Sample records for electron-temperature-gradient driven simulations

  1. Gyrokinetic Studies of Turbulence Reduction with Reverse Shear ETG Transport Barriers or Lithium Walls

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Peterson, J. L.; Granstedt, E. M.; Bell, R.; Guttenfelder, W.; Kaye, S.; Leblanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.; Candy, J.

    2012-03-01

    The National Spherical Torus Experiment (NSTX) can achieve high electron confinement regimes that are super-critically unstable to the electron temperature gradient (ETG) instability. These electron internal transport barriers (e-ITBs) occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO, the first nonlinear ETG simulations of NSTX e-ITB plasmas demonstrate reduced turbulence consistent with this observation. This is qualitatively consistent with a secondary instability picture of reduced ETG turbulence at negative shear (Jenko and Dorland PRL 2002). Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show that ETG-driven turbulence outside of the barrier is large enough to be experimentally relevant, but cannot propagate very far into the barrier. We also use GYRO to study turbulence in regimes that might be expected in the Lithium Torus eXperiment (LTX). While lithium has experimentally been shown to raise the edge temperature and improve performance, there can still be some turbulence from density-gradient-driven trapped electron modes, and a temperature pinch is found in some cases. (Supported by DOE.)

  2. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less

  3. Fully kinetic Biermann battery and associated generation of pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.

    2018-03-01

    The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.

  4. Global simulation of edge pedestal micro-instabilities

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott; Chen, Yang

    2011-10-01

    We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.

  5. Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Peterson, J. L.; Bell, R.; Candy, J.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.

    2012-05-01

    The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaezi, P.; Holland, C.; Thakur, S. C.

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  7. Understanding the impact of insulating and conducting endplate boundary conditions on turbulence in CSDX through nonlocal simulations

    DOE PAGES

    Vaezi, P.; Holland, C.; Thakur, S. C.; ...

    2017-04-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  8. Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.

    2015-11-01

    Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the Gene code are used to demonstrate that these findings can be explained through the linear excitation of a Gradient-driven Drift Coupling mode (GDC). This recently-discovered instability, unlike other drift waves, relies on the grad-B drift due to parallel magnetic fluctuations in lieu of a parallel electron response, and can be driven by density or temperature gradients. The linear properties of the GDC for LAPD parameters are studied in detail, and the corresponding turbulence is investigated. It is found that, despite the very large collisionality in the experiment, many properties are recovered fairly well in the simulations. In addition to confirming the existence of the GDC, this opens up interesting questions regarding GDC activity in astrophysical and space plasmas. Supported by USDOE.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott; Chen, Yang

    This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electronmore » modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of parallel shear flows, which can be quite strong in NSTX. Recent long-time simulations of electron temperature gradient driven turbulence, show that zonal flows slowly grow algebraically via the Rosenbluth-Hinton random walk mechanism. Eventually, the zonal flow gets to a level where it shear suppresses the turbulence. We have demonstrated this behavior with Cyclone base-case parameters, except with a 30% lower temperature gradient. We can demonstrate the same phenomena at higher gradients, but so far, have been unable to get a converged result at the higher temperature gradient. We find that electron ion collisions cause the zonal flows to grow at a slower rate and results in a higher heat flux. So, far all ETG simulations that come to a quasi-steady state show continued build up of zonal flow, see it appears to be a universal phenomena (for ETG). Linear and nonlinear simulations of Collisional and Collisionless trapped electron modes are underway. We find that zonal flow is typically important. We can, however, reproduce the Tannert and Jenko result (that zonal flow is unimportant) using their parameters with the electron temperature three times the ion temperature. For a typical weak gradient core value of density gradient and no temperature gradient, the CTEM is dominant. However, for a steeper density gradient (and still no temperature gradient), representative of the edge, higher k drift-waves are dominant. For the weaker density gradient core case, nonlinear simulations using GEM are routine. For the steeper gradient edge case, the nonlinear fluctuations are very high and a stationary state has not been obtained. This provides motivation for the particle-continuum algorithm. We also note that more physics, e.g. profile variation and equilibrium ExB shear flow should be significantly stabilizing, making such simulations feasible using standard delta-f techniques. This research is ongoing.« less

  10. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  11. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Eric M.; Waltz, R. E.

