Implications of Polishing Techniques in Quantitative X-Ray Microanalysis
Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude
2002-01-01
Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758
Electron microprobe analysis program for biological specimens: BIOMAP
NASA Technical Reports Server (NTRS)
Edwards, B. F.
1972-01-01
BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Armstrong, John
2004-01-01
Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.
Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K
2016-05-10
B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Pivovarova, Natalia B.; Andrews, S. Brian
2013-01-01
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, O.; Walz, B.; Somlyo, A.V.
Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguouslymore » that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.« less
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caiazza, S.; Falcinelli, G.; Pintucci, S.
1990-01-01
This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less
Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
Landis, W J
1979-01-01
The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.
Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser
NASA Astrophysics Data System (ADS)
Kubo, Y.
2018-01-01
Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.
Calcium measurements with electron probe X-ray and electron energy loss analysis.
LeFurgey, A; Ingram, P
1990-03-01
This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis.
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un
2010-07-15
Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.
Ryu, JiYeon; Ro, Chul-Un
2009-08-15
This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René
2004-03-01
An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.
NASA Astrophysics Data System (ADS)
Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.
2017-11-01
The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.
The detection of sulphur in contamination spots in electron probe X-ray microanalysis
Adler, I.; Dwornik, E.J.; Rose, H.J.
1962-01-01
Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
Abandoned mine slags analysis by EPMA WDS X-ray mapping
NASA Astrophysics Data System (ADS)
Guimarães, F.; Rosado, L.; Morais, C.; Candeias, A. E.; Pinto, A. P.; Mirão, J.
2010-02-01
Mining activity on the Iberian Pyritic Belt (Portugal and Spain) started before Phoenician times, became particularly intense during the Roman occupation of the Iberian Peninsula (for gold), and after the industrial revolution (for gold, copper, zinc, lead and sulphur). The commonest ore of this region is a massive polymetalic sulphide accumulation, where pyrite (FeS2) is the main mineral, with variable concentrations of chalcopyrite (CuFeS2), sphalerite (ZnS), galena (PbS), arsenopyrite (FeAsS2), other sulphides and sulfosalts which include minor elements like Mn, Co, Ni, Se, Cd, Sb, Te, Hg and Bi. Some of the main and minor elements of these ores are hazardous and the drainage basins of pollutant source areas often induce health concerns in the resident population. Electron probe microanalysis study followed previous optical and XRD analysis of the slags. The study focused on the identification of phases how sulphide and metallic phases are distributed within the material and infer about leachable elements during weathering. Electron probe X-ray maps show evidences of different behaviour between the elements: Ca and Zn are completely leached; iron is retained in oxyhydroxides, lead and arsenic precipitate as sulphates. Electron probe microanalysis studies are essential to understand complex materials as earth materials. Nevertheless, care is required to a correct interpretation of data and most quantitative compositional data are not trustworthy.
A microanalysis approach to investigate problems encountered in mycology.
Thibaut, M.; Ansel, M.; de Azevedo Carneiro, J.
1978-01-01
X-ray microanalysis has been applied to the study of pathogenic fungi for the acquisition of chemical information. The technique of combined scanning electron microscopy and wavelength dispersive spectrometry is described. The chemical analysis depends on the characteristic x-ray spectrum excited by the electrons passing through the sample. This spectrum is analyzed by x-ray wavelength dispersion using crystal spectrometers. All the elements of the periodic system above beryllium can be detected with good sensitivity. PMID:619693
A Comparison of Experimental EPMA Data and Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2004-01-01
Monte Carlo (MC) modeling shows excellent prospects for simulating electron scattering and x-ray emission from complex geometries, and can be compared to experimental measurements using electron-probe microanalysis (EPMA) and phi(rho z) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been used to develop phi(rho z) correction algorithms. The accuracy of MC calculations obtained using the NIST, WinCasino, WinXray, and Penelope MC packages will be evaluated relative to these experimental data. There is additional information contained in the extended abstract.
Stettler, L E; Groth, D H; MacKay, G R
1977-02-01
Open lung biopsy specimens from two welders and air samples from their workplace environments were examined with the electron probe microanalyzer. X-ray analysis showed that the majority of particles found in the lung tissue from both workers and in the air samples to be composed of varying amounts of iron, chromium, manganese and nickel, the major components of some types of stainless steel. Based upon these analyses, it was concluded that the majority of the particles in both biopsy specimens were a result of the workplace environment.
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un
2013-11-05
Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.
Dwivedi, D; Lepkova, K; Becker, T
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Lepkova, K.; Becker, T.
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
Dwivedi, D.; Becker, T.
2017-01-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351
NASA Astrophysics Data System (ADS)
Tylko, Grzegorz; Dubchak, Sergyi; Banach, Zuzanna; Turnau, Katarzyna
2010-04-01
Monte Carlo simulations of gelatin matrices with known elemental concentrations confirmed the suitability of protein standards to quantify elements of cellulose material in x-ray microanalysis. However, gelatin standards and cellulose plant cell walls differ in structure, what influences x-ray generation and emission in both specimens. The goal of the project was to establish the influence of gelatin structure on x-ray generation and its usefulness to calculate elemental concentrations in plant cell walls of different width. Roots of Medicago truncatula as well as gelatin standards with known elemental composition were prepared according to freeze-drying protocols. The thermanox polymer was chosen to establish background formation for flat and compact organic materials. All analyses were performed with the scanning electron microscope operated at 10 keV and probe current of 350 pA. The Monte Carlo code Casino was applied to calculate the intensities of the generated and the emitted x-rays from biological matrix of different width. No topography effects of gelatin structure were visible when the raster mode of electron impact was applied to the specimen. Monte Carlo simulations of gelatin of different width revealed that a significant decrease of the generated x-ray intensity appears at the width of the specimen around 3.5 μm. However, an increase of emission of low energy x-ray intensities (Na, Mg) was noted at 3.5 μm size with constant emission of higher energy x-rays (Cl, K) down to 2.5 μm width. It determines the minimal size of plant specimen useful for comparison to bulk gelatin standard when quantitative analysis is performed for biologically important elements.
Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath
NASA Astrophysics Data System (ADS)
Mohanty, Jayashree
2012-05-01
Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
Scanning Electron Microscopy and X-Ray Microanalysis
NASA Astrophysics Data System (ADS)
Albee, Arden L.
This outstanding volume has managed the nearly impossible task of combining the expertise of all six authors in a lucid and homogeneous style of writing. Subtitled ‘A Text for Biologists, Material Scientists and Geologists,’ the book has evolved from a short course taught each summer at Lehigh University.The book provides a basic knowledge of (1) the electron optics for these instruments a nd their controls, (2) the characteristics of the electron beam-sample interactions, (3) image formation and interpretation, (4) X ray spectrometry and quantitative X ray microanalysis with separate detailed sections on wavelength dispersive and energy dispersive techniques, and (5) specimen preparation, especially for biological materials.
Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2011-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less
Flux growth of high-quality CoFe 2O 4 single crystals and their characterization
NASA Astrophysics Data System (ADS)
Wang, W. H.; Ren, X.
2006-04-01
We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.
NASA Astrophysics Data System (ADS)
Schalm, O.; Janssens, K.
2003-04-01
Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (<5 keV). Since the layer thickness gradually changes with time, also the detector efficiency in the low energy region is not constant. Using the normal ZAF approach to quantification of EPXMA data is cumbersome in these conditions, because spectra from reference materials and from unknown samples must be acquired within a fairly short period of time in order to avoid the effect of the change in efficiency. To avoid this problem, an alternative approach to quantification of EPXMA data is proposed, following a philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method.
Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro
1992-08-01
A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.
Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René
2002-11-15
A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.
Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un
2011-10-15
Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society
Sample Preparation for Electron Probe Microanalysis—Pushing the Limits
Geller, Joseph D.; Engle, Paul D.
2002-01-01
There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very important, and, under certain conditions, may even be the limiting factor in the analytical uncertainty budget. This paper considers preparing samples to get known geometries. It will not address the analysis of samples with irregular, unprepared surfaces or unknown geometries. PMID:27446757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, S.; Murphy, G.F.; Bernhard, J.D.
1981-09-01
In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R
2014-09-01
Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.
X-ray microanalysis in an analytical electron microscope is a proven technique for the measurement of solute segregation in alloys. Solute segregation under equilibrium or nonequilibrium conditions can strongly influence material performance. X-ray microanalysis in an analytical electron microscope provides an alternative technique to measure grain boundary segregation, as well as segregation to other defects not accessible to Auger analysis. The utility of the technique is demonstrated by measurements of equilibrium segregation to boundaries in an antimony containing stainless steel, including the variation of segregation with boundary character and by measurements of nonequilibrium segregation to boundaries and dislocations in an ion-irradiatedmore » stainless steel.« less
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un
2010-10-01
In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.
The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, D.; Jonge, M. D. de; Howard, D. L.
2011-09-09
A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezryadin, N. N.; Kotov, G. I., E-mail: giktv@mail.ru; Kuzubov, S. V., E-mail: kuzub@land.ru
2015-03-15
Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2014-09-01
Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro
2009-06-01
Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.
Microbeam X-ray analysis in Poland - past and future
NASA Astrophysics Data System (ADS)
Kusinski, J.
2010-02-01
The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
X-ray microanalysis of porous materials using Monte Carlo simulations.
Poirier, Dominique; Gauvin, Raynald
2011-01-01
Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.
Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Wu, C. C.; Ferng, N. J.; Gau, H. J.
2007-06-01
Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants.
van der Ent, Antony; Przybyłowicz, Wojciech J; de Jonge, Martin D; Harris, Hugh H; Ryan, Chris G; Tylko, Grzegorz; Paterson, David J; Barnabas, Alban D; Kopittke, Peter M; Mesjasz-Przybyłowicz, Jolanta
2018-04-01
Contents Summary 432 I. Introduction 433 II. Preparation of plant samples for X-ray micro-analysis 433 III. X-ray elemental mapping techniques 438 IV. X-ray data analysis 442 V. Case studies 443 VI. Conclusions 446 Acknowledgements 449 Author contributions 449 References 449 SUMMARY: Hyperaccumulators are attractive models for studying metal(loid) homeostasis, and probing the spatial distribution and coordination chemistry of metal(loid)s in their tissues is important for advancing our understanding of their ecophysiology. X-ray elemental mapping techniques are unique in providing in situ information, and with appropriate sample preparation offer results true to biological conditions of the living plant. The common platform of these techniques is a reliance on characteristic X-rays of elements present in a sample, excited either by electrons (scanning/transmission electron microscopy), protons (proton-induced X-ray emission) or X-rays (X-ray fluorescence microscopy). Elucidating the cellular and tissue-level distribution of metal(loid)s is inherently challenging and accurate X-ray analysis places strict demands on sample collection, preparation and analytical conditions, to avoid elemental redistribution, chemical modification or ultrastructural alterations. We compare the merits and limitations of the individual techniques, and focus on the optimal field of applications for inferring ecophysiological processes in hyperaccumulator plants. X-ray elemental mapping techniques can play a key role in answering questions at every level of metal(loid) homeostasis in plants, from the rhizosphere interface, to uptake pathways in the roots and shoots. Further improvements in technological capabilities offer exciting perspectives for the study of hyperaccumulator plants into the future. © 2017 University of Queensland. New Phytologist © 2017 New Phytologist Trust.
Geng, Hong; Cheng, Fangqin; Ro, Chul-Un
2011-11-01
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.
NASA Astrophysics Data System (ADS)
Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng
2017-12-01
The effect of heat treatment on the microstructure and mechanical properties of Al2O3-TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
Corrosion behavior of low alloy steels in a wet-dry acid humid environment
NASA Astrophysics Data System (ADS)
Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu
2016-09-01
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.
Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un
2011-08-01
Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.
NASA Astrophysics Data System (ADS)
van Borm, Werner August
Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles abundance and particle composition. Alternatively, the bulk analysis of filters (total, fine and coarse mode) using Particle Induced X -Ray Emission (PIXE) and the application of a receptor modeling approach provided for complementary information on a macroscopical level. A computer program was developed incorporating an absolute factor analysis based receptor modeling procedure. Source profiles and contributions are described by elemental concentrations and an atmospheric mass balance is put forward. The latter method was applied in a two year study of the Antwerp urban aerosol and for the swiss aerosol, revealing a number of previously known and unknown sources. Both methods were successfully combined to increase the source resolution.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
Titanium pigmentation. An electron probe microanalysis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, A.; Touron, P.; Daste, J.
1985-05-01
A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.
Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis
Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena
2018-01-01
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
Calcium transport mechanism in molting crayfish revealed by microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuhira, V.; Ueno, M.
1983-01-01
Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the finemore » precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism.« less
Gupta, B L
1991-06-01
This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...
2016-10-11
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils
NASA Technical Reports Server (NTRS)
Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.
1992-01-01
The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.
NASA Technical Reports Server (NTRS)
Carpenter, Paul
2003-01-01
Electron-probe microanalysis standards and issues related to measurement and accuracy of microanalysis will be discussed. Critical evaluation of standards based on homogeneity and comparison with wet-chemical analysis will be made. Measurement problems such as spectrometer dead-time will be discussed. Analytical accuracy issues will be evaluated for systems by alpha-factor analysis and comparison with experimental k-ratio databases.
Determination of low-Z elements in individual environmental particles using windowless EPMA.
Ro, C U; Osán, J; Van Grieken, R
1999-04-15
The determination of low-Z elements such as carbon, nitrogen, and oxygen in atmospheric aerosol particles is of interest in studying environmental pollution. Conventional electron probe microanalysis technique has a limitation for the determination of the low-Z elements, mainly because the Be window in an energy-dispersive X-ray (EDX) detector hinders the detection of characteristic X-rays from light elements. The feasibility of low-Z element determination in individual particles using a windowless EDX detector is investigated. To develop a method capable of identifying chemical species of individual particles, both the matrix and the geometric effects of particles have to be evaluated. X-rays of low-Z elements generated by an electron beam are so soft that important matrix effects, mostly due to X-ray absorption, exist even within particles in the micrometer size range. Also, the observed radiation, especially that of light elements, experiences different extents of absorption, depending on the shape and size of the particles. Monte Carlo calculation is applied to explain the variation of observed X-ray intensities according to the geometric and chemical compositional variation of individual particles, at different primary electron beam energies. A comparison is carried out between simulated and experimental data, collected for standard individual particles with chemical compositions as generally observed in marine and continental aerosols. Despite the many fundamental problematic analytical factors involved in the observation of X-rays from low-Z elements, the Monte Carlo calculation proves to be quite reliable to evaluate those matrix and geometric effects. Practical aspects of the Monte Carlo calculation for the determination of light elements in individual particles are also considered.
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Normal incidence X-ray mirror for chemical microanalysis
Carr, Martin J.; Romig, Jr., Alton D.
1990-01-01
A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2014-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
X-ray microanalysis in the scanning electron microscope.
Roomans, Godfried M; Dragomir, Anca
2007-01-01
X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.
Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
Bricks in historical buildings of Toledo City: characterisation and restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Arce, Paula; Garcia-Guinea, Javier; Gracia, Mercedes
2003-01-15
Two different types of ancient bricks (12th to 14th centuries) collected from historical buildings of Toledo (Spain) were characterised by optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometers (SEM/EDS), electron probe microanalysis (EM), X-ray diffraction (XRD), differential thermal analysis (DTA) and {sup 57}Fe-Moessbauer spectroscopy. Physical properties such as water absorption and suction, porosity, density and compression strength were also determined. Several minerals found in the brick matrix, such as garnet, let us infer raw material sources; calcite, dolomite, illite and neoformed gehlenite and diopside phases, on temperature reached in firing; secondary calcite, on first cooling scenarios; and manganese micronodules, on latemore » pollution environments. XRD and DTA of original and refired samples supply information about firing temperatures. Additional data on firing conditions and type of the original clay are provided by the Moessbauer study. Physical properties of both types of bricks were compared and correlated with raw materials and fabric and firing technology employed. The physicochemical characterisation of these bricks provides valuable data for restoration purposes to formulate new specific bricks using neighbouring raw materials.« less
Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal
NASA Astrophysics Data System (ADS)
Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang
2018-06-01
In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.
Standards for electron probe microanalysis of silicates prepared by convenient method
NASA Technical Reports Server (NTRS)
Walter, L. S.
1966-01-01
Standard compositions suitable for electron probe microanalysis of various silicates are prepared by coprecipitation of specified salts with colloidal silica to form a gel which is decomposed into a powdered oxide mixture and compressed into thin pellets. These pellets of predetermined standard are compared with a silicate sample to determine its composition.
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
Ultrastructure of selected struvite-containing urinary calculi from cats.
Neumann, R D; Ruby, A L; Ling, G V; Schiffman, P S; Johnson, D L
1996-01-01
To elucidate the ultrastructural details of struvite-containing urinary calculi from cats. Specimens studied were inclusive of the range of textures visible during preliminary analysis by use of a stereoscopic dissecting microscope. Textural types, which were used to infer crystal growth conditions, were differentiated with regard to crystal habit, crystal size, growth orientation, and primary porosity. Thirty specimens were selected from a collection of approximately 1,600 feline urinary calculi: 20 of these were composed entirely of struvite, and 10 consisted of struvite and calcium phosphate (apatite). Qualitative and quantitative analyses of specimens included use of plain and polarized light microscopy, x-ray diffractometry, scanning electron microscopy with backscattered electron imagery, x-ray fluorescence scans, and electron probe microanalysis. Four textural types were recognized among struvite calculi, whereas 2 textural types of struvite-apatite calculi were described. The presence of minute, well interconnected primary pores in struvite-containing urinary calculi from cats is an important feature, which may promote possible interaction of calculi with changes in urine composition. Primary porosity, which can facilitate interaction between the calculus and changing urine composition, may explain the efficacy of dietary or medicinal manipulations to promote the dissolution of struvite-containing uroliths from this species.
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Visonà, S D; Chen, Y; Bernardi, P; Andrello, L; Osculati, A
2018-03-01
Deaths from electricity, generally, do not have specific findings at the autopsy. The diagnosis is commonly based on the circumstances of the death and the morphologic findings, above all the current mark. Yet, the skin injury due to an electrocution and other kinds of thermal injuries often cannot be differentiated with certainty. Therefore, there is a great interest in finding specific markers of electrocution. The search for the metallization of the skin through Scanning Electron Microscope equipped with Energy Dispersive X-Ray Spectroscopy (EDS) probe is of special importance in order to achieve a definite diagnosis in case of suspected electrocution. We selected five cases in which the electrocution was extremely likely considering the circumstances of the death. In each case a forensic autopsy was performed. Then, the skin specimens were stained with Hematoxylin Eosin and Perls. On the other hand, the skin lesions were examined with a scanning electron microscope equipped with EDS probe in order to evaluate the morphological ultrastructural features and the presence of deposits on the surface of the skin. The typical skin injury of the electrocution (current mark) were macroscopically detected in all of the cases. The microscopic examination of the skin lesions revealed the typical spherical vacuoles in the horny layer and, in the epidermis, the elongation of the cell nuclei as well as necrosis. Perls staining was negative in 4 out 6 cases. Ultrastructural morphology revealed the evident vacuolization of the horny layer, elongation of epidermic cells, coagulation of the elastic fibers. In the specimens collected from the site of contact with the conductor of case 1 and 2, the presence of the Kα peaks of iron was detected. In the corresponding specimens taken from cases 2, 4, 5 the microanalysis showed the Kα peaks of titanium. In case 3, titanium and carbon were found. In the suspicion of electrocution, the integrated use of different tools is recommended, including macroscopic observation, H&E staining, iron-specific staining, scanning electron microscopy and EDS microanalysis. Only the careful interpretation of the results provided by all these methods can allow the pathologist to correctly identify the cause of the death. Particularly, the present study suggests that the microanalysis (SEM-EDS) represents a very useful tool for the diagnosis of electrocution, allowing the detection and the identification of the metals embedded in the skin and their evaluation in the context of the ultrastructural morphology. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Within the endometrial cavity intrauterine contraceptive devices (IUDs) become encrusted with cellular, acellular, and fibrillar substances. Scanning electron microscopy was used to study the crust. Cellular material consisted mainly of blood cells and various types of bacteria. The fibrillar material appeared to be fibrin which was omnipresent in the crust and formed a thin layer immediately over the IUD surface. X-ray microanalysis of the acellular component of the crust revealed the presence of calcium. No other major peaks were identified. Near the IUD surface characteristic calcium phosphate crystals were present. Their microanalysis showed peaks for calcium and phosphorus. X-ray diffractionmore » of the crust however, showed it to contain only calcite. It is through the use of scanning electron microscopy that calcium phosphate has been detected in the IUD crust and a fibrillar layer has been visualized on the IUD surface. This study further demonstrates the effectiveness of SEM analytical techniques in the area of biomedical research.« less
Subcellular distribution of an inhalational anesthetic in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckenhoff, R.G.; Shuman, H.
