang, John H. L.
2006-12-01
The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.
NASA Astrophysics Data System (ADS)
Lazareth, Claire E.; Guzman, Nury; Poitrasson, Franck; Candaudap, Frederic; Ortlieb, Luc
2007-11-01
Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ 18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.
Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro
1992-08-01
A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-05-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2-) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, U.S.A., showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as haüyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2- and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ-1.7 to FMQ+2.7 showed systematic changes in the features related to S2- and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Theoretical considerations and comparison of compiled S6+/ΣS data obtained by SKα shifts estimated with electron probe microanalysis (EPMA) and S6+/ΣS obtained from XANES spectra show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S6+/ΣS data from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S6+/ΣS as a function of fO2 indicates that the transition from S2- to S6+ with increasing fO2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO2 above FMQ+1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-10-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO 2 conditions for the transition from sulfide (S 2-) to sulfate (S 6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S 2- and S 6+ species, emphasizing the relevance of S 6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO 2 ranging from FMQ - 1.4 to FMQ + 2.7 showed systematic changes in the features related to S 2- and S 6+ with changes in fO 2. No significant features related to sulfite (S 4+) species were observed. These results were used to construct a function that allows estimates of S 6+/ΣS from XANES data. Comparison of S 6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S 6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S 6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S 6+/ΣS from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S 6+/ΣS as a function of fO 2 indicates that the transition from S 2- to S 6- with increasing fO 2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO 2 above FMQ + 1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
HA/Bioglass composite films deposited by pulsed laser with different substrate temperature
NASA Astrophysics Data System (ADS)
Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.
2014-03-01
In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.
Viscosity of the liquid Al-6Mg-1Mn-0.2Sc-0.1Zr alloy
NASA Astrophysics Data System (ADS)
Reznik, P. L.; Chikova, O. A.; Tsepelev, V. S.
2017-07-01
The microstructure and the phase composition of as-cast Al-Mg-Mn-Sc-Zr alloy samples are studied by electron microscopy and electron-probe microanalysis. The processes of solidification and melting of this alloy are described. The temperature dependence of the kinematic viscosity of the Al-Mg-Mn-Sc-Zr melts is studied during heating and subsequent cooling of the samples. The measurement results are used to determine the temperature at which inherited microheterogeneities in the melts are destroyed irreversibly.
Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert
2004-06-01
Powder metallurgy is a highly developed method of manufacturing reliable ferrous parts. The main processing steps in a powder metallurgical line are pressing and sintering. Sintering can be strongly enhanced by the formation of a liquid phase during the sintering process when using phosphorus as sintering activator. In this work the distribution (effect) of phosphorus was investigated by means of secondary ion mass spectrometry (SIMS) supported by Auger electron spectroscopy (AES) and electron probe micro analysis (EPMA). To verify the influence of the process conditions (phosphorus content, sintering atmosphere, time) on the mechanical properties, additional measurements of the microstructure (pore shape) and of impact energy were performed. Analysis of fracture surfaces was performed by means of scanning electron microscopy (SEM). The concentration of phosphorus differs in the samples from 0 to 1% (w/ w). Samples with higher phosphorus concentrations (1% (w/ w) and above) are also measurable by EPMA, whereas the distributions of P at technically relevant concentrations and the distribution of possible impurities are only detectable (visible) by means of SIMS. The influence of the sintering time on the phosphorus distribution will be demonstrated. In addition the grain boundary segregation of P was measured by AES at the surface of in-situ broken samples. It will be shown that the distribution of phosphorus depends also on the concentration of carbon in the samples.
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
NASA Astrophysics Data System (ADS)
Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu
2014-09-01
In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.
NASA Astrophysics Data System (ADS)
Llovet, Xavier; Matthews, Michael B.; Čeh, Miran; Langer, Enrico; Žagar, Kristina
2016-02-01
This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 14th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 3rd to the 7th of May 2015 in the Grand Hotel Bernardin, Portorož, Slovenia. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a unique format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field.This workshop was organized in collaboration with the Jožef Stefan Institute and SDM - Slovene Society for Microscopy. The technical programme included the following topics: electron probe microanalysis, STEM and EELS, materials applications, cathodoluminescence and electron backscatter diffraction (EBSD), and their applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2016 Microscopy and Microanalysis meeting at Columbus, Ohio. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled "Electron channelling contrast reconstruction with electron backscattered diffraction". The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 71 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan, Canada, USA, and Australia. A selection of participants with posters was invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 24th Australian Conference on Microscopy and Microanalysis (ACMM 24) in Melbourne, Australia. The prize was awarded to Aurélien Moy of the University of Montpellier (France) for his poster entitled: "Standardless quantification of heavy metals by electron probe microanalysis". This proceedings volume contains the full texts of 9 of the invited plenary lectures and of 12 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees.
The detection of sulphur in contamination spots in electron probe X-ray microanalysis
Adler, I.; Dwornik, E.J.; Rose, H.J.
1962-01-01
Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.
Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography
NASA Astrophysics Data System (ADS)
Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.
2012-12-01
Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
NASA Astrophysics Data System (ADS)
Schofield, Robert; Lefevre, Harlan; Shaffer, Michael
1989-04-01
Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.
Electrical Resistivity of natural Marcasite at High-pressures
NASA Astrophysics Data System (ADS)
Parthasarathy, Gopalakrishnarao
2013-06-01
Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.
NASA Astrophysics Data System (ADS)
Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.
2017-10-01
Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel proxies hold advantages over taphonomic measures and further provide a rapid method to infer sediment transport pathways within back-reef environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezryadin, N. N.; Kotov, G. I., E-mail: giktv@mail.ru; Kuzubov, S. V., E-mail: kuzub@land.ru
2015-03-15
Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.
Patterned low temperature copper-rich deposits using inkjet printing
NASA Astrophysics Data System (ADS)
Rozenberg, Gregor G.; Bresler, Eric; Speakman, Stuart P.; Jeynes, Chris; Steinke, Joachim H. G.
2002-12-01
A PZT piezoelectric ceramic research drop-on-demand inkjet print head operating in bend mode was used as a means of delivering a copper precursor, vinyltrimethylsilane copper (+1) hexafluoroacetylacetonate, in a controlled and placement accurate fashion. The reagent disproportionates at low temperature (<200 °C), to deposit copper on glass. These deposits are shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscattering spectroscopy. Microscopy shows a deposit diameter and three-dimensional profile that suggests a complex deposition and conversion mechanism. Our findings represent an important step towards the manufacture of electronic devices by entirely nonlithographic means.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner themore » deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean exhaust. In addition, thermal aging and sulfur poisoning are shown to produce minimal contributions to the overall deactivation. Consequently, performance of aged DOCs after soot removal is observed to be comparable to that of a fresh catalyst under our testing conditions.« less
The effects of different types of investments on the alpha-case layer of titanium castings.
Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang
2007-03-01
Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.
NASA Astrophysics Data System (ADS)
Zamyatin, Dmitry A.; Shchapova, Yuliya V.; Votyakov, Sergey L.; Nasdala, Lutz; Lenz, Christoph
2017-09-01
The U-Th-Pb isotope system in the accessory mineral zircon may be disturbed, as for instance by the secondary loss of radiogenic lead. The recognition of such alteration is crucial for the sound interpretation of geochronology results, in particular for chemical dating by means of an electron probe micro-analyser (EPMA). Here we present the example of high-U zircon samples from a granite pegmatite from the Aduiskii Massif, Middle Urals, Russia. The structural and chemical heterogeneity of samples was characterised by EPMA, including joint probability distribution (JPD) analysis of back-scattered electrons (BSE), cathodoluminescence (CL) and U M β images, and by Raman and photoluminescence (PL) spectroscopy. We found a high-U interior region (U up to 11.4 wt%) without any obvious indication of alteration. This domain has stoichiometric composition, and its Raman spectrum is similar to that of amorphous ZrSiO4. In addition, altered lower-U regions are present that are non-stoichiometric and contain non-formula elements such as Ca, Al, Fe, and water up to several wt%. Their Raman spectra yielded a band near 760-810 cm-1 which is not related to any ZrSiO4 vibration; we assign it tentatively to the symmetric stretching of (UO2)2+ groups. This assignment is supported by the observation of a fairly intense PL phenomenon whose spectral position and vibrational-coupling structure strongly indicates a uranyl-related emission. Altered zones were formed by both fluid-driven diffusion reaction and coupled dissolution-reprecipitation processes. The variation of BSE and CL intensities in amorphous high-U zircon is controlled by its chemical composition and the presence of water and uranyl groups. We have determined a weighted mean EPMA age of 246 ± 2 Ma, which agrees reasonably well with previous dating results for the Aduiskii Massif.
Effects of Ion-Releasing Tooth-Coating Material on Demineralization of Bovine Tooth Enamel
Kawasaki, Koji; Kambara, Masaki
2014-01-01
We compared the effect of a novel ion-releasing tooth-coating material that contained S-PRG (surface-reaction type prereacted glass-ionomer) filler to that of non-S-PRG filler and nail varnish on the demineralization of bovine enamel subsurface lesions. The demineralization process of bovine enamel was examined using quantitative light-induced fluorescence (QLF) and electron probe microanalyzer (EPMA) measurement. Ion concentrations in demineralizing solution were measured using inductively coupled plasma atomic (ICP) emission spectrometry and an ion electrode. The nail varnish group and the non-S-PRG filler group showed linear demineralization. Although the nail varnish group and the non-S-PRG filler group showed linear demineralization, the S-PRG filler group did not. Further, plane-scanning by EPMA analysis in the S-PRG filler group showed no changes in Ca ion distribution, and F ions showed peak levels on the surface of enamel specimens. Most ions in the demineralizing solution were present at higher concentrations in the S-PRG filler group than in the other two groups. In conclusion, only the S-PRG filler-containing tooth-coating material released ions and inhibited demineralization around the coating. PMID:24578706
NASA Astrophysics Data System (ADS)
Vauchy, Romain; Robisson, Anne-Charlotte; Martin, Philippe M.; Belin, Renaud C.; Aufore, Laurence; Scheinost, Andreas C.; Hodaj, Fiqiri
2015-01-01
The impact of the cation distribution homogeneity of the U0.54Pu0.45Am0.01O2-x mixed oxide on the americium oxidation state was studied by coupling X-ray diffraction (XRD), electron probe micro analysis (EPMA) and X-ray absorption spectroscopy (XAS). Oxygen-hypostoichiometric Am-bearing uranium-plutonium mixed oxide pellets were fabricated by two different co-milling based processes in order to obtain different cation distribution homogeneities. The americium was generated from β- decay of 241Pu. The XRD analysis of the obtained compounds did not reveal any structural difference between the samples. EPMA, however, revealed a high homogeneity in the cation distribution for one sample, and substantial heterogeneity of the U-Pu (so Am) distribution for the other. The difference in cation distribution was linked to a difference in Am chemistry as investigated by XAS, with Am being present at mixed +III/+IV oxidation state in the heterogeneous compound, whereas only Am(IV) was observed in the homogeneous compound. Previously reported discrepancies on Am oxidation states can hence be explained by cation distribution homogeneity effects.
Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios
NASA Astrophysics Data System (ADS)
Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun
2017-06-01
The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-05-01
Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.
NASA Astrophysics Data System (ADS)
Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng
2017-10-01
The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.
Crystal Chemistry and Conductivity Studies in the System La 0.5+ x+ yLi 0.5-3 xTi 1-3 yCr 3 yO 3
NASA Astrophysics Data System (ADS)
Martínez-Sarrión, M. L.; Mestres, L.; Morales, M.; Herraiz, M.
2000-12-01
The stoichiometry polymorphism and electrical behavior of solid solutions La0.5+x+yLi0.5-3xTi1-3yCr3yO3 with perovskite-type structure were studied. Data are given in the form of a solid solutions triangle, phase diagrams, XRD patterns for the three polymorphs, A, β, and C, composition dependence of their lattice parameters, and ionic and electronic conductivity plots. Microstructure and composition were studied by SEM/EDS and electron probe microanalysis. These compounds are mixed conductors. Ionic conductivity decreased when the amount of lithium diminished and electronic conductivity increased with chromium content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-05-21
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less
Hand, Kieran S; Cumming, Debbie; Hopkins, Susan; Ewings, Sean; Fox, Andy; Theminimulle, Sandya; Porter, Robert J; Parker, Natalie; Munns, Joanne; Sheikh, Adel; Keyser, Taryn; Puleston, Richard
2017-04-01
The implementation of electronic prescribing and medication administration (EPMA) systems is a priority for hospitals and a potential component of antimicrobial stewardship (AMS). To identify software features within EPMA systems that could potentially facilitate AMS and to survey practising UK infection specialist healthcare professionals in order to assign priority to these software features. A questionnaire was developed using nominal group technique and transmitted via email links through professional networks. The questionnaire collected demographic data, information on priority areas and anticipated impact of EPMA. Responses from different respondent groups were compared using the Mann-Whitney U -test. Responses were received from 164 individuals (142 analysable). Respondents were predominantly specialist infection pharmacists (48%) or medical microbiologists (37%). Of the pharmacists, 59% had experience of EPMA in their hospitals compared with 35% of microbiologists. Pharmacists assigned higher priority to indication prompt ( P < 0.001), allergy checker ( P = 0.003), treatment protocols ( P = 0.003), drug-indication mismatch alerts ( P = 0.031) and prolonged course alerts ( P = 0.041) and lower priority to a dose checker for adults ( P = 0.02) and an interaction checker ( P < 0.05) than microbiologists. A 'soft stop' functionality was rated essential or high priority by 89% of respondents. Potential EPMA software features were expected to have the greatest impact on stewardship, treatment efficacy and patient safety outcomes with lowest impact on Clostridium difficile infection, antimicrobial resistance and drug expenditure. The survey demonstrates key differences in health professionals' opinions of potential healthcare benefits of EPMA, but a consensus of anticipated positive impact on patient safety and AMS. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Fournelle, J.; Hanchar, J. M.
2013-12-01
It is not commonly recognized as such, but the accurate measurement of Hf in zircon is not a trivial analytical issue. This is important to assess because Hf is often used as an internal standard for trace element analyses of zircon by LA-ICPMS. The issues pertaining to accuracy revolve around: (1) whether the Hf Ma or the La line is used; (2) what accelerating voltage is applied if Zr La is also measured, and (3) what standard for Hf is used. Weidenbach, et al.'s (2004) study of the 91500 zircon demonstrated the spread (in accuracy) of possible EPMA values for six EPMA labs, 2 of which used Hf Ma, 3 used Hf La, and one used Hf Lb, and standards ranged from HfO2, a ZrO2-HfO2 compound, Hf metal, and hafnon. Weidenbach, et al., used the ID-TIMS values as the correct value (0.695 wt.% Hf.), for which not one of the EPMA labs came close to that value (3 were low and 3 were high). Those data suggest: (1) that there is a systematic underestimation error of the 0.695 wt% Hf (ID-TIMS Hf) value if Hf Ma is used; most likely an issue with the matrix correction, as the analytical lines and absorption edges of Zr La, Si Ka and Hf Ma are rather tightly packed in the electromagnetic spectrum. Mass absorption coefficients are easily in error (e.g., Donovan's determination of the MAC of Hf by Si Ka of 5061 differs from the typically used Henke value of 5449 (Donovan et al, 2002); and (2) For utilization of the Hf La line, however, the second order Zr Ka line interferes with Hf La if the accelerating voltage is greater than 17.99 keV. If this higher keV is used and differential mode PHA is applied, only a portion of the interference is removed (e.g., removal of escape peaks), causing an overestimation of Hf content. Unfortunately, it is virtually impossible to apply an interference correction in this case, as it is impossible to locate Hf-free Zr probe standard. We have examined many of the combinations used by those six EPMA labs and concluded that the optimal EPMA is done with Hf La with the accelerating voltage under 18 keV (e.g. 17 keV is optimal), and also with synthetic stoichiometric hafnon as the standard. We have developed useful standards that are to be distributed to the community for those researchers working on this problem and can be obtained from the second author at jhanchar@mun.ca. The standards include synthetic stoichiometric undoped zircon and hafnon, and synthetic zircon doped with 2 wt. % Hf. Donovan et al. (2002) Probe for Windows: User's Guide and Reference Wiedenbeck, M., et al. (2004) Further characterisation of the 91500 zircon crystal. Geostandards and Geoanatytical Research, 28: 9-39.
Calcium measurements with electron probe X-ray and electron energy loss analysis.
LeFurgey, A; Ingram, P
1990-03-01
This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis.
Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2011-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less
Development of modal layering in granites: a case study from the Carna Pluton, Connemara, Ireland
NASA Astrophysics Data System (ADS)
McKenzie, Kirsty; McCarthy, William; Hunt, Emma
2016-04-01
Modal layering in igneous rocks uniquely record dynamic processes operating in magma chambers and also host a large proportion of Earth's strategic mineral deposits. This research investigates the origin of biotite modal layering and primary pseudo-sedimentary structures in felsic magmas, by using a combination of Crystal Size Distribution (CSD) analysis and Electron Probe Microanalysis (EPMA) to determine the mechanisms responsible for the development of these structures in the Carna Pluton, Connemara, Ireland. The Carna Pluton is a composite granodiorite intrusion and is one of five plutons comprising the Galway Granite Complex (425 - 380 Ma). Prominent 30 cm thick modal layers are defined by sharp basal contacts to a biotite-rich (20%) granite, which grades upward over 10 cm into biotite-poor, alkali-feldspar megacrystic granite. The layering strikes parallel to, and dips 30-60° N toward the external pluton contact. Pseudo-sedimentary structures (cross-bedding, flame structures, slumping and crystal graded bedding) are observed within these layers. Petrographic observations indicate the layers contain euhedral biotite and fresh undeformed quartz and feldspar. Throughout the pluton, alkali-feldspar phenocrysts define a foliation that is sub-parallel to the strike of biotite modal layers. Together these observations indicate that the intrusion's concentric foliation, biotite layers and associated structures formed in the magmatic state and due to a complex interaction between magma flow and crystallisation processes. Biotite CSDs (>250 crystals per sample) were determined for nine samples across three biotite-rich layers in a single unit. Preliminary CSD results suggest biotite within basal contacts accumulated via fractional crystallisation within an upward-growing crystal pile, likely reflecting the yield strength of the magma as a limiting factor to gravitational settling of biotite. This is supported by the abrupt decrease in mean biotite crystal size across the contact, compared to the biotite crystals in the megacrystic granite below. CSD results provide additional evidence for in-situ textural coarsening of biotite. This study proposes a new model for the crystallisation dynamics of the Carna Pluton. During emplacement, 2 - 5 cm alkali-feldspar megacrysts were aligned and fractional crystallisation was the primary mechanism driving the formation of biotite modal layers. Pseudo-sedimentary structures are interpreted to have formed due to the entrainment of biotite crystals within a necessarily highly fluid magma chamber. However, this interpretation is difficult to reconcile with the high viscosities commonly associated with granitic melts. To test this hypothesis, ongoing EPMA analysis on biotite F content and Fe/(Fe+Mg) ratios will assess whether the magma viscosity could have been low enough to produce these features via flow processes; or whether expansion of the pluton and tilting of planar primary magmatic layers, prior to solidification, could be responsible.
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
In situ synthesis of hydroxyapatite coating by laser cladding.
Wang, D G; Chen, C Z; Ma, J; Zhang, G
2008-10-15
HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).
Evaluation of Benthic Foraminiferal Mg/Ca and δ18O: Paleoceanographic Application
NASA Astrophysics Data System (ADS)
Fukuda, K.; Frew, R. D.; Fordyce, R. E.