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  12. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE PAGES

    Bass, Eric M.; Waltz, R. E.

    2017-12-08

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  13. Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Peterson, Jayson Luc

    2011-10-01

    Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).

  14. Streamer formation and transport for parameters characteristic of H-mode pedestals

    NASA Astrophysics Data System (ADS)

    Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.

    2017-10-01

    We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.

  15. Return current instability driven by a temperature gradient in ICF plasmas

    DOE PAGES

    Rozmus, W.; Brantov, A. V.; Sherlock, M.; ...

    2017-10-12

    Here, hot plasmas with strong temperature gradients in inertial confinement fusion (ICF) experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the nonlocal regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state ofmore » ion acoustic turbulence produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the ion acoustic turbulence and its effects on absorption and transport are also discussed.« less

  16. Return current instability driven by a temperature gradient in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Brantov, A. V.; Sherlock, M.; Bychenkov, V. Yu

    2018-01-01

    Hot plasmas with strong temperature gradients in inertial confinement fusion experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the non-local regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state of ion acoustic turbulence (IAT) produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the IAT and its effects on absorption and transport are also discussed.

  17. Flux tube gyrokinetic simulations of the edge pedestal

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  18. Gyrokinetic stability of electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.

    2018-02-01

    The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.

  19. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  20. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDACmore » GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.« less

  1. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  2. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    NASA Astrophysics Data System (ADS)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  3. Suppression of Electron Thermal Conduction in the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.

    2017-08-01

    The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.

  4. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  5. Transport Barriers in Bootstrap Driven Tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.

  6. Ion temperature gradient mode driven solitons and shocks

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  7. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  8. Main-ion intrinsic toroidal rotation profile driven by residual stress torque from ion temperature gradient turbulence in the DIII-D tokamak

    DOE PAGES

    Grierson, B. A.; Wang, W. X.; Ethier, S.; ...

    2017-01-06

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  9. Gradient Drift Turbulence from Electron Bite-Outs: Dependence on Atmospheric Parameters.

    NASA Astrophysics Data System (ADS)

    Young, M.; Oppenheim, M. M.; Dimant, Y. S.

    2017-12-01

    Electron bite-outs are regions of decreased electron density without a corresponding decrease in ion density, often caused by electron attachment to dust grains. They typically occur in the upper D-/lower E-region ionosphere and the accompanying electron gradient provides free energy to drive the gradient drift instability (GDI). The major difference between classical GDI and electron bite-out driven GDI is that the instability occurs on the top side of the bite-out region in the latter, as opposed to the bottom side in the former, in the presence of a vertical background electric field. Moreover, the mobile plasma population contains a gradient in only one species while the entire system remains quasineutral. This modified geometry presents new pathways for instabilities as the ions build up near the bite-out layer, leaving behind depletions that ascend away from the layer. Previous simulation runs showed that the presence of an electron gradient drives GDI-like turbulence even when ions and electrons start in momentum balance. Furthermore, a simulation run that replaced the electron bite-out with a layer of enhanced ion density, as though ions and electrons had filled in the bite-out region, did not lead to instability. This work examines the role of atmospheric parameters at altitudes between 80-100 km in instability formation and turbulence development, including the role of collisions in impeding instability growth as altitude decreases. Key parameters include the ambient electric field, which plays a critical role in triggering the gradient-drift instability; collision frequencies and temperature, which vary with altitude and effect the turbulent growth rate; and relative charge density of the bite-out, which increases the electron gradient strength. This work provides insight into how electron bite-out layers can produce turbulence that ground-based high frequency (HF) radars may be able to observe. The upper D-/lower E-region ionosphere is generally difficult to study in situ, making simulations of ground-based observables much more important. Assuming that electron bite-out layers result from dust charging in particular will allow the community to use the predictions of this work to study the ionospheric dust population.

  10. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  11. Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.

    2016-04-01

    Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.

  12. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  13. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavridis, M.; Isliker, H.; Vlahos, L.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less

  14. Particle simulation of electromagnetic emissions from electrostatic instability driven by an electron ring beam on the density gradient

    NASA Astrophysics Data System (ADS)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2018-04-01

    This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.