1990-01-01
To better understand the mechanisms and sites of anesthetic action, we determined the subcellular partitioning of halothane in a tissue model. A method was found to fix the in vivo distribution of halothane in rat atrial tissue for subsequent electron microscopy and x-ray microanalysis. Atrial strips were exposed to various concentrations of halothane, rapidly frozen, cryo-sectioned, and cryo-transferred into an electron microscope. Irradiation of the hydrated cryosections with the electron beam caused halothane radiolysis, which allowed retention of the halogen-containing fragments after dehydration of the sections. The bromine from halothane was detected and quantified with x-ray microanalysis in various microregionsmore » of atrial myocytes. Halothane (bromine) partitioned largely to mitochondria, with progressively lower concentrations in sarcolemma, nuclear membrane, cytoplasm, sarcomere, and nucleus. Partitioning could not be explained solely by distribution of cellular lipid, suggesting significant and differential physicochemical solubility in protein. However, we found no saturable compartment in atrial myocytes within the clinical concentration range, which implies little specific protein binding.« less
Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS
NASA Astrophysics Data System (ADS)
Sánchez-López, J. C.; Dominguez-Meister, S.; Rojas, T. C.; Colasuonno, M.; Bazzan, M.; Patelli, A.
2018-05-01
High power impulse magnetron sputtering (HiPIMS) technology has been employed to prepare TiC/a-C:H nanocomposite coatings from a titanium target in acetylene (C2H2) reactive atmospheres. Gas fluxes were varied from 1.3 to 4.4 sccm to obtain C/Ti ratios from 2 to 15 as measured by electron probe microanalysis (EPMA). X-ray diffraction and transmission electron microscopy demonstrate the presence of TiC nanocrystals embedded in an amorphous carbon-based matrix. The hardness properties decrease from 17 to 10 GPa as the carbon content increases. The tribological properties were measured using a pin-on-disk tribometer in ambient air (RH = 30-40%) at 10 cm/s with 5 N of applied load against 6-mm 100Cr6 balls. The friction coefficient and the film wear rates are gradually improved from 0.3 and 7 × 10-6 mm3/N m to 0.15 and 2 × 10-7 mm3/N m, respectively, by increasing the C2H2 flux. To understand the tribological processes appearing at the interface and to elucidate the wear mechanism, microstructural and chemical investigations of the coatings were performed before and after the friction test. EPMA, X-ray photoelectron and electron energy-loss spectroscopies were employed to obtain an estimation of the fraction of the a-C:H phase, which can be correlated with the tribological behavior. Examination of the friction counterfaces (ball and track) by Raman microanalysis reveals an increased ordering of the amorphous carbon phase concomitant with friction reduction. The tribological results were compared with similar TiC/a-C(:H) composites prepared by the conventional direct current process.
NASA Astrophysics Data System (ADS)
Valdrè, G.; Moro, D.; Ulian, G.
2018-01-01
Asbestos is a generic term used for six types of silicate minerals that are found in fibres or bundles of fibres, which can be easily cleaved into thinner ones. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) quantitative microanalysis of asbestos mineral fibres still represents a complex analytical issue because of the variable fibre shape and small thickness (< 5 μm) compared with the penetration depth of the incident electron beam. Following previous work on chrysotile, crocidolite and amosite, here we present a study by means of Monte Carlo simulations of the thickness and shape effect on SEM-EDS microanalysis of anthophyllite, tremolite and actinolite asbestos. Realistic experimental conditions, such as sample geometry, SEM set-up and detector physics were taken into account. We report the results obtained on 100 μm long fibres and bundles of circular and square section and thicknesses from to 0.1 μm to 10 μm, for electron beam energies of 5, 15 and 25 keV. A strong influence of the asbestos mineral fibres and bundles shape and thickness on the detected EDS X-ray intensity was observed. In general, the X-ray intensities as a function of fibre thickness showed a considerable reduction below about 0.5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV for all the elements and minerals, with a non-linear dependence. Correction parameters, k-ratio, for the thickness effect were calculated and proposed.
NASA Astrophysics Data System (ADS)
Hwang, HeeJin; Ro, Chul-Un
In the present work, it is demonstrated that a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis, is a practically useful tool for the study of heterogeneous reactions of mineral dust and sea-salts when this analytical technique was applied to a sample collected during an Asian Dust storm event. The technique does not require a special treatment of sample to identify particles reacted in the air. Also, quantitative chemical speciation of reacted particles can provide concrete information on what chemical reaction, if any, occurred for individual particles. Among overall 178 analyzed particles, the number of reacted particles is 81 and heterogeneous chemical reactions mostly occurred on CaCO 3 mineral dust (54 particles) and sea-salts (26 particles). Several observations made for the Asian Dust sample in the present work are: (1) CaCO 3 species almost completely reacted to produce mostly Ca(NO 3) 2 species, and CaSO 4 to a much lesser extent. (2) When reacted particles contain CaSO 4, almost all of them are internally mixed with nitrate. (3) Reacted CaCO 3 particles seem to contain moisture when they were collected. (4) Some reacted CaCO 3 particles have unreacted mineral species, such as aluminosilicates, iron oxide, SiO 2, etc., in the core region. (5) All sea-salt particles are observed to have reacted in the air. Some of them were recrystallized in the air before being collected and they are observed as crystalline NaNO 3 particles. (6) Many sea-salts were collected as water drops, and some of them were fractionally recrystallized on Ag collecting substrate. When sea-salts were not recrystallized on the substrate, they are found as particles internally mixed with NaNO 3 and Mg(NO 3) 2, and in some cases SO 4 and Cl species as additional anions.
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
Study on the surface sulfidization behavior of smithsonite at high temperature
NASA Astrophysics Data System (ADS)
Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing
2018-04-01
Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
Growth and structural, optical, and electrical properties of zincite crystals
NASA Astrophysics Data System (ADS)
Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.
2013-03-01
An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.
Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide
NASA Astrophysics Data System (ADS)
Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra
2008-12-01
A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.
Procurement of novel microanalysis equipment for construction materials.
DOT National Transportation Integrated Search
2012-02-01
The equipment procured (i.e. an Orbis micro X-ray Fluorescence (MXRF) and an APSEX personal Scanning Electron Microscope (PSEM)) is part of the next generation of micro analytical equipment. These tools have the ability to make large volumes of...
Using DTSA-II to simulate and interpret energy dispersive spectra from particles.
Ritchie, Nicholas W M
2010-06-01
A high quality X-ray spectrum image of a 3.3 mum diameter sphere of K411 glass resting on a copper substrate was collected at 25 keV. The same sample configuration was modeled using the NISTMonte Monte Carlo simulation of electron and X-ray transport as is integrated into the quantitative X-ray microanalysis software package DTSA-II. The distribution of measured and simulated X-ray intensity compare favorably for all the major lines present in the spectra. The simulation is further examined to investigate the influence of angle-of-incidence, sample thickness, and sample diameter on the generated and measured X-ray intensity. The distribution of generated X-rays is seen to deviate significantly from a naive model which assumes that the distribution of generated X-rays is similar to bulk within the volume they share in common. It is demonstrated that the angle at which the electron beam strikes the sample has nonnegligible consequences. It is also demonstrated that within the volume that the bulk and particle share in common that electrons, which have exited and later reentered the particle volume, generate a significant fraction of the X-rays. Any general model of X-ray generation in particles must take into account the lateral spread of the scattered electron beam.
Electron microscopy methods in studies of cultural heritage sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less
Electron microscopy methods in studies of cultural heritage sites
NASA Astrophysics Data System (ADS)
Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.
2016-11-01
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.
Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.
Augustynowicz, Joanna; Wróbel, Paweł; Płachno, Bartosz J; Tylko, Grzegorz; Gajewski, Zbigniew; Węgrzynek, Dariusz
2014-06-01
The aim of the study was the analysis of Cr distribution in shoots of the macrophyte Callitriche cophocarpa by means of two X-ray-based techniques: micro X-ray fluorescence (μXRF) and electron probe X-ray microanalysis (EPXMA). Plants were treated with 100 μM (5.2 mg l(-1)) chromium solutions for 7 days. Cr was introduced independently at two speciations as Cr(III) and Cr(VI), known for their diverse physicochemical properties and different influence on living organisms. A comparative analysis of Cr(III)-treated plants by EPXMA and μXRF demonstrated high deposition of Cr in epidermal glands/hairs localized on leaves and stems of the plant shoots. Cr in Cr(III)-treated plants was recorded solely in glands/hairs, and the element was not present in any other structures. On the other hand, Cr in Cr(VI)-treated group of plants was rather found in vascular bundles. Moreover, the concentration of Cr in Cr(VI)-treated plants was significantly lower than in plants incubated in Cr(III) solution. The results obtained in this work suggest differences in chromium uptake, transport and accumulation dependent on the oxidative state of the element.
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2013-05-01
The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
Newbury, Dale E; Ritchie, Nicholas W M
2016-08-01
Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).
Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series.
Sproules, Stephen; Eagle, Aston A; George, Graham N; White, Jonathan M; Young, Charles G
2017-05-01
Orange Tp*WSCl 2 has been synthesized from the reactions of Tp*WOCl 2 with boron sulfide in refluxing toluene or Tp*WS 2 Cl with PPh 3 in dichloromethane at room temperature. Mononuclear sulfido-tungsten(V) complexes, Tp*WSXY {X = Y = Cl, OPh, SPh, SePh; X = Cl, Y = OPh; XY = toluene-3,4-dithiolate (tdt), quinoxaline-2,3-dithiolate (qdt); and Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate} were prepared by metathesis of Tp*WSCl 2 with the respective alkali metal salt of X - /XY 2- , or [NHEt 3 ] 2 (qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, and infrared (IR), electron paramagnetic resonance (EPR) and electronic absorption spectroscopies. The molecular structures of Tp*WS(OPh) 2 , Tp*WS(SePh) 2 , and Tp*WS(tdt) have been determined by X-ray crystallography. The six-coordinate, distorted-octahedral W centers are coordinated by terminal sulfido (W≡S = 2.128(2) - 2.161(1) Å), terdentate facial Tp*, and monodentate/bidentate O/S/Se-donor ligands. The sulfido-W(V) complexes are characterized by lower energy electronic transitions, smaller g iso , and larger A iso ( 183 W) values, and more positive reduction potentials compared with their oxo-W(V) counterparts. This series has been probed by sulfur K-edge X-ray absorption spectroscopy (XAS), the spectra being assigned by comparison to Tp*WOXY (X = Y = SPh; XY = tdt, qdt) and time-dependent density functional theoretical (TD-DFT) calculations. This study provides insight into the electronic nature and chemistry of the catalytically and biologically important sulfido-W unit.
D. L. Johnson; D. J. Nowak; V. A. Jouraeva
1999-01-01
Leaves from twenty-three deciduous tree species and five conifer species were collected within a limited geographic range (1 km radius) and evaluated for possible application of scanning electron microscopy and X-ray microanalysis techniques of individual particle analysis (IPA). The goal was to identify tree species with leaves suitable for the automated...
Li, Jingyuan; Lai, Huiying; Xu, Yuzhao
2018-01-01
The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894
Crystallization of the glassy phase of grain boundaries in silicon nitride
NASA Technical Reports Server (NTRS)
Jefferson, D. A.; Thomas, J. M.; Wen, S.
1984-01-01
Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.
NASA Astrophysics Data System (ADS)
Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas
2011-12-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.
Composition, speciation and distribution of iron minerals in Imperata cylindrica.
Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús
2007-05-01
A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.
NASA Astrophysics Data System (ADS)
Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom
2006-10-01
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.
NASA Astrophysics Data System (ADS)
Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao
2018-04-01
The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs.
Mikhailovich Irianov, Iurii; Vladimirovna Diuriagina, Olga; Iurevna Karaseva, Tatiana; Anatolevich Karasev, Evgenii
2014-02-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.
FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING
NASA Astrophysics Data System (ADS)
Du, Baoshuai
2013-06-01
Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.
Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy
NASA Astrophysics Data System (ADS)
Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph
2017-04-01
Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.
X-ray microanalysis of black piedra.
Figueras, M J; Guarro, J
1997-11-01
The elements present in the fungal structures produced by Piedraia hortae in vivo and in vitro have been investigated using electron microscopy X-ray microanalysis. Phosphorus, sulphur and calcium were detected in the nodules which developed on hair and on colonies on culture. These elements belong to the extracellular material that compacts the pseudoparenchymatous organization of the fungus. They may be present due to the capacity of melanin-like pigments to sequester ions and/or they may form part of the sulphates and phosphates of the polyanionic mucopolysaccharides that constitute the extracellular material. Environmental contaminants such as aluminium, silicon and iron were detected exclusively on the surface of the nodule. They were deposited or linked to the residual molecules produced during the breakdown of the cuticular keratin. The advantages of these techniques for elucidating the chemical nature of fungal structures are discussed.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
NASA Astrophysics Data System (ADS)
Tudu, Kichakeswari; Pal, Sagar; Mandre, N. R.
2018-05-01
This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
NASA Astrophysics Data System (ADS)
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-07-01
There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.
2004-10-03
One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less
2011-01-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725
Crystal Chemistry and Conductivity Studies in the System La 0.5+ x+ yLi 0.5-3 xTi 1-3 yCr 3 yO 3
NASA Astrophysics Data System (ADS)
Martínez-Sarrión, M. L.; Mestres, L.; Morales, M.; Herraiz, M.
2000-12-01
The stoichiometry polymorphism and electrical behavior of solid solutions La0.5+x+yLi0.5-3xTi1-3yCr3yO3 with perovskite-type structure were studied. Data are given in the form of a solid solutions triangle, phase diagrams, XRD patterns for the three polymorphs, A, β, and C, composition dependence of their lattice parameters, and ionic and electronic conductivity plots. Microstructure and composition were studied by SEM/EDS and electron probe microanalysis. These compounds are mixed conductors. Ionic conductivity decreased when the amount of lithium diminished and electronic conductivity increased with chromium content.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Phase constitution characteristics of the Fe-Al alloy layer in the HAZ of calorized steel pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yajiang; Zou Zengda; Wei Xing
1997-09-01
Mechanical properties of the welding region and phase constitution characteristics in the iron-aluminum (Fe-Al) alloy layer of calorized steel pipes were researched by means of metallography, which included the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and an X-ray diffractometer. Experimental results indicated that the Fe-Al alloy layer of calorized steel pipe was mainly composed of an FeAl phase, an Fe{sub 3}Al phase and an {alpha}-Fe(Al) solid solution, and the microhardness in the Fe-Al coating was 600--310 HM from the surface layer to the inside. There were no higher aluminum content phases, suchmore » as brittle FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}. By controlling the aluminizing process parameters, the ability to bear deformation and weld-ability of the calorized steel pipe were remarkably improved.« less
Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds
NASA Astrophysics Data System (ADS)
Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.
2017-04-01
Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.
NASA Astrophysics Data System (ADS)
Geng, Hong; Jin, Chun-Song; Zhang, Dong-Peng; Wang, Shu-Rong; Xu, Xiao-Tian; Wang, Xu-Ran; Zhang, Yuan; Wu, Li; Ro, Chul-Un
2017-07-01
The aim of the study is to characterize the size-resolved urban haze particles and investigate their modification in morphology and composition in summer and winter using the semi-quantitative electron probe X-ray microanalysis (EPMA) based on both scanning and transmission electron microscopies equipped with ultrathin-window energy dispersive X-ray spectrometers (SEM-EDX and TEM-EDX). The haze and non-haze particles were collected through a seven-stage May cascade impactor on Dec. 29-30, 2009 and Jan. 8-9 and July 11-14, 2010 in Taiyuan, a typical inland city in the North China Plain. Approximately 3752 atmospheric particles in the size ranges of 4-2 μm, 2-1 μm, 1-0.5 μm, and 0.5-0.25 μm in aerodynamic diameter were measured and identified according to their secondary electron or TEM images and elemental atomic concentrations calculated through a Monte Carlo simulation program. Results show that on the haze days many reacted or aged mineral dust particles were encountered, in which the sulfate-containing ones outnumbered the nitrate-containing ones in the winter samples while it was on the contrary in the summer samples, suggesting different haze formation and evolution mechanisms in summer and winter. Furthermore, in the haze events (especially in summer), many CNOS-rich particles, likely mixtures of water-soluble organic carbon with (NH4)2SO4 or NH4HSO4, were observed not only in the submicron but also in the super-micron fractions. The simultaneous observation of the fresh and aged CNOS-rich particles in the same SEM or TEM images implied that the status and components of secondary particles were complicated and changeable. The significant increase of both elemental concentration ratios of [N]/[S] and [C]/[S] in the aged ones compared to the fresh ones indicated that NH4NO3 and secondary organic matter were likely absorbed onto (NH4)2SO4 or NH4HSO4 particles and mixed with them. K-rich, Fe-rich, and heavy metal-containing particles in TEM-EDX measurement were detected more in the winter haze samples than in the summer ones, suggesting that they tend to be smaller in size and mainly derive from anthropogenic biomass burning and coal combustion. It was concluded that the combined use of SEM-EDX and TEM-EDX can identify both submicron and super-micron urban haze particles in a straightforward way and trace their modifications in size, shape, mixing state, and chemical compositions in different seasons, helping address their evolution processes and hazards on human health.
Efforts to identify Te-rich nano-islands in ZnSe
NASA Astrophysics Data System (ADS)
Lau, June W.; Volkov, Vyacheslav V.; Zhu, Yimei; Kuskovsky, Igor L.; Neumark, Gertrude F.; Lin, W.; Maksimov, Oleg; Tamargo, Maria C.