2005-12-01
Using several different analytical approaches on the same samples is crucial for reducing uncertainties in paleoceanographic studies. We examined two different sequences near Oamaru, New Zealand to evaluate a combination of Mg/Ca and δ18O techniques on benthic foraminifera. As a trial, we chose well-preserved material from the Altonian stage (-18 Ma) while as an application, cemented/altered material in Whaingaroan/Runangan stage (-34 Ma) was selected. For the Altonian, Mg/Ca in Notorotalia spinosa and Cibicides spp. were analysed by ICP-OES throughout the fossiliferous sequence and then paleotemperatures were estimated by our modern Mg/Ca calibration curves. The δ18O in N. spinosa and some Cibicides were also measured from the same stations for pairing with Mg/Ca results. Further, to evaluate paleotemperature estimates from the whole tests, spots analyses of Mg/Ca were taken through the successive chambers for the two species using Electron Probe Micro Analysis (EPMA). Paleotemperatures through the successive chambers, which should be related to their life spans, were estimated by the modern calibration curves established from EPMA analysis. Results show that Notorotalia may retain at least an annual record while the signal in Cibicides may retain a part of season. There is distinctive seasonality observed in this period and the δ18Oseawater estimates paired with Mg/Ca in N. spinosa are comparable with published estimates. For the Whaingaroan/Runangan, Mg/Ca in Cibicides parki (ICP) shows relatively low values (cool) through this sequence in agreement with EPMA analysis. However, δ18O-derived temperatures from C. parki imply warmer conditions prevailed. In addition, Mg/Ca and δ18O from Cribrorotalia (closely related to Notorotalia) provide similar temperature estimates to the C. parki isotope results. It appears that Mg/Ca in certain species are susceptible to post-mortem alteration resulting in lower apparent temperatures. Spot analyses in Cribrorotalia show no distinctive seasonality and the δ18Oseawater estimates indicate ice-free conditions. We conclude that pairing Mg/Ca with δ18O allows the estimation of δ18Oseawater, but only if well-preserved and annual recorder specimens are examined. Combination with EPMA analysis may provide insight into seasonal variability.
Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A
2018-03-01
Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended, including macroscopic observation, H&E staining, iron-specific staining, scanning electron microscopy and EDS microanalysis. Only the careful interpretation of the results provided by all these methods can allow the pathologist to correctly identify the cause of the death. Particularly, the present study suggests that the microanalysis (SEM-EDS) represents a very useful tool for the diagnosis of electrocution, allowing the detection and the identification of the metals embedded in the skin and their evaluation in the context of the ultrastructural morphology. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Movenko, D. A.; Kotel'nikov, G. I.; Pavlov, A. V.; Bytsenko, O. A.
2015-11-01
Experimental heats of low-alloy steel are performed under various conditions of rare-earth metal microalloying and aluminum and calcium deoxidation. Electron-probe microanalysis of nonmetallic inclusions and a metallographic investigation of a metal are used to show that, when interacting with water, nonmetallic cerium oxide inclusions do not form hydrates and, correspondingly, are not aggressive. When aluminum, calcium, and cerium additions are sequentially introduced into a melt, a continuous cerium oxide shell forms on calcium aluminates, protects corrosive nonmetallic inclusions against interaction with water, and weakens local metal corrosion.
Electroerosion micro- and nanopowders for the production of hard alloys
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Ageeva, E. V.; Kruglyakov, O. V.; Latypova, G. R.
2016-06-01
The shape and the surface morphology of the powder particles fabricated by the electroerosion dispersion of tungsten-containing wastes in illuminating oil are studied. The hard alloy fabricated from these powder particles is analyzed by electron-probe microanalysis. The powder synthesized by the electroerosion dispersion of the wastes of sintered hard alloys is found to consist of particles of a spherical or elliptical shape, an irregular shape (conglomerates), and a fragment shape. It is shown that W, Ti, and Co are the main elements in the hard alloy fabricated from the powder synthesized by electroerosion dispersion in illuminating oil.
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un
2011-08-01
Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Nickel extraction from nickel matte
NASA Astrophysics Data System (ADS)
Subagja, R.
2018-01-01
In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.
In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1
NASA Technical Reports Server (NTRS)
Jeffcoat, C. R.; Kerekgyarto, A.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.
2014-01-01
Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb.
Flux growth of high-quality CoFe 2O 4 single crystals and their characterization
NASA Astrophysics Data System (ADS)
Wang, W. H.; Ren, X.
2006-04-01
We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.
Antarctic Meteorite Newsletter, volume 9, no. 2
NASA Technical Reports Server (NTRS)
Gooding, J. L. (Editor)
1986-01-01
Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Dhaliwal, Inayat
The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedralmore » dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average [6] = 2.122(1) Å and average [6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average [4], [6], and [6] distances increase linearly with V. The average distance is affected by M atoms, whereas the average distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.« less
Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China
NASA Astrophysics Data System (ADS)
Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun
2018-02-01
Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With decreasing temperature of the fluids, Pb2+ ions are incorporated along with Cu+, Sb3+, and As3+ ions into sulfosalt minerals, and Ag+ ions are coprecipitated with Cu+, Sb3+, and As3+ ions forming tetrahedrite series minerals or replacing earlier sulfides and sulfosalts.
The Canadian space agency planetary analogue materials suite
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher
2015-12-01
The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.
Geochemistry of Late Cretaceous phosphorites in Egypt: Implication for their genesis and diagenesis
NASA Astrophysics Data System (ADS)
Baioumy, H. M.; Tada, R.; Gharaie, M. H. M.
2007-09-01
Phosphorite deposits in Egypt, known as the Duwi Formation, are a part of the Middle East to North Africa phosphogenic province of Late Cretaceous to Paleogene age. Phosphatic grains in these deposites are classified into phosphatic mudclasts and phosphatic bioclasts. Phosphatic bioclasts are subdivided into fish bone fragments and shark tooth fragments. All phosphatic grains are composed of francolite. Chemical mapping of the phosphatic grains using Electron Probe Microanalysis (EPMA) indicated that the phosphatic mudclasts are homogeneous in their chemical composition and no concentric texture nor chemical zoning are observed. Some of the bone fragments show Fe and S zoning. No significant difference in chemical composition is observed between the phosphatic mudclasts and bioclasts. Acid-insoluble residues of the phosphorites show lower values of the Chemical Index of Alteration (CIA) compared to the associated rocks. Structural CO 2 contents in the francolites range from 3.32% to 7.21% with an average of 5.3%. The δ13C PDB values range from -4.04‰ to -8.7‰, while the δ18O PDB values range from -4.3‰ to -10.3‰. The compositional homogeneity of the mudclasts, Fe and S zoning in some of the bone fragments and the difference in the Chemical Index of Alteration between the acid-insoluble residues of the phosphorites and the associated rocks suggest that the phosphatic grains in the Duwi Formation are derived from pre-existing authigenic phosphorites, which reworked and concentrated afterward. Negative δ13C values of structural CO 2 suggest that the CO 2 was derived from degradation of organic matter. Low δ18O values of structural CO 2 can be attributed to the influence of meteoric water. Higher CO 2, SO 3 and F contents compared to the recent authigenic phosphorites and negative δ13C and δ18O values of structural CO 2 indicate that diagenesis plays an important role in the modification of the chemical composition of phosphatic grains and that the studied apatite was francolitized during diagenesis.
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hafid, Hassan; Velázquez, Matias, E-mail: matias.velazquez@icmcb-bordeaux.cnrs.fr; Pérez, Olivier
2013-06-15
The PbFe{sub 3}O(PO{sub 4}){sub 3} powder compound was studied by means of X-ray diffraction (XRD) from 300 to 6 K, electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), calorimetric (DSC and specific heat) and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on PbFe{sub 3}O(PO{sub 4}){sub 3} powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32–8 K temperature range. Discrepancies between magnetization and specific heat data obtained in PbFe{sub 3}O(PO{sub 4}){sub 3} powders and single crystals are highlighted. A first extraction of the critical exponents (β,γ,δ) wasmore » performed by ac magnetic susceptibility in both PbFe{sub 3}O(PO{sub 4}){sub 3} powders and single crystals and the values were found to be consistent with mean-field theory. Further exploration of the PbO–Fe{sub 2}O{sub 3}–P{sub 2}O{sub 5} system led to the discovery of a new langbeinite phase, Pb{sub 1.5}Fe{sub 2}(PO{sub 4}){sub 3}, the crystal structure of which was solved by room temperature single crystal XRD (P2{sub 1}3, Z=4, a=9.7831(2) Å). This phase does not undergo any structural phase transition down to 6 K nor any kind of long range ordering down to 2 K. - Graphical abstract: Three ferromagnetic-like phase transitions discovered in the new compound PbFe{sub 3}O(PO{sub 4}){sub 3} by specific heat and ZFC/FC magnetization measurements. - Highlights: • Three FM-like second order phase transitions in PbFe{sub 3}O(PO{sub 4}){sub 3} powders. • Critical exponents (β,γ,δ) in PbFe{sub 3}O(PO{sub 4}){sub 3} consistent with mean-field behavior. • Discovery of a new langbeinite phase, Pb{sub 1.5}Fe{sub 2}(PO{sub 4}){sub 3}.« less
Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R
2014-09-01
Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Akbulut, Songul; Grieken, Renevan; Kılıc, Mehmet A; Cevik, Ugur; Rotondo, Giuliana G
2013-03-01
Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I (geo)) enables the assessment of contamination by comparing current and pre-industrial concentrations.
NASA Astrophysics Data System (ADS)
Bao, Quanhe; Chen, Chuanzhong; Wang, Diangang; Liu, Junming
2008-11-01
Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 43- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA.
a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings
NASA Astrophysics Data System (ADS)
Liu, Peng; Guo, Wei; Luo, Hui
2012-04-01
In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them
NASA Astrophysics Data System (ADS)
Astankova, K. N.; Kozhukhov, A. S.; Azarov, I. A.; Gorokhov, E. B.; Sheglov, D. V.; Latyshev, A. V.
2018-04-01
The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe-substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera-Mott model for large times. The initial growth rate of the oxide ( R 0) significantly increases and the time of starting the oxidation ( t 0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.
Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Reidy, Christopher; Tate, Janet
2011-10-01
Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.
Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya
2012-01-01
Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220
Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X
2001-12-01
Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.
NASA Astrophysics Data System (ADS)
Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao
2018-04-01
The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
2014-07-01
Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoatedmore » CNC aerogels, an improvement of over 100 °C.« less
NASA Astrophysics Data System (ADS)
Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo
2015-04-01
A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.
NASA Astrophysics Data System (ADS)
Ma, L.; Williams, D. B.; Goldstein, J. I.
1995-09-01
It has been observed that metal particles in ordinary chondrites contain essentially no P and that the tetrataenite rim of the metal particles is much wider than that in other types of meteorites, especially when the taenite rim abuts troilites (FeS) [1]. It is possible that S plays an important role in the formation of the zoned tetrataenite at low cooling temperatures. Most of the studies of the Fe-Ni-S system have concentrated on high temperature and high Ni-high S part of the ternary diagram [2][3]. In this study we have systematically investigated the microstructure and microchemistry of the Fe-rich Fe-Ni-S system in regions where meteoritic metal forms from 900 degrees C down to 300 degrees C. High spatial resolution electron probe microanalysis (EPMA) and analytical electron microscopy (AEM) techniques were employed. The two and three phase boundaries at high temperatures (900 degrees C to 600 degrees C) are consistent with previous studies. However, at 500 degrees C, an Fe-Ni phase with 51.6 +/- 1.4 wt.% Ni was observed to form along some of the g/g and g/FeS boundaries. The size of this Fe-Ni phase is as large as 10 micrometers in width. AEM analysis indicates that this Fe-Ni phase may have even higher Ni content, 56 wt.%. In addition, the phase has a FCC structure and is disordered. Because the composition of this phase is very close to the stoichiometric composition of FeNi, it is very likely that the phase is tetrataenite. High Ni precipitates with similar morphology were also observed in the Fe-Ni-S alloy aged at 400 degrees C. However, the Ni content is 60.9 +/- 4.0 wt.% measured with EPMA, which is much higher than that in the corresponding 500 degree C sample. The fact that all the high Ni precipitates formed at boundaries of g/g or g/FeS indicates the boundaries are favorable energy nucleation sites. Such a high Ni phase with a Ni content over 60 wt.% has not been observed in the Fe-Ni and Fe-Ni (P) systems above 400 degrees C. The tetrataenite phase forms in the Fe-Ni-S system at higher temperatures (500 degrees C) than in the Fe-Ni and Fe-Ni (P) systems (<400 degrees C) [4]. Because the tetrataenite phase forms in the Fe-Ni-S system at higher temperatures, the tetrataenite rim in chondrites should be much wider than that in other meteorites where phase growth is controlled by the presence of P. It is possible that the Ni distribution in the metal phases of chondrites is dictated by the g/FeS and g/FeS/g' tie-line variations rather than by a/g tie-lines in the case of iron or stony iron meteorites. References: [1] Holland-Duffield C. E. et al. (1991) Meteoritics, 26, 97-103. [2] Kullerud G. (1963) Carnegie Inst. Wash. Yearb., 62, 175-189. [3] Clark L. A. and Kullerud G. (1963) Econ. Geol., 58, 853-885. [4] Yang C. W. (1994) Ph.D. dissertation, Lehigh Univ.
Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.
Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J
2018-05-23
29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
Transition joints between Zircaloy-2 and stainless steel by diffusion bonding
NASA Astrophysics Data System (ADS)
Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.
1994-11-01
The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.
Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds
NASA Astrophysics Data System (ADS)
Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.
2017-04-01
Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.
A microanalysis approach to investigate problems encountered in mycology.
Thibaut, M.; Ansel, M.; de Azevedo Carneiro, J.
1978-01-01
X-ray microanalysis has been applied to the study of pathogenic fungi for the acquisition of chemical information. The technique of combined scanning electron microscopy and wavelength dispersive spectrometry is described. The chemical analysis depends on the characteristic x-ray spectrum excited by the electrons passing through the sample. This spectrum is analyzed by x-ray wavelength dispersion using crystal spectrometers. All the elements of the periodic system above beryllium can be detected with good sensitivity. PMID:619693
NASA Astrophysics Data System (ADS)
Sibi, N.; Subodh, G.
2017-12-01
Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.
Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Tetsuya; Tagami, Masahiko; Sarai, Yoshinori
2004-11-15
Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregatesmore » and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colomer, M.T., E-mail: tcolomer@icv.csic.es; Kilner, J.A.
This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La{sub 0.90}Sr{sub 0.10}GaO{sub 3.00−δ}. Independently of the sintering time, La{sub 0.90}Sr{sub 0.10}Ga{sub 1−x}Ni{sub x}O{sub 3.00−δ} (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa{sub 3.00}O{sub 7.00} (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggestmore » that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La{sub 4.00}Ga{sub 2.00}O{sub 9.00} (nominal composition) is also observed as second phase when samples are treated for 48 h. - Graphical abstract: Typical microstructures, observed by FEG-SEM, of La{sub 0.90}Sr{sub 0.10}Ga{sub 1−x}Ni{sub x}O{sub 3.00−δ} materials with x=0.00 and 0.10 (nominal compositions) and sintered at 1450 °C for 48 h after polishing and thermal etching are shown. Lighter grey grains with a bimodal grain size are observed and according to XEDS analysis correspond to two perovskites with different experimental compositions (labelled as 1 and 2 for x=0.00 and labelled as 4 and 5 for x=0.10, respectively), meanwhile the darker grey phases correspond to LaSrGa{sub 3.00}O{sub 7.00} (labelled as 3 for x=0.00) and LaSr(Ga{sub 1−y′},Ni{sub y′}){sub 3.00}O{sub 7.00} (labelled as 6 for x=0.10), respectively. - Highlights: • When NiO is introduced into La{sub 0.90}Sr{sub 0.10}GaO{sub 3.00−δ} a change in symmetry is produced. • A significant Sr depletion in the A-site of perovskites treated for 48 h is observed. • Compositional deviations could be due to a thermally-activated diffusional process. • The phase purity of these materials is deteriorated when the sintering time is extended.« less
NASA Astrophysics Data System (ADS)
Hwang, HeeJin; Ro, Chul-Un
In the present work, it is demonstrated that a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis, is a practically useful tool for the study of heterogeneous reactions of mineral dust and sea-salts when this analytical technique was applied to a sample collected during an Asian Dust storm event. The technique does not require a special treatment of sample to identify particles reacted in the air. Also, quantitative chemical speciation of reacted particles can provide concrete information on what chemical reaction, if any, occurred for individual particles. Among overall 178 analyzed particles, the number of reacted particles is 81 and heterogeneous chemical reactions mostly occurred on CaCO 3 mineral dust (54 particles) and sea-salts (26 particles). Several observations made for the Asian Dust sample in the present work are: (1) CaCO 3 species almost completely reacted to produce mostly Ca(NO 3) 2 species, and CaSO 4 to a much lesser extent. (2) When reacted particles contain CaSO 4, almost all of them are internally mixed with nitrate. (3) Reacted CaCO 3 particles seem to contain moisture when they were collected. (4) Some reacted CaCO 3 particles have unreacted mineral species, such as aluminosilicates, iron oxide, SiO 2, etc., in the core region. (5) All sea-salt particles are observed to have reacted in the air. Some of them were recrystallized in the air before being collected and they are observed as crystalline NaNO 3 particles. (6) Many sea-salts were collected as water drops, and some of them were fractionally recrystallized on Ag collecting substrate. When sea-salts were not recrystallized on the substrate, they are found as particles internally mixed with NaNO 3 and Mg(NO 3) 2, and in some cases SO 4 and Cl species as additional anions.
NASA Astrophysics Data System (ADS)
Schalm, O.; Janssens, K.
2003-04-01
Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (<5 keV). Since the layer thickness gradually changes with time, also the detector efficiency in the low energy region is not constant. Using the normal ZAF approach to quantification of EPXMA data is cumbersome in these conditions, because spectra from reference materials and from unknown samples must be acquired within a fairly short period of time in order to avoid the effect of the change in efficiency. To avoid this problem, an alternative approach to quantification of EPXMA data is proposed, following a philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.
Dwivedi, D; Lepkova, K; Becker, T
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Lepkova, K.; Becker, T.
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Electron Impact K-shell Ionization of Atomic Targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.; Patoary, A. A. R.
2008-05-01
In spite of considerable progress -both theoretically and experimentally- recently in evaluating accurate K-shell ionization cross sections that play a decisive role for quantitative analyses using (i) electron probe microanalysis, (ii) Auger electron spectroscopy and (iii) electron energy loss spectra, attempts are still continuing to search for a model that can easily generate reliable cross sections for a wide range of energies and for various targets needed for plasma modeling code We report few modifications of the widely used binary encounter approximation (BEA) [1,2] and have tested by evaluating the electron impact K-shell ionization of few neutral targets at various projectile energies. Details will be presented at the meeting. [1] M. Gryziniski, Phys. Rev. A 138, 336 (1965); [2] L. Vriens, Proc. Phys. Soc. (London) 89, 13, (1966). [3M. A. Uddin , A. K. F. Haque, M. M. Billah, A. K. Basak, K, R, Karim and B. C. Saha, ,Phys. Rev. A 71,032715 (2005); [4] M. A. Uddin, A. K. Basak, and B. C. Saha, Int. J. Quan. Chem 100, 184 (2004).
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
Dwivedi, D.; Becker, T.
2017-01-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351
Chemical composition of individual aerosol particles from working areas in a nickel refinery.
Höflich, B L; Wentzel, M; Ortner, H M; Weinbruch, S; Skogstad, A; Hetland, S; Thomassen, Y; Chaschin, V P; Nieboer, E
2000-06-01
Individual aerosol particles (n = 1170) collected at work stations in a nickel refinery were analyzed by wavelength-dispersive electron-probe microanalysis. By placing arbitrary restrictions on the contents of sulfur and silicon, the particles could be divided into four main groups. Scanning electron images indicated that most of the particles examined were relatively small (< or = 2 microm, equivalent projected area diameter), and that their morphology suggested formation from a melt. There was an absence of well-defined phases and simple stoichiometries, indicating that exposures to pure substances such as nickel subsulfide or specific oxides appeared not to occur. Although the elemental composition of particles varied greatly, a rough association was evident with the known elemental content of the refinery intermediates. The implications of the findings for aerosol speciation measurements, toxicological studies and interpretation of adverse health effects are explored.
Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint
NASA Astrophysics Data System (ADS)
Mokhtari, Omid; Nishikawa, Hiroshi
2014-11-01
In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs.