  15. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  16. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  17. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  18. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less

  19. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  20. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  1. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  2. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  3. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  4. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  5. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    NASA Astrophysics Data System (ADS)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  6. Gyrokinetic Particle Simulations of Neoclassical Transport

    NASA Astrophysics Data System (ADS)

    Lin, Zhihong

    A time varying weighting (delta f) scheme based on the small gyro-radius ordering is developed and applied to a steady state, multi-species gyrokinetic particle simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Benchmark simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion -electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. In agreement with the existing analytical neoclassical theory, ion energy flux is enhanced by the toroidal mass flow and the neoclassical viscosity is a Pfirsch-Schluter factor times the classical viscosity in the banana regime. In addition, the poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Modifications of the neoclassical transport by the orbit squeezing effects due to the radial electric field associated with sheared toroidal flow are studied. Simulation results indicate a reduction of both ion thermal flux and neoclassical toroidal rotation. Neoclassical theory in the steep gradient profile regime, where conventional neoclassical theory fails, is examined by taking into account finite banana width effects. The relevance of these studies to interesting experimental conditions in tokamaks is discussed. Finally, the present numerical scheme is extended to general geometry equilibrium. This new formulation will be valuable for the development of new capabilities to address complex equilibria such as advanced stellarator configurations and possibly other alternate concepts for the magnetic confinement of plasmas. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  7. High-Beta Electromagnetic Turbulence in LAPD Plasmas

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.

    2015-11-01

    The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.

  8. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, Erik Michael

    Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments. Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times themore » particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature- gradient) simulations using ηe = ηi find η = ∇T /∇n∼0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger η would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient. Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport. A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge. Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-α emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions. Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced τp* and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core. A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.« less

  9. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  10. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  11. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  12. Neutral recycling effects on ITG turbulence

    DOE PAGES

    Stotler, D. P.; Lang, J.; Chang, C. S.; ...

    2017-07-04

    Here, the effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. An adiabatic electron model has been used; hence, the impacts of neutral particles and turbulence on the density gradient are not considered, nor are electromagnetic turbulence effects. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in themore » $$E\\times B$$ shearing rate.« less

  13. Neutral recycling effects on ITG turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stotler, D. P.; Lang, J.; Chang, C. S.

    Here, the effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. An adiabatic electron model has been used; hence, the impacts of neutral particles and turbulence on the density gradient are not considered, nor are electromagnetic turbulence effects. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in themore » $$E\\times B$$ shearing rate.« less

  14. Dynamical Defects in Rotating Magnetic Skyrmion Lattices

    NASA Astrophysics Data System (ADS)

    Pöllath, S.; Wild, J.; Heinen, L.; Meier, T. N. G.; Kronseder, M.; Tutsch, L.; Bauer, A.; Berger, H.; Pfleiderer, C.; Zweck, J.; Rosch, A.; Back, C. H.

    2017-05-01

    The chiral magnet Cu2 OSeO3 hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, raising the question of which of these scenarios better describes the violent dynamics at the domain boundaries. Here, we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz transmission electron microscope different parts of the Skyrmion lattice can be set into motion with different angular velocities. Tracking the time dependence, we show that the constant rearrangement of domain walls is governed by dynamic 5-7 defects arranging into lines. An analysis of the associated defect density is described by Frank's equation and agrees well with classical 2D Monte Carlo simulations. Fluctuations of boundaries show a surgelike rearrangement of Skyrmion clusters driven by defect rearrangement consistent with simulations treating Skyrmions as point particles. Our findings underline the particle character of the Skyrmion.

  15. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    NASA Astrophysics Data System (ADS)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  16. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  17. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  18. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  19. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  20. Observation of 690 MV m -1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, K. P.; Wu, Z.; Cowan, B. M.

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  1. Extending the validation of multi-mode model for anomalous transport to high beta poloidal tokamak scenario in DIII-D

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.

    2018-05-01

    The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.

  2. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    NASA Astrophysics Data System (ADS)

    Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.

    2011-05-01

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi < 0.5, k⊥ being the characteristic perpendicular wavenumber and ρi the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k⊥ρi > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  3. Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime

    NASA Astrophysics Data System (ADS)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth

    2018-02-01

    We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction-diffusion-advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001-0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB ≤ 0.35 fm-3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.

  4. Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Snyder, Philip Benjamin

    1999-11-01

    Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.