2002-03-01
Much work has been done on the study of nano-island formation (“dopants”) in various systems by use of electron microscopy, often complemented by x-ray microanalysis [1]. This works well for systems involving one or more monolayers of dopants. Our system consists of Te and N dopants incorporated into ZnSe in sub-monolayer quantities [2]. This presents a challenge; our calculations show that this case is probably below the detection limit of x-ray microanalysis. Our samples do show strain contrasts but we were unable to obtain direct confirmation of nano-islands’ existence. As an alternative, dark field images from chemically sensitively reflections were used in volumetric defect density studies. The defect density in the doped samples was higher than that of the undoped samples. 1. Dorin C., U of Mich. Poster presentation at Fall MRS meeting 2001 2. Lin et al., Apple. Phys. Let., 76, 2205 (2000).
Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander
2016-04-01
Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.
Moore, Katie L; Lombi, Enzo; Zhao, Fang-Jie; Grovenor, Chris R M
2012-04-01
The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.
From HeLa cell division to infectious diarrhoea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, J.; Osborne, M.P.; Spencer, A.J.
1990-09-01
Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72hmore » post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.« less
NASA Astrophysics Data System (ADS)
Gopon, Phillip; Spicuzza, Michael J.; Kelly, Thomas F.; Reinhard, David; Prosa, Ty J.; Fournelle, John
2017-09-01
The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. ; Spicuzza et al. ). Additional examples of Fe-silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X-ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe-Si and Si0 minerals in lunar regolith return material. The new Fe-Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.
Armigliato, Aldo; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo
2013-02-01
A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, <100> oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc 103, 203-207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal 1, 1-22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
X-Ray Microanalysis of Human Cementum
NASA Astrophysics Data System (ADS)
Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio
2005-08-01
An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.
Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang
2018-05-01
Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.
Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho
2014-01-01
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Moonshiram, D.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.
2016-01-01
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. PMID:27212390
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics.
Picón, A; Lehmann, C S; Bostedt, C; Rudenko, A; Marinelli, A; Osipov, T; Rolles, D; Berrah, N; Bomme, C; Bucher, M; Doumy, G; Erk, B; Ferguson, K R; Gorkhover, T; Ho, P J; Kanter, E P; Krässig, B; Krzywinski, J; Lutman, A A; March, A M; Moonshiram, D; Ray, D; Young, L; Pratt, S T; Southworth, S H
2016-05-23
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.
Cooper, Bridgette; Kolorenč, Přemysl; Frasinski, Leszek J; Averbukh, Vitali; Marangos, Jon P
2014-01-01
Ultrafast hole dynamics created in molecular systems as a result of sudden ionisation is the focus of much attention in the field of attosecond science. Using the molecule glycine we show through ab initio simulations that the dynamics of a hole, arising from ionisation in the inner valence region, evolves with a timescale appropriate to be measured using X-ray pulses from the current generation of SASE free electron lasers. The examined pump-probe scheme uses X-rays with photon energy below the K edge of carbon (275-280 eV) that will ionise from the inner valence region. A second probe X-ray at the same energy can excite an electron from the core to fill the vacancy in the inner-valence region. The dynamics of the inner valence hole can be tracked by measuring the Auger electrons produced by the subsequent refilling of the core hole as a function of pump-probe delay. We consider the feasibility of the experiment and include numerical simulation to support this analysis. We discuss the potential for all X-ray pump-X-ray probe Auger spectroscopy measurements for tracking hole migration.
Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets
NASA Astrophysics Data System (ADS)
Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun
2018-04-01
Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.
2013-12-15
The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less
Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
Picón, A.; Lehmann, C. S.; Bostedt, C.; ...
2016-05-23
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less
High-pressure studies with x-rays using diamond anvil cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guoyin; Mao, Ho Kwang
2016-11-22
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less
High-pressure studies with x-rays using diamond anvil cells
NASA Astrophysics Data System (ADS)
Shen, Guoyin; Mao, Ho Kwang
2017-01-01
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont
Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.
2009-01-01
Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs
Irianov, Iurii Mikhailovich; Diuriagina, Olga Vladimirovna; Karaseva, Tatiana Iurevna; Karasev, Evgenii Anatolevich
2014-01-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase. PMID:24579962
High-strength bioresorbable Fe-Ag nanocomposite scaffolds: Processing and properties
NASA Astrophysics Data System (ADS)
Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y.; Gotman, Irena
2015-10-01
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na2SO4 and K2CO3 salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy's law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18-22 MPa), compressive strength of 8-12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6-6 cm2) is close to the range of trabecular bone.
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests
Ye, Wei; Song, Xiaoping; Ma, Yuantai; Li, Ying
2017-01-01
The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer. PMID:29099061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.
To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less
Microscopy and microanalysis 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.
1996-12-31
The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less
Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Tetsuya; Tagami, Masahiko; Sarai, Yoshinori
2004-11-15
Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregatesmore » and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.« less
THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine’s full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented. PMID:29271749
THz pulse doubler at FLASH: double pulses for pump-probe experiments at X-ray FELs.
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Schreiber, Siegfried; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine's full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented.
Back-bombardment compensation in microwave thermionic electron guns
NASA Astrophysics Data System (ADS)
Kowalczyk, Jeremy M. D.; Madey, John M. J.
2014-12-01
The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picón, A.; Lehmann, C. S.; Bostedt, C.
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less
Standardless quantification by parameter optimization in electron probe microanalysis
NASA Astrophysics Data System (ADS)
Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.
2012-11-01
A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively.
Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René
2005-09-01
Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.
Resistance in mango against infection by Ceratocystis fimbriata.
Araujo, Leonardo; Bispo, Wilka Messner Silva; Cacique, Isaías Severino; Moreira, Wiler Ribas; Rodrigues, Fabrício Ávila
2014-08-01
This study was designed to characterize and describe host cell responses of stem tissue to mango wilt disease caused by the fungus Ceratocystis fimbriata in Brazil. Disease progress was followed, through time, in inoculated stems for two cultivars, 'Ubá' (field resistant) and 'Haden' (field susceptible). Stem sections from inoculated areas were examined using fluorescence light microscopy and transmission and scanning electron microscopy, coupled with energy-dispersive X-ray microanalysis. Tissues from Ubá colonized by C. fimbriata had stronger autofluorescence than those from Haden. The X-ray microanalysis revealed that the tissues of Ubá had higher levels of insoluble sulfur and calcium than those of Haden. Scanning electron microscopy revealed that fungal hyphae, chlamydospores (aleurioconidia), and perithecia-like structures of C. fimbriata were more abundant in Haden relative to Ubá. At the ultrastructural level, pathogen hyphae had grown into the degraded walls of parenchyma, fiber cells, and xylem vessels in the tissue of Haden. However, in Ubá, plant cell walls were rarely degraded and hyphae were often surrounded by dense, amorphous granular materials and hyphae appeared to have died. Taken together, the results of this study characterize the susceptible and resistant basal cell responses of mango stem tissue to infection by C. fimbriata.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2015-10-01
X-ray spectra suffer significantly degraded spatial resolution when measured in the variable-pressure scanning electron microscope (VPSEM, chamber pressure 1 Pa to 2500 Pa) as compared to highvacuum SEM (operating pressure < 10 mPa). Depending on the gas path length, electrons that are scattered hundreds of micrometers outside the focused beam can contribute 90% or more of the measured spectrum. Monte Carlo electron trajectory simulation, available in NIST DTSA-II, models the gas scattering and simulates mixed composition targets, e.g., particle on substrate. The impact of gas scattering at the major (C > 0.1 mass fraction), minor (0.01 <= C <= 0.1), and trace (C < 0.01) constituent levels can be estimated. NIST DTSA-II for Java-platforms is available free at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys
Yang, Ying; Tan, Lizhen; Busby, Jeremy T.
2015-06-12
Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, T.; Sato, F.; Saga, K.
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
NASA Astrophysics Data System (ADS)
Bulienkov, N. A.; Zheligovskaya, E. A.; Chernogorova, O. P.; Drozdova, E. I.; Ushakova, I. N.; Ekimov, E. A.
2018-01-01
A composite material (CM) reinforced by diamond particles is fabricated from a mixture of cobalt and 10 wt % C60 powders at a pressure of 8 GPa and a temperature of 1200-1300°C, which is close to the melting temperature of the metastable Co-C eutectic. The results of X-ray diffraction, Raman spectroscopy, and electron-probe microanalysis demonstrate that the CM consists of diamond and the Co3C carbide. Diamond crystals are shown to grow as plates parallel to a {100} plane according to the mechanism of nonequilibrium normal growth during liquid-phase CM synthesis. The diamond particles have a hardness of 82 GPa at an elastic recovery of 95%. The structure of the synthesized cobalt-based CM with diamond inclusions ensures its ultrahigh wear resistance and antifriction properties.
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produces a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Scattered electrons in microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottensmeyer, F.P.
The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produce a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less
Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho
2014-01-01
Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future. PMID:24611006
Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches
NASA Astrophysics Data System (ADS)
Esteves, Hugo; Fernandes, Isabel; Janeiro, Ana; Santos Silva, António; Pereira, Manuel; Medeiros, Sara; Nunes, João Carlos
2017-12-01
Several concrete structures show signs of deterioration resulting from internal chemical reactions, such as the alkali-silica reaction (ASR). It is well known that these swelling reactions occur in the presence of moisture, between some silica mineral phases present in the aggregates and the alkalis of the concrete, leading to the degradation of concrete structures and consequently compromising their safety. In most of the cases, rehabilitation, demolition or even rebuilding of such structures is needed and the effective costs can be very high. Volcanic rocks are commonly used as aggregates in concrete, and they are sometimes the only option due to the unavailability of other rock types. These rocks may contain different forms of silica that are deleterious to concrete, such as opal, chalcedony, cristobalite, tridymite and micro- to cryptocrystalline quartz, as well as Si-rich volcanic glass. Volcanic rocks are typically very finegrained and their constituting minerals are usually not distinguished under optical microscopy, thus leading to using complementary methods. The objective of this research is to find the more adequate analytical methods to identify silica phases that might be present in volcanic aggregates and cause ASR. The complementary methods used include X-Ray Diffraction (XRD), mineral acid digestion and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry (SEM/EDS), as well as Electron Probe Micro-Analysis (EPMA).
Reactions in the Tuyere Zone of Ironmaking Blast Furnace
NASA Astrophysics Data System (ADS)
Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Lee, Hae-Geon; Zhao, Baojun
2018-02-01
A series of slags can be formed in the lower part of the ironmaking blast furnace that play important roles in smooth furnace operation, and in determining iron quality and productivity. The final slag tapped from the BF has been investigated extensively as it can be collected directly. Unfortunately, difficulties in accessing the interiors of the blast furnace limit the full understanding of other slags such as primary and bosh slags. In this study, different types of samples directly obtained from the tuyere zone of the blast furnace have been systematically analyzed and characterized using scanning electron microscopy (SEM), electron probe X-ray microanalysis (EPMA), and X-ray fluorescence (XRF), with focus on the characteristics of slags formed in the tuyere level. The samples were identified into three groups according to their morphological, mineralogical, and chemical properties: (1) tuyere slags originating from the reactions between ash and dripping slags; (2) bosh slags in the CaO-SiO2-Al2O3-MgO-FeO system, with a CaO/SiO2 weight ratio of around 1.50, and Al2O3 and MgO concentrations close to those of final slags; and (3) coke ash that did not react with bosh slags. These findings will provide useful information on the evaluation of slags inside the blast furnace and the reactions in the tuyere zone.
Behavior of New Zealand Ironsand During Iron Ore Sintering
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pinson, David; Chew, Sheng; Rogers, Harold; Monaghan, Brian J.; Pownceby, Mark I.; Webster, Nathan A. S.; Zhang, Guangqing
2016-02-01
A New Zealand ironsand sample was characterized by scanning electron microscopy (SEM), X-ray fluorescence spectroscopy, qualitative and quantitative X-ray diffraction, and electron probe microanalysis. The titanomagnetite-rich ironsand was added into an industrial sinter blend in the proportion of 5 wt pct, and the mixture was uniaxially pressed into cylindrical tablets and sintered in a tube furnace under flowing gas with various oxygen potentials and temperatures to develop knowledge and understanding of the behavior of titanium during sintering. An industrial sinter with the addition of 3 wt pct ironsand was also examined. Both the laboratory and industrial sinters were characterized by optical and SEM. Various morphologies of relict ironsand particles were present in the industrial sinter due to the heterogeneity of sintering conditions, which could be well simulated by the bench-scale sintering experiments. The assimilation of ironsand during sintering in a reducing atmosphere started with the diffusion of calcium into the lattice of the ironsand matrix, and a reaction zone was formed near the boundary within individual ironsand particles where a perovskite phase was generated. With increasing sintering temperature, in a reducing atmosphere, ironsand particles underwent further assimilation and most of the titanium moved from the ironsand particles into a glass phase. In comparison, more titanium remained in the original ironsand particles when sintered in air. Ironsand particles are more resistant to assimilation in an oxidizing atmosphere.
Delogne, Christophe; Lawford, Patricia V; Habesch, Steven M; Carolan, Vikki A
2007-10-01
Bioprosthetic heart valve tissue and associated calcification were studied in their natural state, using environmental scanning electron microscopy (ESEM). Energy dispersive X-ray micro-analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopy were used to characterize the various calcific deposits observed with ESEM. The major elements present in calcified valves were also analyzed by inductively coupled plasma-optical emission spectroscopy. To better understand the precursor formation of the calcific deposits, results from the elemental analyses were statistically correlated. ESEM revealed the presence of four broad types of calcium phosphate crystal morphology. In addition, two main patterns of organization of calcific deposits were observed associated with the collagen fibres. Energy dispersive X-ray micro-analysis identified the crystals observed by ESEM as salts containing mainly calcium and phosphate with ratios from 1.340 (possibly octacalcium phosphate, which has a Ca/P ratio of 1.336) to 2.045 (possibly hydroxyapatite with incorporation of carbonate and metal ion contaminants, such as silicon and magnesium, in the crystal lattice). Raman and fourier-transform infrared spectroscopy also identified the presence of carbonate and the analyses showed spectral features very similar to a crystalline hydroxyapatite spectrum, also refuting the presence of precursor phases such as beta-tricalcium phosphate, octacalcium phosphate and dicalcium phosphate dihydrate. The results of this study raised the possibility of the presence of precursor phases associated with the early stages of calcification.
Scanning Electron Microscopy | Materials Science | NREL
platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative
Probing solid catalysts under operating conditions: electrons or X-rays?
Thomas, John Meurig; Hernandez-Garrido, Juan-Carlos
2009-01-01
Seeing is believing: In light of recent advances, the pros and cons of using electrons and X-rays for in situ studies of catalysts are analyzed: by using X-rays the structure of bound reactants at steady state are obtained from extended X-ray adsorption fine structure spectroscopy (EXAFS) data (see graph), thereby affording mechanistic insights.
Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat
2004-10-01
Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.
NASA Astrophysics Data System (ADS)
Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.
2018-07-01
α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.
Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N
2016-09-01
A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.
Studies on the cellular and subcellular reactions in epidermis at irritant and allergic dermatitis.
Lindberg, M
1982-01-01
To determine the cellular and subcellular reactions of keratinocytes at contact dermatitis, transmission electron microscopy was used in combination with energy dispersive X-ray microanalysis. Stereology and optical diffraction were used as complements to electron microscopy for studies of the effects of variations in the preparation technique on the ultrastructure of epidermis. The morphological effects of an increased hydration of epidermis were assessed by the use of occlusive patch tests. It was found that the relative volume of the epidermal intercellular space and the ultrastructure of the epidermal cells (keratinocytes and Langerhans' cells) were directly dependent on the osmolality of the fixative vehicle if glutaraldehyde was used as fixative. Cellular volume and morphology did also depend on the fixative used. Variations in the volume of the intercellular space were also detected when the water transport through epidermis was impaired by occlusive treatment. In normal epidermis prolonged fixation times (4 weeks) did not affect the morphology of the keratinocytes. However, if the structure and function of the keratinocytes were affected by the application of a irritant substance (DNCB), a loss of electron dense material from the cells was detected within 3 weeks. The ultrastructural changes in the keratinocytes at the irritant chromate and DNCB reactions were of a non-specific nature and are in accordance with the changes described for other irritant agents in the literature. A few cells with the features of apoptosis were recorded. The allergic chromate reaction was found to be a combination of the irritant reaction and a marked inflammatory response. To correlate the ultrastructural alterations in the keratinocytes with the functional state of the cells, X-ray microanalysis was used to determine the elemental redistribution occurring at the irritant DNCB reaction. The results of the X-ray microanalysis showed a good correlation between dose and time dependent effects and with the ultrastructural changes. Cell injury in the keratinocytes lead to decreases in the cellular content of phosphorous, potassium and magnesium and an increase of cellular calcium. Sodium, chloride, and sulphur were only moderately changed. A stimulation of the basal keratinocytes was detectable when a weak DNCB dose was applied to the skin.
Inter-layered clay stacks in Jurassic shales
NASA Technical Reports Server (NTRS)
Pye, K.; Krinsley, D. H.
1983-01-01
Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.
Electron Microscope Studies of Cadmium Mercury Telluride
NASA Astrophysics Data System (ADS)
Lyster, Martin
Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.
Cysticercosis of the fallopian tube: histology and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, J.L.; Spore, W.W.; Benirschke, K.
1982-07-01
The authors identified a degenerated, focally calcified cestode larva (cysticercus) in the fallopian tube of a 50-year-old woman with endometriosis. The physiologic reaction to the larva was minimal, with some focal granulomatous salpingitis. No other focus of infection was detected. The differential diagnosis included trophoblastic tissue, foreign material, and parasites. Scanning electron microscopy and x-ray microanalysis of the organism revealed concentration of iodine in the subcuticular connective tissue of the larva and confirmed the calcium phosphate composition of the calcareous corpuscles. The presumed source of the iodine was the continued exposure of the larva to an environment rich in iodidemore » secreted by the epithelium of the fallopian tube.« less
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl
2016-03-07
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.
NASA Astrophysics Data System (ADS)
Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.
2007-09-01
A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.
Hair casts due to a deodorant spray.
Ena, Pasquale; Mazzarello, Vittorio; Chiarolini, Fausto
2005-11-01
A 7-year-old girl presented with itching and greyish-white sleeve-like structures in her hair. After ruling out other possible causes for the symptoms, such as nits and dandruff, it was determined that the patient was affected by hair casts. These are small cylindrical structures resembling louse eggs that encircle individual scalp hairs and are easily movable along the hair shafts. It was concluded that she had induced the condition through misuse of a deodorant body spray. Scanning electron microscopy combined with electron dispersive X-ray analysis (X-ray microanalysis) of the hair casts showed the chemical nature of the structures. Some elements present in the composition of the ingredients of the deodorant spray, such as aluminium, chlorine, silicon, magnesium and carbon, were also present in this uncommon type of hair casts.
Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources
NASA Astrophysics Data System (ADS)
Rohringer, Nina
2015-05-01
X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.
Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki
2016-09-01
Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices
2015-06-01
either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray
THz-pump and X-ray-probe sources based on an electron linac
NASA Astrophysics Data System (ADS)
Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk
2017-11-01
We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.
Otang, Wilfred M.; Grierson, Donald S.; Ndip, Roland N.