Mikhailovich Irianov, Iurii; Vladimirovna Diuriagina, Olga; Iurevna Karaseva, Tatiana; Anatolevich Karasev, Evgenii
2014-02-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.
NASA Technical Reports Server (NTRS)
Kornacki, A. S.; Wood, J. A.
1985-01-01
The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.
Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Watanabe, Yutaka
1996-10-01
Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less
Electron microscopy methods in studies of cultural heritage sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less
Electron microscopy methods in studies of cultural heritage sites
NASA Astrophysics Data System (ADS)
Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.
2016-11-01
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.
NASA Astrophysics Data System (ADS)
Caterina, Ingoglia; Maurizio, Triscari; Giuseppe, Sabatino
The archaeological site in Via La Farina, Block P, in Messina, is unique in many ways, due also to the high quantity of samples of iron slag. The slag was examined to identify the production centres of such materials, and, after characterization, was compared to similar material, exclusively for product typology, from different archaeological sites in the province of Messina, situated in the Peloritani Mountains (Messina city, S. Marco d'Alunzio, Milazzo, Francavilla di Sicilia, Novara di Sicilia as well as the archaeological site of Halaesa, near Tusa). Mineralogical characterization of the phases carried out by X-ray diffractometry (XRD) and Rietveld data elaboration, morphological study of slag findings and a semi-quantitative analysis by scanning electronic microscope (SEM+EDX) were performed. A chemical investigation was carried out by electron probe micro analysis (EPMA), to determine major element,. Minor and trace elements were determined by LA-ICP-MS. All the examined slag is related to iron metallurgy, and, in the case of Via La Farina, there is firm archaeological evidence pinpointing to smelting activity.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Chang, Tao-Chih; Lin, Dong-Yih; Chen, Ming-Che; Wu, Weite
2007-10-01
The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe-Cr-Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.
NASA Astrophysics Data System (ADS)
Ammar, Abdelaziz; Cros, Christian; Pouchard, Michel; Jaussaud, Nicolas; Bassat, Jean-Marc; Villeneuve, Gérard; Duttine, Mathieu; Ménétrier, Michel; Reny, Edouard
2004-05-01
The clathrate form of silicon, Si 136 (otherwise known as Si 34), having a residual sodium content as low as 35 ppm (i.e., x˜0.0058 in Na xSi 136), has been prepared by thermal decomposition of NaSi under high vacuum, followed by several other treatments under vacuum, and completed by repeated reactions with iodine. The residual amount of sodium has been determined by a combination of analytic and spectroscopic methods involving XRD, electron probe microanalysis, atomic absorption, NMR and EPR. This latter technique proved to be very appropriate to the characterisation of very diluted sodium atoms in such clathrate structure and to the quantitative determination of its residual concentration.
Yamanda, Shinsuke; Kobayashi, Seiichi; Hanagama, Masakazu; Sato, Hikari; Suzuki, Satoshi; Ueda, Shinsaku; Takahashi, Toru; Yanai, Masaru
We report two cases of organizing pneumonia (OP) secondary to the inhalation of the dried tsunami sludge which formed during the 2011 Great East Japan Earthquake and the consequent tsunami. After the disaster, both of these patients had been engaged in the restoration work. About half a month later, they developed shortness of breath and pulmonary infiltrates. These patients were diagnosed with interstitial pneumonia. Their biopsy specimens revealed multifocal peribronchiolitis and OP. An electron probe microanalysis of these specimens demonstrated the presence of elements from the earth's crust in the inflammatory lesions. These two cases indicate that exposure to dried tsunami sludge can cause OP.
Extension of the TRANSURANUS burnup model to heavy water reactor conditions
NASA Astrophysics Data System (ADS)
Lassmann, K.; Walker, C. T.; van de Laar, J.
1998-06-01
The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.
Scanning Electron Microscopy and X-Ray Microanalysis
NASA Astrophysics Data System (ADS)
Albee, Arden L.
This outstanding volume has managed the nearly impossible task of combining the expertise of all six authors in a lucid and homogeneous style of writing. Subtitled ‘A Text for Biologists, Material Scientists and Geologists,’ the book has evolved from a short course taught each summer at Lehigh University.The book provides a basic knowledge of (1) the electron optics for these instruments a nd their controls, (2) the characteristics of the electron beam-sample interactions, (3) image formation and interpretation, (4) X ray spectrometry and quantitative X ray microanalysis with separate detailed sections on wavelength dispersive and energy dispersive techniques, and (5) specimen preparation, especially for biological materials.
Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-01-01
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504
Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-04-16
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.
Identification of provenance rocks based on EPMA analyses of heavy minerals
NASA Astrophysics Data System (ADS)
Shimizu, M.; Sano, N.; Ueki, T.; Yonaga, Y.; Yasue, K. I.; Masakazu, N.
2017-12-01
Information on mountain building is significant in the field of geological disposal of high-level radioactive waste, because this affects long-term stability in groundwater flow system. Provenance analysis is one of effective approaches for understanding building process of mountains. Chemical compositions of heavy minerals, as well as their chronological data, can be an index for identification of provenance rocks. The accurate identification requires the measurement of as many grains as possible. In order to achieve an efficient provenance analysis, we developed a method for quick identification of heavy minerals using an Electron Probe Micro Analyzer (EPMA). In this method, heavy mineral grains extracted from a sample were aligned on a glass slide and mounted in a resin. Concentration of 28 elements was measured for 300-500 grains per sample using EPMA. To measure as many grains as possible, we prioritized swiftness of measurement over precision, configuring measurement time of about 3.5 minutes for each grain. Identification of heavy minerals was based on their chemical composition. We developed a Microsoft® Excel® spread sheet input criteria of mineral identification using a typical range of chemical compositions for each mineral. The grains of <80 wt.% or >110 wt.% total were rejected. The criteria of mineral identification were revised through the comparison between mineral identification by optical microscopy and chemical compositions of grains classified as "unknown minerals". Provenance rocks can be identified based on abundance ratio of identified minerals. If no significant difference of the abundance ratio was found among source rocks, chemical composition of specific minerals was used as another index. This method was applied to the sediments of some regions in Japan where provenance rocks had lithological variations but similar formation ages. Consequently, the provenance rocks were identified based on chemical compositions of heavy minerals resistant to weathering, such as zircon and ilmenite.This study was carried out under a contract with Ministry of Economy, Trade and Industry of Japan as part of its R&D supporting program for developing geological disposal technology.
Kato, Kazuo; Tamura, Kiyomi; Nakagaki, Haruo
2012-01-01
This study was conducted to evaluate the oral biofilm-removing capacity of a dental water jet (DWJ) by measuring biofilm thickness using an electron-probe microanalyzer (EPMA). Thirty consenting subjects wore in situ plaque-generating devices, which consisted of a pair of 4mm(2) enamel slabs attached to the upper molars for 2 days. Each device removed from the mouth was clamped, and one of the slab surfaces was treated with the DWJ, irrigating it for 5s. The devices were randomly assigned to three different pressure settings of 707, 350 or 102kPa. Another slab with no treatment served as a control. Each slab was freeze-dried, sputter-coated with platinum, and examined using secondary-electron imaging. The slabs were then embedded in methacrylate and cross-sectioned in the centre. Their surfaces were polished, coated with carbon, and examined using backscattered electron compositional (COMPO) imaging. The area between the enamel and the outer biofilm surface, indicated by a thin platinum layer, was measured by COMPO imaging to calculate the average thickness of the biofilm on the specimen. The removal capacity of biofilm by irrigation was estimated using a reduced rate of biofilm thickness, which was calculated from the differences between a pair of treated and control slabs. The reduced rates were 85.5% at 707kPa, 85.1% at 350kPa and 63.4% at 102kPa, indicating that biofilm thickness was significantly reduced at every pressure setting. The results suggest that irrigation using a DWJ would be an effective means of plaque control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Importance of microscopy in durability studies of solidified and stabilized contaminated soils
Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.
1999-01-01
Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or archived in a laboratory, warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.
The effect of chlorhexidine on dental calculus formation: an in vitro study.
Sakaue, Yuuki; Takenaka, Shoji; Ohsumi, Tatsuya; Domon, Hisanori; Terao, Yutaka; Noiri, Yuichiro
2018-03-27
Chlorhexidine gluconate (CHG) has been proven to be effective in preventing and controlling biofilm formation. At the same time, an increase in calculus formation is known as one of considerable side effects. The purpose of this study was to investigate whether mineral deposition preceding a calculus formation would occur at an early stage after the use of CHG using an in vitro saliva-related biofilm model. Biofilms were developed on the MBEC™ device in brain heart infusion (BHI) broth containing 0.5% sucrose at 37 °C for 3 days under anaerobic conditions. Biofilms were periodically exposed to 1 min applications of 0.12% CHG every 12 h and incubated for up to 2 days in BHI containing a calcifying solution. Calcium and phosphate in the biofilm were measured using atomic absorption spectrophotometry and a phosphate assay kit, respectively. Morphological structure was observed using a scanning electron microscope (SEM), and chemical composition was analyzed with an electron probe microanalyzer (EPMA). The concentrations of Ca and Pi following a single exposure to CHG increased significantly compared with the control. Repeatedly exposing biofilms to CHG dose-dependently increased Ca deposition, and the amount of Ca was five times as much as that of the control. Pi levels in CHG-treated biofilms were significantly higher than those from the control group (p < 0.05); however, the influence of the number of exposures was limited. Analyses using an SEM and EPMA showed many clusters containing calcium and phosphate complexes in CHG-treated biofilms. Upon composition analysis of the clusters, calcium was detected at a greater concentration than phosphate. Findings suggested that CHG may promote mineral uptake into the biofilm soon after its use. It is necessary to disrupt the biofilm prior to the start of a CHG mouthwash in order to reduce the side effects associated with this procedure. The management of patients is also important.
Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system
NASA Astrophysics Data System (ADS)
Degterov, Sergei A.; Pelton, Arthur D.; Jak, Evgueni; Hayes, Peter C.
2001-08-01
The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as specific heat, heat content, entropy, enthalpy, and Gibbs energy); the cation distribution between octahedral and tetrahedral sites in spinel; the oxygen partial pressure over single-phase, two-phase, and three-phase regions; the phase boundaries (liquidus, solidus, and subsolidus); and the tie-lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, Sushovan, E-mail: sushovanbasak@gmail.com; Das, Hrishikesh, E-mail: hrishichem@gmail.com; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effectmore » of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is worth considering or not. • HRTEM-EDS, SAD pattern identifies the morphologies and size of intermetallics. • A compromise concerning formation of IMC is necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.
X-ray microanalysis in an analytical electron microscope is a proven technique for the measurement of solute segregation in alloys. Solute segregation under equilibrium or nonequilibrium conditions can strongly influence material performance. X-ray microanalysis in an analytical electron microscope provides an alternative technique to measure grain boundary segregation, as well as segregation to other defects not accessible to Auger analysis. The utility of the technique is demonstrated by measurements of equilibrium segregation to boundaries in an antimony containing stainless steel, including the variation of segregation with boundary character and by measurements of nonequilibrium segregation to boundaries and dislocations in an ion-irradiatedmore » stainless steel.« less
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, S.; Murphy, G.F.; Bernhard, J.D.
1981-09-01
In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less
NASA Astrophysics Data System (ADS)
Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle
2007-07-01
A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.
Odegård, M; Mansfeld, J; Dundas, S H
2001-08-01
Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.
NASA Astrophysics Data System (ADS)
Llovet, Xavier, Dr; Matthews, Mr Michael B.; Brisset, François, Dr; Guimarães, Fernanda, Dr; Vieira, Professor Joaquim M., Dr
2014-03-01
This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 13th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 12th to the 16th of May 2013 in the Centro de Congressos do Alfândega, Porto, Portugal. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with LNEG - Laboratório Nacional de Energia e Geologia and SPMICROS - Sociedade Portuguesa de Microscopia. The technical programme included the following topics: electron probe microanalysis, future technologies, electron backscatter diffraction (EBSD), particle analysis, and applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2014 Microscopy and Microanalysis meeting at Hartford, Connecticut. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled ''Plastic deformation studies with electron channelling contrast imaging and electron backscattered diffraction''. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 21 countries were on display at the meeting and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters was invited to give a short oral presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 23) at Adelaide, South Australia. The prize was awarded to Pierre Burdet of the EM Group of the Department of Materials Science and Metallurgy of the University of Cambridge (UK), for the poster entitled: ''3D EDS microanalysis by FIB-SEM: advantages of a low take-off angle''. This proceedings volume contains the full texts of 8 of the invited plenary lectures and of 13 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2014 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to Fernanda Guimarães and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The Workshop also included a commercial exhibition where many leading instrument suppliers were represented. Several companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop. - Ametek GmbH, Edax Business Unit- IZASA Group Werfen - Bruker Nano GmbH- Jeol (Europe) SAS - Cameca SA- Porto Gran Cruz - Câmara Municipal do Porto- Oxford Instruments NanoAnalysis Ltd. - European Institute for Transuranium Elements (Germany)- Probe Software, Inc. - FEI Company- Tescan, a.s. Michael B Matthews EMAS President
Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys
Yang, Ying; Tan, Lizhen; Busby, Jeremy T.
2015-06-12
Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less
NASA Astrophysics Data System (ADS)
Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng
2017-12-01
The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.
Influence of lead ions on the macromorphology of electrodeposited zinc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuda, Tetsuaki; Tobias, Charles W.
1981-09-01
The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs
Irianov, Iurii Mikhailovich; Diuriagina, Olga Vladimirovna; Karaseva, Tatiana Iurevna; Karasev, Evgenii Anatolevich
2014-01-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase. PMID:24579962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterle, W.; Krause, S.; Moelders, T.
2008-11-15
Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less
High-strength bioresorbable Fe-Ag nanocomposite scaffolds: Processing and properties
NASA Astrophysics Data System (ADS)
Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y.; Gotman, Irena
2015-10-01
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na2SO4 and K2CO3 salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy's law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18-22 MPa), compressive strength of 8-12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6-6 cm2) is close to the range of trabecular bone.
Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests
Ye, Wei; Song, Xiaoping; Ma, Yuantai; Li, Ying
2017-01-01
The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer. PMID:29099061
Improvement in the Characterization of the 2099 Al-Li Alloy by FE-SEM
NASA Astrophysics Data System (ADS)
Brodusch, Nicolas; Trudeau, Michel L.; Michaud, Pierre; Brochu, Mathieu; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
This paper describes how state-of-the-art Field-Emission Scanning Electron Microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy, and metallic alloys in general. Investigations were carried out on bulk and thinned samples. BSE imaging at 3kV and STEM imaging at 30kV along with highly efficient microanalysis permitted to correlate experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain" shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted in that it can provide information at the macro and micro scales with relevant details. Its ability to probe the distribution of precipitates from nano-to micro-sizes throughout the matrix makes Field-Emission Scanning Electron Microscopy a suitable technique for the characterization of metallic alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Nelia, E-mail: nelia.castro@ntnu.no; Sorensen, Bjorn E.; Broekmans, Maarten A.T.M.
The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data frommore » PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.« less
NASA Astrophysics Data System (ADS)
Fuji-Ta, K.; Katsura, T.; Tainosho, Y.
2003-12-01
We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by Magneto-Telluric (MT) measurements. A granulite from Hidaka Metamorphic Belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. Through the qualitative and quantitative evaluations using Electron Probe Micro Analysis (EPMA), microstructures of the sintered sample were inspected. This inspection is essential to confirm the sample was not affected by chemical interaction of minerals. We also examined the role of accessory minerals in the rock, and the mechanisms of electrical conductivity paths in _gdry_h or _gbasic_h rocks should be reconsidered. Finally, results from electrical conductivity measurements were consistent with the electrical conductivity structures suggested by the former MT data analysis.
The irradiation behavior of atomized U-Mo alloy fuels at high temperature
NASA Astrophysics Data System (ADS)
Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.
2001-04-01
Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.
Aqueous alteration of VHTR fuels particles under simulated geological conditions
NASA Astrophysics Data System (ADS)
Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd
2014-05-01
Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.
Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
2012-12-01
Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia
Hung, Hsiao-Chun; Iizuka, Yoshiyuki; Bellwood, Peter; Nguyen, Kim Dung; Bellina, Bérénice; Silapanth, Praon; Dizon, Eusebio; Santiago, Rey; Datan, Ipoi; Manton, Jonathan H.
2007-01-01
We have used electron probe microanalysis to examine Southeast Asian nephrite (jade) artifacts, many archeologically excavated, dating from 3000 B.C. through the first millennium A.D. The research has revealed the existence of one of the most extensive sea-based trade networks of a single geological material in the prehistoric world. Green nephrite from a source in eastern Taiwan was used to make two very specific forms of ear pendant that were distributed, between 500 B.C. and 500 A.D., through the Philippines, East Malaysia, southern Vietnam, and peninsular Thailand, forming a 3,000-km-diameter halo around the southern and eastern coastlines of the South China Sea. Other Taiwan nephrite artifacts, especially beads and bracelets, were distributed earlier during Neolithic times throughout Taiwan and from Taiwan into the Philippines. PMID:18048347
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia.
Hung, Hsiao-Chun; Iizuka, Yoshiyuki; Bellwood, Peter; Nguyen, Kim Dung; Bellina, Bérénice; Silapanth, Praon; Dizon, Eusebio; Santiago, Rey; Datan, Ipoi; Manton, Jonathan H
2007-12-11
We have used electron probe microanalysis to examine Southeast Asian nephrite (jade) artifacts, many archeologically excavated, dating from 3000 B.C. through the first millennium A.D. The research has revealed the existence of one of the most extensive sea-based trade networks of a single geological material in the prehistoric world. Green nephrite from a source in eastern Taiwan was used to make two very specific forms of ear pendant that were distributed, between 500 B.C. and 500 A.D., through the Philippines, East Malaysia, southern Vietnam, and peninsular Thailand, forming a 3,000-km-diameter halo around the southern and eastern coastlines of the South China Sea. Other Taiwan nephrite artifacts, especially beads and bracelets, were distributed earlier during Neolithic times throughout Taiwan and from Taiwan into the Philippines.
NASA Astrophysics Data System (ADS)
Tylko, Grzegorz; Dubchak, Sergyi; Banach, Zuzanna; Turnau, Katarzyna
2010-04-01
Monte Carlo simulations of gelatin matrices with known elemental concentrations confirmed the suitability of protein standards to quantify elements of cellulose material in x-ray microanalysis. However, gelatin standards and cellulose plant cell walls differ in structure, what influences x-ray generation and emission in both specimens. The goal of the project was to establish the influence of gelatin structure on x-ray generation and its usefulness to calculate elemental concentrations in plant cell walls of different width. Roots of Medicago truncatula as well as gelatin standards with known elemental composition were prepared according to freeze-drying protocols. The thermanox polymer was chosen to establish background formation for flat and compact organic materials. All analyses were performed with the scanning electron microscope operated at 10 keV and probe current of 350 pA. The Monte Carlo code Casino was applied to calculate the intensities of the generated and the emitted x-rays from biological matrix of different width. No topography effects of gelatin structure were visible when the raster mode of electron impact was applied to the specimen. Monte Carlo simulations of gelatin of different width revealed that a significant decrease of the generated x-ray intensity appears at the width of the specimen around 3.5 μm. However, an increase of emission of low energy x-ray intensities (Na, Mg) was noted at 3.5 μm size with constant emission of higher energy x-rays (Cl, K) down to 2.5 μm width. It determines the minimal size of plant specimen useful for comparison to bulk gelatin standard when quantitative analysis is performed for biologically important elements.
Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis
Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena
2018-01-01
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
NASA Astrophysics Data System (ADS)
McLeod, C. L.; Brown, K.; Brydon, R.; Haley, M.; Hill, T.; Shaulis, B.; Tronnes, R. G.