  5. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥<1.4 cm-1, kr<3.5 cm-1 ( k⊥ρs<0.28 and krρs<0.7 ). The phase angle between turbulent temperature and density fluctuations, αnT, has also been measured by using an ECE radiometer coupled to a reflectometer along the same line of sight. These quantities are used simultaneously to constrain a set of ion-scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  6. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  7. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  8. Partnership for Edge Physics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritz, Arnold H.; Rafiq, Tariq

    A major goal of our participation in the Edge Physics Simulation project has been to contribute to the understanding of the self-organization of tokamak turbulence fluctuations resulting in the formation of a staircase structure in the ion temperature. A second important goal is to demonstrate how small scale turbulence in plasmas self-organizes with dynamically driven quasi-stationary flow shear. These goals have been accomplished through the analyses of the statistical properties of XGC1 flux driven Gyrokinetic electrostatic ion temperature gradient (ITG) turbulence simulation data in which neutrals are included. The ITG turbulence data, and in particular fluctuation data, were obtained frommore » a massively parallel flux-driven gyrokinetic full-f particle-in-cell simulation of a DIII-D like equilibrium. Below some the findings are summarized. It was observed that the emergence of staircase structure is related to the variations in the normalized temperature gradient length (R/LT) and the poloidal flow shear. Average turbulence intensity is found to be large in the vicinity of minima in R/LTi, where ITG growth is expected to be lower. The distributions of the occurrences of potential fluctuation are found to be Gaussian away from the staircase-step locations, but they are found to be non-Gaussian in the vicinity of staircase-step locations. The results of analytically derived expressions for the distribution of the occurrences of turbulence intensity and intensity flux were compared with the corresponding quantities computed using XGC1 simulation data and good agreement is found. The derived expressions predicts inward and outward propagation of turbulence intensity flux in an intermittent fashion. The outward propagation of turbulence intensity flux occurs at staircase-step locations and is related to the change in poloidal flow velocity shear and to the change in the ion temperature gradient. The standard deviation, skewness and kurtosis for turbulence quantities were computed and found to be large in the vicinity of the staircase-step structures. Large values of skewness and kurtosis can be explained by a temporary opening and closing of the structure which allows turbulence intensity events to propagate. The staircase patterns may reduce the ion heat transport and a manipulation of these patterns may be used to optimize heat transport in tokamaks. An additional objective of the research in support of the Edge Physics Simulation initiative has been to improve the understanding of scrape-off layer thermal transport. In planning experiments and designing future tokamaks, it is important to understand the physical effects that contribute to divertor heat-load fluxes. The research accomplished will contribute to developing new models for the scrape-off layer region. The XGC0 code was used to compute the heat fluxes and the heat-load width in the outer divertor plates of C-Mod and DIII-D tokamaks. It was observed that the width of the XGC0 neoclassical heat-load was approximately inversely proportional to the total plasma current. Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan, was analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. It was found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can point to the DRIBM as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges. The effects of plasma shaping on the H-mode pedestal structure was also investigated. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities were discussed. For the discharges with higher elongation, it was found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continued to evolve to higher pedestal pressures and bootstrap currents until the peeling ballooning stability conditions were satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes were triggered at earlier times. The plasma elongation was found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency was large, and the H-mode pedestal evolves rapidly. It was found that the temperature of neutrals in the scrape-off-layer region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles were nearly independent of the neutral temperature. The elongation and triangularity affected the pedestal widths of plasma density and electron temperature profiles differently. This study illustrated a new mechanism for controlling the pedestal bootstrap current and the pedestal stability.« less

  9. Gyrokinetic simulations of DIII-D near-edge L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Neiser, Tom; Jenko, Frank; Carter, Troy; Schmitz, Lothar; Merlo, Gabriele; Told, Daniel; Banon Navarro, Alejandro; McKee, George; Yan, Zheng

    2017-10-01

    In order to understand the L-H transition, a good understanding of the L-mode edge region is necessary. We perform nonlinear gyrokinetic simulations of a DIII-D L-mode discharge with the GENE code in the near-edge, which we define as ρtor >= 0.8 . At ρ = 0.9 , ion-scale simulations reproduce experimental heat fluxes within the uncertainty of the experiment. At ρ = 0 . 8 , electron-scale simulations reproduce the experimental electron heat flux while ion-scale simulations do not reproduce the respective ion heat flux due to a strong poloidal zonal flow. However, we reproduce both electron and ion heat fluxes by increasing the local ion temperature gradient by 80 % . Local fitting to the CER data in the domain 0.7 <= ρ <= 0.9 is compatible with such an increase in ion temperature gradient within the error bars. Ongoing multi-scale simulations are investigating whether radial electron streamers could dampen the poloidal zonal flows at ρ = 0.8 and increase the radial ion-scale flux. Supported by U.S. DOE under Contract Numbers DE-FG02-08ER54984, DE-FC02-04ER54698, and DE-AC02-05CH11231.