2011-01-01
In this study, the effect of the acetone extract of Arctotis arctotoides (L.f.) O. Hoffm. (Asteraceae) on the growth and ultrastructure of some opportunistic fungi associated with HIV/AIDS was analyzed by means of scanning electron microscope (SEM). Remarkable morphological alterations in the fungal mycelia which were attributed to the loss of cell wall strength ranged from loss of turgidity and uniformity, collapse of entire hyphae to evident destruction of the hyphae. The elements responsible for giving the fungi their characteristic virulence were detected and quantified by energy dispersive X-ray microanalysis techniques. X-ray microanalysis showed the specific spectra of sodium, potassium and sulfur as the principal intersection of the four pathogenic fungi studied. Since these ions have the potential of fostering fungal invasion by altering the permeability of hosts’ membranes, their presence was considered inherent to the pathogenicity of the opportunistic fungi. Hence, these findings indicate the potential of the crude extract of A. arctotoides in preventing fungal invasion and subsequent infection of host’s membranes. PMID:22272130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roomans, G.M.; Wei, X.; Ceder, O.
The chronically reserpinized rat has been suggested as an animal model for cystic fibrosis. X-ray microanalysis of thick and thin cryosections was carried out to assess elemental redistribution in the submandibular glands and the pancreas of reserpinized rats at the cellular and subcellular level. In the submandibular gland of reserpinized rats, calcium and magnesium concentrations were significantly elevated. Mucus globules, secretory granules, and endoplasmic reticulum were the primary sites of the localization of excess calcium and magnesium. A significant potassium loss from the gland had occurred, particularly from the serous cells. Electron microscopy of conventionally prepared tissue showed marked swellingmore » of the endoplasmic reticulum, especially in mucous cells. The elemental changes in the pancreatic acinar cells of reserpinized rats were reminiscent of elemental redistribution connected with cell death: increased levels of sodium, chlorine, and calcium and decreased levels of magnesium and potassium. Ultrastructural changes included swelling of the endoplasmic reticulum and obstruction of the acinar lumen. It is concluded tha elemental redistribution in chronically reserpinized rats presents interesting parallels with cystic fibrosis.« less
Sarathchandra, P; Pope, F M; Ali, S Y
1996-06-01
Osteogenesis imperfecta (OI) is a rare, heterogeneous, inherited connective tissue disorder frequently caused by abnormalities of type I collagen. It is characterized by bone fragility, osteopenia, and progressive skeletal deformities. Electron microscopy of three OI type II fetal bone samples revealed numerous large osteocyte lacunae. In addition, there was a perilacunar osteoid-like band of collagen surrounding the osteocytes, which was unmineralized and morphologically unusual. Furthermore, large osteocyte lacunae contained fine particles and filamentous material similar to the expected ultrastructural appearance of proteoglycans. More detailed examination was carried out using histochemical and immunogold localization of proteoglycans at light and ultrastructural levels. These tests and the use of electron probe X-ray microanalysis confirmed that the material in the osteocyte lacunae was proteoglycan. In contrast, in the age- and site-matched normal fetal bone, all the osteocyte lacunae appeared negative for proteoglycan. Proteoglycans are regarded as inhibitors of calcification. Our observation of substantial amounts of proteoglycan in abnormally enlarged osteocytic lacunae of some OI fetal bone suggests association with the abnormal bone of this particular subtype of OI type II.
Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B
2014-01-01
The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of sol-gel processing parameters on the phases and microstructures of HA films.
Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan
2007-06-15
Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com
2015-01-15
With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less
Diffusion bonding of titanium to 304 stainless steel
NASA Astrophysics Data System (ADS)
Ghosh, M.; Bhanumurthy, K.; Kale, G. B.; Krishnan, J.; Chatterjee, S.
2003-11-01
Diffusion bonding between commercially pure titanium and an austenitic stainless steel (AISI 304) has been carried out in the temperature range of 850-950 °C for 2 h at uniaxial pressure of 3 MPa in vacuum. The microstructure of the diffusion zone has been analysed by optical and scanning electron microscopy (SEM). The interdiffusion of the diffusing species across the interface has been evaluated by electron probe microanalysis (EPMA). The reaction products formed at the interface have been identified by X-ray diffraction technique. It has been observed that the diffusion zone is dominated by the presence of the σ phase close to the stainless steel side and the solid solution of β-Ti (solutes are Fe, Cr and Ni) close to the titanium. The presence of Fe 2Ti and FeTi has been found in the reaction zone. It has been observed that the bond strength (˜222 MPa) is highest for the couple processed at 850 °C and this value decreases with rise in joining temperature. The variation of strength of the transition joints is co-related with the microstructural characteristics of the diffusion zone.
Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
Newbury, Dale E; Ritchie, Nicholas W M
2013-01-01
Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.
Ansari, T M; Marr, I L; Coats, A M
2001-02-01
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...
2012-11-05
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe
2012-01-01
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631
Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers.
Amna, Touseef; Hassan, M Shamshi; Barakat, Nasser A M; Pandeya, Dipendra Raj; Hong, Seong Tshool; Khil, Myung-Seob; Kim, Hak Yong
2012-01-01
In this study, a biological evaluation of the antimicrobial activity of Zn-doped titania nanofibers was carried out using Escherichia coli ATCC 52922 (Gram negative) and Staphylococcus aureus ATCC 29231 (Gram positive) as model organisms. The utilized Zn-doped titania nanofibers were prepared by the electrospinning of a sol-gel composed of zinc nitrate, titanium isopropoxide, and polyvinyl acetate; the obtained electrospun nanofibers were vacuum dried at 80°C and then calcined at 600°C. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, and transmission electron microscopy (TEM). The antibacterial activity and the acting mechanism of Zn-doped titania nanofibers against bacteria were investigated by calculation of minimum inhibitory concentration and analyzing the morphology of the bacterial cells following the treatment with nanofibers solution. Our investigations reveal that the lowest concentration of Zn-doped titania nanofibers solution inhibiting the growth of S. aureus ATCC 29231 and E. coli ATCC 52922 strains is found to be 0.4 and 1.6 μg/ml, respectively. Furthermore, Bio-TEM analysis demonstrated that the exposure of the selected microbial strains to the nanofibers led to disruption of the cell membranes and leakage of the cytoplasm. In conclusion, the combined results suggested doping promotes antimicrobial effect; synthesized nanofibers possess a very large surface-to-volume ratio and may damage the structure of the bacterial cell membrane, as well as depress the activity of the membranous enzymes which cause bacteria to die in due course.
NASA Astrophysics Data System (ADS)
Ostos, C.; Martínez-Sarrión, M. L.; Mestres, L.; Delgado, E.; Prieto, P.
2009-10-01
Rare-earth ( RE) doped Ba(Zr,Ti)O 3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba 0.90Ln0.067Zr 0.09Ti 0.91O 3 ( Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO 3, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2 p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO 3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO 6-octahedra distortion ( M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/ RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.
Thomson-backscattered x rays from laser-accelerated electrons.
Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R
2006-01-13
We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.
Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2008-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer of choice especially for scanning electron microscopy applications. The complementary features of large active areas (i.e., collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling of the detector. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM will be discussed.
NASA Astrophysics Data System (ADS)
Song, Changyong
2017-05-01
Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.
Brázová, Tímea; Poddubnaya, Larisa G; Miss, Noemí Ramírez; Hanzelová, Vladimíra
2014-12-01
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called 'epidermal covering' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of -0.3 μm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook 'epidermal covering' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Farkas, I; Szerdahelyi, P; Kása, P
1988-01-01
The absolute concentration of zinc in the Purkinje cells of the rat cerebellum was determined by means of energy dispersive X-ray microanalysis (EDAX). Gelatine blocks with known zinc concentrations were stained by Timm's sulphide-silver method, and their silver concentrations were measured by EDAX. A linear correlation was found between the zinc and silver concentrations and this linear function was used as a quantitative calibration for evaluation of sulphide-silver staining, after perfusion with sodium-sulphide solution, fixation with glutaraldehyde, cryostat sectioning and staining of cerebellar samples in Timm's reagent.
Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems
NASA Astrophysics Data System (ADS)
Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter
The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.
Arsenic Incorporation Into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowers, H.A.; Breit, G.N.; Foster, A.L.
2007-07-10
Sediment from two deep boreholes ({approx}400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wellsmore » containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.« less
Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh
Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, Md. N.; Muneem, Ad. A.
2007-01-01
Sediment from two deep boreholes (???400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.
Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe
NASA Astrophysics Data System (ADS)
Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun
2014-01-01
The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.
Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.
2018-03-01
Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.
Roncati, Luca; Gatti, Antonietta M; Capitani, Federico; Bonacorsi, Goretta; Barbolini, Giuseppe; Maiorana, Antonio
2016-05-01
The need to implement novel techniques, able to support a causal link between exposure and pathology, has been emerged over the recent years. The application of scanning electron microscope coupled with probe X-ray microanalysis (by means of an energy-dispersive spectroscopy) has been developed by our research group for the bone remains investigation. It was aimed to testify the exposure to microsized and nanosized pollutions, due to military activities in the Quirra interforce firing range, of a Sardinian shepherd, died of acute leukemia. Metallic debris with a combustive morphology and with an oncogenic potential has been surely detected inside his bone marrow canal. This novel technique has proved to be able to bring to light a source of past exposure preserved over time within the bone marrow canal. It can be useful for postmortem analyses, delivering a new avant-garde approach to modern forensic science. © 2015 American Academy of Forensic Sciences.
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.
Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin
2018-04-05
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.
The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.
Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lianping; Gao Yuanhong
2007-10-02
Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peakmore » (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.« less
THz-pump and X-ray-probe sources based on an electron linac.
Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk
2017-11-01
We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 10 3 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 10 3 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 10 7 X-rays per 1 keV energy bin per second or 10 5 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.
In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
Le, M K; Zhu, X M
2001-04-01
Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensch, M.
2010-02-03
In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilches, J.; Lopez, A.; Martinez, M.C.
This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.
NASA Astrophysics Data System (ADS)
Hillyer, Julián F.; Albrecht, Ralph M.
1998-10-01
: Colloidal gold, conjugated to ligands or antibodies, is routinely used as a label for the detection of cell structures by light (LM) and electron microscopy (EM). To date, several methods to count the number of colloidal gold labels have been employed with limited success. Instrumental neutron activation analysis (INAA), a physical method for the analysis of the elemental composition of materials, can be used to provide a quantitative index of gold accumulation in bulk specimens. Given that gold is not naturally found in biological specimens in any substantial amount and that colloidal gold and ligand conjugates can be prepared to yield uniform bead sizes, the amount of label can be calculated in bulk biological samples by INAA. Here we describe the use of INAA, LM, transmission EM, and X-ray microanalysis (EDX) in a model to determine both distribution (localization) and amount of colloidal gold at the organ, tissue, cellular, and ultrastructural levels in whole animal systems following administration. In addition, the sensitivity for gold in biological specimens by INAA is compared with that of inductively coupled plasma mass spectrometry (ICP-MS). The correlative use of INAA, LM, TEM, and EDX can be useful, for example, in the quantitative and qualitative tracking of various labeled molecular species following administration in vivo.
Ultrafast Science Opportunities with Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durr, Hermann
X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less
Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme
Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru
2016-01-01
Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449
Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud
2017-01-01
Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420
NASA Astrophysics Data System (ADS)
Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2017-08-01
Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Feng; Ortiz-Longo, C.R.; White, K.W.
The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
Selective binding of Ca2+, Zn2+, Cu2+ and K+ by the physodes of the green alga Mougeotia scalaris.
Tretyn, A; Grolig, F; Magdowski, G; Wagner, G
1996-01-01
Cells of the zygnematophycean green alga Mougeotia contain numerous globules with polyphenolic matrix, which resemble physodes. In order to analyse the capability of this compartment to sequester various ions, trichomes of Mougeotia scalaris were either fixed for X-ray microanalysis simultaneously in 2% glutardialdehyde/1% OsO4 in phosphate buffers of different K+/Na(+)-ratios, or embedded directly (fresh material) in Nanoplast resin. In addition, fixed material was treated with potassium antimonate and Ca2+ localization was examined by electron microscopic cytochemistry. A Ca(2+)-depletion upon fixation at different K+/Na(+)-ratios resulted in selective uptake of potassium, but not sodium. Consistent with earlier findings, calcium-binding by the polyphenolic physode matrix does not depend merely on electric charge but also on the presence of protonated/deprotonated phenolic groups, together with ester-linked carbonyl oxygen, which seem to be good candidates for a co-ordinate type of calcium-binding. Nanoplast embedding turned out to be the most adequate and fastest preparation for X-ray microanalysis and, apart from retaining calcium, allowed the detection of zinc and copper inside the physodes.
Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics
NASA Astrophysics Data System (ADS)
Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.
2016-10-01
We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz
2014-06-01
Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
NASA Astrophysics Data System (ADS)
Ammar, Abdelaziz; Cros, Christian; Pouchard, Michel; Jaussaud, Nicolas; Bassat, Jean-Marc; Villeneuve, Gérard; Duttine, Mathieu; Ménétrier, Michel; Reny, Edouard
2004-05-01
The clathrate form of silicon, Si 136 (otherwise known as Si 34), having a residual sodium content as low as 35 ppm (i.e., x˜0.0058 in Na xSi 136), has been prepared by thermal decomposition of NaSi under high vacuum, followed by several other treatments under vacuum, and completed by repeated reactions with iodine. The residual amount of sodium has been determined by a combination of analytic and spectroscopic methods involving XRD, electron probe microanalysis, atomic absorption, NMR and EPR. This latter technique proved to be very appropriate to the characterisation of very diluted sodium atoms in such clathrate structure and to the quantitative determination of its residual concentration.
NASA Technical Reports Server (NTRS)
Panda, Binayak; Gorti, Sridhar
2013-01-01
A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.
Structure of a radiate pseudocolony associated with an intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.
Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin.
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar; Cangiano, María de los A.; Ojeda, Manuel W.
The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. Inmore » the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.« less
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Thor, Jasper J.; Madsen, Anders
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786
Two types of electron events in solar flares
NASA Technical Reports Server (NTRS)
Daibog, E. I.; Kurt, V. G.; Logachev, Y. I.; Stolpovsky, V. G.
1985-01-01
The fluxes and spectra of the flare electrons measured on board Venera-I3 and I4 space probes are compared with the parameters of the hard (E sub x approximately 55 keV) and thermal X-ray bursts. The electron flux amplitude has been found to correlate with flare importance in the thermal X-ray range (r approximately 0.8). The following two types of flare events have been found in the electron component of SCR. The electron flux increase is accompanied by a hard X-ray burst and the electron spectrum index in the approximately 25 to 200 keV energy range is gamma approximately 2 to 3. The electron flux increase is not accompanied by a hard X-ray burst and the electron spectrum is softer (Delta gamma approximately 0.7 to 1.0).
Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo
2018-06-24
Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump–probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive tomore » changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.« less
Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy
Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul
2017-07-01
Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less
Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul
Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less
In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil.
McCann, Clare M; Peacock, Caroline L; Hudson-Edwards, Karen A; Shrimpton, Thomas; Gray, Neil D; Johnson, Karen L
2018-01-15
The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70mgg -1 and 32mgg -1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p<0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
High-intensity double-pulse X-ray free-electron laser
Marinelli, A.; Ratner, D.; Lutman, A. A.; ...
2015-03-06
The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less
NASA Astrophysics Data System (ADS)
Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.
2007-02-01
A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.
NASA Astrophysics Data System (ADS)
Zlatoustova, O. Yu; Vasilev, S. V.; Rudy, A. S.
2016-08-01
The results of the study of human aortic walls, subjected to different stages of mineralization are presented. By means of scanning electron microscopy and X-ray microanalysis the morphology, elemental composition and characteristics of the mineral component localization were investigated. The key differences in the initial, intermediate and final stages of pathological mineralization of the aorta wall were identified. The data obtained may be useful in describing the mechanism of biomineral deposits formation in human body.
Study of the specific features of single-crystal boron microstructure
NASA Astrophysics Data System (ADS)
Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.
2017-09-01
A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostko, O.; Xu, B.; Jacobs, M. I.
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
Kostko, O.; Xu, B.; Jacobs, M. I.; ...
2017-05-05
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis
NASA Astrophysics Data System (ADS)
Falkenberg, Gerald; Schroer, Christian G.
2014-04-01
ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student fees low and to distribute eight student travel grants. The Wednesday was devoted to an outing to DESY with guided tours to PETRA III and FLASH experiments and to the European XFEL construction site. A lecture was given by Henry Chapman introducing to structural imaging at X-ray free-electron lasers. Talks highlighting the current status and future of nanoanalysis at the leading synchrotron facilities APS (J Maser), ESRF (P Cloetens) and SPRing8 (Ishikawa) were given in the DESY auditorium offering other DESY scientists the opportunity to follow the talks. Participants A higher quality version of this image is available in supplementary data Further information about ICXOM22, including a detailed program and electronic abstract book, can be found on the congress website www.icxom22.de. We thank all the participants of ICXOM22, everybody who helped in the organization and are looking forward to hearing about further progress during ICXOM23, which will be organized by Brookhaven National Laboratory in Uptown, New York. Gerald Falkenberg ICXOM22 conference chair Christian Schroer ICXOM22 co-chair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.
2015-11-15
Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosionmore » stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.« less
NASA Astrophysics Data System (ADS)
Omar, Artur; Andreo, Pedro; Poludniowski, Gavin
2018-07-01
Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.
Liquid sample delivery techniques for serial femtosecond crystallography
Weierstall, Uwe
2014-01-01
X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163
NASA Technical Reports Server (NTRS)
Morris, R. V.; Golden, D. C.; Lauer, H. V. Jr; Adams, J. B.
1993-01-01
We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.
Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test
Lewis, L. A.; Knight, K. B.; Matzel, J. E.; ...
2015-07-28
The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ( 238U/ 235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/ 238U < 11.84 among all five spherules and 0.02 < 235U/ 238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/ 238U ratio is correlated with changes in major elementmore » composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/ 238U, 235U/ 238U, and 236U/ 238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less
Structural, morphological and interfacial characterization of Al-Mg/TiC composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, A.; Angeles-Chavez, C.; Flores, O.
2007-08-15
Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al{sub 4}C{sub 3}) is formed at the interface and traces of TiAl{sub 3} in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al{sub 4}C{sub 3} at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms withmore » flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-{beta} phase was detected through XRD.« less
Synthesis and characterization of nanocrystalline apatites from solution modeling human blood
NASA Astrophysics Data System (ADS)
Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga
2016-09-01
Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.
NASA Astrophysics Data System (ADS)
Lee, Jae Ha; Lee, Jun Kyu; Yoon, Woo Young
2013-10-01
A diamond-like-carbon (DLC)-coated LiV3O8 cathode was synthesized for use in a rechargeable 2032-coin-type cell with a Li-powder electrode (LPE) as the anode. The LPE anode was produced using the droplet emulsion technique and was compacted by pressing. The initial discharge capacity of the LPE/DLC-coated LiV3O8 (LVO) cell was 238 mAh g-1 at a C-rate of 0.5, while that of a LPE/bare-LVO cell was 236 mAh g-1. After 50 cycles, the capacity retention rate of the DLC-coated-electrode-containing cell (92%) was higher than that of the uncoated-electrode-containing cell (77%). Results of electron probe microanalysis and Raman spectroscopy confirmed that the electrode had been coated with DLC. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to determine the sequence of formation of byproducts on the electrode after charging/discharging and to determine its surface composition. The voltage profile and impedance of the DLC-coated-electrode-containing cell were analyzed to determine the electrochemical characteristics of the DLC-coated cathode.
The effect of organic ligands on the crystallinity of calcium phosphate
NASA Astrophysics Data System (ADS)
van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia
2003-03-01
Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharipova, Aliya; Skolkovo Institute of Science and Technology, Skolkovo, 143025; Psakhie, Sergey G.