2017-12-01
Advances in the capabilities of microanalysis over the past several decades have promoted a redefinition of traditional petrological terminology. This has allowed a more accurate evaluation of a samples petrogenetic history. For example, the term "phenocryst", specifically describes crystals that grew from the liquid that solidified into the groundmass. Evolving from this idea is the term xenocryst, referring to crystals that did not originate in the magma but were gathered by it, and antecrysts, which crystallized from a progenitor of the magma that solidified into the groundmass. Through identification of a magmas different, and distinct, crystal populations, the petrogenetic history of a magmatic rock can therefore be unraveled. This approach has been widely applied to terrestrial volcanic systems throughout the past several decades. This study presents results from a combined microimaging and in-situ microanalytical investigation of granitic magmas crystal cargoes in order to unravel how granitic batholiths are constructed. 27 lithological units from two granite batholiths in the Oslo Rift, Norway form the basis of this investigation. Micro X-Ray Fluorescence (µXRF) mapping of major elements and selected trace elements is used in order to chemically map each granitic unit, identify any characteristic growth zoning, and compare the crystal cargoes of the different units. Major and trace elemental abundances of the major phases (feldspars, biotite, amphibole) and minor phases (apatite and titanite) are to be quantified through electron microprobe analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) respectively. Through chemically fingerprinting the crystal cargoes of these Oslo Rift granitic magmas, the open vs. closed nature of granitic, intrusive, magmatic systems will be investigated. Within the context of the Oslo Rift, this study also offers an opportunity to evaluate the processes inherent to granitoid magmatism during continental rifting.
Ultrastructure of selected struvite-containing urinary calculi from cats.
Neumann, R D; Ruby, A L; Ling, G V; Schiffman, P S; Johnson, D L
1996-01-01
To elucidate the ultrastructural details of struvite-containing urinary calculi from cats. Specimens studied were inclusive of the range of textures visible during preliminary analysis by use of a stereoscopic dissecting microscope. Textural types, which were used to infer crystal growth conditions, were differentiated with regard to crystal habit, crystal size, growth orientation, and primary porosity. Thirty specimens were selected from a collection of approximately 1,600 feline urinary calculi: 20 of these were composed entirely of struvite, and 10 consisted of struvite and calcium phosphate (apatite). Qualitative and quantitative analyses of specimens included use of plain and polarized light microscopy, x-ray diffractometry, scanning electron microscopy with backscattered electron imagery, x-ray fluorescence scans, and electron probe microanalysis. Four textural types were recognized among struvite calculi, whereas 2 textural types of struvite-apatite calculi were described. The presence of minute, well interconnected primary pores in struvite-containing urinary calculi from cats is an important feature, which may promote possible interaction of calculi with changes in urine composition. Primary porosity, which can facilitate interaction between the calculus and changing urine composition, may explain the efficacy of dietary or medicinal manipulations to promote the dissolution of struvite-containing uroliths from this species.
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal
NASA Astrophysics Data System (ADS)
Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang
2018-06-01
In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.
NASA Astrophysics Data System (ADS)
Tempesta, Gioacchino; Senesi, Giorgio S.; Manzari, Paola; Agrosì, Giovanna
2018-06-01
Two fragments of an iron meteorite shower named Dronino were characterized by a novel technique, i.e. Double-Pulse micro-Laser Induced Breakdown Spectroscopy (DP-μLIBS) combined with optical microscope. This technique allowed to perform a fast and detailed analysis of the chemical composition of the fragments and permitted to determine their composition, the alteration state differences and the cooling rate of the meteorite. Qualitative analysis indicated the presence of Fe, Ni and Co in both fragments, whereas the elements Al, Ca, Mg, Si and, for the first time Li, were detected only in one fragment and were related to its post-falling alteration and contamination by weathering processes. Quantitative analysis data obtained using the calibration-free (CF) - LIBS method showed a good agreement with those obtained by traditional methods generally applied to meteorite analysis, i.e. Electron Dispersion Spectroscopy - Scanning Electron Microscopy (EDS-SEM), also performed in this study, and Electron Probe Microanalysis (EMPA) (literature data). The local and coupled variability of Ni and Co (increase of Ni and decrease of Co) determined for the unaltered portions exhibiting plessite texture, suggested the occurrence of solid state diffusion processes under a slow cooling rate for the Dronino meteorite.
NASA Astrophysics Data System (ADS)
Llovet, X.; Salvat, F.
2018-01-01
The accuracy of Monte Carlo simulations of EPMA measurements is primarily determined by that of the adopted interaction models and atomic relaxation data. The code PENEPMA implements the most reliable general models available, and it is known to provide a realistic description of electron transport and X-ray emission. Nonetheless, efficiency (i.e., the simulation speed) of the code is determined by a number of simulation parameters that define the details of the electron tracking algorithm, which may also have an effect on the accuracy of the results. In addition, to reduce the computer time needed to obtain X-ray spectra with a given statistical accuracy, PENEPMA allows the use of several variance-reduction techniques, defined by a set of specific parameters. In this communication we analyse and discuss the effect of using different values of the simulation and variance-reduction parameters on the speed and accuracy of EPMA simulations. We also discuss the effectiveness of using multi-core computers along with a simple practical strategy implemented in PENEPMA.
NASA Astrophysics Data System (ADS)
Bulienkov, N. A.; Zheligovskaya, E. A.; Chernogorova, O. P.; Drozdova, E. I.; Ushakova, I. N.; Ekimov, E. A.
2018-01-01
A composite material (CM) reinforced by diamond particles is fabricated from a mixture of cobalt and 10 wt % C60 powders at a pressure of 8 GPa and a temperature of 1200-1300°C, which is close to the melting temperature of the metastable Co-C eutectic. The results of X-ray diffraction, Raman spectroscopy, and electron-probe microanalysis demonstrate that the CM consists of diamond and the Co3C carbide. Diamond crystals are shown to grow as plates parallel to a {100} plane according to the mechanism of nonequilibrium normal growth during liquid-phase CM synthesis. The diamond particles have a hardness of 82 GPa at an elastic recovery of 95%. The structure of the synthesized cobalt-based CM with diamond inclusions ensures its ultrahigh wear resistance and antifriction properties.
Molnar, J J
1983-12-01
Postmortem examination of three wild mute swans (Cygnus olor) from a harbor area disclosed an unusual black discoloration of the liver. Chemical, histochemical, and microscopic studies, along with electron-probe microanalysis, showed that cytoplasmic pigment granules in the liver cells contained a copper-protein complex. Similar findings have been reported in Danish and English studies on large numbers of wild mute swans. Two control mute swans from The Bronx Zoo had negligible amounts of hepatic copper. The striking difference between the wild and the captive swans in hepatic copper content suggests that the copper in the wild swans was of environmental origin, most likely from copper-rich antifouling paint used extensively in the marine industry. Flakes of this paint may be ingested by swans searching for food in the sediment of harbor waters.
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Metamorphic records of multiple seismic cycles during subduction
Hacker, Bradley R.; Seward, Gareth G. E.; Kelley, Chris S.
2018-01-01
Large earthquakes occur in rocks undergoing high-pressure/low-temperature metamorphism during subduction. Rhythmic major-element zoning in garnet is a common product of such metamorphism, and one that must record a fundamental subduction process. We argue that rhythmic major-element zoning in subduction zone garnets from the Franciscan Complex, California, developed in response to growth-dissolution cycles driven by pressure pulses. Using electron probe microanalysis and novel techniques in Raman and synchrotron Fourier transform infrared microspectroscopy, we demonstrate that at least four such pressure pulses, of magnitude 100–350 MPa, occurred over less than 300,000 years. These pressure magnitude and time scale constraints are most consistent with the garnet zoning having resulted from periodic overpressure development-dissipation cycles, related to pore-fluid pressure fluctuations linked to earthquake cycles. This study demonstrates that some metamorphic reactions can track individual earthquake cycles and thereby opens new avenues to the study of seismicity. PMID:29568800
Gupta, B L
1991-06-01
This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...
2016-10-11
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Bricks in historical buildings of Toledo City: characterisation and restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Arce, Paula; Garcia-Guinea, Javier; Gracia, Mercedes
2003-01-15
Two different types of ancient bricks (12th to 14th centuries) collected from historical buildings of Toledo (Spain) were characterised by optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometers (SEM/EDS), electron probe microanalysis (EM), X-ray diffraction (XRD), differential thermal analysis (DTA) and {sup 57}Fe-Moessbauer spectroscopy. Physical properties such as water absorption and suction, porosity, density and compression strength were also determined. Several minerals found in the brick matrix, such as garnet, let us infer raw material sources; calcite, dolomite, illite and neoformed gehlenite and diopside phases, on temperature reached in firing; secondary calcite, on first cooling scenarios; and manganese micronodules, on latemore » pollution environments. XRD and DTA of original and refired samples supply information about firing temperatures. Additional data on firing conditions and type of the original clay are provided by the Moessbauer study. Physical properties of both types of bricks were compared and correlated with raw materials and fabric and firing technology employed. The physicochemical characterisation of these bricks provides valuable data for restoration purposes to formulate new specific bricks using neighbouring raw materials.« less
Sarathchandra, P; Pope, F M; Ali, S Y
1996-06-01
Osteogenesis imperfecta (OI) is a rare, heterogeneous, inherited connective tissue disorder frequently caused by abnormalities of type I collagen. It is characterized by bone fragility, osteopenia, and progressive skeletal deformities. Electron microscopy of three OI type II fetal bone samples revealed numerous large osteocyte lacunae. In addition, there was a perilacunar osteoid-like band of collagen surrounding the osteocytes, which was unmineralized and morphologically unusual. Furthermore, large osteocyte lacunae contained fine particles and filamentous material similar to the expected ultrastructural appearance of proteoglycans. More detailed examination was carried out using histochemical and immunogold localization of proteoglycans at light and ultrastructural levels. These tests and the use of electron probe X-ray microanalysis confirmed that the material in the osteocyte lacunae was proteoglycan. In contrast, in the age- and site-matched normal fetal bone, all the osteocyte lacunae appeared negative for proteoglycan. Proteoglycans are regarded as inhibitors of calcification. Our observation of substantial amounts of proteoglycan in abnormally enlarged osteocytic lacunae of some OI fetal bone suggests association with the abnormal bone of this particular subtype of OI type II.
Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B
2014-01-01
The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com
2015-01-15
With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less
NASA Astrophysics Data System (ADS)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay
2018-02-01
Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.
In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
Le, M K; Zhu, X M
2001-04-01
Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.
Invisible gold in Colombian auriferous soils
NASA Astrophysics Data System (ADS)
Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.
2005-11-01
Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.
Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils
NASA Technical Reports Server (NTRS)
Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.
1992-01-01
The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produces a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produce a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
NASA Astrophysics Data System (ADS)
Singh, Mahima; Rajesh, V. J.; Sajinkumar, K. S.; Sajeev, K.; Kumar, S. N.
2016-11-01
Coastal cliffs fringing the Arabian Sea near Varkala exhibits the Warkalli Formation of the Tertiary sequence of Kerala, South India, with well-marked occurrence of jarosite associated with other hydrous mineral phases of phyllosilicate family in a palaeo-lacustrine depositional environment. Sandy phyllosilicates dominate the mineral assemblage, but jarosite occurs as a prominent secondary phase formed during acid-sulphate alteration of iron sulphide in this area. Here, we discuss about the potentiality of spectroscopic techniques to identify the possible mineral phases in the collected samples. The samples from the coastal cliffs have been characterized by hyperspectral analysis (VIS-NIR-SWIR), X-ray Diffraction (XRD), Fourier Transform Infra-red Reflectance (FTIR), Electron Probe Microanalysis (EPMA) and Laser Raman spectroscopy. The spectral and chemical analyses have confirmed the jarosite as natrojarosite and phyllosilicate as kaolinite. Other accessory phases have also been identified through XRD. FTIR spectroscopy has played a major role in identifying the major hydrous bonds between the minerals. VIS-NIR-SWIR spectra show several optimum spectral features at 910 nm, 1470 nm, 1849-1864 nm (in the form of a doublet), 1940 nm and 2270 nm, which could be utilised to locate jarosite in the remotely-sensed data. X-ray diffraction peaks helped in the identification of maximum number of minerals (kaolinite, smectite, quartz, feldspar, pyrite, marcasite and hematite) and the variation in jarosite content in the samples. We propose the formation of jarosite in the region by a seasonal, local and temporary development of acidic conditions. Abundance of organic matter in a fluvio-lacustrine environment has developed anaerobic conditions by removing available oxygen through decomposition of organic matter containing sulphur compounds. The sulphur thus liberated combines with hydrogen from water to develop acidic conditions and resulted in the formation of jarosite. The occurrence of jarosite in Warkalli Formation suggests on and off supply of water during diagenesis. Jarosite has been detected as a prominent deposit in several regions on Mars by Mars Exploration rover Opportunity and Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study of jarosite formation in terrestrial environment will influence our understanding on the mineral precipitation, diagenesis and hydration processes on Mars. Additionally, it also shows the importance of spectroscopic techniques like Raman spectrometry to be used in future missions to Mars to further validate the results of orbital spectroscopy.
Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...
Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process
NASA Astrophysics Data System (ADS)
Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya
2017-06-01
The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).
Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure
NASA Astrophysics Data System (ADS)
Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira
2013-11-01
Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.
NASA Astrophysics Data System (ADS)
Ye, Yaping; Fehr, Karl Thomas; Faulstich, Martin; Wolf, Gerhard
2012-12-01
Plasma-sprayed yttria stabilized zirconia (YSZ) ceramic coatings have been widely used as wear- and corrosion-resistant coatings in high temperature applications and an aggressive environment due to their high hardness, wear resistance, heat and chemical resistance, and low thermal conductivity. The highly porous structure of plasma-sprayed ceramic coatings and their poor adhesion to the substrate usually lead to the coating degradation and failure. In this study, a two-layer system consisting of atmospheric plasma-sprayed 8 wt.% yttria-stabilized zirconia (8YSZ) and Ni-based alloy coatings was post-treated by means of a novel chemical sealing process at moderate temperatures of 600-800 °C. Microstructure characteristics of the YSZ coatings were studied using an electron probe micro-analyzer (EPMA). Results revealed that the ceramic top coat was densified by the precipitated zirconia in the open pores. Therefore, the sealed YSZ coatings exhibit reduced porosity, higher hardness and a better adhesion onto the bond coat. The mechanisms for the sealing process were also proposed.
X-ray Mapping of Terrestrial and Extraterrestrial Materials Using the Electron Microprobe
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Lunar samples returned from the Apollo program motivated development of the Bence-Albee algorithm for the rapid and accurate analysis of lunar materials, and established interlaboratory comparability through its common use. In the analysis of mineral and rock fragments it became necessary to combine micro- and macroscopic analysis by coupling electron-probe microanalysis (EPMA) with automated stage point counting. A coarse grid that included several thousand points was used, and initially wavelength-dispersive (WDS) and later energydispersive (EDS) data were acquired at discrete stage points using approx. 5 sec count times. A approx 50 micrometer beam diameter was used for WDS and up to 500 micrometer beam diameter for EDS analysis. Average analyses of discretely sampled phases were coupled with the point count data to calculate the bulk composition using matrix algebra. Use of a defocused beam resulted in a contribution from multiple phases to each analytical point, and the analytical data were deconvolved relative to end-member phase chemistry on the fly. Impressive agreement was obtained between WDS and EDS measurements as well as comparison with bulk chemistry obtained by other methods. In the 30 years since these methods were developed, significant improvements in EPMA automation and computer processing have taken place. Digital beam control allows routine collection of x-ray maps by EDS, and stage mapping for WDS is conducted continuously at slew speed and incrementally by sampling at discrete points. Digital pulse processing in EDS systems has significantly increased the throughput for EDS mapping, and the ongoing development of Si-drift detector systems promises mapping capabilities rivaling WDS systems. Spectrum imaging allows a data cube of EDS spectra to be acquired and sophisticated processing of the original data is possible using matrix algebra techniques. The study of lunar and meteoritic materials includes the need to conveniently: (1) Characterize the sample at microscopic and macroscopic scales with relatively high sensitivity, (2) Determine the modal abundance of minerals, and (3) Identify and relocate discrete features of interest in terms of size and chemistry. The coupled substitution of cations in minerals can result in significant variation in mineral chemistry, but at similar average Z, leading to poor backscattered-electron (BSE) contrast discrimination of mineralogy. It is necessary to discriminate phase chemistry at both the trace element level and the major element level. To date, the WDS of microprobe systems is preferred for mapping due to high throughput and the ability to obtain the necessary intensity to discriminate phases at both trace and major element concentrations. It is desirable to produce fully quantitative compositional maps of geological materials, which requires the acquisition of k-ratio maps that are background and dead-time corrected, and which have been corrected by phi(delta z> or an equivalent algorithm at each pixel. To date, turnkey systems do not allow the acquisition of k-ratio maps and the rigorous correction in this manner. X-ray maps of a chondrule from the Ourique meteorite, and a comb-layered xenolith from the San Francisco volcanic field, have been analyzed and processed to extract phase information. The Ourique meteorite presents a challenge due to relatively low BSE contrast, and has been studied using spectrum imaging. X-ray maps for Si, Mg, and FeK(alpha) were used to produce RGB images. The xenolith sample contains sector-zoned augite, olivine, plagioclase, and basaltic glass. X-ray maps were processed using Lispix and ImageJ software to produce mineral phase maps. The x-ray maps for Mg, Ca, and Ti were used with traceback to generate binary images that were converted to RGB images. These approaches are successful in discriminating phases, but it is desirable to achieve the methods that were used on lunar samples 30 years ago on current microprobe systems. Curnt research includes x-ray mapping analysis of the Dalgety Downs chondrite by micro x-ray fluorescence and spectrum imaging, in collaboration with Kenny Witherspoon of IXRF Systems and Dale Newbury of NIST.
NASA Astrophysics Data System (ADS)
Jang, Guh-Yaw; Duh, Jenq-Gong
2005-01-01
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.
Yamamoto, S; Han, L; Noiri, Y; Okiji, T
2017-12-01
To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P < 0.05). All three materials produced Ca- and P-containing surface precipitates after PBS immersion, and the precipitates produced by TheraCal LC displayed lower Ca/P ratios than those formed by the other materials. XRD peaks corresponding to hydroxyapatite were detected in the precipitates produced by the prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah
NASA Astrophysics Data System (ADS)
Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.
2016-12-01
A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.
NASA Astrophysics Data System (ADS)
Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin
2015-04-01
An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C6H5O7(NH4)3 and Na2SO4, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and Hv are 0. 9KN and 385, respectively.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2014-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2007-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René
2005-09-01
Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Within the endometrial cavity intrauterine contraceptive devices (IUDs) become encrusted with cellular, acellular, and fibrillar substances. Scanning electron microscopy was used to study the crust. Cellular material consisted mainly of blood cells and various types of bacteria. The fibrillar material appeared to be fibrin which was omnipresent in the crust and formed a thin layer immediately over the IUD surface. X-ray microanalysis of the acellular component of the crust revealed the presence of calcium. No other major peaks were identified. Near the IUD surface characteristic calcium phosphate crystals were present. Their microanalysis showed peaks for calcium and phosphorus. X-ray diffractionmore » of the crust however, showed it to contain only calcite. It is through the use of scanning electron microscopy that calcium phosphate has been detected in the IUD crust and a fibrillar layer has been visualized on the IUD surface. This study further demonstrates the effectiveness of SEM analytical techniques in the area of biomedical research.« less
Subcellular distribution of an inhalational anesthetic in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckenhoff, R.G.; Shuman, H.