  10. GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu

    2017-10-01

    We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.

  11. Gyrokinetic studies on turbulence-driven and neoclassical nondiffusive toroidal-momentum transport and the effect of residual fluctuations in strong E x B shear.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Rewoldt, G; Lee, W W; Tang, W M; Kaye, S M; Diamond, P H

    2009-01-23

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong E x B flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments.

  12. Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society

  13. Endogenous Magnetic Reconnection in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  14. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  15. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  16. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    DOE PAGES

    Liu, Tao; Qin, Weilun; Wang, Dong; ...

    2017-08-02

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less

  17. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.

    2014-03-01

    Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.

  18. Investigation of thermocapillary convection in a three-liquid-layer system

    NASA Astrophysics Data System (ADS)

    Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.

    1999-06-01

    This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.

  19. Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2000-10-01

    The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.

  20. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  1. Suppression of Electron Thermal Conduction by Whistler Turbulence in a Sustained Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, G. T.; Drake, J. F.; Reynolds, C. S.; Swisdak, M.

    2018-01-01

    The dynamics of weakly magnetized collisionless plasmas in the presence of an imposed temperature gradient along an ambient magnetic field is explored with particle-in-cell simulations and modeling. Two thermal reservoirs at different temperatures drive an electron heat flux that destabilizes off-angle whistler-type modes. The whistlers grow to large amplitude, δ B /B0≃1 , and resonantly scatter the electrons, significantly reducing the heat flux. Surprisingly, the resulting steady-state heat flux is largely independent of the thermal gradient. The rate of thermal conduction is instead controlled by the finite propagation speed of the whistlers, which act as mobile scattering centers that convect the thermal energy of the hot reservoir. The results are relevant to thermal transport in high-β astrophysical plasmas such as hot accretion flows and the intracluster medium of galaxy clusters.

  2. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming

    2018-02-01

    We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.

  3. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  4. Plasma transport in an Eulerian AMR code

    DOE PAGES

    Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; ...

    2017-04-04

    A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions tomore » flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.« less

  5. Plasma transport in an Eulerian AMR code

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.

    2017-04-01

    A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.

  6. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE PAGES

    Sung, Choongki; Wang, G.; Rhodes, Terry L.; ...

    2017-11-16

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  7. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Choongki; Wang, G.; Rhodes, Terry L.

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  8. A Study of Electron Modes in Off-axis Heated Alcator C-Mod Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Mikkelsen, D.; Ennever, P. C.; Howard, N. T.; Gao, C.; Reinke, M. L.; Rice, J. E.; Hughes, J. W.; Walk, J. R.

    2013-10-01

    Understanding the underlying physics and stability of the peaked density internal transport barriers (ITB) that have been observed during off-axis ICRF heating of Alcator C-Mod plasmas is the goal of recent gyro-kinetic simulations. Two scenarios are examined: an ITB plasma formed with maximal (4.5 MW) off-axis heating power; also the use of off-axis heating in an I-mode plasma as a target in the hopes of establishing an ITB. In the former, it is expected that evidence of trapped electron mode instabilities could be found if a sufficiently high electron temperature is achieved in the core. Linear simulations show unstable modes are present across the plasma core from r/a = 0.2 and greater. In the latter case, despite establishing similar conditions to those in which ITBS were formed, none developed in the I-mode plasmas. Linear gyrokinetic analyses show no unstable ion modes at r/a < 0.55 in these I-mode plasmas, with both ITG and ETG modes present beyond r/a = 0.65. The details of the experimental results will be presented. Linear and non-linear simulations of both of these cases will attempt to explore the underlying role of electron and ion gradient driven instabilities to explain the observations. This work was supported by US-DoE DE-FC02-99ER54512 and DE-AC02-09CH11466.