2015-10-27
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50%more » and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.« less
NASA Astrophysics Data System (ADS)
Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi
2018-05-01
Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
The Role of Materials Degradation and Analysis in the Space Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
McDanels, Steven J.
2006-01-01
The efforts following the loss of the Space Shuttle Columbia included debris recovery, reconstruction, and analysis. The debris was subjected to myriad quantitative and semiquantitative chemical analysis techniques, ranging from examination via the scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) to X-Ray diffraction (XRD) and electron probe micro-analysis (EPMA). The results from the work with the debris helped the investigators determine the location where a breach likely occurred in the leading edge of the left wing during lift off of the Orbiter from the Kennedy Space Center. Likewise, the information evidenced by the debris was also crucial in ascertaining the path of impinging plasma flow once it had breached the wing. After the Columbia Accident Investigation Board (CAIB) issued its findings, the major portion of the investigation was concluded. However, additional work remained to be done on many pieces of debris from portions of the Orbiter which were not directly related to the initial impact during ascent. This subsequent work was not only performed in the laboratory, but was also performed with portable equipment, including examination via portable X-Ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR). Likewise, acetate and silicon-rubber replicas of various fracture surfaces were obtained for later macroscopic and fractographic examination. This paper will detail the efforts and findings from the initial investigation, as well as present results obtained by the later examination and analysis of debris from the Orbiter including its windows, bulkhead structures, and other components which had not been examined during the primary investigation.
In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite
NASA Astrophysics Data System (ADS)
Lemelle, L.; Salomé, M.; Fialin, M.; Simionovici, A.; Gillet, Ph.
2004-10-01
Microorganisms were searched for among the complex microstructures observed on the surface of a fragment of the Tatahouine meteorite inherited from the Tunisian soil in which they were buried. In this view, the chemical compositions, particularly the nitrogen, phosphorus, and sulphur compositions, including the sulphur speciation, were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA) mapping, and scanning X-ray microscopy (SXM). A few 2-μm-thick filaments, partly covered by patches of calcite ensuring they were not deposited by a laboratory contamination, were observed by SEM. The EPMA maps show that the portions free of calcite of the filaments have low but constant contents of nitrogen, sulphur, and phosphorus. The SXM maps were recorded at 2473.5, 2478, and 2482.2 eV, which are respectively characteristic for amino acid linked sulphur, sulphite (SO32-), and sulphate (SO42-). The portions of the filaments detected by EPMA are also those that are enriched in amino acid linked sulphur. The calculated (N/S) elemental ratio is consistent with the one of the dehydrated Escherichia coli matter, contrary to the much lower (P/S) elemental ratio. In living cells, the bulk N and S elements are mainly located in large polymers by covalent bonds, whereas a significant amount of P belongs to small and reactive molecules. We thus can propose that the observed microstructures are dehydrated microorganisms, in which most of the elements that were composing the polymers were retained, whereas the small electrolytes and molecules were removed.
NASA Astrophysics Data System (ADS)
Gasanly, S. A.; Tomaev, V. V.; Stoyanova, T. V.
2017-11-01
The method of vacuum deposition on substrates of glass marks the C-29 series PbSe deposited film and the film In the area 3x3 mm2 and a thickness of ˜1 μm. Films are oxidized in dry air at a temperature of 550 °C. Based on studies by X-ray microanalysis and scanning electron microscopy shows the principal possibility of formation of nanowires xInSe-(1-x)In2O3 on the PbSe/In structure. The results allowed to formulate the concept of the control of phases ratio in the forming nanowires xInSe-(1-x)In2O3 on glass substrates.
NASA Astrophysics Data System (ADS)
Narayanan, Sumaletha
The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
Lichtenberger, O; Neumann, D
1997-08-01
Energy filtering transmission electron microscopy in combination with energy dispersive X-ray analysis (EDX) and quantumchemical calculations opens new possibilities for elemental and bone analysis at the ultrastructural level. The possibilities and limitations of these methods, applied to botanical samples, are discussed and some examples are given. Ca-oxalate crystals in plant cell vacuoles show a specific C K-edge in the electron energy loss spectrum (EELS), which allows a more reliable identification than light microscopical or cytochemical methods. In some dicots crystalline inclusions can be observed in different cell compartments, which are identified as silicon dioxide or calcium silicate by the fine structure of the Si L2,3-edge. Their formation is discussed on the basis of EEL-spectra and quantumchemical calculations. Examples concerning heavy metal detoxification are given for some tolerant plants. In Minuartia Zn is bound as Zn-silicate in cell walls; Armeria accumulates Cu in leaf idioblasts by chelation with phenolic compounds and Cd is precipitated as CdS/phytochelatin-complexes in tomato.
The Nanocrystalline State of Narrow Gap Semiconducting Chalcogenides
2010-08-23
using a 1 nm scanning probe and the EDS microanalysis . For Annealing studies nanocrystal powder samples were placed in ceramic crucibles and annealed...nanocrystals are homogenous single phase EDS spectral images were collected in scanning transmission electron microcopy using a 1 nm electron probe...explorations with alio-valent elements (e.g. Sb3+, Ag+ doping in PbTe). • Perform chemical and physical characterization to demonstrate that nanocrystals are
NASA Astrophysics Data System (ADS)
Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.
2014-04-01
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.
Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.
2014-01-01
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172
Gaudin, J.; Fourment, C.; Cho, B. I.; ...
2014-04-17
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less
On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams
NASA Astrophysics Data System (ADS)
McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.
2018-04-01
The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.
On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources
Coppens, Philip; Fournier, Bertrand
2015-11-11
Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.
Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D
2015-10-01
We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.
Clusters in intense x-ray pulses
NASA Astrophysics Data System (ADS)
Bostedt, Christoph
2012-06-01
Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.
Electron Probe Microanalysis | Materials Science | NREL
surveys of the area of interest before performing a more accurate quantitative analysis with WDS. WDS - Four spectrometers with ten diffracting crystals. The use of a single-channel analyzer allows much
X-ray circular dichroism signals: a unique probe of local molecular chirality
Zhang, Yu; Rouxel, Jeremy R.; Autschbach, Jochen; ...
2017-06-26
Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. As a result, clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.
The X-ray Pump–Probe instrument at the Linac Coherent Light Source
Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; ...
2015-04-21
The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.
The X-ray Pump-Probe instrument at the Linac Coherent Light Source.
Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T; Feng, Yiping; Glownia, James M; Langton, J Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T; Fritz, David M
2015-05-01
The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.
X-ray circular dichroism signals: a unique probe of local molecular chirality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Rouxel, Jeremy R.; Autschbach, Jochen
Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. As a result, clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.
Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio
2016-05-30
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Jak, E.
2018-02-01
Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+ x Fe12- x O19- x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-"FeO"-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.
Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong
2014-05-02
Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Geminga's tails: a pulsar bow shock probing the interstellar medium.
Caraveo, P A; Bignami, G F; DeLuca, A; Mereghetti, S; Pellizzoni, A; Mignani, R; Tur, A; Becker, W
2003-09-05
We report the X-ray Multimirror Mission-Newton European Photon Imaging Camera observation of two elongated parallel x-ray tails trailing the pulsar Geminga. They are aligned with the object's supersonic motion, extend for approximately 2', and have a nonthermal spectrum produced by electron-synchrotron emission in the bow shock between the pulsar wind and the surrounding medium. Electron lifetime against synchrotron cooling matches the source transit time over the x-ray features' length. Such an x-ray detection of a pulsar bow shock (with no Halpha emission) allows us to gauge the pulsar electron injection energy and the shock magnetic field while constraining the angle of Geminga's motion and the local matter density.
Role of phi cells and the endodermis under salt stress in Brassica oleracea.
Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E
2009-01-01
Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
Experimental studies were undertaken to determine the gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of P(O2)'s. The experimental methodology involved high-temperature equilibration using a substrate support technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of equilibrium phases, followed by direct measurement of the chemical compositions of the phases with Electron Probe X-ray Microanalysis (EPMA). The experimental data for slag and matte were presented as a function of copper concentration in matte (matte grade). The data provided are essential for the evaluation of the effect of oxygen potential under controlled atmosphere on the matte grade, liquidus composition of slag and chemically dissolved copper in slag. The new data provide important accurate and reliable quantitative foundation for improvement of the thermodynamic databases for copper-containing systems.
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe
NASA Astrophysics Data System (ADS)
Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun
2013-06-01
The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.
NASA Astrophysics Data System (ADS)
Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.
2016-09-01
The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar
Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin
2018-01-01
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
X-ray microanalysis of the fingernails in term and preterm infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirota, L.; Straussberg, R.; Fishman, P.
1988-08-01
The element content of the fingernails of 10 term and 14 preterm infants, clipped for the first time after delivery, was determined by x-ray microanalysis. The results showed a decrease in sulfur and aluminum, and a higher chlorine content in term infants in comparison with preterm ones, the difference being statistically significant. Sodium, potassium, calcium, and zinc content did not differ in the two groups. Copper, iron, magnesium, aluminum, and phosphorus were detected in trace amounts only. Cobalt was not detected in the fingernails of newborns in either group. The elevated content of aluminum in the fingernails of preterm infantsmore » may be a clue to the osteopenia observed in these infants.« less
Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R
2006-07-01
We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.
Formation of Porous Germanium Layers by Silver-Ion Implantation
NASA Astrophysics Data System (ADS)
Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.
2018-04-01
We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.
NASA Astrophysics Data System (ADS)
Eghbali-Arani, Mohammad; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Pourmasoud, Saeid
2018-03-01
SmVO4 nanoparticles were synthesized through a fast and simple procedure (green method). The effects of three parameters including temperature, type of capping agent, and concentration on the size and morphology behavior of SmVO4 nanoparticles were explored. The analysis of SmVO4 nanoparticles was performed through some techniques including, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray microanalysis, scanning electron microscopy, transmission electron microscopy, thermogravimetry, differential thermal analysis, ultraviolet-visible spectroscopy, and vibrating sample magnetometers. The study of photocatalytic behaviour of the SmVO4 nanoparticles in various conditions has been carried out. The impacts of different factors such as dosage, grain size, and kind of pollutant (methylene blue = MB and methyl orange = MO) on the photocatalytic property of SmVO4 nanoparticles were assessed. The photocatalytic activities of SmVO4 catalysts were studied for the degradation of dye under visible light (λ > 400 nm).
Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.
Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin
2017-11-01
Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
Fresh-slice multicolour X-ray free-electron lasers
Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; ...
2016-10-24
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice schememore » outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. As a result, we also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.« less
NASA Astrophysics Data System (ADS)
Linnik, S. A.; Gaidaichuk, A. V.; Okhotnikov, V. V.
2018-02-01
The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC-Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.
Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.
Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W
2018-06-01
Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.
2013-01-01
New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522
Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W
2012-05-07
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
A new basaltic glass microanalytical reference material for multiple techniques
Wilson, Steve; Koenig, Alan; Lowers, Heather
2012-01-01
The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.
Osawa, Hitoshi; Ohkochi, Takuo; Fujisawa, Masami; Kimura, Shigeru; Kinoshita, Toyohiko
2017-01-01
Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines. PMID:28452746
Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E
2016-11-23
Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .
Structural investigation of cooperite (PtS) crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Udovenko, A. A.; Rubanov, S. V.
2016-03-15
The single-crystal structure of cooperite, a natural platinum sulfide PtS, is studied by X-ray diffraction supported by high-resolution scanning transmission electron microscopy and X-ray spectrum microanalysis. It is found that, in addition to the main reflections corresponding to the known tetragonal cell (a = 3.47 and c = 6.11 Å; space group P4{sub 2}/mmc), many weak reflections with intensities I ≤ 60σ(I) are clearly observed. These reflections fit the tetragonal cell (space group I4/mmm) with doubled parameters. In structures with small (P4{sub 2}/mmc) and large (I4/mmm) cells, the S atoms occupy statistically two special positions. It is shown that themore » chemical composition of the cooperite crystals deviates from the stoichiometric composition: sulfur-deficient specimens predominate.« less
Ultrafast X-ray Auger probing of photoexcited molecular dynamics
McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...
2014-06-23
Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less
Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.
2015-11-01
Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
Maskey, Shila; Kang, TaeHee; Jung, Hae-Jin; Ro, Chul-Un
2011-02-01
In this study, single-particle characterization of aerosol particles collected at an underground shopping area was performed for the first time. A quantitative single-particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize a total of 7900 individual particles for eight sets of aerosol samples collected at an underground shopping area in Seoul, Korea. Based on secondary electron images and X-ray spectral data of individual particles, fourteen particle types were identified, in which primary soil-derived particles were the most abundant, followed by carbonaceous, Fe-containing, secondary soil-derived, and secondary sea-salt particles. Carbonaceous particles exist in three types: organic carbon, carbon-rich, and CNO-rich. A significant number of textile particles with chemical composition C, N, and O were encountered in some of the aerosol samples, which were from the textile shops and/or from clothes of passersby. Primary soil-derived particles showed seasonal variation, with peak values in spring samples, reflecting higher air exchange between indoor and outdoor environments in the spring. Secondary soil-derived, secondary sea-salt, and ammonium sulfate particles were frequently encountered in winter samples. Fe-containing particles, contributed from a nearby subway station, were in the range of about 19% relative abundances for all samples. In underground shopping areas, particulate matters can be a considerable health hazard to the workers, shoppers, passersby, and shop-keepers as they spend their considerable time in this closed microenvironment. However, no study on the characteristics of indoor aerosols in an underground shopping area has been reported to our knowledge. This work provides detailed information on characteristics of underground shopping area aerosols on a single particle level. © 2010 John Wiley & Sons A/S.
Fabbris, G.; Hücker, M.; Gu, G. D.; ...
2016-07-14
Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La 1.875Ba 0.125CuO 4, in which the response of electronic order tomore » pressure can only be understood by probing the structure at the relevant length scales.« less
Application of Quantitative Analytical Electron Microscopy to the Mineral Content of Insect Cuticle
NASA Astrophysics Data System (ADS)
Rasch, Ron; Cribb, Bronwen W.; Barry, John; Palmer, Christopher M.
2003-04-01
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.
Probing matter at extreme Gbar pressures at the NIF
Kritcher, A. L.; Doeppner, T.; Swift, D.; ...
2013-12-04
Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less
Probing electron acceleration and x-ray emission in laser-plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thaury, C.; Ta Phuoc, K.; Corde, S.
2013-06-15
While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.
2016-01-01
Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722
600 eV falcon-linac thomson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J K; LeSage, G P; Ditmire, T
2000-12-15
The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strongmore » motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile stewardship. Another x-ray diagnostic technique, extended x-ray absorption fine structure (EXAFS) spectroscopy, can be used to measure small-scale structural changes to understand the underlying atomic physics associated with the formation of defects. [2]« less
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
Newbury, Dale E; Ritchie, Nicholas W M
2015-10-01
A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-01-05
There is a need for next-generation, high-performance power electronic packages and systems employing wide band gap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nanoscale or micron scale particles that can be processed without the application of an external pressure. Microstructural evolution at the interface of a pressureless sintered silver joint formed between a SiC die with a Ti/Ni/Au metallization and an Active Metal Brazed substrate with Agmore » metallization at 250 °C was evaluated using Scanning Electron Microscopy, X-ray microanalysis, and X-ray Photo Electron Spectroscopy. Results from Focused Ion Beam cross-sections show that during sintering, the pores in the sintered region close to the Au layer tend to be smaller and are oriented predominantly with their longer dimension oriented parallel to the interface. With further densification, this results in the alignment of small pores parallel to the interface, creating a path for easy crack propagation. Lastly, X-ray microchemical analyses results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.« less
Compton spectra of atoms at high x-ray intensity
NASA Astrophysics Data System (ADS)
Son, Sang-Kil; Geffert, Otfried; Santra, Robin
2017-03-01
Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.
2008-04-15
Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A J; van Buuren, T; Bostedt, C
X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.
Transient lattice contraction in the solid-to-plasma transition
Ferguson, Ken R.; Bucher, Maximilian; Gorkhover, Tais; Boutet, Sébastien; Fukuzawa, Hironobu; Koglin, Jason E.; Kumagai, Yoshiaki; Lutman, Alberto; Marinelli, Agostino; Messerschmidt, Marc; Nagaya, Kiyonobu; Turner, Jim; Ueda, Kiyoshi; Williams, Garth J.; Bucksbaum, Philip H.; Bostedt, Christoph
2016-01-01
In condensed matter systems, strong optical excitations can induce phonon-driven processes that alter their mechanical properties. We report on a new phenomenon where a massive electronic excitation induces a collective change in the bond character that leads to transient lattice contraction. Single large van der Waals clusters were isochorically heated to a nanoplasma state with an intense 10-fs x-ray (pump) pulse. The structural evolution of the nanoplasma was probed with a second intense x-ray (probe) pulse, showing systematic contraction stemming from electron delocalization during the solid-to-plasma transition. These findings are relevant for any material in extreme conditions ranging from the time evolution of warm or hot dense matter to ultrafast imaging with intense x-ray pulses or, more generally, any situation that involves a condensed matter-to-plasma transition. PMID:27152323
Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru
2016-01-01
UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.
NASA Astrophysics Data System (ADS)
Nagai, K.; Fujiwara, H.; Aratani, H.; Fujioka, S.; Yomosa, H.; Nakatani, Y.; Kiss, T.; Sekiyama, A.; Kuroda, F.; Fujii, H.; Oguchi, T.; Tanaka, A.; Miyawaki, J.; Harada, Y.; Takeda, Y.; Saitoh, Y.; Suga, S.; Umetsu, R. Y.
2018-01-01
We have studied the electronic structure of ferrimagnetic Mn2VAl single crystals by means of soft x-ray absorption spectroscopy (XAS), x-ray absorption magnetic circular dichroism (XMCD), and resonant soft x-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all the constituent elements. The Mn L2 ,3 XAS and XMCD spectra are reproduced by spectral simulations based on density-functional theory, indicating the itinerant character of the Mn 3 d states. On the other hand, the V 3 d electrons are rather localized since the ionic model can qualitatively explain the V L2 ,3 XAS and XMCD spectra. This picture is consistent with local d d excitations revealed by the V L3 RIXS.
Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species
March, Anne Marie; Assefa, Tadesse A.; Bressler, Christian; ...
2015-02-09
X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. Here In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES formore » time-resolved experiments. Lastly, we discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.« less
Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V
2005-03-01
* The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.
NASA Astrophysics Data System (ADS)
Malecki, Grzegorz; Nycz, Jacek E.; Ryrych, Ewa; Ponikiewski, Lukasz; Nowak, Maria; Kusz, Joachim; Pikies, Jerzy
2010-04-01
A series crystalline compounds of methyl and phosphinyl derivatives of 2-methylquinolin-8-ol ( 1a) and related 5,7-dichloro-2-methylquinolin-8-ol ( 1b) were quantitatively prepared and characterized by microanalysis, IR, UV-vis and multinuclear NMR spectroscopy. Five of them have been characterized by single crystal X-ray diffraction method. The known compounds, 8-methoxy-2-methylquinoline ( 2a) and 8-methoxyquinoline ( 2d), were synthesised by a new route. NMR solution spectra at ambient temperature, showed readily diagnostic H-1 and C-13 signals from methyl groups. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data. Electronic spectra were calculated by TDDFT method.