1990-01-01
To better understand the mechanisms and sites of anesthetic action, we determined the subcellular partitioning of halothane in a tissue model. A method was found to fix the in vivo distribution of halothane in rat atrial tissue for subsequent electron microscopy and x-ray microanalysis. Atrial strips were exposed to various concentrations of halothane, rapidly frozen, cryo-sectioned, and cryo-transferred into an electron microscope. Irradiation of the hydrated cryosections with the electron beam caused halothane radiolysis, which allowed retention of the halogen-containing fragments after dehydration of the sections. The bromine from halothane was detected and quantified with x-ray microanalysis in various microregionsmore » of atrial myocytes. Halothane (bromine) partitioned largely to mitochondria, with progressively lower concentrations in sarcolemma, nuclear membrane, cytoplasm, sarcomere, and nucleus. Partitioning could not be explained solely by distribution of cellular lipid, suggesting significant and differential physicochemical solubility in protein. However, we found no saturable compartment in atrial myocytes within the clinical concentration range, which implies little specific protein binding.« less
NASA Astrophysics Data System (ADS)
Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic
2017-04-01
The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is recorded exclusively along the eastern margin of the Slave Province. Metamorphism ca. 1996 Ma, recorded in one high-grade gneiss from the central plutonic belt appears to reflect a regional contact metamorphism associated with intrusion of 2000 Ma plutons. Throughout the TTZ, a selection of monazite grains included in garnet porphyroblasts define a metamorphic event ca. 1962 Ma. One sample from the eastern margin of the Slave Province similarly records metamorphism at 1961 Ma in monazite grains in the matrix. This sample interestingly does not record the ca. 2580 Ma metamorphism typical of the Slave Province. The longest lived and most wide spread metamorphic event in the TTZ occurred ca. 1922 to 1883 Ma. This event is interpreted as the main compressional/collisional and anatectic event, with partial melting forming the extensive ca. 1910 Ma garnet-leucogranite belts. Three samples, located in the eastern margin of the Slave province, the Ellice River domain and the eastern plutonic belt, record younger metamorphism at ca. 1814 Ma. These events may represent post-collisional transpression coeval with movement along nearby regional-scale faults.
X-Ray Microanalysis of Human Cementum
NASA Astrophysics Data System (ADS)
Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio
2005-08-01
An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.
Calcium transport mechanism in molting crayfish revealed by microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuhira, V.; Ueno, M.
1983-01-01
Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the finemore » precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism.« less
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
Bio/Nano Electronic Devices and Sensors
2008-10-01
Microscopy and Microanalysis 2006 Meeting, Chicago, IL, July 30 - August 3, 2006 4) S. Khizroev, "Three-dimensional Magnetic Memory," presented at US Air...ABSTRACT This effort consists of five research thrusts: (1) Dense Memory Devices-(1)3-D magnetic recording was enhanced using patterned soft underlayers...and interlayer, (2) Cold cathode microwave generator and ceramic electron multiplier-ceramic multiplier using a novel secondary electron yield
NASA Technical Reports Server (NTRS)
Morris, R. V.; Golden, D. C.; Lauer, H. V. Jr; Adams, J. B.
1993-01-01
We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.
Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test
Lewis, L. A.; Knight, K. B.; Matzel, J. E.; ...
2015-07-28
The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ( 238U/ 235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/ 238U < 11.84 among all five spherules and 0.02 < 235U/ 238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/ 238U ratio is correlated with changes in major elementmore » composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/ 238U, 235U/ 238U, and 236U/ 238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less
Synthesis and characterization of nanocrystalline apatites from solution modeling human blood
NASA Astrophysics Data System (ADS)
Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga
2016-09-01
Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.
NASA Astrophysics Data System (ADS)
Lee, Jae Ha; Lee, Jun Kyu; Yoon, Woo Young
2013-10-01
A diamond-like-carbon (DLC)-coated LiV3O8 cathode was synthesized for use in a rechargeable 2032-coin-type cell with a Li-powder electrode (LPE) as the anode. The LPE anode was produced using the droplet emulsion technique and was compacted by pressing. The initial discharge capacity of the LPE/DLC-coated LiV3O8 (LVO) cell was 238 mAh g-1 at a C-rate of 0.5, while that of a LPE/bare-LVO cell was 236 mAh g-1. After 50 cycles, the capacity retention rate of the DLC-coated-electrode-containing cell (92%) was higher than that of the uncoated-electrode-containing cell (77%). Results of electron probe microanalysis and Raman spectroscopy confirmed that the electrode had been coated with DLC. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to determine the sequence of formation of byproducts on the electrode after charging/discharging and to determine its surface composition. The voltage profile and impedance of the DLC-coated-electrode-containing cell were analyzed to determine the electrochemical characteristics of the DLC-coated cathode.
The effect of organic ligands on the crystallinity of calcium phosphate
NASA Astrophysics Data System (ADS)
van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia
2003-03-01
Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...
2018-01-04
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharipova, Aliya; Skolkovo Institute of Science and Technology, Skolkovo, 143025; Psakhie, Sergey G.
2015-10-27
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50%more » and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.« less
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite
Huang, Chih-Wei; Aoh, Jong-Ning
2018-01-01
In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846
Cyclic oxidation behavior of some plasma-sprayed coatings in Na2SO4-60%V2O5 environment
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Prakash, Satya; Puri, Devendra; Phase, D. M.
2006-12-01
Cyclic oxidation behavior of plasma-sprayed NiCrAlY, Ni-20Cr, Ni3Al, and Stellite-6 coatings was investigated in an aggressive environment of Na2SO4-60%V2O5 by thermogravimetric techniques for 50 cycles. These coatings were deposited on a Ni-base superalloy, namely Superni 600; 10Fe-15.5Cr-0.5Mn-0.2C-Bal Ni (wt.%). X-ray diffraction, scanning electron microscopy/energy dispersive x-ray (SEM/EDX), and electron probe microanalyzer (EPMA) techniques were used to analyze the oxidation products. The uncoated superalloy suffered accelerated oxidation in the form of intense spallation of its oxide scale. After deposition of the NiCrAlY coating, the superalloy showed a minimum mass gain, whereas after application of the Stellite-6 coating, a maximum mass gain was observed among the coatings studied. All of the coatings were found to be useful in reducing the spallation of the substrate superalloy. Moreover, the coatings were successful in maintaining continuous surface contact with the base superalloy during the cyclic oxidation. The phases revealed for the oxidized coatings were mainly the oxides of chromium and/or aluminum and the spinels containing nickel-chromium/cobalt-chromium/nickel-aluminum mixed oxides, which are reported to be protective against high-temperature oxidation/hot corrosion.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro
2009-06-01
Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.
Intergranular diffusion and embrittlement of a Ni-16Mo-7Cr alloy in Te vapor environment
NASA Astrophysics Data System (ADS)
Cheng, Hongwei; Li, Zhijun; Leng, Bin; Zhang, Wenzhu; Han, Fenfen; Jia, Yanyan; Zhou, Xingtai
2015-12-01
Nickel and some nickel-base alloys are extremely sensitive to intergranular embrittlement and tellurium (Te) enhanced cracking, which should be concerned during their serving in molten salt reactors. Here, a systematic study about the effects of its temperature on the reaction products at its surface, the intergranular diffusion of Te in its body and its embrittlement for a Ni-16Mo-7Cr alloy contacting Te is reported. For exposed to Te vapor at high temperature (823-1073 K), the reaction products formed on the surface of the alloy were Ni3Te2, CrTe, and MoTe2, and the most serious embrittlement was observed at 1073 K. The kinetic measurement in terms of Te penetration depth in the alloy samples gives an activation energy of 204 kJ/mol. Electron probe microanalysis confirmed the local enrichment of Te at grain boundaries. And clearly, the embrittlement was results from the intergranular diffusion and segregation of element Te.
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
Growth and structural, optical, and electrical properties of zincite crystals
NASA Astrophysics Data System (ADS)
Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.
2013-03-01
An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.
NASA Astrophysics Data System (ADS)
Sorbier, L.; Trichard, F.; Moncayo, S.; Lienemann, C. P.; Motto-Ros, V.
2018-01-01
We propose a methodology to compute the crust thickness of an element in an egg-shell catalyst from a two-dimensional elemental map. The methodology handles two important catalyst shapes: infinite extrudates of arbitrary section and spheres. The methodology is validated with synthetic analytical profiles on simple shapes (cylinder and sphere). Its relative accuracy is shown close to few percent with a decrease inversely proportional to the square root of the number of sampled pixels. The crust thickness obtained by this method from quantitative Pd maps acquired by laser-induced breakdown spectroscopy are comparable with values obtained from electron-probe microanalysis profiles. Some discrepancies are found and are explained by the heterogeneity of the crust thickness within a grain. As a full map is more representative than a single profile, fast mapping and the methodology exposed in this paper are expected to become valuable tools for the development of new generations of egg-shell deposited catalysts.
Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems
NASA Astrophysics Data System (ADS)
Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter
The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.
Arsenic Incorporation Into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowers, H.A.; Breit, G.N.; Foster, A.L.
2007-07-10
Sediment from two deep boreholes ({approx}400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wellsmore » containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.« less
Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh
Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, Md. N.; Muneem, Ad. A.
2007-01-01
Sediment from two deep boreholes (???400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.
On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM
NASA Astrophysics Data System (ADS)
Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C. T.
2016-12-01
Post-irradiation examination results are presented for UO2 fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain.
Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe
NASA Astrophysics Data System (ADS)
Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun
2014-01-01
The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.
Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.
2018-03-01
Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.
Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT
NASA Astrophysics Data System (ADS)
Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang
2016-05-01
Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.
Roncati, Luca; Gatti, Antonietta M; Capitani, Federico; Bonacorsi, Goretta; Barbolini, Giuseppe; Maiorana, Antonio
2016-05-01
The need to implement novel techniques, able to support a causal link between exposure and pathology, has been emerged over the recent years. The application of scanning electron microscope coupled with probe X-ray microanalysis (by means of an energy-dispersive spectroscopy) has been developed by our research group for the bone remains investigation. It was aimed to testify the exposure to microsized and nanosized pollutions, due to military activities in the Quirra interforce firing range, of a Sardinian shepherd, died of acute leukemia. Metallic debris with a combustive morphology and with an oncogenic potential has been surely detected inside his bone marrow canal. This novel technique has proved to be able to bring to light a source of past exposure preserved over time within the bone marrow canal. It can be useful for postmortem analyses, delivering a new avant-garde approach to modern forensic science. © 2015 American Academy of Forensic Sciences.
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.
Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin
2018-04-05
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.
D. L. Johnson; D. J. Nowak; V. A. Jouraeva
1999-01-01
Leaves from twenty-three deciduous tree species and five conifer species were collected within a limited geographic range (1 km radius) and evaluated for possible application of scanning electron microscopy and X-ray microanalysis techniques of individual particle analysis (IPA). The goal was to identify tree species with leaves suitable for the automated...
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich
2013-12-01
Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.
A study on atomic diffusion behaviours in an Al-Mg compound casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongning; Chen, Yiqing; Yang, Chunhui, E-mail: r.yang@uws.edu.au
Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg andmore » then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuanglei; Kim, Eun-soo; Kim, Yeon-wook
Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93%more » after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.« less
NASA Astrophysics Data System (ADS)
Valdrè, G.; Moro, D.; Ulian, G.
2018-01-01
Asbestos is a generic term used for six types of silicate minerals that are found in fibres or bundles of fibres, which can be easily cleaved into thinner ones. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) quantitative microanalysis of asbestos mineral fibres still represents a complex analytical issue because of the variable fibre shape and small thickness (< 5 μm) compared with the penetration depth of the incident electron beam. Following previous work on chrysotile, crocidolite and amosite, here we present a study by means of Monte Carlo simulations of the thickness and shape effect on SEM-EDS microanalysis of anthophyllite, tremolite and actinolite asbestos. Realistic experimental conditions, such as sample geometry, SEM set-up and detector physics were taken into account. We report the results obtained on 100 μm long fibres and bundles of circular and square section and thicknesses from to 0.1 μm to 10 μm, for electron beam energies of 5, 15 and 25 keV. A strong influence of the asbestos mineral fibres and bundles shape and thickness on the detected EDS X-ray intensity was observed. In general, the X-ray intensities as a function of fibre thickness showed a considerable reduction below about 0.5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV for all the elements and minerals, with a non-linear dependence. Correction parameters, k-ratio, for the thickness effect were calculated and proposed.
NASA Astrophysics Data System (ADS)
van Borm, Werner August
Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles abundance and particle composition. Alternatively, the bulk analysis of filters (total, fine and coarse mode) using Particle Induced X -Ray Emission (PIXE) and the application of a receptor modeling approach provided for complementary information on a macroscopical level. A computer program was developed incorporating an absolute factor analysis based receptor modeling procedure. Source profiles and contributions are described by elemental concentrations and an atmospheric mass balance is put forward. The latter method was applied in a two year study of the Antwerp urban aerosol and for the swiss aerosol, revealing a number of previously known and unknown sources. Both methods were successfully combined to increase the source resolution.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
NASA Astrophysics Data System (ADS)
Lyalina, L. M.; Zolotarev, A. A.; Selivanova, E. A.; Savchenko, Ye. E.; Krivovichev, S. V.; Mikhailova, Yu. A.; Kadyrova, G. I.; Zozulya, D. R.
2016-12-01
Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, is a new mineral found in nepheline syenite pegmatite in the Sakharjok alkaline massif, Western Keivy, Kola Peninsula, Russia. The pegmatite mainly consists of nepheline, albite, alkali pyroxenes, amphiboles, biotite and zeolites. Batievaite-(Y) is a late-pegmatitic or hydrothermal mineral associated with meliphanite, fluorite, calcite, zircon, britholite-group minerals, leucophanite, gadolinite-subgroup minerals, titanite, smectites, pyrochlore-group minerals, zirkelite, cerianite-(Ce), rutile, behoite, ilmenite, apatite-group minerals, mimetite, molybdenite, and nickeline. Batievaite-(Y) is pale-cream coloured with white streak and dull, greasy or pearly luster. Its Mohs hardness is 5-5.5. No cleavage or parting was observed. The measured density is 3.45(5) g/cm3. Batievaite-(Y) is optically biaxial positive, α 1.745(5), β 1.747(5), γ 1.752(5) (λ 589 nm), 2 V meas. = 60(5)°, 2 V calc. = 65°. Batievaite-(Y) is triclinic, space group P-1, a 9.4024(8), b 5.5623(5), c 7.3784(6) Å, α 89.919(2), β 101.408(2), γ 96.621(2)°, V 375.65(6) Å3 and Z = 1. The eight strongest lines of the X-ray powder diffraction pattern [ d(Å)(I)( hkl)] are: 2.991(100)(11-2), 7.238(36)(00-1), 3.061(30)(300), 4.350(23)(0-1-1), 9.145(17)(100), 4.042(16)(11-1), 2.819(16)(3-10), 3.745(13)(2-10). The chemical composition determined by electron probe microanalysis (EPMA) is (wt.%): Nb2O5 2.25, TiO2 8.01, ZrO2 2.72, SiO2 29.96, Al2O3 0.56, Fe2O3 0.43, Y2O3 11.45, La2O3 0.22, Ce2O3 0.33, Nd2O3 0.02, Gd2O3 0.07, Dy2O3 0.47, Er2O3 1.07, Tm2O3 0.25, Yb2O3 2.81, Lu2O3 0.45, CaO 24.98, MnO 1.31, MgO 0.01, Na2O 1.13, K2O 0.02, F 2.88, Cl 0.19, H2O 6.75 (determined on the basis of crystal structure data), O = (F,Cl) -1.25, total 97.09 wt.%. The empirical formula based on the EPMA and single-crystal structure analyses is (Y0.81Ca0.65Mn0.15Zr0.12Yb0.11Er0.04Fe3+ 0.04Ce0.02Dy0.02Lu0.02La0.01Tm0.01)Σ2.00((H2O)0.75Ca0.70□0.55)Σ2.00Ca2.00(□0.61Na0.25( H2O)0.14)Σ1.00(Ti0.76Nb0.15Zr0.09)Σ1.00[(Si3.91Al0.09)Σ4.00O14]((OH)1.56F0.44)Σ2.00((H2O)1.27F0.73)Σ2.00. The infrared spectrum of the mineral contains the following bands (cm-1): 483, 584, 649, 800, 877, 985, 1630, 1646, 1732, 3426. Batievaite-(Y) belongs to the rosenbuschite group minerals and is the Na-deficient Y-analogue of hainite. The mineral is named in honour of the Russian geologist Iya Dmitrievna Batieva (1922-2007) in recognition of her remarkable contribution into the geology and petrology of metamorphic and alkaline complexes of the Kola Peninsula.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2014-09-01
Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting
An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C{sub 6}H{sub 5}O{sub 7}(NH{sub 4}){sub 3} and Na{sub 2}SO{sub 4}, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, whichmore » are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and H{sub v} are 0. 9KN and 385, respectively.« less
Procurement of novel microanalysis equipment for construction materials.
DOT National Transportation Integrated Search
2012-02-01
The equipment procured (i.e. an Orbis micro X-ray Fluorescence (MXRF) and an APSEX personal Scanning Electron Microscope (PSEM)) is part of the next generation of micro analytical equipment. These tools have the ability to make large volumes of...
Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity
Paschinger, W.; Rogl, Gerda; Grytsiv, A.; ...
2016-06-21
Here, in this study, novel filled skutterudites Ba yNi 4Sb 12-xSn x (y max = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni 4(Sb,Sn) 12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suitedmore » to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni 4Sb 8.2Sn 3.8, Ba 0.42Ni 4Sb 8.2Sn 3.8 and Ba 0.92Ni 4Sb 6.7Sn 5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba 0.73Ni 4Sb 8.1Sn 3.9 and Ba 0.95Ni 4Sb 6.1Sn 5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni 4Sb 8.2Sn 3.8 to 116 GPa for Ba 0.92Ni 4Sb 6.7Sn 5.3. The thermal expansion coefficients were 11.8 × 10 -6 K -1 for Ni 4Sb 8.2Sn 3.8 and 13.8 × 10 -6 K -1 for Ba 0.92Ni 4Sb 6.7Sn 5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Lastly, severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, T.; Sato, F.; Saga, K.
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less
Cysticercosis of the fallopian tube: histology and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, J.L.; Spore, W.W.; Benirschke, K.
1982-07-01
The authors identified a degenerated, focally calcified cestode larva (cysticercus) in the fallopian tube of a 50-year-old woman with endometriosis. The physiologic reaction to the larva was minimal, with some focal granulomatous salpingitis. No other focus of infection was detected. The differential diagnosis included trophoblastic tissue, foreign material, and parasites. Scanning electron microscopy and x-ray microanalysis of the organism revealed concentration of iodine in the subcuticular connective tissue of the larva and confirmed the calcium phosphate composition of the calcareous corpuscles. The presumed source of the iodine was the continued exposure of the larva to an environment rich in iodidemore » secreted by the epithelium of the fallopian tube.« less
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho
2014-01-01
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.
[The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].
Mo, Anchun; Cen, Yuankun; Liao, Yunmao
2003-04-20
To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Pavel G.
2016-09-01
The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less
Non-fibrous inorganic particles in bronchoalveolar lavage fluid of pottery workers.
Falchi, M; Paoletti, L; Mariotta, S; Giosue, S; Guidi, L; Biondo, L; Scavalli, P; Bisetti, A
1996-01-01
AIM: To study the actual exposure of pottery workers to silica particles, as their risk of silicosis is potentially high because of the presence of inhalable crystalline silica particles in the workplace. METHODS: Nine pottery workers underwent bronchoalveolar lavage. The recovered fluid was analysed for cytological and mineralogical content by analytical transmission electron microscopy. The data were compared with those obtained from a control group composed of seven patients with sarcoidosis and six patients with haemoptysis. RESULTS: Cytological results showed a similar profile in exposed workers and controls, whereas in patients with sarcoidosis a lymphocytic alveolitis was found. Microanalysis of the particulate identified the presence of silicates, CRSs, and metals. Pottery workers had higher numbers of total particles and CRSs, and had a higher silicate/metal ratio. In five workers, the presence of zirconium silicate was also detected. Patients with sarcoidosis had the lowest number of particles, and an inverted silicate/metal ratio. CONCLUSION: Microanalysis by transmission electron microscope can provide useful information to assess occupational exposure to dusts. PMID:9038801
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.;
2014-01-01
Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.
Microstructural characterisation of Al-Si cast alloys containing rare earth additions
NASA Astrophysics Data System (ADS)
Elgallad, E. M.; Ibrahim, M. F.; Doty, H. W.; Samuel, F. H.