  9. The LTX- β Research Program

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Hughes, P. E.; Kaita, R.; Kozub, T.; Merino, E.; Zhang, X.; Biewer, T. M.; Canik, J. M.; Elliott, D. B.; Reinke, M. L.; Bialek, J.; Hansen, C.; Jarboe, T.; Kubota, S.; Rhodes, T.; Dorf, M. A.; Rognlien, T.; Scotti, F.; Soukhanovskii, V. A.; Koel, B. E.; Donovan, D.; Maan, A.

    2017-10-01

    LTX- β, the upgrade to the Lithium Tokamak Experiment, approximately doubles the toroidal field (to 3.4 kG) and plasma current (to 150 - 175 kA) of LTX. Neutral beam injection at 20 kV, 30 A will be added in February 2018, with systems provided by Tri-Alpha Energy. A 9.3 GHz, 100 kW, short-pulse (5-10 msec) source will be available in summer 2018 for electron Bernstein wave heating. New lithium evaporation sources will allow between-shots recoating of the walls. Upgrades to the diagnostic set are intended to strengthen the research program in the critical areas of equilibrium, core transport, scrape-off layer physics, and plasma-material interactions. The LTX- β research program will combine the capability for gradient-free temperature profiles, to stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of ∇n-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the TEM include sheared flow stabilization, which can be tested on LTX- β. The goal will be to minimize anomalous transport in a low aspect ratio tokamak, which would lead to a very compact, tokamak-based fusion core. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  10. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  11. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.

    PubMed

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2008-10-01

    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.

  12. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  13. Heating by transverse waves in simulated coronal loops

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.; Antolin, P.

    2017-08-01

    Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org

  14. The expansion of polarization charge layers into magnetized vacuum - Theory and computer simulations

    NASA Technical Reports Server (NTRS)

    Galvez, Miguel; Borovsky, Joseph E.

    1991-01-01

    The formation and evolution of polarization charge layers on cylindrical plasma streams moving in vacuum are investigated using analytic theory and 2D electrostatic particle-in-cell computer simulations. It is shown that the behavior of the electron charge layer goes through three stages. An early time expansion is driven by electrostatic repulsion of electrons in the charge layer. At the intermediate stage, the simulations show that the electron-charge-layer expansion is halted by the positively charged plasma stream. Electrons close to the stream are pulled back to the stream and a second electron expansion follows in time. At the late stage, the expansion of the ion charge layer along the magnetic field lines accompanies the electron expansion to form an ambipolar expansion. It is found that the velocities of these electron-ion expansions greatly exceed the velocities of ambipolar expansions which are driven by plasma temperatures.

  15. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.

    PubMed

    Bailly-Grandvaux, M; Santos, J J; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J-L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marquès, J-R; Morace, A; Nicolaï, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z

    2018-01-09

    Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

  16. Electron temperature critical gradient and transport stiffness in DIII-D

    DOE PAGES

    Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...

    2015-07-06

    The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less

  17. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).

  18. Scrape-off layer tokamak plasma turbulence

    NASA Astrophysics Data System (ADS)

    Bisai, N.; Singh, R.; Kaw, P. K.

    2012-05-01

    Two-dimensional (2D) interchange turbulence in the scrape-off layer of tokamak plasmas and their subsequent contribution to anomalous plasma transport has been studied in recent years using electron continuity, current balance, and electron energy equations. In this paper, numerically it is demonstrated that the inclusion of ion energy equation in the simulation changes the nature of plasma turbulence. Finite ion temperature reduces floating potential by about 15% compared with the cold ion temperature approximation and also reduces the radial electric field. Rotation of plasma blobs at an angular velocity about 1.5×105 rad/s has been observed. It is found that blob rotation keeps plasma blob charge separation at an angular position with respect to the vertical direction that gives a generation of radial electric field. Plasma blobs with high electron temperature gradients can align the charge separation almost in the radial direction. Influence of high ion temperature and its gradient has been presented.

  19. Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. S., E-mail: zhang.huasen@gmail.com; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Liu, Y. Q.