NASA Astrophysics Data System (ADS)
Barrault, Joël; Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe
2012-03-01
From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2'-bipyridyl by thermal degradation at relatively low (350 °C) temperature, it was possible to get either well defined spinel ZnMn2O4 over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn3O4) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33±0.2 and 9±0.06 m2 g-1 for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products.
Application of SEM and EDX in studying biomineralization in plant tissues.
He, Honghua; Kirilak, Yaowanuj
2014-01-01
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
Yang, Zhihong; Xie, Changsheng; Xiang, Hua; Feng, Jinqing; Xia, Xianping; Cai, Shuizhou
2009-03-01
Copper/indomethacin/low-density polyethylene (Cu/IDM/LDPE) nanocomposite was prepared as a novel material for intra-uterine device (IUD). IDM release profile of the nanocomposite was investigated by using spectrophotometer. The results show that IDM release rate of Cu/IDM/LDPE nanocomposite is higher in simulated uterine solution than that in methanol, confirming that the release process of IDM is dominated mainly by pore diffusion. The decrease in copper particle size and the increase in copper mass content all accelerate IDM release, indicating that IDM release rate can be adjusted by changing copper loading or copper particle size. The surface of the incubated nanocomposite was characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray microanalysis. A few deposits composed of P, Cl, Ca, Cu and O were observed on the nanocomposite surface, which may be related to the presence of IDM particles with large particle size.
Modification of carbon composites by nanoceramic compounds
NASA Astrophysics Data System (ADS)
Stoch, A.; Jastrzebski, W.; Długoń, E.; Stoch, G. J.; Błażewicz, S.; Adamczyk, A.; Tatarzyńska, K.
2005-06-01
Carbon-carbon composites (C/C) exhibit excellent high-temperature mechanical properties but their air oxidation limits their use at temperatures above 500 °C to inert atmosphere. Variety of coatings has been used to protect C/C composites from oxidation. In this work C/C composite substrates were covered with ceramic multilayer coats by electrophoretic deposition from ceramic sols such as silica sol, alumina sol and silica-lumina sol. Sol particles were of nano-sized dimensions. Deposited coats were annealed at 900-1500 °C. Oxidation tests at 600 °C reveal that the best protection of C/C composite against oxidation gives the multilayer coat formed by three or four electrophoretic depositions. The phase composition in the final annealed layers was analyzed by Infrared spectroscopy (FTIR) and by X-ray diffraction analysis (XRD). Morphology and chemical composition was observed using Scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDS).
Leitão, E; Barbosa, M A; de Groot, K
1997-07-01
The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.
Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering.
Clérouin, Jean; Robert, Grégory; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A
2015-01-01
A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L. X.; Zhang, X.; Lockard, J. V.
Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes havemore » been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.« less
Inner-shell excitation and ionic fragmentation of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.
1997-04-01
Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can revealmore » cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.« less
Secondary sulfate minerals from Alum Cave Bluff: Microscopy and microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.
1997-07-01
Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains National Park, were examined by scanning electron microscopy and identified by X-ray fluorescence (XRF) in the SEM. Among the samples the author discovered three new rare-earth sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite, slavikite, magnesiocopiapite, and diadochite. Additional specimens whose identification is more tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a ``Dana locality`` for apjohnite and potash alum, and is the first documented North American occurrence of slavikite.
Mazzocchin, Gian-Antonio; Del Favero, Michela; Tasca, Giovanni
2007-09-01
The analysis of wall painting fragments recovered in the "agro centuriato" of Julia Concordia has been carried out by using Scanning Electron Microscopy equipped with an EDS microanalysis detector (SEM-EDS), Infrared Spectroscopy (FTIR) and X-Ray powder Diffraction (XRD). The pigments used have been identified and the data obtained suggest the presence of three rustic villas richly decorated also with Egyptian blue. The presence of white of aragonite suggest that these villas were decorated during the Imperial Age, in agreement with the recovery of high quality materials and a bronze statue.
Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples
NASA Astrophysics Data System (ADS)
Zięba-Palus, J.
1999-11-01
The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.
Microstructure and properties of laser-clad high-temperature wear-resistant alloys
NASA Astrophysics Data System (ADS)
Yang, Yongqiang
1999-02-01
A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.
Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...
2014-10-09
In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharov, A. V.; Karateev, I. A.; Mikhutkin, A. A.
The surface microstructure of Ni–W alloy tapes, which are used as substrates to form films of high-temperature superconductors and photovoltaic devices, has been studied. Several samples of a Ni{sub 95}W{sub 5} tape (Evico) annealed under different conditions were analyzed using scanning electron microscopy, energy-dispersive X-ray microanalysis, electron diffraction, and electron energy-loss spectroscopy. NiWO{sub 4} precipitates are found on the surface of annealed samples. The growth of precipitates at a temperature of 950°C is accompanied by the formation of pores on the surface or under an oxide film. Depressions with a wedge-shaped profile are found at the grain boundaries. Annealing inmore » a reducing atmosphere using a specially prepared chamber allows one to form a surface free of nickel tungstate precipitates.« less
NASA Astrophysics Data System (ADS)
Kryazhev, Yu. G.; Vorob'ev, M. S.; Koval', N. N.; Trenikhin, M. V.; Solodovnichenko, V. S.; Sulakshin, S. A.; Likholobov, V. A.
2016-10-01
This work shows the possibility in principle of forming hydrocarbon structures in polyvinyl chloride films free of admixtures and polyvinyl chloride films modified with 5-mass % ferrocene via a radiation chemical transformation in the atmosphere with the use of an electron accelerator with a plasma cathode operating in the pulsed-periodic mode maximal electron energy no higher than 160 keV, pulse length of 40 μs, and current density of 5 mA/cm2. According to the results of semiquantitative X-ray microanalysis, an irradiated polyvinyl chloride film free of admixtures contains 92 of carbon, 6 of oxygen, and 2 mass % of chlorine; the irradiated polyvinyl chloride is an amorphous carbon material. A possible mechanism of the phenomenon is discussed.
Optical laser systems at the Linac Coherent Light Source
Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...
2015-04-22
Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.
Stochastic stimulated electronic x-ray Raman spectroscopy
Kimberg, Victor; Rohringer, Nina
2016-01-01
Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585
Brożek-Mucha, Zuzanna
2014-01-01
Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident. PMID:25025050
Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy
NASA Astrophysics Data System (ADS)
Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony
The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.
Bright betatron X-ray radiation from a laser-driven-clustering gas target
Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.
2013-01-01
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033
Correlated Microanalysis of Cometary Organic Grains Returned by Stardust
NASA Technical Reports Server (NTRS)
DeGregorio, B. T.; Stroud, R. M.; Nittler, L. R.; Cody, G. D,; Kilcoyne, A. L. D.
2011-01-01
Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe
2016-01-28
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...
2016-01-01
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less
NASA Astrophysics Data System (ADS)
Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni
2010-12-01
Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Jak, E.
2017-12-01
The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.
Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition
NASA Astrophysics Data System (ADS)
Kao, Szu-Tsung; Lin, Yung-Chi; Duh, Jenq-Gong
2006-03-01
Nanosized Cu6Sn5 dispersoids were incorporated into Sn and Ag powders and milled together to form Sn-3Ag-0.5Cu composite solders by a mechanical alloying process. The aim of this study was to investigate the interfacial reaction between SnAgCu composite solder and electroless Ni-P/Cu UBM after heating for 15 min. at 240°C. The growth of the IMCs formed at the composite solder/EN interface was retarded as compared to the commercial Sn3Ag0.5Cu solder joints. With the aid of the elemental distribution by x-ray color mapping in electron probe microanalysis (EPMA), it was revealed that the SnAgCu composite solder exhibited a refined structure. It is proposed that the Cu6Sn5 additives were pinned on the grain boundary of Sn after heat treatment, which thus retarded the movement of Cu toward the solder/EN interface to form interfacial compounds. In addition, wetting is an essential prerequisite for soldering to ensure good bonding between solder and substrate. It was demonstrated that the contact angles of composite solder paste was <25°, and good wettability was thus assured.
Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.
1993-01-01
The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.
Role of the node in controlling traffic of cadmium, zinc, and manganese in rice
Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko
2012-01-01
Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
X-ray microprobe analysis of platelets. Principles, methods and review of the literature.
Yarom, R
1983-01-01
Platelets are well suited to X-ray microanalysis as there is no need for chemical fixation or sectioning, and the concentrations of calcium and phosphorus are above 10(-3). The principles of the technique, the methods of specimen preparation, instrumental conditions during analysis and ways of quantitation are described. This is followed by a review of published reports and a brief summary of the author's own work in the field.
Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys
NASA Technical Reports Server (NTRS)
Przewlocka, H.; Siedlecka, J.
1982-01-01
The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.
Ultrafast X-Ray Spectroscopy of Conical Intersections
NASA Astrophysics Data System (ADS)
Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.
2018-06-01
Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.
Yuan, Kai-Jun; Bandrauk, André D
2017-10-04
Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.
Li, Y.; Zakharov, D.; Zhao, S.; ...
2015-06-29
Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppens, Philip; Fournier, Bertrand
Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Possible etiology of calculi formation in salivary glands: biophysical analysis of calculus.
Mimura, Masafumi; Tanaka, Nobuyuki; Ichinose, Shizuko; Kimijima, Yutaka; Amagasa, Teruo
2005-09-01
Sialolithiasis is one of the common diseases of the salivary glands. It was speculated that, in the process of calculi formation, degenerative substances are emitted by saliva and calcification then occurs around these substances, and finally calculi are formed. However, the exact mechanism of the formation of calculi is still unclear. In this study, we identify some possible etiologies of calculi formation in salivary glands through biophysical analysis. Calculi from 13 patients with submandibular sialolithiasis were investigated by transmission electron microscopy, scanning electron microscopy, X-ray microanalyzer, and electron diffraction. Transmission electron microscopic observation of calculi was performed in the submandibular gland (n = 13). In 3 of the 13 cases, a number of mitochondria-like structures and lysosomes were found near calcified materials. Scanning electron microscopic examination of these materials revealed that there were lamellar and concentric structures and that the degree of calcification was different among the calculi. X-ray microanalysis disclosed the component elements in the calculi to be Ca, P, S, Na, etc., and the main constituents were Ca and P. The calcium-to-phosphorus ratio was 1.60-1.89. Analysis of the area including mitochondria-like structures, lysosomes, and the fibrous structures by electron diffraction revealed the presence of hydroxyapatite and calcified materials. It is speculated that mitochondria and lysosomal bodies from the ductal system of the submandibular gland are an etiological source for calcification in the salivary gland.
Co-doping of (Bi(0.5)Na(0.5))TiO(3): secondary phase formation and lattice site preference of Co.
Schmitt, V; Staab, T E M
2012-11-14
Bismuth sodium titanate (Bi(0.5)Na(0.5))TiO(3) (BNT) is considered to be one of the most promising lead-free alternatives to piezoelectric lead zirconate titanate (PZT). However, the effect of dopants on the material has so far received little attention from an atomic point of view. In this study we investigated the effects of cobalt-doping on the formation of additional phases and determined the preferred lattice site of cobalt in BNT. The latter was achieved by comparing the measured x-ray absorption near-edge structure (XANES) spectra to numerically calculated spectra of cobalt on various lattice sites in BNT. (Bi(0.5)Na(0.5))TiO(3) + x mol% Co (x = 0.0, 0.5, 1.0, 2.6) was synthesized via solid state reaction. As revealed by SEM backscattering images, a secondary phase formed in all doped specimens. Using both XRD and SEM-EDX, it was identified as Co(2)TiO(4) for dopant levels >0.5 mol%. In addition, a certain amount of cobalt was incorporated into BNT, as shown by electron probe microanalysis. This amount increased with increasing dopant levels, suggesting that an equilibrium forms together with the secondary phase. The XANES experiments revealed that cobalt occupies the octahedral B-site in the BNT perovskite lattice, substituting Ti and promoting the formation of oxygen vacancies in the material.
Bladder stone in a human female: The case of an abnormally located intrauterine contraceptive device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
A single 4.7 x 3.3 x 1.5 cm solid nodule was removed from the bladder of a 24 years old white female who had lost an intrauterine contraceptive device (IUD) installed approximately four years ago. The nodule showed no external evidence of an IUD or its string. An examination of the nodular surface by scanning electron microscopy (SEM) showed mostly amorphous material with some adherent filamentous structures. Its energy dispersive x-ray microanalysis revealed the presence of calcium and phosphorus suggesting that the nodule was actually a urolith. Fracturing the nodule exposed an embedded entity consistent with being a copper IUD.more » Apparently, the lost IUD had migrated from the uterus into the bladder where it became mineralized. Thus the solid nodule was actually a foreign body stone.« less
Generation of double pulses at the Shanghai soft X-ray free electron laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Feng, Chao; Gu, Qiang
2017-01-28
In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.
Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.
Stutman, D; Finkenthal, M
2011-11-01
High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics
XAP, a program for deconvolution and analysis of complex X-ray spectra
Quick, James E.; Haleby, Abdul Malik
1989-01-01
The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.
Broadband high resolution X-ray spectral analyzer
Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don
1998-01-01
A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.
Broadband high resolution X-ray spectral analyzer
Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.
1998-07-07
A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.
Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi
2017-06-28
The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.
Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong
2010-07-01
In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.
Coherent Multidimensional Core Spectroscopy of Molecules with Multiple X-ray pulses
NASA Astrophysics Data System (ADS)
Mukamel, Shaul
2017-04-01
Multidimensional spectroscopy uses sequences of optical pulses to study dynamical processes in complex molecules through correlation plots involving several time delay periods. Extensions of these techniques to the x-ray regime will be discussed. Ultrafast nonlinear x-ray spectroscopy is made possible by newly developed free electron laser and high harmonic generation sources. The attosecond duration of X-ray pulses and the atomic selectivity of core X-ray excitations offer a uniquely high spatial and temporal resolution. We demonstrate how stimulated Raman detection of an X-ray probe may be used to monitor the phase and dynamics of the nonequilibrium valence electronic state wavepacket created by e.g. photoexcitation, photoionization and Auger processes. Spectroscopy of multiplecore excitations provides a new window into electron correlations. Applications will be presented to long-range charge transfer in proteins and to excitation energy transfer in porphyrin arrays. Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. Novel ultrafast X ray probes for these processes will be presented. Short X-ray pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to directly detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn. Streaking of time-resolved photoelectron spectroscopy (TRPES) signals offers another powerful window into the joint electronic/vibrational dynamics at concial intersections. Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby manipulating the photophysical and photochemical reaction pathways. The photonic vacuum state of a localized cavity mode can be strongly mixed with the molecular degrees of freedom to create hybrid field-matter states known as polaritons. Simulations of the avoided crossing of sodium iodide in a cavity which incorporate the quantized cavity field into the nuclear wave packet dynamics will be presented. Numerical results show how the branching ratio between the covalent and ionic dissociation channels can be strongly manipulated by the optical cavity.
Iryanov, Y M; Kiryanov, N A
2015-01-01
Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.
Shon, Wonwoo; Wada, David A; Gibson, Lawrence E; Flotte, Thomas J; Scheithauer, Bernd W
2011-11-01
We sought to further determine the histochemical, immunohistochemical and ultrastructural properties of eosinophilic cytoplasmic inclusion bodies in melanocytic nevi. Skin specimens from four patients with a known diagnosis of conventional melanocytic nevus (3) or Spitz nevus (1) and containing intracytoplasmic eosinophilic inclusion bodies were selected. In addition, melanomas (25), Spitz nevi (10) and blue nevi (4) were examined to determine the frequency of the inclusions. Inclusions tended to be located in multinucleated melanocytes with abundant vacuolated cytoplasm. In conventional (hematoxylin and eosin-stained) sections, the degree of density and eosinophilia of intracytoplasmic inclusions varied with size. Periodic acid-Schiff, Fontana and Congo red stains showed no reactivity. All bodies were immunoreactive for ubiquitin but negative for tyrosinase, keratin and vimentin. Ultrastructurally, inclusion bodies were non-membrane bound, ranged from 4 to 7 µm, and were comprised of radiating filamentous structures with or without an electron-dense core. Electron probe x-ray microanalysis revealed no significant peaks. None of additional melanomas, Spitz nevi and blue nevi that were evaluated showed similar inclusions. The inclusion bodies described herein bear no resemblance to other cytoplasmic inclusion bodies previously described in melanocytic lesions. There is no discernible relationship to melanosomes by ultrastructural analysis. We postulate a relationship with dysfunction of ubiquitin-mediated protein degradation occurring in melanocytes. Copyright © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam
2015-05-01
Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.
Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy
NASA Astrophysics Data System (ADS)
Szczotok, A.; Chmiela, B.
2014-08-01
Superalloys display a strong tendency toward chemical segregation during solidification. Therefore, it is of great importance to develop appropriate techniques for the melting and casting of superalloys. Elements partitioning between the γ and γ' phases in single crystal superalloys have been investigated by several authors using electron probe microanalysis (Hemmersmeier and Feller-Kniepmeier Mater Sci Eng A 248:87-97, 1998; Kearsey et al. Intermetallics 12:903-910, 2004; Kearsey et al. Superalloys 2004, pp 801-810, 2004; D'Souza et al. Mater Sci Eng A 490:258-265, 2008). We examined the effect of the particular stages of standard heat treatment (solution treatment and ageing) applied to CMSX-4 single crystal superalloy on chemical segregation that occurs between dendrites and interdendritic areas. Dendritic structures were observed using a scanning electron microscope. Analyses of the chemical composition were performed using energy dispersive x-ray spectroscopy. The obtained qualitative and quantitative results for the concentrations of elements enabled us to confirm the dendritic segregation in as-cast CMSX-4 superalloy. The concentrations of some refractory elements (tungsten, rhenium) were much greater in dendrites than in interdendritic areas. However, these differences in chemical composition gradually decreased during heat treatment. The results obtained in this study warrant further examination of the diffusion processes of elements during heat treatment of the investigated superalloy, and of the kinetics of diffusion.
Chesnick, Ingrid E; Avallone, Francis A; Leapman, Richard D; Landis, William J; Eidelman, Naomi; Potter, Kimberlee
2007-04-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of 9 weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 microm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro.