2018-05-01
This paper presents a thorough study on the effect of rare earth elements, specifically La and Ce, on the microstructure characteristics of non-modified and Sr-modified A356 and A413 alloys. Several alloys were prepared by adding 1% La and 1% Ce either individually or in combination. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy and electron probe microanalysis as well as differential scanning calorimetry (DSC) analysis. The results showed that the individual and combined additions of La and Ce did not bring about any modification or even refinement in the eutectic Si structure. Moreover, these additions were found to negate the modification effect of Sr, particularly in the presence of La. The A356 and A413 alloys containing La and/or Ce displayed high phase volume fractions owing to the formation of Al-Si-La/Ce/(La,Ce) and Al-Ti-La/Ce intermetallic phases. DSC analysis revealed that the formation temperatures of these phases varied from 560 to 568 °C and 568 to 574 °C, respectively. This analysis also showed that the addition of La and Ce whether individually or in combination resulted in a depression in the eutectic temperature and a considerable increase in the solidification range, particularly for the A413 alloy.
Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.
2016-01-01
Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722
Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang
2018-05-01
Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.
X-ray microanalysis of porous materials using Monte Carlo simulations.
Poirier, Dominique; Gauvin, Raynald
2011-01-01
Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakopoulos, A.
1991-01-01
This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.
2004-10-03
One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less
NASA Astrophysics Data System (ADS)
Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.
2016-09-01
The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.
Yaokawa, Ritsuko; Kimura, Hiromitsu; Aota, Katsumi; Uda, Satoshi
2011-06-01
La(3)Ta(0.5)Ga(5.5)O(14) (LTG) single crystals, which have no phase transition up to the melting point, were heat-treated in air at temperatures from 1000°C to 1450°C for 10 h. LaTaO(4) (LT) and LaGaO(3) (LG), which coexist with LTG in the three-phase region on the Ga-poor side, precipitated on the surface of the crystal for heat treatments above 1300°C because of Ga evaporation during the heat treatment. The Ga-poor state near the surface of the 1450°C heat-treated specimen was confirmed by electron probe micro-analysis measurements. The electrical resistivity of LTG single crystals decreased by heat treatment in the range of 1000°C to 1200°C for 10 h in air, where no precipitation was observed, whereas the resistivity increased with heat treatment over 1400°C for 10 h in air. The electrical resistivity of the Ga-poor surface region was higher than that of the interior.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar
Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin
2018-01-01
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188
DOT National Transportation Integrated Search
2013-01-01
The Florida Department of Transportation (FDOT) is responsible for the maintenance of thousands of concrete structures that are exposed to or situated in salt water. Considering the significant cost of each of these structures, FDOT would like a 75-y...
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.
Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retentionmore » to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.« less
Experimental investigation of Fe3+-rich majoritic garnet and its effect on majorite geobarometer
NASA Astrophysics Data System (ADS)
Tao, Renbiao; Fei, Yingwei; Bullock, Emma S.; Xu, Cheng; Zhang, Lifei
2018-03-01
Majoritic garnet [(Ca, Mg, Fe2+)3(Fe3+, Al, Si)2(SiO4)3] is one of the predominant and important constituents of upper mantle peridotite and ultra-deep subducted slabs. Majoritic substitution in garnet depends on pressure, and it has been used to estimate the formation pressure of natural majoritic garnet. Ferric iron (Fe3+) substitution occurs in natural majoritic garnets from mantle diamonds and shocked meteorites. However, available majorite geobarometers were developed without considering the effect of Fe3+ substitution in the structure. In this study, we systematically synthesized Fe3+- bearing majoritic garnets from 6.5 GPa to 15 GPa to evaluate the effect of Fe3+ on the majorite geobarometer. The Fe3+ contents of synthetic majoritic garnets were analyzed using the "Flank method" with the electron probe microanalyzer (EPMA). The results were compared with those based on the charge balance calculations. From the known synthesis pressures and measured Fe3+ contents, we developed a new majorite geobarometer for Fe3+-bearing majoritic garnets. Our results show that the existing majorite geobarometer, which does not take into account the Fe3+ substitution, could underestimate the formation pressure of majoritic garnets, especially for samples with a high majoritic component.
NASA Astrophysics Data System (ADS)
Nam, S. H.; Hong, J. W.; Lee, H. J.; Jeon, Y. C.; Kim, G. C.
2017-08-01
The purpose of this study was to evaluate the influence of bleaching with nonthermal atmospheric pressure plasma and 15% hydrogen peroxide (HP) or 15% carbamide peroxide (CP). Sixty human enamel and dentin slabs were randomly assigned to six groups as follows: Group 1 was a control group and did not receive any treatment; Group 2 was exposed only to plasma, as a negative control; Group 3 was treated with 15% HP; Group 4 was treated with 15% HP plus plasma; Group 5 was treated with 15% CP alone; and Group 6 was treated with 15% CP plus plasma during 30 min bleaching treatments. A microhardness measurement was conducted according to a microhardness tester. The amount of calcium (Ca), phosphorus (P), chloride (Cl), sodium (Na), magnesium (Mg), and zinc (Zn) in the enamel and dentin was quantified with an electron probe microanalyzer (EPMA). The data were analyzed by using the Student’s t test and one-way analysis of variance (ANOVA), complemented by Tukey’s test. The statistical analysis did not show any significant differences in microhardness values and six mineral contents in all groups (p > 0.05). Therefore, we believe that the application of nonthermal atmospheric pressure plasma is a safe energy source for tooth bleaching.
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun-jie; Li, Xiao-lei; Yuan, Guo, E-mail: yuan
2016-11-15
In this work, a new process and composition design are proposed for “quenching and partitioning” or Q&P treatment. Three low carbon steels were treated by hot-rolling direct quenching and dynamical partitioning processes (DQ&P). The effects of proeutectoid ferrite and carbon concentration on microstructure evolution and mechanical properties were investigated. The present work obtained DQ&P prototype steels with good mechanical properties and established a new notion on compositions for Q&P processing. Microstructures were characterized by means of electro probe microanalyzer (EPMA), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD), especially the morphology andmore » size of retained austenite. Mechanical properties were measured by uniaxial tensile tests. The results indicated that introducing proeutectoid ferrite can increase the volume fraction of retained austenite and thus improve mechanical properties. TEM observation showed that retained austenite included the film-like inter-lath austenite and blocky austenite located in martensite/ferrite interfaces or surrounded by ferrites. It was interesting that when the carbon concentration is as low as ~ 0.078%, the film-like inter-lath untransformed austenite cannot be stabilized to room temperature and almost all of them transformed into twin martensite. The blocky retained austenite strengthened the interfaces and transformed into twin martensite during the tensile deformation process. The PSEs of specimens all exceeded 20 GPa.%. - Highlights: •This study focused on a new process: Q&P process applying dynamical partitioning. •Ferrite can increase the volume fraction of retained austenite. •The film-like austenite and the blocky austenite were observed. •The low carbon steels treated by new process reached PSEs higher than 20 GPa.%.« less
NASA Astrophysics Data System (ADS)
Berger, D.; Nissen, J.
2018-01-01
The studies in this paper are part of systematic investigations of the lateral analytical resolution of the field emission electron microprobe JEOL JXA-8530F. Hereby, the quantitative lateral resolution, which is achieved in practise, is in the focus of interest. The approach is to determine the minimum thickness of a metallic layer for which an accurate quantitative element analysis in cross-section is still possible. Previous measurements were accomplished at sputtered gold (Z = 79) layers, where a lateral resolution in the range of 140 to 170 nm was achieved at suitable parameters of the microprobe. To study the Z-dependence of the lateral resolution, now aluminium (Z = 13) resp. silver (Z = 47) layers with different thicknesses were generated by evaporation and prepared in cross-section subsequently by use of a focussed Ga-ion beam (FIB). Each layer was analysed quantitatively with different electron energies. The thinnest layer which can be resolved specifies the best lateral resolution. These measured values were compared on the one hand with Monte Carlo simulations and on the other hand with predictions from formulas from the literature. The measurements fit well to the simulated and calculated values, except the ones at the lowest primary electron energies with an overvoltage below ˜ 2. The reason for this discrepancy is not clear yet and has to be clarified by further investigations. The results apply for any microanalyser - even with energy-dispersive X-ray spectrometry (EDS) detection - if the probe diameters, which might deviate from those of the JEOL JXA-8530F, at suitable analysing parameters are considered.
Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series.
Sproules, Stephen; Eagle, Aston A; George, Graham N; White, Jonathan M; Young, Charles G
2017-05-01
Orange Tp*WSCl 2 has been synthesized from the reactions of Tp*WOCl 2 with boron sulfide in refluxing toluene or Tp*WS 2 Cl with PPh 3 in dichloromethane at room temperature. Mononuclear sulfido-tungsten(V) complexes, Tp*WSXY {X = Y = Cl, OPh, SPh, SePh; X = Cl, Y = OPh; XY = toluene-3,4-dithiolate (tdt), quinoxaline-2,3-dithiolate (qdt); and Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate} were prepared by metathesis of Tp*WSCl 2 with the respective alkali metal salt of X - /XY 2- , or [NHEt 3 ] 2 (qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, and infrared (IR), electron paramagnetic resonance (EPR) and electronic absorption spectroscopies. The molecular structures of Tp*WS(OPh) 2 , Tp*WS(SePh) 2 , and Tp*WS(tdt) have been determined by X-ray crystallography. The six-coordinate, distorted-octahedral W centers are coordinated by terminal sulfido (W≡S = 2.128(2) - 2.161(1) Å), terdentate facial Tp*, and monodentate/bidentate O/S/Se-donor ligands. The sulfido-W(V) complexes are characterized by lower energy electronic transitions, smaller g iso , and larger A iso ( 183 W) values, and more positive reduction potentials compared with their oxo-W(V) counterparts. This series has been probed by sulfur K-edge X-ray absorption spectroscopy (XAS), the spectra being assigned by comparison to Tp*WOXY (X = Y = SPh; XY = tdt, qdt) and time-dependent density functional theoretical (TD-DFT) calculations. This study provides insight into the electronic nature and chemistry of the catalytically and biologically important sulfido-W unit.
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.
Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi
2017-06-28
The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.
Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho
2014-01-01
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future. PMID:24611006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane
The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs andmore » investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but TEM, SANS and APT show that attritor milling for 20 to 40 h sufficiently mixes the Y. TEM, SANS and APT showed that subsequent powder annealing treatments result in the precipitation of a high density of NFs. All the annealed powder variants and HIP consolidated alloys had a bimodal distribution of grain sizes; however, APT and TEM show the presence of NFs in both large and small grains. Alloys extruded at 850°C contain a unimodal distribution of fine grains. The initial milling procedures in this study added a significant quantity of O as well as contaminant N to the powders. An improved milling procedure effectively eliminated the contamination resulting in lower O content that was insufficient to produce Y-Ti-O NFs in the size range below 3 nm. TEM showed that the low O resulted in fewer and larger oxide phases that are more highly enriched in Y, resulting in low Vicker's hardness values 250 kg/mm^2 compared to 443 kg/mm^2 in an alloy consolidated from the preliminary powders with higher O content. In order to overcome the problem of O deficiency, FeO additions during 40 h attritor milling were made to increase the O content to a nominal value of 0.135%. The annealed powder and corresponding 1150°C HIP and 850°C extrusion consolidated alloy showed a very uniform distribution of fine scale NFs. The HIP consolidated alloy had promising high temperature creep strength, but low toughness and a high ductile to brittle transition temperature (DBTT). An extruded and cross-rolled alloy processed at 850ºC, however, exhibited a lower DBTT. Also investigated were the effects of Ti and Y content on the NFs in alloys produced from conventionally milled powders that varied Y2O3 from 0.2 to 0.5 wt.% while maintaining Ti/Y atom ratios of 1.6, 2.4, and 3.1. SANS showed the volume fraction and number density of the NFs increases with Y and to a lesser extent Ti. Notably, the NF size and composition are relatively independent of the alloy Y and Ti content, except at the lowest Y2O3 concentration of 0.2 wt.%. An APT characterization of MA957 joined by friction stir welding (FSW) showed that this solid sate joining procedure had only a modest effect on the NF number density (N) and average diameter () compared to an as extruded sample. FSW appears to rearrange the NFs, which become highly aligned with sub-boundary and dislocation structures to an extent that are not observed in the as extruded case. The aligned NF structures are less apparent, but seem to persist after post weld annealing at 1150ºC for 3 h following which reduces N, consistent with a significant reduction in hardness. Lastly, several NFA materials, including MA957 and various 14YWT alloys, have been included in irradiation experiments performed at the Advanced Test Reactor, the JOYO sodium cooled fast reactor, the High Flux Isotope Reactor, and the SINQ spallation neut« less
Danoix, F; Grancher, G; Bostel, A; Blavette, D
2007-09-01
Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.
Electron Microscope Studies of Cadmium Mercury Telluride
NASA Astrophysics Data System (ADS)
Lyster, Martin
Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.
Vaney, Jean-Baptiste; Delaizir, Gaëlle; Wiendlocha, Bartlomiej; Tobola, Janusz; Alleno, Eric; Piarristeguy, Andrea; Gonçalves, Antonio Pereira; Gendarme, Christine; Malaman, Bernard; Dauscher, Anne; Candolfi, Christophe; Lenoir, Bertrand
2017-02-20
We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As 2 Te 3-x Se x (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As 2 Te 3-x Se x crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As 2 Te 3 . The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As 2 Te 3 exhibits very low lattice thermal conductivity κ L , the substitution of Se for Te further lowers κ L to 0.35 W m -1 K -1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.
EPMA Professionals--Servants or Masters?
ERIC Educational Resources Information Center
Black, Paul
2012-01-01
Insofar as the title of this piece might call for a straightforward answer, it seems obvious that EPMA professionals are servants. Viewed in this perspective, Paul E. Newton's analysis is carefully balanced, in that it respects the complex history of the concerns of the professionals, whilst moving towards conclusions that place the needs of the…
Armigliato, Aldo; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo
2013-02-01
A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, <100> oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc 103, 203-207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal 1, 1-22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.
Application of Quantitative Analytical Electron Microscopy to the Mineral Content of Insect Cuticle
NASA Astrophysics Data System (ADS)
Rasch, Ron; Cribb, Bronwen W.; Barry, John; Palmer, Christopher M.
2003-04-01
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.
Iryanov, Y M; Kiryanov, N A
2015-01-01
Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.
NASA Astrophysics Data System (ADS)
Huang, Ke; Keiser, Dennis D.; Sohn, Yongho
2013-02-01
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.
Behavior of New Zealand Ironsand During Iron Ore Sintering
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pinson, David; Chew, Sheng; Rogers, Harold; Monaghan, Brian J.; Pownceby, Mark I.; Webster, Nathan A. S.; Zhang, Guangqing
2016-02-01
A New Zealand ironsand sample was characterized by scanning electron microscopy (SEM), X-ray fluorescence spectroscopy, qualitative and quantitative X-ray diffraction, and electron probe microanalysis. The titanomagnetite-rich ironsand was added into an industrial sinter blend in the proportion of 5 wt pct, and the mixture was uniaxially pressed into cylindrical tablets and sintered in a tube furnace under flowing gas with various oxygen potentials and temperatures to develop knowledge and understanding of the behavior of titanium during sintering. An industrial sinter with the addition of 3 wt pct ironsand was also examined. Both the laboratory and industrial sinters were characterized by optical and SEM. Various morphologies of relict ironsand particles were present in the industrial sinter due to the heterogeneity of sintering conditions, which could be well simulated by the bench-scale sintering experiments. The assimilation of ironsand during sintering in a reducing atmosphere started with the diffusion of calcium into the lattice of the ironsand matrix, and a reaction zone was formed near the boundary within individual ironsand particles where a perovskite phase was generated. With increasing sintering temperature, in a reducing atmosphere, ironsand particles underwent further assimilation and most of the titanium moved from the ironsand particles into a glass phase. In comparison, more titanium remained in the original ironsand particles when sintered in air. Ironsand particles are more resistant to assimilation in an oxidizing atmosphere.
Shon, Wonwoo; Wada, David A; Gibson, Lawrence E; Flotte, Thomas J; Scheithauer, Bernd W
2011-11-01
We sought to further determine the histochemical, immunohistochemical and ultrastructural properties of eosinophilic cytoplasmic inclusion bodies in melanocytic nevi. Skin specimens from four patients with a known diagnosis of conventional melanocytic nevus (3) or Spitz nevus (1) and containing intracytoplasmic eosinophilic inclusion bodies were selected. In addition, melanomas (25), Spitz nevi (10) and blue nevi (4) were examined to determine the frequency of the inclusions. Inclusions tended to be located in multinucleated melanocytes with abundant vacuolated cytoplasm. In conventional (hematoxylin and eosin-stained) sections, the degree of density and eosinophilia of intracytoplasmic inclusions varied with size. Periodic acid-Schiff, Fontana and Congo red stains showed no reactivity. All bodies were immunoreactive for ubiquitin but negative for tyrosinase, keratin and vimentin. Ultrastructurally, inclusion bodies were non-membrane bound, ranged from 4 to 7 µm, and were comprised of radiating filamentous structures with or without an electron-dense core. Electron probe x-ray microanalysis revealed no significant peaks. None of additional melanomas, Spitz nevi and blue nevi that were evaluated showed similar inclusions. The inclusion bodies described herein bear no resemblance to other cytoplasmic inclusion bodies previously described in melanocytic lesions. There is no discernible relationship to melanosomes by ultrastructural analysis. We postulate a relationship with dysfunction of ubiquitin-mediated protein degradation occurring in melanocytes. Copyright © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam
2015-05-01
Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.
Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy
NASA Astrophysics Data System (ADS)
Szczotok, A.; Chmiela, B.
2014-08-01
Superalloys display a strong tendency toward chemical segregation during solidification. Therefore, it is of great importance to develop appropriate techniques for the melting and casting of superalloys. Elements partitioning between the γ and γ' phases in single crystal superalloys have been investigated by several authors using electron probe microanalysis (Hemmersmeier and Feller-Kniepmeier Mater Sci Eng A 248:87-97, 1998; Kearsey et al. Intermetallics 12:903-910, 2004; Kearsey et al. Superalloys 2004, pp 801-810, 2004; D'Souza et al. Mater Sci Eng A 490:258-265, 2008). We examined the effect of the particular stages of standard heat treatment (solution treatment and ageing) applied to CMSX-4 single crystal superalloy on chemical segregation that occurs between dendrites and interdendritic areas. Dendritic structures were observed using a scanning electron microscope. Analyses of the chemical composition were performed using energy dispersive x-ray spectroscopy. The obtained qualitative and quantitative results for the concentrations of elements enabled us to confirm the dendritic segregation in as-cast CMSX-4 superalloy. The concentrations of some refractory elements (tungsten, rhenium) were much greater in dendrites than in interdendritic areas. However, these differences in chemical composition gradually decreased during heat treatment. The results obtained in this study warrant further examination of the diffusion processes of elements during heat treatment of the investigated superalloy, and of the kinetics of diffusion.
NASA Astrophysics Data System (ADS)
Tian, Y.; Gauvin, R.; Brochu, M.
2016-07-01
Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz-Giovanola-Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne-Kurz segregation simulation of B, where Clyne-Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.
Chesnick, Ingrid E; Avallone, Francis A; Leapman, Richard D; Landis, William J; Eidelman, Naomi; Potter, Kimberlee
2007-04-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of 9 weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 microm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro.