    2016-04-15

    The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observedmore » and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.« less

  20. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  1. Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Dorland, William

    2002-12-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyrokinetic simulations with the GS2 code. This is a continuation of previous work with gyrofluid simulations [D. W. Ross et al., Phys. Plasmas 9, 177 (2002)], and the same L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] is studied. The simulated turbulence is dominated by ion temperature gradient (ITG) modes, corrected by trapped-electron, passing-electron and impurity effects. The energy fluxes obtained in the gyrokinetic simulations are comparable to, even somewhat higher than, those of the earlier work, and the simulated ion thermal transport, corrected for E×B flow shear, exceeds the experimental value by more than a factor of 2. The simulation also overestimates the density fluctuation level. Varying the local temperature gradient shows a stiff response in the flux and an apparent up-shift from the linear mode threshold [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)]. This effect is insufficient, within the estimated error, to bring the results into conformity with the experiment.

  2. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of themore » turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).« less

  3. THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchester IV, W. B.; Van der Holst, B.; Toth, G.

    2012-09-01

    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protonsmore » on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.« less

  4. 3D theory of a high-gain free-electron laser based on a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Baxevanis, Panagiotis; Ding, Yuantao; Huang, Zhirong; Ruth, Ronald

    2014-02-01

    The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of the FEL gain, an effect which is especially relevant when one considers FELs driven by plasma accelerators or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D) effects, including beam size variations along the undulator. The results of our theory compare favorably with simulation and are used in fast optimization studies of various x-ray FEL configurations.

  5. The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, P., E-mail: peter.hill@york.ac.uk; York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD; Hariri, F.

    2015-04-15

    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulencemore » is able to re-establish the temperature gradient across the island for islands widths w ≲ λ{sub turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λ{sub turb}, turbulence is able to maintain finite temperature gradients across the island.« less

  6. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  7. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  8. Heat currents in electronic junctions driven by telegraph noise

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Chowdhury, D.; Aharony, A.; Dattagupta, S.

    2017-11-01

    The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric field that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an unbiased junction.

  9. Direct Numerical Simulation of Fingering Instabilities in Coating Flows

    NASA Astrophysics Data System (ADS)

    Eres, Murat H.; Schwartz, Leonard W.

    1998-11-01

    We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.

  10. Multi-scale gyrokinetic simulations: Comparison with experiment and implications for predicting turbulence and transport

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J.

    2016-05-01

    To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1/2 = 60.0), simultaneously capture turbulence at the ion ( kθρs˜O (1.0 ) ) and electron-scales ( kθρe˜O (1.0 ) ). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a "rule of thumb" based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.

  11. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  12. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  13. Kinetic simulation of edge instability in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel Patrick

    In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.

  14. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  15. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  16. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Sung, C.; Wang, G.; Rhodes, T. L.; Smith, S. P.; Osborne, T. H.; Ono, M.; McKee, G. R.; Yan, Z.; Groebner, R. J.; Davis, E. M.; Zeng, L.; Peebles, W. A.; Evans, T. E.

    2017-11-01

    The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs only after ELMs are suppressed and are not observed during the initial RMP application. The T˜ e/Te increases ( >60%) are coincident with changes in normalized density and electron temperature gradients in the region from the top of the pedestal outward to the upper portion of the steep edge gradient. Density turbulence (kθρs ≤ 0.4) in this location was also observed to increase only after ELM suppression. These results are significant since they indicate that increased gradient-driven turbulent transport is one possible mechanism to regulate and maintain ELM-free H-mode operation. Investigation of linear stability of drift wave instabilities using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73 (2016)] shows that the dominant mode moves closer to the electron mode branch from the ion mode branch only after ELMs are suppressed, correlated with the increased turbulence. The increased turbulence during ELM suppression, rather than with the initial RMP application, indicates that the often observed RMP induced "density pump-out" cannot be attributed to long wavelength edge turbulence level changes.

  17. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  18. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less

  19. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  20. Experimental observation and numerical simulation of permeability changes in dolomite at CO2 sequestration conditions

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.

  1. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  2. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John S.

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  3. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  4. WHATCH’EM: A Weather-Driven Energy Balance Model for Determining Water Height and Temperature in Container Habitats for Aedes aegypti

    PubMed Central

    Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.

    2017-01-01

    The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363

  5. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; ...

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  6. Transition to subcritical turbulence in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    van Wyk, F.; Highcock, E. G.; Schekochihin, A. A.; Roach, C. M.; Field, A. R.; Dorland, W.