Evaluation of Bioreactor-Cultivated Bone by Magnetic Resonance Microscopy and FTIR Microspectroscopy
Chesnick, Ingrid E.; Avallone, Frank; Leapman, Richard D.; Landis, William J.; Eidelman, Naomi; Potter, Kimberlee
2007-01-01
We present a three-dimensional mineralizing model based on a hollow fiber bioreactor (HFBR) inoculated with primary osteoblasts isolated from embryonic chick calvaria. Using non-invasive magnetic resonance microscopy (MRM), the growth and development of the mineralized tissue around the individual fibers were monitored over a period of nine weeks. Spatial maps of the water proton MRM properties of the intact tissue, with 78 μm resolution, were used to determine changes in tissue composition with development. Unique changes in the mineral and collagen content of the tissue were detected with high specificity by proton density (PD) and magnetization transfer ratio (MTR) maps, respectively. At the end of the growth period, the presence of a bone-like tissue was verified by histology and the formation of poorly crystalline apatite was verified by selected area electron diffraction and electron probe X-ray microanalysis. FTIR microspectroscopy confirmed the heterogeneous nature of the bone-like tissue formed. FTIR-derived phosphate maps confirmed that those locations with the lowest PD values contained the most mineral, and FTIR-derived collagen maps confirmed that bright pixels on MTR maps corresponded to regions of high collagen content. In conclusion, the spatial mapping of tissue constituents by FTIR microspectroscopy corroborated the findings of non-invasive MRM measurements and supported the role of MRM in monitoring the bone formation process in vitro. PMID:17174620
Skucha-Nowak, Małgorzata
2015-01-01
The resin infiltration technique, a minimally invasive method, involves the saturation, strengthening, and stabilization of demineralized enamel by a mixture of polymer resins without the need to use rotary tools or the risk of losing healthy tooth structures. To design and synthesize an experimental infiltrant with potential bacteriostatic properties.To compare the depth of infiltration of the designed experimental preparation with the infiltrant available in the market using a scanning electron microscope. Composition of the experimental infiltrant was established after analysis of 1H NMR spectra of the commercially available compounds that can penetrate pores of demineralized enamel. As the infiltrant should have bacteriostatic features by definition, an addition of 1% of monomer containing metronidazole was made. Thirty extracted human teeth were soaked in an acidic solution, which was to provide appropriate conditions for demineralization of enamel. Afterward, each tooth was divided along the coronal-root axis into two zones. One zone had experimental preparation applied to it (the test group), while the other had commercially available Icon (the control group). The teeth were dissected along the long axis and described above underwent initial observation with use of a Hitachi S-4200 scanning electron microscope. It was found that all samples contained only oxygen and carbon, regardless of the concentration of additions introduced into them. The occurrence of carbon is partially because it is a component of the preparation in question and partially because of sputtering of the sample with it. Hydrogen is also a component of the preparation, as a result of its phase composition; however, it cannot be detected by the EDS method. SEM, in combination with X-ray microanalysis, does not allow one to explicitly assess the depth of penetration of infiltration preparations into enamel.In order to assess the depth of penetration of infiltration preparations with use of X-ray microanalysis, it is recommended to introduce a contrast agent that is approved for use in dental materials, such as ytterbium III fluoride.
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
Lam, R. K.; Raj, S. L.; Pascal, T. A.; ...
2018-01-08
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...
2016-11-01
An improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here in this paper, we present relevant background on this emerging suite of techniques. We focus on how the combination ofmore » theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less
Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...
2016-07-04
We present that an improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here, we present relevant background on this emerging suite of techniques. Finally, we focus on how the combinationmore » of theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
NASA Astrophysics Data System (ADS)
Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T.-C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.
2018-01-01
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (˜284 eV ) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.
Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D J; Barty, C J; Betts, S M
2005-04-21
The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
NASA Astrophysics Data System (ADS)
Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.
1998-04-01
Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.
Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N
2007-08-16
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.
Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering
Gao, Xuan; Casa, Diego; Kim, Jungho; ...
2016-08-15
Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Moreover we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.
Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken
2016-01-01
ABSTRACT It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy–energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields. PMID:27422841
Slezak, J.; Tribulova, N.; Pristacova, J.; Uhrik, B.; Thomas, T.; Khaper, N.; Kaul, N.; Singal, P. K.
1995-01-01
Active oxygen species including hydrogen peroxide (H2O2) play a major role in ischemia-reperfusion injury. In the present study, changes in myocardial H2O2 content as well as its subcellular distribution were examined in rat hearts subjected to ischemia-reperfusion. Isolated perfused rat hearts were made globally ischemic for 20 or 30 minutes and were reperfused for different durations. H2O2 content in these hearts was studied biochemically and changes were correlated with the recovery of function. These hearts were also analyzed for subcellular distribution of H2O2. Optimal conditions of tissue processing as well as incubation medium were established for reacting cerium chloride with H2O2 to form cerium perhydroxide, an insoluble electron-dense product. The chemical composition of these deposits was confirmed by x-ray micro-analysis. Global ischemia caused complete contractile failure in minutes and after 30 minutes of ischemia, these was a > 250% increase in the myocardial H2O2 content. Depressed contractile function recovery in the early phase of reperfusion was accompanied by approximately a 600% increase in the myocardial H2O2 content. Brief pre-fixation with low concentrations of glutaraldehyde, inhibition of alkaline phosphatase, glutathione peroxidase, and catalase, post-fixation but no post-osmication, and no counterstaining yielded the best cytochemical definition of H2O2. In normal hearts, extremely small amounts of cerium hydroperoxide precipitates were located on the endothelial cells. X-ray microanalysis confirmed the presence of cerium in the reaction product. Ischemia resulted in a stronger reaction, particularly on the sarcolemma as well as abluminal side of the endothelial cells; and upon reperfusion, cerium precipitate reaction at these sites was more intense. In the reperfused hearts, the reaction product also appeared within mitochondria between the cristae as well as on the myofibrils, but Z-lines were devoid of any precipitate. The data support a significant increase in myocardial H2O2 during both the phase of ischemia and the first few minutes of reperfusion. A stronger reaction on the sarcolemma and abluminal side of endothelial cells may also indicate enhanced H2O2 accumulation as well as vulnerability of these sites to oxidative stress injury. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7677188
Hunsche, Mauricio; Noga, Georg
2009-12-01
In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.
Tuning the charge carrier density in the thermoelectric colusite
NASA Astrophysics Data System (ADS)
Kim, Fiseong S.; Suekuni, Koichiro; Nishiate, Hirotaka; Ohta, Michihiro; Tanaka, Hiromi I.; Takabatake, Toshiro
2016-05-01
The colusite Cu26V2Sn6S32 has high potential as a thermoelectric material at medium-high temperatures because of a large Seebeck coefficient (S ≃ 220 μV/K) and rather small electrical resistivity (ρ ≃ 100 μΩm) at 660 K. To improve the thermoelectric performance, we have tuned the hole carrier density p by substituting Zn for Cu in Cu26-xZnxV2Sn6S32 (x = 1-3) and starting with Cu and Sn deficient compositions in Cu26-yV2Sn6S32 (y = 1, 2) and Cu26V2Sn6-zS32 (z = 0.25-1), respectively. Powder x-ray diffraction and electron-probe microanalysis showed that the Zn-substituted samples and Sn-deficient (z ≥ 0.5) samples are formed in a single phase, whereas the Cu26-yV2Sn6S32 samples are composed of two phases with slightly different compositions. Within these samples, the value of p at 300 K varies in the range between 3.6 × 1020 and 2.8 × 1021 cm-3. The relation between p and S led to the effective mass m* of 4-7m0 for the hole carriers. The large S of the colusite is therefore ascribed to the heavy mass carriers of the valence band top. The decreases in p with x and y reduced the dimensionless thermoelectric figure of merit ZT, whereas the increase in p with z raised ZT from 0.56 (z = 0) to 0.62 (z = 0.5) at 660 K.
NASA Astrophysics Data System (ADS)
Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.
2014-02-01
Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C
X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less
NASA Astrophysics Data System (ADS)
Demasi, Alexander
Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be used to probe the electronic structure of individual atomic sites within a molecule. Most of the results in this thesis are accompanied by the results of electronic structure calculations determined with density functional theory (DFT). DFT is a useful aid in interpreting the results of the x-ray spectroscopies employed. The experimental results, combined with DFT calculations, provide a wealth of information regarding the electronic structures of these organic materials. v
Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.
2016-01-01
X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076
NASA Astrophysics Data System (ADS)
Newbury, D. E.
2006-05-01
X-ray mapping, performed with the electron probe microanalyzer (EPMA) or scanning electron microscope/energy dispersive x-ray spectrometer (SEM/EDS), is one of the most popular modes of studying chemically heterogeneous microstructures [1]. Despite the maturity of the technique, now in its 50th anniversary year [2], recent remarkable advances in instrumentation and software will provide microanalysts with an even more effective and efficient microstructural characterization tool: (1) Increased x-ray mapping speed: The silicon drift detector (SDD) [3] is a new form of the familiar silicon EDS that uses the same detection physics but with a radically different design that outperforms the classic Si-EDS in nearly every way [4]: (1) the SDD operates requires only Peltier cooling to -20 oC to - 50 oC; (2) for a given detector active area, the SDD has superior resolution; (3) the SDD achieves the same resolution but with a peaking time that is 5 to 8 times faster; and (4) maximum output count rate (OCR) ranges from about 14 kHz at optimum resolution (134 eV at MnKa for a 50 mm2 area) to 500 kHz (217 eV). This OCR performance enables rapid x-ray mapping collection in the x-ray spectrum image (XSI) mode, in which a complete EDS spectrum (2048 10eV-channels) is captured at each pixel (e.g., 10 ms dwell with 1.3 ms overhead per pixel, or 185 seconds for a 128x128 pixel map). XSI collection captures all possible spectral information within the limits imposed by the spectrometer and the primary beam dose. (2) EDS with WDS resolution: The microcalorimeter EDS measures the temperature rise when a single x-ray photon is absorbed in a metal target [5]. Demonstrated resolution is 4.5 eV at Mn Ka for a broad energy range (0.2 - 10 keV) spectrometer and 2 eV (AlKa) for a low photon energy range (0.2 - 2.0 keV) version. The low energy spectrometer is sensitive to peak shape and position changes associated with chemical bonding, opening the possibility of EDS chemical-state mapping. (3) Data mining: In the XSI mode, data is captured at the rate of 100 Mbytes per XSI database or more. Efficient software tools have been developed that enable the analyst to quickly recognize major and minor constituent features in this datacube, and even to detect rare unexpected features that occur at only one pixel in a large map [6]. Advanced image cube data reduction can be achieved with tools based on statistical methods, such as principal component analysis, that quickly establishes correlations between different elements, such as distinct phases [7]. 1. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J., Scanning Electron Microscopy and X-ray Microanalysis, 3rd edition (Kluwer Academic Plenum Press, New York, 2003). 2. Cosslett, E. and P. Duncumb, Nature, 177 (1956) 1172. 3. Struder, L., Fiorini, C., Gatti, E., Hartmann, R., Holl, P., Krause, N., Lechner, P., Longoni, A., Lutz, G., Kemmer, J., Meidinger, N., Popp, M., Soltau, H., and van Zanthier, C., High resolution non dispersive x-ray spectroscopy with state of the art silicon detectors, Mikrochim. Acta, Suppl, 15 (1998) 11 4. Newbury, D. SCANNING, 27 (2005) 227. 5. Wollman, D., Irwin, K., Hilton, G., Dulcie, L., Newbury, D., and Martinis, J., J. Micros. 188 (1997) 196. 6. Newbury, D. and Bright, D., SCANNING, 27 (2005) 15. 7. Kotula, P. Keenan, M., and Michael J., Micros. Microanal. 9 (2003) 1
Bulk sensitive hard x-ray photoemission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.
Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less
Vaney, Jean-Baptiste; Delaizir, Gaëlle; Wiendlocha, Bartlomiej; Tobola, Janusz; Alleno, Eric; Piarristeguy, Andrea; Gonçalves, Antonio Pereira; Gendarme, Christine; Malaman, Bernard; Dauscher, Anne; Candolfi, Christophe; Lenoir, Bertrand
2017-02-20
We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As 2 Te 3-x Se x (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As 2 Te 3-x Se x crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As 2 Te 3 . The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As 2 Te 3 exhibits very low lattice thermal conductivity κ L , the substitution of Se for Te further lowers κ L to 0.35 W m -1 K -1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.
Aldoghachi, Mohammed A; Azirun, Mohd Sofian; Yusoff, Ismail; Ashraf, Muhammad Aqeel
2016-09-01
Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.
Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.
Miller, R J Dwayne
2014-03-07
With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis
NASA Astrophysics Data System (ADS)
Delhaise, André M.; Perovic, Doug D.
2018-03-01
Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.
Optoelectronic Picosecond Detection of Synchrotron X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Stephen M.
2017-08-04
The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results ofmore » this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.« less
Interfacial microanalysis of rubber tyre-cord adhesion and the influence of cobalt
NASA Astrophysics Data System (ADS)
Fulton, W. Stephen; Smith, Graham C.; Titchener, Keith J.
2004-01-01
The effect of cobalt-containing adhesion promoters on the structure and morphology of rubber-brass and rubber-tyre-cord interfaces before and after ageing has been investigated by X-ray photoelectron spectroscopy (XPS) depth profiling, glancing incidence X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect the cobalt adhesion promoters had upon the interface morphology as they suppressed the growth of crystalline dendrites normally associated with the ageing process was imaged in TEM using samples prepared by the focused ion beam (FIB) milling technique. XPS depth profiling through the interfaces revealed that different types of adhesion promoter influenced the amount and distribution of cobalt ions in the bonding layer. XRD demonstrated the influence that cobalt had upon the structure of the interface and subsequent crystallinity, with a lesser degree of crystallinity being associated with better adhesion performance. From the results a model for the effect of the Co chemistry of the adhesion promotor has been developed.
Ultrastructural and elemental analysis of sialoliths and their comparison with nephroliths.
Rakesh, Nagaraju; Bhoomareddy Kantharaj, Yashoda Devi; Agarwal, Manjushree; Agarwal, Kunal
2014-02-01
Sialoliths are common in the submandibular gland and its duct system, although their exact cause of formation is still a matter of debate. The aims of this study were to: (a) analyze sialoliths ultrastructurally, and to determine the role of foreign bodies or organic materials in the formation of sialolith nuclei; and (b) compare nephroliths with sialoliths ultrastructurally. Three sialoliths and two nephroliths were analyzed ultrastructurally by a scanning electron microscope and X-ray diffractometer. The main structures of the sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In nephroliths, calcium oxalate, calcium phosphate, and struvite crystals were found. The energy-dispersive X-ray microanalysis found that sialoliths and nephroliths were predominantly composed of elements comprising calcium, phosphorous, magnesium, sodium, chloride, silicon, iron, and potassium. Sialoliths in the submandibular salivary glands might form secondary to sialadenitis, but not via a luminal organic nidus. © 2014 Wiley Publishing Asia Pty Ltd.
Analysis of the Henze precipitate from the blood cells of the ascidian Phallusia mammillata
NASA Astrophysics Data System (ADS)
Ciancio, Aurelio; Scippa, Silvia; Nette, Geoffrey; De Vincentiis, Mario
The Henze precipitate, a peculiar blue-green microparticulate obtained by lysis of the blood cells of the ascidian Phallusia mammillata (Protochordata), was investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray microanalysis. The precipitate was collected from the Henze solution, an unstable red-brown product obtained by treating blood with distilled water, whose degradation yields a characteristic blue-green product. The microparticulates measured 50-100 µm in diameter and appeared irregular in shape. SEM examination showed smooth, roughly round boundaries. The microparticulate surface examined with AFM appeared as an irregular matrix formed by 70-320-nm-wide mammillate composites, including and embedding small (500-800 nm wide) crystal-like multilayered formations. X- ray analysis showed that the elements present in these same precipitates were mainly C, Si, Al and O. The microparticulate composition appeared close to those of natural waxes or lacquers, embedding amorphous silicates and/or other Si-Al components. The unusual occurrence of Si in ascidian blood and its role are discussed.
NASA Astrophysics Data System (ADS)
De Luca, Raffaella; Gigliotti, Valentina; Panarello, Mario; Bloise, Andrea; Crisci, Gino M.; Miriello, Domenico
2016-01-01
This work shows the results of the spectroscopic, microchemical and petrographic study carried out on six plasters coming from three important residential buildings of the 18th century, located in Lamezia Terme (Catanzaro, Southern Italy). To study the provenance of the raw materials used to make the plasters, one sample of limestone and two samples of sand were also collected from the quarries near Lamezia Terme and compared with the historical plasters. Samples were studied by polarized optical microscopy (OM), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. The results of these analyses allowed to determine the mineralogical, petrographical and chemical characteristics of the plasters, identify the pigments used for their coloration and provide useful information about the building techniques, the raw materials employed and the production technology of plasters during the 18th century in Lamezia Terme. SEM-EDS microanalysis also revealed the presence of gold and silver on the surface of two samples.
NASA Technical Reports Server (NTRS)
Carpenter, Paul; Curreri, Peter A. (Technical Monitor)
2002-01-01
This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.
Characterization and electron-energy-loss spectroscopy on NiV and NiMo superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, S.H.
1986-01-01
NiV superlattices with periods (A) ranging from 15 to 80 A, and NiMo superlattices with from 14 to 110 A were studied using X-ray Diffraction (XRD), Electron Diffraction (ED), Energy-Dispersive X-Ray (EDX) microanalysis, and Electron Energy Loss Spectroscopy (EELS). Both of these systems have sharp superlattice-to-amorphous (S-A) transitions at about empty set = 17A. Superlattices with empty set around the S-A boundary were found to have large local variations in the in-plane grain sizes. Except for a few isolated regions, the chemical composition of the samples were found to be uniform. In samples prepared at Argonne National Laboratory (ANL), mostmore » places studied with EELS showed changes in the EELS spectrum with decreasing empty set. An observed growth in a plasmon peak at approx. 10ev in both NiV and NiMo as empty set decreased down to 19 A is attributed to excitation of interface plasmons. Consistent with this attribution, the peak height shrank in the amorphous samples. The width of this peak is consistent with the theory. The sift in this peak down to 9 ev with decreasing empty set in NiMo is not understood.« less
Time-resolved X-ray spectroscopies of chemical systems: New perspectives
Chergui, Majed
2016-01-01
The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon. PMID:27376102
Valence holes observed in nanodiamonds dispersed in water
NASA Astrophysics Data System (ADS)
Petit, Tristan; Pflüger, Mika; Tolksdorf, Daniel; Xiao, Jie; Aziz, Emad F.
2015-02-01
Colloidal dispersion is essential for most nanodiamond applications, but its influence on nanodiamond electronic properties remains unknown. Here we have probed the electronic structure of oxidized detonation nanodiamonds dispersed in water by using soft X-ray absorption and emission spectroscopies at the carbon and oxygen K edges. Upon dispersion in water, the π* transitions from sp2-hybridized carbon disappear, and holes in the valence band are observed.Colloidal dispersion is essential for most nanodiamond applications, but its influence on nanodiamond electronic properties remains unknown. Here we have probed the electronic structure of oxidized detonation nanodiamonds dispersed in water by using soft X-ray absorption and emission spectroscopies at the carbon and oxygen K edges. Upon dispersion in water, the π* transitions from sp2-hybridized carbon disappear, and holes in the valence band are observed. Electronic supplementary information (ESI) available: Experimental methods, details on XAS/XES normalization and background correction procedures. See DOI: 10.1039/c4nr06639a
Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães
2017-01-01
The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barman, A.; Saini, C. P.; Ghosh, S. K.
2016-06-13
The variation of electron density in TiO{sub 2−x} nanochannels, exhibiting resistive switching phenomenon, produced by Ar{sup +} ion-irradiation at the threshold fluence of 5 × 10{sup 16} ions/cm{sup 2} is demonstrated by X-ray reflectivity (XRR). The transmission electron microscopy reveals the formation of nanochannels, while the energy dispersive X-ray spectroscopy confirms Ti enrichment near the surface due to ion-irradiation, in consistent with the increase in electron density by XRR measurements. Such a variation in Ti concentration indicates the evolution of oxygen vacancies (OVs) along the TiO{sub 2−x} nanochannels, and thus paves the way to explain the operation and performance of the Pt/TiO{sub 2−x}/Pt-basedmore » memory devices via OV migration.« less
Novel applications of X-ray photoelectron spectroscopy on unsupported nanoparticles
NASA Astrophysics Data System (ADS)
Kostko, Oleg; Xu, Bo; Jacobs, Michael I.; Ahmed, Musahid
X-ray photoelectron spectroscopy (XPS) is a powerful technique for chemical analysis of surfaces. We will present novel results of XPS on unsupported, gas-phase nanoparticles using a velocity-map imaging (VMI) spectrometer. This technique allows for probes of both the surfaces of nanoparticles via XPS as well as their interiors via near edge X-ray absorption fine structure (NEXAFS) spectroscopy. A recent application of this technique has confirmed that arginine's guanidinium group exists in a protonated state even in strongly basic solution. Moreover, the core-level photoelectron spectroscopy can provide information on the effective attenuation length (EAL) of low kinetic energy electrons. This contradictory value is important for determining the probing depth of XPS and in photolithography. A new method for determining EALs will be presented.