Evaluation of Bioreactor-Cultivated Bone by Magnetic Resonance Microscopy and FTIR Microspectroscopy
Chesnick, Ingrid E.; Avallone, Frank; Leapman, Richard D.; Landis, William J.; Eidelman, Naomi; Potter, Kimberlee
2007-01-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of nine weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 μm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro. PMID:17174620
NASA Astrophysics Data System (ADS)
Centrella, Stephen; Vrijmoed, Johannes C.; Putnis, Andrew; Austrheim, Håkon
2017-04-01
The importance of heterogeneous stress and pressure distribution within a rock has been established over the last decades (see review in Tajčmanová et al., 2015). During a hydration reaction, depending on whether the system is open to mass transfer, the volume changes of the reaction may be accommodated by removing material into the fluid phase that leaves the system (Centrella et al., 2015; Centrella et al., 2016). The magnitudes and the spatial distribution of stress and pressure that evolve during such processes is largely unknown. We present here a natural example where a granulite is hydrated at amphibolite facies conditions from the Bergen Arcs in Norway. Granulitic garnet is associated with kyanite and quartz on one side, and amphibole-biotite on the other side. The first couple replaces the plagioclase of the granulite matrix whereas the second replaces the garnet. We use electron probe microanalysis (EPMA) and X-ray mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to kyanite+quartz induces a loss in volume compared to the original plagioclase whereas the second reaction amphibole+biotite gains volume compared to the original garnet. The specific mass evolution associated with both reactions suggests a local mass balance probably associated with a single hydration event. Using the methodology of Vrijmoed & Podladchikov (2015) we test whether the microstructure may be partly related to the local stress heterogeneity around the garnet inclusion. We evaluate the phase assemblage and distribution at chemical equilibrium under a given input pressure field that can be computed with the Thermolab software. By varying the input pressure field using the Finite Element Method and comparing the resulting equilibrium assemblage to the real data an estimate of the local stress and pressure distribution around the garnet inclusion is obtained. The differences of the equilibrium model with the observations are discussed. References: Centrella, S., Austrheim, H., and Putnis, A., 2015, Coupled mass transfer through a fluid phase and volume preservation during the hydration of granulite: An example from the Bergen Arcs, Norway: Lithos, 236-237, p. 245-255, doi: 10.1016/j.lithos.2015.09.010. Centrella, S., Austrheim, H., and Putnis, A., 2016, Mass transfer and trace element redistribution during hydration of granulites in the Bergen Arcs, Norway: Lithos, v. 262, p. 1-10, doi: 10.1016/j.lithos.2016.06.019. Tajčmanová, L., Vrijmoed, J., and Moulas, E., 2015, Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations: Lithos, 216-217, p. 338-351, doi: 10.1016/j.lithos.2015.01.006. Vrijmoed, J.C., and Podladchikov, Y.Y., 2015, Thermodynamic equilibrium at heterogeneous pressure: Contributions to Mineralogy and Petrology, v. 170, no. 1, doi: 10.1007/s00410-015-1156-1.
NASA Astrophysics Data System (ADS)
Hickey-Vargas, R.; Holbik, S. P.; Ryan, J. G.; MacDonald, J. H., Jr.; Beck, M.
2015-12-01
Geoscience faculty at the University of South Florida (USF), Florida Gulf Coast University (FCGU), Valencia College (VC) and Florida International University (FIU) have teamed to construct, test and disseminate geoscience curricula in which microbeam analytical instruments are operated by undergraduates, with data gathered in the classroom in real-time over the internet. Activities have been developed for courses Physical Geology, Oceanography, Earth Materials, Mineralogy/Petrology and Stratigraphy using the Scanning Electron Microscope (SEM) and Electron Probe Microanalyzer (EPMA) housed in the Florida Center for Analytical Electron Microscopy (FCAEM; https://fcaem.fiu.edu) at FIU. Students and faculty send research materials such as polished rock sections and microfossil mounts to FCAEM to be examined during their scheduled class and lab periods. Student control of both decision-making and selection of analytical targets is encouraged. The objective of these activities is to move students from passive learning to active, self-directed inquiry at an early stage in their undergraduate career, while providing access to advanced instruments that are not available at USF, FGCU and VC. These strategies strongly facilitate student interest in undergraduate research making use of these instruments and one positive outcome to date is an increased number of students undertaking independent research projects. Prior research by USF PI Jeff Ryan indicated that various barriers related to instrument access and use hindered interested geoscience faculty in making use of these tools and strategies. In the current project, post-doctoral researcher Dr. Sven Holbik acts as a facilitator, working directly with faculty from other institutions one-on-one to provide initial training and support, including on-site visits to field check classroom technology when needed. Several new educators and institutions will initiate classroom activities using FCAEM instrumentation this Fall.
X-ray microanalysis of black piedra.
Figueras, M J; Guarro, J
1997-11-01
The elements present in the fungal structures produced by Piedraia hortae in vivo and in vitro have been investigated using electron microscopy X-ray microanalysis. Phosphorus, sulphur and calcium were detected in the nodules which developed on hair and on colonies on culture. These elements belong to the extracellular material that compacts the pseudoparenchymatous organization of the fungus. They may be present due to the capacity of melanin-like pigments to sequester ions and/or they may form part of the sulphates and phosphates of the polyanionic mucopolysaccharides that constitute the extracellular material. Environmental contaminants such as aluminium, silicon and iron were detected exclusively on the surface of the nodule. They were deposited or linked to the residual molecules produced during the breakdown of the cuticular keratin. The advantages of these techniques for elucidating the chemical nature of fungal structures are discussed.
Inter-layered clay stacks in Jurassic shales
NASA Technical Reports Server (NTRS)
Pye, K.; Krinsley, D. H.
1983-01-01
Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.
Experimental verification of the shape of the excitation depth distribution function for AES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tougaard, S.; Jablonski, A.; Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw
2011-09-15
In the common formalism of AES, it is assumed that the in-depth distribution of ionizations is uniform. There are experimental indications that this assumption may not be true for certain primary electron energies and solids. The term ''excitation depth distribution function'' (EXDDF) has been introduced to describe the distribution of ionizations at energies used in AES. This function is conceptually equivalent to the Phi-rho-z function of electron microprobe analysis (EPMA). There are, however, experimental difficulties to determine this function in particular for energies below {approx} 10 keV. In the present paper, we investigate the possibility of determining the shape ofmore » the EXDDF from the background of inelastically scattered electrons on the low energy side of the Auger electron features in the electron energy spectra. The experimentally determined EXDDFs are compared with the EXDDFs determined from Monte Carlo simulations of electron trajectories in solids. It is found that this technique is useful for the experimental determination of the EXDDF function.« less
From HeLa cell division to infectious diarrhoea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, J.; Osborne, M.P.; Spencer, A.J.
1990-09-01
Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72hmore » post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.« less
Method and apparatus for chemical and topographical microanalysis
NASA Technical Reports Server (NTRS)
Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)
2002-01-01
A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.
LI, BAOHUA; MARSHALL, DEBORAH; ROE, MARTIN; ASPDEN, RICHARD M.
1999-01-01
The subchondral bone plate supports the articular cartilage in diarthrodial joints. It has a significant mechanical function in transmitting loads from the cartilage into the underlying cancellous bone and has been implicated in the destruction of cartilage in osteoarthritis (OA) and its sparing in osteoporosis (OP), but little is known of its composition, structure or material properties. This study investigated the microscopic appearance and mineral composition of the subchondral bone plate in femoral heads from patients with OA or OP to determine how these correspond to changes in composition and stiffness found in other studies. Freeze-fractured full-depth samples of the subchondral bone plate from the femoral heads of patients with osteoarthritis, osteoporosis or a matched control group were examined using back scattered and secondary emission scanning electron microscopy. Other samples were embedded and polished and examined using back-scattered electron microscopy and electron probe microanalysis. The appearances of the samples from the normal and osteoporotic patients were very similar, with the subchondral bone plate overlayed by a layer of calcified cartilage. Osteoporotic samples presented a more uniform fracture surface and the relative thicknesses of the layers appeared to be different. In contrast, the OA bone plate appeared to be porous and have a much more textured surface. There were occasional sites of microtrabecular bone formation between the trabeculae of the underlying cancellous bone, which were not seen in the other groups, and more numerous osteoclast resorption pits. The calcified cartilage layer was almost absent and the bone plate was apparently thickened. The appearance of the osteoarthritic subchondral bone plate was, therefore, considerably different from both the normal and the osteoporotic, strongly indicative of abnormal cellular activity. PMID:10473297
Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.
Augustynowicz, Joanna; Wróbel, Paweł; Płachno, Bartosz J; Tylko, Grzegorz; Gajewski, Zbigniew; Węgrzynek, Dariusz
2014-06-01
The aim of the study was the analysis of Cr distribution in shoots of the macrophyte Callitriche cophocarpa by means of two X-ray-based techniques: micro X-ray fluorescence (μXRF) and electron probe X-ray microanalysis (EPXMA). Plants were treated with 100 μM (5.2 mg l(-1)) chromium solutions for 7 days. Cr was introduced independently at two speciations as Cr(III) and Cr(VI), known for their diverse physicochemical properties and different influence on living organisms. A comparative analysis of Cr(III)-treated plants by EPXMA and μXRF demonstrated high deposition of Cr in epidermal glands/hairs localized on leaves and stems of the plant shoots. Cr in Cr(III)-treated plants was recorded solely in glands/hairs, and the element was not present in any other structures. On the other hand, Cr in Cr(VI)-treated group of plants was rather found in vascular bundles. Moreover, the concentration of Cr in Cr(VI)-treated plants was significantly lower than in plants incubated in Cr(III) solution. The results obtained in this work suggest differences in chromium uptake, transport and accumulation dependent on the oxidative state of the element.
NASA Astrophysics Data System (ADS)
Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni
2010-12-01
Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.
Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion
NASA Astrophysics Data System (ADS)
Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki
This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Jak, E.
2017-12-01
The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes de Oca, J. A.; LePetitcorps, Y.; Manaud, J.-P.
2008-05-15
Titanium carbide-based coatings were deposited on W substrates at a high coating growth rate by activated reactive evaporation at 500 and 600 deg. C in a L560 Leybold system using propene as reactive atmosphere. The crystal structure, lattice parameter, preferred orientation, and grain size of the coatings were determined by x-ray diffraction technique using Cu K{alpha}. The analysis of the coating morphology was performed by scanning electron microscopy (SEM), and the composition of the films was analyzed by Auger electron spectroscopy and electron-probe microanalysis. Experimental results suggested that temperature was one of the most important parameters in the fabrication ofmore » stoichiometric TiC coatings. Thus, TiC coatings were obtained at 600 deg. C, whereas TiC{sub 0.6} nonstoichiometric coatings codeposited with a free Ti phase were obtained at 500 deg. C, giving rise to the formation of a composite thin film. After annealing at 1000 deg. C, the stoichiometric films remained stable, but a crack pattern was formed over the entire coating surface. In addition, Ti{sub 0.6}W{sub 0.4}/TiC{sub 0.6} composite thin coatings were obtained for the films synthesized at 500 deg. C. The formation of a Ti{sub 0.6}W{sub 0.4} ductile phase in the presence of a TiC{sub 0.6} phase was responsible to avoid the coating cracking.« less
Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers.
Amna, Touseef; Hassan, M Shamshi; Barakat, Nasser A M; Pandeya, Dipendra Raj; Hong, Seong Tshool; Khil, Myung-Seob; Kim, Hak Yong
2012-01-01
In this study, a biological evaluation of the antimicrobial activity of Zn-doped titania nanofibers was carried out using Escherichia coli ATCC 52922 (Gram negative) and Staphylococcus aureus ATCC 29231 (Gram positive) as model organisms. The utilized Zn-doped titania nanofibers were prepared by the electrospinning of a sol-gel composed of zinc nitrate, titanium isopropoxide, and polyvinyl acetate; the obtained electrospun nanofibers were vacuum dried at 80°C and then calcined at 600°C. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, and transmission electron microscopy (TEM). The antibacterial activity and the acting mechanism of Zn-doped titania nanofibers against bacteria were investigated by calculation of minimum inhibitory concentration and analyzing the morphology of the bacterial cells following the treatment with nanofibers solution. Our investigations reveal that the lowest concentration of Zn-doped titania nanofibers solution inhibiting the growth of S. aureus ATCC 29231 and E. coli ATCC 52922 strains is found to be 0.4 and 1.6 μg/ml, respectively. Furthermore, Bio-TEM analysis demonstrated that the exposure of the selected microbial strains to the nanofibers led to disruption of the cell membranes and leakage of the cytoplasm. In conclusion, the combined results suggested doping promotes antimicrobial effect; synthesized nanofibers possess a very large surface-to-volume ratio and may damage the structure of the bacterial cell membrane, as well as depress the activity of the membranous enzymes which cause bacteria to die in due course.
NASA Astrophysics Data System (ADS)
Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.
2017-12-01
The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.
NASA Astrophysics Data System (ADS)
Gajos, Katarzyna; Budkowski, Andrzej; Petrou, Panagiota; Pagkali, Varvara; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios
2018-06-01
Time-of-flight secondary ion mass spectrometry has been employed to examine, with biomolecular discrimination, sensing arm areas (20 μm × 600 μm) of integrated onto silicon chips Mach-Zehnder interferometers aiming to optimize their biofunctionalization with regard to indirect immunochemical (competitive) detection of ochratoxin A. Sensing areas are examined after: modification with (3-aminopropyl)triethoxysilane, spotting of OTA-ovalbumin conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin, reaction with OTA-specific mouse monoclonal antibody followed by goat anti-mouse IgG secondary antibody. Component mass loadings of all proteins involved in immunodetection are determined from TOF-SIMS micro-analysis combined with ellipsometry of planar surfaces. These data show that partial desorption of surface-bound probe and blocking protein takes place upon primary immunoreaction to a degree that depends on probe concentration in spotting solution. Taking into account this desorption, apparent binding stoichiometry of both antibodies in immune complexes formed onto chip surface is determined more accurately than the respective evaluation based on real-time sensor response. In addition, mass loadings for probe and secondary antibody is observed to saturate for optimum probe concentrations. Also, principal component analysis of TOF-SIMS data could resolve both immunoreactions and biofunctionalization and discriminate surfaces prepared with optimum probe concentrations from those prepared using suboptimum ones.
The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.
Khan, A U; Brož, P; Premović, M; Pavlů, J; Vřeštál, J; Yan, X; Maccio, D; Saccone, A; Giester, G; Rogl, P
2016-08-17
As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.
Efforts to identify Te-rich nano-islands in ZnSe
NASA Astrophysics Data System (ADS)
Lau, June W.; Volkov, Vyacheslav V.; Zhu, Yimei; Kuskovsky, Igor L.; Neumark, Gertrude F.; Lin, W.; Maksimov, Oleg; Tamargo, Maria C.
2002-03-01
Much work has been done on the study of nano-island formation (“dopants”) in various systems by use of electron microscopy, often complemented by x-ray microanalysis [1]. This works well for systems involving one or more monolayers of dopants. Our system consists of Te and N dopants incorporated into ZnSe in sub-monolayer quantities [2]. This presents a challenge; our calculations show that this case is probably below the detection limit of x-ray microanalysis. Our samples do show strain contrasts but we were unable to obtain direct confirmation of nano-islands’ existence. As an alternative, dark field images from chemically sensitively reflections were used in volumetric defect density studies. The defect density in the doped samples was higher than that of the undoped samples. 1. Dorin C., U of Mich. Poster presentation at Fall MRS meeting 2001 2. Lin et al., Apple. Phys. Let., 76, 2205 (2000).
Resistance in mango against infection by Ceratocystis fimbriata.
Araujo, Leonardo; Bispo, Wilka Messner Silva; Cacique, Isaías Severino; Moreira, Wiler Ribas; Rodrigues, Fabrício Ávila
2014-08-01
This study was designed to characterize and describe host cell responses of stem tissue to mango wilt disease caused by the fungus Ceratocystis fimbriata in Brazil. Disease progress was followed, through time, in inoculated stems for two cultivars, 'Ubá' (field resistant) and 'Haden' (field susceptible). Stem sections from inoculated areas were examined using fluorescence light microscopy and transmission and scanning electron microscopy, coupled with energy-dispersive X-ray microanalysis. Tissues from Ubá colonized by C. fimbriata had stronger autofluorescence than those from Haden. The X-ray microanalysis revealed that the tissues of Ubá had higher levels of insoluble sulfur and calcium than those of Haden. Scanning electron microscopy revealed that fungal hyphae, chlamydospores (aleurioconidia), and perithecia-like structures of C. fimbriata were more abundant in Haden relative to Ubá. At the ultrastructural level, pathogen hyphae had grown into the degraded walls of parenchyma, fiber cells, and xylem vessels in the tissue of Haden. However, in Ubá, plant cell walls were rarely degraded and hyphae were often surrounded by dense, amorphous granular materials and hyphae appeared to have died. Taken together, the results of this study characterize the susceptible and resistant basal cell responses of mango stem tissue to infection by C. fimbriata.
Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
Newbury, Dale E; Ritchie, Nicholas W M
2016-08-01
Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).
Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka
2008-01-01
A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.
Microscopy & microanalysis 2016 in Columbus, Ohio
Michael, Joseph R.
2016-01-08
The article provides information about an upcoming conference from the program chair. The Microscopy Society of America (MSA), the Microanalysis Society (MAS), and the International Metallographic Society (IMS) invite participation in Microscopy & Microanalysis 2016 in Columbus, Ohio, July 24 through July 28, 2016.
NASA Astrophysics Data System (ADS)
Omar, Artur; Andreo, Pedro; Poludniowski, Gavin
2018-07-01
Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.
Introduction: A Symposium in Honor of Professor Sir John Meurig Thomas
NASA Astrophysics Data System (ADS)
Gai, P. L.; Saka, H.; Tomokiyo, Y.; Boyes, E. D.
2002-02-01
This issue is dedicated to Professor Sir John Meurig Thomas for his renowned contributions to electron microscopy in the chemical sciences. It is a collection of peer-reviewed leading articles in electron microscopy, based on the presentations at the Microscopy and Microanalysis (M&M) 2000 symposium, which was held to honor Professor Thomas's exceptional scientific leadership and wide-ranging fundamental contributions in the chemical applications of electron microscopy.The issue contains key papers by leading international researchers on the recent developments and applications of electron microscopy in the solid state and liquid state sciences. They include synthesis and characterization of silicon nitride nanorods, nanostructures of amorphous silica, electron microscopy studies of nanoscale structure and chemistry of Pt-Ru electrocatalysts of interest in direct methanol fuel cells, development of in situ wet-environmental transmission electron microscopy for the first nanoscale studies of dynamic liquid-catalyst reactions, strain analysis of silicon by finite element method and energy filtering convergent beam electron diffraction, applications of chemistry with electron microscopy, bismuth nanowires for applications in nanoelectronics technology, synthesis and characterization of quantum dots for superlattices and in situ electron microscopy at very high temperatures to study the motion of W5Si3 on [alpha][beta]-SiN3 substrates.We thank all the participants, including the invited speakers, contributors, and session chairs, who made the symposium successful. We also thank the authors and reviewers of the papers who worked assiduously towards the publication of this issue.We are very grateful to the Microscopy Society of America (MSA) for providing the opportunity to honor Professor Sir John Meurig Thomas. Organizational support from the MSA is also gratefully acknowledged.We thank Charles E. Lyman, editor in chief of Microscopy and Microanalysis for coordinating the publication of this issue and the entire journal staff for their efforts.
Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddam, Raghuveer, E-mail: raghuveer.gaddam@ltu.se; Sefer, Birhan; Pederson, Robert
2015-01-15
Isothermal heat treatments in ambient air were performed on wrought Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) material at 500, 593 and 700°C for times up to 500 h. In the presence of oxygen at elevated temperatures simultaneous reactions occurred in Ti-6242 alloy, which resulted in the formation of an oxide scale and a layer with higher oxygen concentration (termed as alpha-case). Total weight gain analysis showed that there was a transition in the oxidation kinetics. At 500°C, the oxidation kinetics obeyed a cubic relationship up to 200 h and thereafter changed to parabolic at prolonged exposure times. At 593°C, it followed a parabolic relationship.more » After heat treatment at 700°C, the oxidation obeyed a parabolic relationship up to 200 h and thereafter changed to linear at prolonged exposure times. The observed transition is believed to be due to the differences observed in the oxide scale. The activation energy for parabolic oxidation was estimated to be 157 kJ/mol. In addition, alpha-case layer was evaluated using optical microscope, electron probe micro-analyser and microhardness tester. The thickness of the alpha-case layer was found to be a function of temperature and time, increasing proportionally, and following a parabolic relationship. The activation energy for the formation of alpha-case layer was estimated to be 153 kJ/mol. - Highlights: • Transition in oxidation kinetics was observed in Ti–6Al–2Sn–4Zr–2Mo alloy in the temperature range 500–700°C. • The activation energy for parabolic oxidation and for alpha-case formation is about 157 kJ/mol and 153 kJ/mol. • Thickness of alpha-case layer estimated by optical microscopy and electron probe microanalysis is comparable.« less
NASA Astrophysics Data System (ADS)
Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang
2017-12-01
The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.
Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander
2016-04-01
Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.
Moore, Katie L; Lombi, Enzo; Zhao, Fang-Jie; Grovenor, Chris R M
2012-04-01
The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.
Studies on the cellular and subcellular reactions in epidermis at irritant and allergic dermatitis.
Lindberg, M
1982-01-01
To determine the cellular and subcellular reactions of keratinocytes at contact dermatitis, transmission electron microscopy was used in combination with energy dispersive X-ray microanalysis. Stereology and optical diffraction were used as complements to electron microscopy for studies of the effects of variations in the preparation technique on the ultrastructure of epidermis. The morphological effects of an increased hydration of epidermis were assessed by the use of occlusive patch tests. It was found that the relative volume of the epidermal intercellular space and the ultrastructure of the epidermal cells (keratinocytes and Langerhans' cells) were directly dependent on the osmolality of the fixative vehicle if glutaraldehyde was used as fixative. Cellular volume and morphology did also depend on the fixative used. Variations in the volume of the intercellular space were also detected when the water transport through epidermis was impaired by occlusive treatment. In normal epidermis prolonged fixation times (4 weeks) did not affect the morphology of the keratinocytes. However, if the structure and function of the keratinocytes were affected by the application of a irritant substance (DNCB), a loss of electron dense material from the cells was detected within 3 weeks. The ultrastructural changes in the keratinocytes at the irritant chromate and DNCB reactions were of a non-specific nature and are in accordance with the changes described for other irritant agents in the literature. A few cells with the features of apoptosis were recorded. The allergic chromate reaction was found to be a combination of the irritant reaction and a marked inflammatory response. To correlate the ultrastructural alterations in the keratinocytes with the functional state of the cells, X-ray microanalysis was used to determine the elemental redistribution occurring at the irritant DNCB reaction. The results of the X-ray microanalysis showed a good correlation between dose and time dependent effects and with the ultrastructural changes. Cell injury in the keratinocytes lead to decreases in the cellular content of phosphorous, potassium and magnesium and an increase of cellular calcium. Sodium, chloride, and sulphur were only moderately changed. A stimulation of the basal keratinocytes was detectable when a weak DNCB dose was applied to the skin.
The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, D.; Jonge, M. D. de; Howard, D. L.
2011-09-09
A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.
Wang, Wenxuan; Zhu, Jian; Jiang, Jianxin; Xu, Changqing; Wu, Shurong; Guan, Li; Zhang, Zhaoxia; Wu, Menglei; Du, Jingnan
2016-11-01
"Sumali," as an imported cobalt ore from overseas, was a sort of precious and valuable pigment used for imperial kilns only, which produces characteristic "iron spot" to blue-and-white porcelain in early Ming Dynasty (A.D. 14th-15th century). Although there were some old studies on it, the morphology and formation of iron spot has not been fully investigated and understood. Therefore, five selected samples with typical spot from Jingdezhen imperial kiln in Ming Yongle periods (A.D. 1403-1424) were analyzed by various microscopic analysis including 3D digital microscope, SEM-EDS and EPMA. According to SEM images, samples can be divided into three groups: un-reflected "iron spot" without crystals, un-reflected "iron spot" with crystals and reflected "iron spot" with crystals. Furthermore, 3D micro-images revealed that "iron spots" separate out dendritic or snow-shaped crystals of iron only on and parallel to the surface of glaze for which "iron spot" show strong metallic luster. Combining with microscopic observation and microanalysis on crystallization and non-crystallization areas, it indicates that firing oxygen concentration is the ultimate causation of forming reflective iron spot which has a shallower distribution below the surface and limits crystals growing down. More details about characters of "iron spot" used "Sumali" were found and provided new clues to coloration, formation mechanism and porcelain producing technology of imperial kiln from 14th to 15th centuries of China. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L.H., E-mail: l2liao@uwaterloo.ca; Jin, H.; Gallerneault, M.
2015-03-15
The through-thickness annealing behavior of a laminated AA3xxx–AA6xxx alloy system at 300 °C has been studied by scanning electron microscopy, electron backscatter diffraction analysis, electron probe micro-analysis, differential scanning calorimetry, and hardness measurement. Results show that the recrystallization process starts at the interface region between the AA3xxx (clad) and AA6xxx (core) layers. Subsequently, the recrystallization process front progresses into the core layer, while the clad layer is the last region to recrystallize. It is also found that precipitation precedes recrystallization in the entire laminate at the investigated temperature. The preferential onset of recrystallization at the interface region is attributed tomore » the net driving pressure being the highest in this region. The factors that lead to such enhanced net driving pressure are (a) deformation incompatibility between the two alloy layers, (b) lower solute content of the interface, which also leads to lower volume fraction of precipitates, and (c) an accelerated rate of precipitate coarsening due to the presence of a higher density of dislocations. The gradual progress of recrystallization from the interface towards the core layer is dictated by precipitate coarsening and the dependence of its rate on the density of deformation-induced dislocations. The lower driving pressure due to lower work hardening capacity, high solute drag pressure due to Mn, and additional Zener drag from precipitates that form due to solute redistribution during annealing explain the late initiation of recrystallization in the clad layer. - Highlights: • The through-thickness recrystallization of a laminated system is investigated. • The early onset of recrystallization at the interface is discussed. • The effects of precipitation and coarsening on recrystallization are analyzed.« less
NASA Astrophysics Data System (ADS)
He, Gaihua; Duan, Yuping; Song, Lulu; Zhang, Xuefeng
2018-06-01
Potassium-ion-doped MnO2 has been successfully synthesized using the hydrothermal method, and the influence of the doped potassium ions on the electrical conductivity and permittivity is studied. X-ray powder diffraction, scanning electron microscopy, electron-probe micro-analysis, and a vector network analyzer are used to perform characterization. The densities of states of doped and undoped MnO2 tunnel structures are also discussed based on first-principles calculations. Results show that the conductivity and dielectric resonance of MnO2 can be elevated by means of K+ doping. The conductivity of K+-doped MnO2 prepared at different reaction times shows a decreasing trend and is generally 1 order of magnitude higher than that of pure MnO2. The electrical conductivity of K+-doped MnO2 (R3) shows the highest value of 3.33 × 10-2 S/cm at the reaction time of 24 h, while that of pure MnO2 is 8.50 × 10-4 S/cm. When treated with acid, the conductivity of samples remains basically stable along with the increase of treatment time. In addition, acid treatment plays a very significant role in controlling the amount of K+ ions in crystals. The K+ contents of acid-treated samples are 5 times lower than that of the untreated R1. The dielectric losses of the samples with different reaction times are enhanced markedly with frequency increment. The complex permittivity of pure MnO2 only exhibits a resonance at ˜12 GHz, while K+-doped MnO2 exhibits another resonance behavior at ˜9 GHz. The capacity of the dielectric property in the net structure is enhanced by the interfacial polarization, dielectric relaxation, multiple internal reflections, and multiple scattering benefiting.
NASA Astrophysics Data System (ADS)
Newbury, D. E.
2006-05-01
X-ray mapping, performed with the electron probe microanalyzer (EPMA) or scanning electron microscope/energy dispersive x-ray spectrometer (SEM/EDS), is one of the most popular modes of studying chemically heterogeneous microstructures [1]. Despite the maturity of the technique, now in its 50th anniversary year [2], recent remarkable advances in instrumentation and software will provide microanalysts with an even more effective and efficient microstructural characterization tool: (1) Increased x-ray mapping speed: The silicon drift detector (SDD) [3] is a new form of the familiar silicon EDS that uses the same detection physics but with a radically different design that outperforms the classic Si-EDS in nearly every way [4]: (1) the SDD operates requires only Peltier cooling to -20 oC to - 50 oC; (2) for a given detector active area, the SDD has superior resolution; (3) the SDD achieves the same resolution but with a peaking time that is 5 to 8 times faster; and (4) maximum output count rate (OCR) ranges from about 14 kHz at optimum resolution (134 eV at MnKa for a 50 mm2 area) to 500 kHz (217 eV). This OCR performance enables rapid x-ray mapping collection in the x-ray spectrum image (XSI) mode, in which a complete EDS spectrum (2048 10eV-channels) is captured at each pixel (e.g., 10 ms dwell with 1.3 ms overhead per pixel, or 185 seconds for a 128x128 pixel map). XSI collection captures all possible spectral information within the limits imposed by the spectrometer and the primary beam dose. (2) EDS with WDS resolution: The microcalorimeter EDS measures the temperature rise when a single x-ray photon is absorbed in a metal target [5]. Demonstrated resolution is 4.5 eV at Mn Ka for a broad energy range (0.2 - 10 keV) spectrometer and 2 eV (AlKa) for a low photon energy range (0.2 - 2.0 keV) version. The low energy spectrometer is sensitive to peak shape and position changes associated with chemical bonding, opening the possibility of EDS chemical-state mapping. (3) Data mining: In the XSI mode, data is captured at the rate of 100 Mbytes per XSI database or more. Efficient software tools have been developed that enable the analyst to quickly recognize major and minor constituent features in this datacube, and even to detect rare unexpected features that occur at only one pixel in a large map [6]. Advanced image cube data reduction can be achieved with tools based on statistical methods, such as principal component analysis, that quickly establishes correlations between different elements, such as distinct phases [7]. 1. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J., Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition (Kluwer Academic Plenum Press, New York, 2003). 2. Cosslett, E. and P. Duncumb, Nature, 177 (1956) 1172. 3. Struder, L., Fiorini, C., Gatti, E., Hartmann, R., Holl, P., Krause, N., Lechner, P., Longoni, A., Lutz, G., Kemmer, J., Meidinger, N., Popp, M., Soltau, H., and van Zanthier, C., High resolution non dispersive x-ray spectroscopy with state of the art silicon detectors, Mikrochim. Acta, Suppl, 15 (1998) 11 4. Newbury, D. SCANNING, 27 (2005) 227. 5. Wollman, D., Irwin, K., Hilton, G., Dulcie, L., Newbury, D., and Martinis, J., J. Micros. 188 (1997) 196. 6. Newbury, D. and Bright, D., SCANNING, 27 (2005) 15. 7. Kotula, P. Keenan, M., and Michael J., Micros. Microanal. 9 (2003) 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
NASA Astrophysics Data System (ADS)
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-07-01
There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.
Structure of a radiate pseudocolony associated with an intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.
Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin.
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
Composition, speciation and distribution of iron minerals in Imperata cylindrica.
Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús
2007-05-01
A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.
NASA Astrophysics Data System (ADS)
Wycech, J.; Kelly, D.; Kozdon, R.; Fournelle, J.; Valley, J. W.
2013-12-01
The Pliocene Warm Period (PWP) was a global warming event that punctuated Earth's climate history ~3 Ma, and study of its geologic record is providing important constraints for models predicting future climate change. Many sea surface temperature (SST) reconstructions for the PWP indicate amplified polar warmth with minimal or absent warming in the tropics - a phenomenon termed the cool tropics paradox. Key pieces of evidence for the lack of tropical warmth are oxygen isotope (δ18O) and Mg/Ca ratios in planktic foraminiferal shells. However, the δ18O data used to reconstruct surface-ocean conditions are derived from whole foraminiferal shells with the assumption that their geochemical compositions are well preserved and homogeneous. To the contrary, most planktic foraminiferal shells found in deep-sea sediments are an aggregate mixture of three carbonate phases (18O-depleted pre-gametogenic calcite, 18O-rich gametogenic calcite added during reproduction, and very 18O-rich diagenetic calcite) that formed under different physiological and/or environmental conditions. Here we report preliminary results of an ongoing study that uses secondary ion mass spectrometry (SIMS) and electron probe microanalysis (EPMA) to acquire in situ δ18O and Mg/Ca data, respectively, from 3-10 μm domains within individual planktic foraminiferal shells (Globigerinoides sacculifer) preserved in a PWP record recovered at ODP Site 806 in the West Pacific Warm Pool. SIMS analyses show that the δ18O of gametogenic calcite is 1-2‰ higher than in the pre-gametogenic calcite of Gs. sacculifer. Mass-balance calculations using the mean δ18O of gametogenic and pre-gametogenic calcites predict a whole-shell δ18O that is ~1.9‰ lower than the published whole-shell δ18O for Gs. sacculifer in this same deep-sea section. Removal of 18O-depleted, pre-gametogenic calcite via dissolution cannot fully account for this isotopic offset since the mean δ18O of whole shells (-1.3‰) is higher than that of gametogenic calcite (-2.1‰); hence, we attribute the elevated whole-shell values to the addition of 18O-rich carbonate by post-depositional diagenesis. By contrast, in situ measurements indicate that the Mg/Ca ratios in the pre-gametogenic and gametogenic calcites are indistinguishable, and in situ Mg/Ca ratios are comparable to those of whole shells. Use of Mg/Ca calculated SSTs (~30°C) and published whole-shell δ18O to determine the δ18O of seawater (δ18Osw) yields unrealistically high values (2.1‰), while a similar computation using pre-gametogenic δ18O yields a more acceptable δ18Osw (-0.2‰) for this region during the PWP. This latter finding corroborates the view that the published whole-shell δ18O record has been compromised by diagenesis and demonstrates the potential of SIMS δ18O analysis to enhance our ability to reconstruct hydrographic conditions under differing climatic regimes.
Correlated Microanalysis of Cometary Organic Grains Returned by Stardust
NASA Technical Reports Server (NTRS)
DeGregorio, B. T.; Stroud, R. M.; Nittler, L. R.; Cody, G. D,; Kilcoyne, A. L. D.
2011-01-01
Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Xiao, Gui-Yong; Li, Shi-Tong; Sun, Rui-Xue; Li, Mu-Sen
2006-01-01
The microstructural inhomogeneity in the plasma-sprayed hydroxyapatite (HA) coatings was characterized by using electron probe microanalyser (EPMA). A simple and artful method was developed to detect the interface characteristics. All the samples for observation were ground and polished along the direction parallel to the coating surfaces. The BSE images directly and clearly showed the inhomogeneity in the as-sprayed coatings with the amorphous regions being bright gray and crystalline regions being dark gray. X-ray diffractometer (XRD) patterns indicated that after immersion in deionized water for 20 days, bone-like apatite and α-Ca 2P 2O 7 precipitated on the polished surfaces of the as-sprayed HA coatings. The post-heat treatment could eliminate the microstructural inhomogeneity in the coatings. Only β-Ca 2P 2O 7 precipitated on the surfaces of the heat-treated HA coatings. The immersed samples were re-polished till tiny substrate was bared to investigate the effect of immersion on interface. It was shown that the immersion decreased the cohesive strength of the as-sprayed coatings. There were more and broader cracks in the splats that came into contact with the substrate and amorphous phase increased toward the coating-substrate interface. Post-heat treatment was proved to reduce the peeling off of coating during re-polishing operation. It was proposed that the distributions of amorphous phase and cracks in as-sprayed coatings are detrimental to coating properties and should be modified through improving the plasma spraying processing.
Lead induced stress corrosion cracking of Alloy 690 in high temperature water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Moriya, Shinichi
1995-12-31
Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptiblemore » to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.« less
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baconnais, S.; Delavoie, F.; Zahm, J.M.
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.more » We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.« less
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
Matthews, Mike B; Kearns, Stuart L; Buse, Ben
2018-04-01
The accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lα and Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10-20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coating k-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.
2013-12-15
Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.R.; Bailey, E.H.; Purvis, O.W.
1998-11-01
Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less
Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru(0.5)Pd(0.5)Sb3
NASA Technical Reports Server (NTRS)
Caillat, T.; Kulleck, J.; Borshchevsky, A.; Fleurial, J.-P.
1996-01-01
A new skutterudite phase Ru(0.5)Pd(0.5)Sb3 was prepared. This new phase adds to a large number of already known materials with the skutterudite structure which have shown good potential for thermoelectric applications. Single phase, polycrystalline samples were prepared and characterized by x-ray analysis, electron probe microanalysis, density, sound velocity, thermal-expansion coefficient, and differential thermal analysis measurements. Ru(0.5)Pd(0.5)Sb3 has a cubic lattice, space group Im3 (T(sup 5, sub h)), with a = 9.298 A and decomposes at about 920 K. The Seebeck coefficient, the electrical resistivity, the Hall effect, and the thermal conductivity were measured on hot-pressed samples over a wide range of temperatures. Preliminary results show that Ru(0.5)Pd(0.5)Sb3 behaves as a heavily doped semiconductor with an estimated band gap of about 0.6 eV. The lattice thermal conductivity of Ru(0.5)Pd(0.5)Sb3 is substantially lower than that of the binary isostructural compounds CoSb3 and IrSb3. The unusually low thermal conductivity might be explained by additional hole and charge transfer phonon scattering in this material. The potential of this material for thermoelectric applications is discussed.
Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro
2000-06-01
The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less
Mechanism and control of fluid secretion.
Oschman, J L
1977-01-01
Fluid secretion and reabsorption by a variety of plant and animal tissues appear to be accomplished by osmotic coupling between solute transport and water movement. The local osmosis model suggests that active accumulation of solutes within narrow folds at the cell surface may produce the local gradients that generate water flow. Both micropuncture techniques and electron-probe X-ray microanalysis have established that local osmotic gradients occur in absorptive epithelia, but they have not as yet been detected in secretory tissues.Hormonal control of secretion involves stimulation of solute pumps and adjustments of permeability to non-transported solutes. Since hormone receptors and pumps are often located on opposite surfaces of the cell, intracellular second messengers convey the secretory signal through cytoplasm. Much has been learned by study of insect tissues that are anatomically simple and that function for long periods in vitro. Aspects of hormone-receptor interaction have been explored, including the action of halluninogenic molecules. In insect salivary glands cyclic AMP appears to stimulate cation transport, while calcium increases anion permeability. The various second messengers probably interact with each other in complex feedback loops that stabilize the system and make it quickly responsive to hormone. Cyclic AMP may stimulate release of calcium from mitochondria. Unresolved is the way second messengers alter properties of the cell surface.
Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method
Kusakawa, You
2017-01-01
Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2. PMID:28246591
Quality design of belite–melilite clinker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Honma, Kenichi
2013-12-15
We have developed a new cement clinker, consisting mainly of belite and melilite, which is capable of increasing the amount of recycled waste as a part of its raw materials. We analyzed clinkers with a wide range of compositions, and clarified the quantitative relationship between the chemical and mineral compositions. Clinkers consisting mostly of belite and melilite were successfully obtained at the CaO/SiO{sub 2} mass ratio of 1.7 to 1.9. Test cements were prepared using these clinkers and mixed with OPC for the evaluation of fluidity and strength. The belite–melilite cement was found to have good fluidity, and the belite–melilitemore » cement mixed with OPC at up to 30% exhibited a satisfactory long term strength equivalent to the OPC, demonstrating the potential as an alternative to OPC. Electron probe microanalysis revealed the relatively high concentration of diphosphorus pentaoxide in belite, suggesting this component might contribute to the strength enhancement of the cement. -- Highlights: •A new cement clinker consisting mainly of belite and melilite was designed. •The clinker enables the use of various recycled wastes as part of its raw materials. •The relationship between the chemical and mineral compositions was clarified. •This cement mixed with OPC at up to 30% exhibited a good quality equivalent to OPC.« less
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-06-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.
Magnetic and charge transport properties of the Na-based Os oxide pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Y.G., E-mail: SHI.Youguo@nims.go.j; International Center for Materials Nanoarchitectonics; JST, Transformative Research-Project on Iron Pnictides
2009-04-15
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs{sub 2}O{sub 6} as a host. The composition was identified as Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) A). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the beta-type pyrochlore superconductor AOs{sub 2}O{sub 6} (A=Cs, Rb, and K).more » The Sommerfeld coefficient is 22 mJ K{sup -2} mol{sup -1}, being the smallest among AOs{sub 2}O{sub 6}. A magnetic anomaly at {approx}57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found. - Graphical abstract: Crystal structure of the Na-based Os oxide pyrochlore Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O.« less
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, Nabil M.
1986-01-01
Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.