Electron spectroscopy analysis
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.
Lichens as environmental risk detectors
NASA Astrophysics Data System (ADS)
Caridi, F.; D'Agostino, M.; Messina, M.; Marcianò, G.; Grioli, L.; Belvedere, A.; Marguccio, S.; Belmusto, G.
2017-04-01
Several studies carried out after the Chernobyl nuclear accident in 1986 showed that lichens are suitable biomonitors of the fall-out, given their long life expectancy. 137Cs activity concentrations were measured through HPGe gamma spectrometry in different epiphytic lichens ( Usnea SPP, Platismatia glauca, Pseudevernia furfuracea, Ramalina SPP), collected from three sampling sites in the Calabria region, south of Italy. Data on variations in the contents of airborne particulates heavy metals, As, Be, Cd, Cu, Hg, Pb and Zn, measured in the thalli of the investigated lichens through inductively coupled plasma mass spectrometry (ICP-MS), were reported in accordance with a lichen thalli naturalness/alteration scale. Energy-dispersive X-ray microanalysis in a scanning electron microscope (SEM-EDX), with an electron beam of 20keV, that interacts with the sample leading to the emission of characteristic X-rays as secondary radiation, was also employed to investigate about the chemistry of the adherent particles to the surface of investigated lichens and about the possible interaction between them and the surrounding environment. Data obtained in this article provide useful information on the environmental risk of the studied area and can be further used for a radiological and chemical mapping.
Adams, David T.; Langer, William H.; Hoefen, Todd M.; Van Gosen, Bradley S.; Meeker, Gregory P.
2010-01-01
Natural background levels of Libby-type amphibole in the sediment of the Libby valley in Montana have not, up to this point, been determined. The purpose of this report is to provide the preliminary findings of a study designed by both the U.S. Geological Survey and the U.S. Environmental Protection Agency and performed by the U.S. Geological Survey. The study worked to constrain the natural background levels of fibrous amphiboles potentially derived from the nearby Rainy Creek Complex. The material selected for this study was sampled from three localities, two of which are active open-pit sand and gravel mines. Seventy samples were collected in total and examined using a scanning electron microscope equipped with an energy dispersive x-ray spectrometer. All samples contained varying amounts of feldspars, ilmenite, magnetite, quartz, clay minerals, pyroxene minerals, and non-fibrous amphiboles such as tremolite, actinolite, and magnesiohornblende. Of the 70 samples collected, only three had detectable levels of fibrous amphiboles compatible with those found in the rainy creek complex. The maximum concentration, identified here, of the amphiboles potentially from the Rainy Creek Complex is 0.083 percent by weight.
Sgrigna, G; Baldacchini, C; Esposito, R; Calandrelli, R; Tiwary, A; Calfapietra, C
2016-04-01
This study reports application of monitoring and characterization protocol for particulate matter (PM) deposited on tree leaves, using Quercus ilex as a case study species. The study area is located in the industrial city of Terni in central Italy, with high PM concentrations. Four trees were selected as representative of distinct pollution environments based on their proximity to a steel factory and a street. Wash off from leaves onto cellulose filters were characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy, inferring the associations between particle sizes, chemical composition, and sampling location. Modeling of particle size distributions showed a tri-modal fingerprint, with the three modes centered at 0.6 (factory related), 1.2 (urban background), and 2.6μm (traffic related). Chemical detection identified 23 elements abundant in the PM samples. Principal component analysis recognized iron and copper as source-specific PM markers, attributed mainly to industrial and heavy traffic pollution respectively. Upscaling these results on leaf area basis provided a useful indicator for strategic evaluation of harmful PM pollutants using tree leaves. Copyright © 2016. Published by Elsevier B.V.
Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives
Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.
2017-01-01
The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216
Thermoelectric Properties of Bi Doped Tetrahedrite
NASA Astrophysics Data System (ADS)
Prem Kumar, D. S.; Chetty, R.; Femi, O. E.; Chattopadhyay, K.; Malar, P.; Mallik, R. C.
2017-05-01
Bi doped tetrahedrites with nominal compositions of Cu12Sb4- x Bi x S13 ( x = 0, 0.2, 0.4, 0.6, 0.8) were synthesized by the solid state reaction method. Powder x-ray diffraction patterns confirmed that Cu12Sb4S13 (tetrahedrite structure) was the main phase, along with Cu3SbS4 and Cu3SbS3 as the secondary phases. Electron probe microanalysis provided the elemental composition of all the samples. It was confirmed that the main phase is the tetrahedrite phase with slight deviations in the stoichiometry. All the transport properties were measured between 423 K and 673 K. The electrical resistivity increased with an increase in Bi content for all the samples, possibly induced by the variation in the carrier concentration, which may be due to the influence of impurity phases. The increase in electrical resistivity with an increase in temperature indicates the degenerate semiconducting nature of the samples. The absolute Seebeck coefficient is positive throughout the temperature range indicating the p-type nature of the samples. The Seebeck coefficient for all the samples increased with an increase in Bi content as electrical resistivity. The variation of electrical resistivity and the Seebeck coefficient with doping can be attributed to the changes in the carrier concentration of the samples. The total thermal conductivity increases with an increase in temperature and decreases with an increase in the Bi content that could be due to the reduction in carrier thermal conductivity. The highest thermoelectric figure of merit ( zT) 0.84 at 673 K was obtained for the sample with x = 0.2 due to lower thermal conductivity (1.17 W/m K).
NASA Astrophysics Data System (ADS)
Williams, Gareth O.; Künzel, S.; Daboussi, S.; Iwan, B.; Gonzalez, A. I.; Boutu, W.; Hilbert, V.; Zastrau, U.; Lee, H. J.; Nagler, B.; Granados, E.; Galtier, E.; Heimann, P.; Barbrel, B.; Dovillaire, G.; Lee, R. W.; Dunn, J.; Recoules, V.; Blancard, C.; Renaudin, P.; de la Varga, A. G.; Velarde, P.; Audebert, P.; Merdji, H.; Zeitoun, Ph.; Fajardo, M.
2018-02-01
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. We compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data, suggestive of a temperature-dependent electronic structure in warm dense matter.
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; ...
2016-02-05
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger
2018-02-15
Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.
Hearns, Nigel G R; Laflèche, Denis N; Sandercock, Mark L
2015-05-01
Preparation of a ytterbium-tagged gunshot residue (GSR) reference standard for scanning electron microscopy and energy dispersive X-ray spectroscopic (SEM-EDS) microanalysis is reported. Two different chemical markers, ytterbium and neodymium, were evaluated by spiking the primers of 38 Special ammunition cartridges (no propellant, no projectile) and discharging them onto 12.7 mm diameter aluminum SEM pin stubs. Following SEM-EDS microanalysis, the majority of tri-component particles containing lead, barium, and antimony (PbBaSb) were successfully tagged with the chemical marker. Results demonstrate a primer spiked with 0.75% weight percent of ytterbium nitrate affords PbBaSb particles characteristic of GSR with a ytterbium inclusion efficiency of between 77% and 100%. Reproducibility of the method was verified, and durability of the ytterbium-tagged tri-component particles under repeated SEM-EDS analysis was also tested. The ytterbium-tagged PbBaSb particles impart synthetic traceability to a GSR reference standard and are suitable for analysis alongside case work samples, as a positive control for quality assurance purposes. © 2015 American Academy of Forensic Sciences.
Akbulut, Songul; Grieken, Renevan; Kılıc, Mehmet A; Cevik, Ugur; Rotondo, Giuliana G
2013-03-01
Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I (geo)) enables the assessment of contamination by comparing current and pre-industrial concentrations.
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.
Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D
2016-04-19
The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.
Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging
Golovin, G.; Banerjee, S.; Liu, C.; ...
2016-04-19
Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less
Polarization control in an X-ray free-electron laser
Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus; ...
2016-05-09
X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98 –0.04 +0.02 at 707 eV and may be scanned inmore » energy. We also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. As a result, energy differences of ΔE/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.« less
Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe
2017-01-01
X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255
Kubin, Markus; Kern, Jan; Gul, Sheraz; ...
2017-09-01
X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Qiaoling; Vogt, Stefan; Lai, Barry
Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less
Jin, Qiaoling; Vogt, Stefan; Lai, Barry; ...
2015-02-23
Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Ageev, E. V.; Latypova, G. R.; Altukhov, A. Yu.; Ageeva, E. V.
2017-12-01
The powder fabricated by electric discharge dispersion of the wastes of a VK8 hard alloy is studied by electron-probe microanalysis. This powder formed by electric discharge dispersion in kerosene mainly contains tungsten and carbon and has low contents of oxygen, cobalt, and iron.
Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik
2014-09-01
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.
Inelastic X-ray Scattering from Shocked Liquid Deuterium
Regan, S. P.; Falk, K.; Gregori, G.; ...
2012-12-28
The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly α line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×10 23 cm -3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.
Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko
2013-01-01
Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188
Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-04-26
Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak
NASA Astrophysics Data System (ADS)
Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.
Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials
NASA Astrophysics Data System (ADS)
Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit
2017-09-01
Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.
Jung, Hae-Jin; Eom, Hyo-Jin; Kang, Hyun-Woo; Moreau, Myriam; Sobanska, Sophie; Ro, Chul-Un
2014-08-21
In this work, quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA) (called low-Z particle EPMA), Raman microspectrometry (RMS), and attenuated total reflectance Fourier transform infrared spectroscopic (ATR-FTIR) imaging were applied in combination for the analysis of the same individual airborne particles for the first time. After examining individual particles of micrometer size by low-Z particle EPMA, consecutive examinations by RMS and ATR-FTIR imaging of the same individual particles were then performed. The relocation of the same particles on Al or Ag foils was successfully carried out among the three standalone instruments for several standard samples and an indoor airborne particle sample, resulting in the successful acquisition of quality spectral data from the three single-particle analytical techniques. The combined application of the three techniques to several different standard particles confirmed that those techniques provided consistent and complementary chemical composition information on the same individual particles. Further, it was clearly demonstrated that the three different types of spectral and imaging data from the same individual particles in an indoor aerosol sample provided richer information on physicochemical characteristics of the particle ensemble than that obtainable by the combined use of two single-particle analytical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baconnais, S.; Delavoie, F.; Zahm, J.M.
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.more » We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.« less
Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.
McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L
2015-11-01
A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; Couzi, Michel; Goldner, Philippe; Delmas, Claude
2014-10-01
AFe3O(PO4)3 (A = Ca, Sr and Pb) powder compounds were studied by means of X-ray diffraction (XRD), electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A = Sr, Ca and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32-8 K temperature range. Room temperature Mössbauer spectroscopy and associated DFT calculations confirm the existence of three crystallographically non equivalent Fe3+ sites in the three compounds. Mössbauer spectra recorded as a function of temperature in the PbFe3O(PO4)3 compound also establishes the occurrence of two purely magnetic and reversible phase transitions at 32 and 10 K. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ∼10-20 cm2 typical of spin-forbidden and forced electric dipole intraconfigurational transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.
2013-12-15
Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less
Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru(0.5)Pd(0.5)Sb3
NASA Technical Reports Server (NTRS)
Caillat, T.; Kulleck, J.; Borshchevsky, A.; Fleurial, J.-P.
1996-01-01
A new skutterudite phase Ru(0.5)Pd(0.5)Sb3 was prepared. This new phase adds to a large number of already known materials with the skutterudite structure which have shown good potential for thermoelectric applications. Single phase, polycrystalline samples were prepared and characterized by x-ray analysis, electron probe microanalysis, density, sound velocity, thermal-expansion coefficient, and differential thermal analysis measurements. Ru(0.5)Pd(0.5)Sb3 has a cubic lattice, space group Im3 (T(sup 5, sub h)), with a = 9.298 A and decomposes at about 920 K. The Seebeck coefficient, the electrical resistivity, the Hall effect, and the thermal conductivity were measured on hot-pressed samples over a wide range of temperatures. Preliminary results show that Ru(0.5)Pd(0.5)Sb3 behaves as a heavily doped semiconductor with an estimated band gap of about 0.6 eV. The lattice thermal conductivity of Ru(0.5)Pd(0.5)Sb3 is substantially lower than that of the binary isostructural compounds CoSb3 and IrSb3. The unusually low thermal conductivity might be explained by additional hole and charge transfer phonon scattering in this material. The potential of this material for thermoelectric applications is discussed.
Mechanism and control of fluid secretion.
Oschman, J L
1977-01-01
Fluid secretion and reabsorption by a variety of plant and animal tissues appear to be accomplished by osmotic coupling between solute transport and water movement. The local osmosis model suggests that active accumulation of solutes within narrow folds at the cell surface may produce the local gradients that generate water flow. Both micropuncture techniques and electron-probe X-ray microanalysis have established that local osmotic gradients occur in absorptive epithelia, but they have not as yet been detected in secretory tissues.Hormonal control of secretion involves stimulation of solute pumps and adjustments of permeability to non-transported solutes. Since hormone receptors and pumps are often located on opposite surfaces of the cell, intracellular second messengers convey the secretory signal through cytoplasm. Much has been learned by study of insect tissues that are anatomically simple and that function for long periods in vitro. Aspects of hormone-receptor interaction have been explored, including the action of halluninogenic molecules. In insect salivary glands cyclic AMP appears to stimulate cation transport, while calcium increases anion permeability. The various second messengers probably interact with each other in complex feedback loops that stabilize the system and make it quickly responsive to hormone. Cyclic AMP may stimulate release of calcium from mitochondria. Unresolved is the way second messengers alter properties of the cell surface.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang
2017-12-01
We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-06-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.
Magnetic and charge transport properties of the Na-based Os oxide pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Y.G., E-mail: SHI.Youguo@nims.go.j; International Center for Materials Nanoarchitectonics; JST, Transformative Research-Project on Iron Pnictides
2009-04-15
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs{sub 2}O{sub 6} as a host. The composition was identified as Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) A). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the beta-type pyrochlore superconductor AOs{sub 2}O{sub 6} (A=Cs, Rb, and K).more » The Sommerfeld coefficient is 22 mJ K{sup -2} mol{sup -1}, being the smallest among AOs{sub 2}O{sub 6}. A magnetic anomaly at {approx}57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found. - Graphical abstract: Crystal structure of the Na-based Os oxide pyrochlore Na{sub 1.4}Os{sub 2}O{sub 6}.H{sub 2}O.« less
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-01-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564
NASA Astrophysics Data System (ADS)
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A
2012-10-05
Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.
A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; ...
2015-07-14
We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuntao, E-mail: caswyt@hotmail.com; Ren, Guohao, E-mail: rgh@mail.sic.ac.cn; Ding, Dongzhou
2012-10-15
The calcite phase of LuBO{sub 3} and ScBO{sub 3} polycrystalline powders were synthesized by solid state reaction method, and the Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce (x=0.2, 0.5, 0.7) single crystals were grown by the Czochralski method. A large composition deviation between the initial polycrystalline powders and final single crystal was confirmed by electron probe micro-analysis. Raman spectroscopy revealed that moderate lattice disorder was induced by scandium substitution. However, based on the single crystal X-ray study, we finally concluded that the crystal structure of lutetium scandium orthoborate still crystallized in the rhombohedral system belonging to R3{sup -}c. Furthermore, the relationship between themore » energies of the five 5d levels of Ce{sup 3+} and the crystalline environment was revealed. The total redshift, total crystal field splitting, and centroid shift of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce{sup 3+} were calculated based on their VUV excitation spectra. The variations trend of these observed spectroscopic parameters was in accordance with the predicted ones. - Graphical abstract: The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. The relationship between the energies of the five Ce{sup 3+} 5d levels and the crystalline environment is established. Highlights: Black-Right-Pointing-Pointer Moderate lattice disorder is induced by scandium doping. Black-Right-Pointing-Pointer The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. Black-Right-Pointing-Pointer Relationship between energies of Ce{sup 3+} 5d levels and crystalline environment is established. Black-Right-Pointing-Pointer The spectroscopic parameters are experimentally and theoretically calculated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg
We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.; ...
2018-02-02
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorova, E. I., E-mail: suvorova@ns.crys.ras.ru; Klechkovskaya, V. V.
2010-12-15
Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization inmore » the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.« less
Lawrence, J R; Swerhone, G D W; Leppard, G G; Araki, T; Zhang, X; West, M M; Hitchcock, A P
2003-09-01
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, A.S.; Cauble, R.; Da Silva, L.B.
1996-02-01
This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes de Oca, J. A.; LePetitcorps, Y.; Manaud, J.-P.
2008-05-15
Titanium carbide-based coatings were deposited on W substrates at a high coating growth rate by activated reactive evaporation at 500 and 600 deg. C in a L560 Leybold system using propene as reactive atmosphere. The crystal structure, lattice parameter, preferred orientation, and grain size of the coatings were determined by x-ray diffraction technique using Cu K{alpha}. The analysis of the coating morphology was performed by scanning electron microscopy (SEM), and the composition of the films was analyzed by Auger electron spectroscopy and electron-probe microanalysis. Experimental results suggested that temperature was one of the most important parameters in the fabrication ofmore » stoichiometric TiC coatings. Thus, TiC coatings were obtained at 600 deg. C, whereas TiC{sub 0.6} nonstoichiometric coatings codeposited with a free Ti phase were obtained at 500 deg. C, giving rise to the formation of a composite thin film. After annealing at 1000 deg. C, the stoichiometric films remained stable, but a crack pattern was formed over the entire coating surface. In addition, Ti{sub 0.6}W{sub 0.4}/TiC{sub 0.6} composite thin coatings were obtained for the films synthesized at 500 deg. C. The formation of a Ti{sub 0.6}W{sub 0.4} ductile phase in the presence of a TiC{sub 0.6} phase was responsible to avoid the coating cracking.« less
NASA Astrophysics Data System (ADS)
Wright, K. E.; Popa, K.; Pöml, P.
2018-01-01
Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.
Research on mutual influence of Cherenkov-type probes within the ISTTOK tokamak chamber
NASA Astrophysics Data System (ADS)
Jakubowski, L.; Plyusnin, V. V.; Malinowski, K.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Fernandes, H.; Silva, C.; Figueiredo, H.; Jakubowski, M. J.
2014-12-01
The paper describes an influence of a Cherenkov-type probe, which is used for measurements of fast electron streams inside the ISTTOK chamber, on other probes and behaviour of a plasma ring. The reported study shows that such a probe situated near the plasma column has a strong influence on signals from another Cherenkov probe, and can cause a considerable reduction of electron-induced signals. This effect does not depend on positions of the probes in relation to the limiter. Measurements of hard X-ray (HXR) emission show that the deeply immersed Cherenkov probe can also influence on the limiter . Under specific experimental conditions such a Cherenkov probe can play the role of a new limiter and change the plasma configuration.
Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun
2015-07-21
The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.