    2016-12-01

    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.

  7. Gyrokinetic simulations of particle transport in pellet fuelled JET discharges

    NASA Astrophysics Data System (ADS)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET

    2017-10-01

    Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.

  8. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  9. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C., E-mail: csung@physics.ucla.edu; White, A. E.; Greenwald, M.

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local,more » electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].« less

  10. Surface-tension-driven flow in a glass melt

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1985-01-01

    Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.

  11. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  12. Role of turbulence regime on determining the local density gradient

    DOE PAGES

    Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...

    2017-11-16

    In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less

  13. Resolving the Mystery of Transport Within Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    2013-10-01

    The Trapped Gyro-Landau Fluid (TGLF) quasilinear model, which is calibrated to approximate non-linear gyro-kinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges in excellent agreement with data from the DIII-D tokamak. This is a strong validation of gyro-kinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. Inside the ITB, the ion energy transport is observed to be reduced to the neoclassical level which is consistent with the theory of turbulence suppression by E × B velocity shear acting on low wavenumber turbulence. The electron energy transport is observed to be far above the neoclassical level which is consistent with electron energy transport due to high wavenumber electron temperature gradient (ETG) modes. Since the ETG modes do not produce particle and ion momentum transport, and low wavenumber modes are suppressed, these channels are expected to be reduced to the neoclassical level in striking disagreement with experimental measurements. A possible resolution of this conundrum was found in 2005 when gyro-kinetic turbulence simulations showed that the parallel velocity shear driven Kelvin-Helmholtz (KH) mode can arrest the suppression of transport by the shear in the E × B velocity Doppler shift at high toroidal flow shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B shear and to recent improvements to TGLF that allow the KH mode to be faithfully modeled. The resolution of this long-standing mystery of the missing particle and momentum transport in an ITB is the result of the steady advances in gyro-kinetic simulations and quasilinear modeling. Supported by the US Department of Energy under DE-FG02-95ER54309.

  14. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  15. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  16. ITG-TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Min; Qi, Lei; Yi, S.; Hahm, T. S.

    2017-06-01

    We develop a novel numerical scheme to simulate electrostatic turbulence with kinetic electron responses in magnetically confined toroidal plasmas. Focusing on ion gyro-radius scale turbulences with slower frequencies than the time scales for electron parallel motions, we employ and adapt the bounce-averaged kinetic equation to model trapped electrons for nonlinear turbulence simulation with Coulomb collisions. Ions are modeled by employing the gyrokinetic equation. The newly developed scheme is implemented on a global δf particle in cell code gKPSP. By performing linear and nonlinear simulations, it is demonstrated that the new scheme can reproduce key physical properties of Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities, and resulting turbulent transport. The overall computational cost of kinetic electrons using this novel scheme is limited to 200%-300% of the cost for simulations with adiabatic electrons. Therefore the new scheme allows us to perform kinetic simulations with trapped electrons very efficiently in magnetized plasmas.

  17. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  18. Turbulent transport of alpha particles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.

    2017-03-01

    We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.

  19. Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Ogitsu, T.; Fernandez-Pañella, A.; Hamel, S.; Correa, A. A.; Prendergast, D.; Pemmaraju, C. D.; Ping, Y.

    2018-06-01

    The spatiotemporal electron and ion relaxation dynamics of iron induced by femtosecond laser pulses was studied using a one-dimensional two-temperature model (1D-TTM) where electron and ion temperature-dependent thermophysical parameters such as specific heat (C ), electron-phonon coupling (G ), and thermal conductivity (K ) were calculated with ab initio density-functional-theory (DFT) simulations. Based on the simulated time evolutions of electron and ion temperature distributions [Te(x ,t ) and Ti(x ,t ) ], the time evolution of x-ray absorption near-edge spectroscopy (XANES) was calculated and compared with experimental results reported by Fernandez-Pañella et al., where the slope of XANES spectrum at the onset of absorption (s ) was used due to its excellent sensitivity to the electron temperature. Our results indicate that the ion temperature dependence on G and C , which is largely neglected in the past studies, is very important for studying the nonequilibrium electron-ion relaxation dynamics of iron in warm dense matter (WDM) conditions. It is also shown that the 1 /s behavior becomes very sensitive to the thermal gradient profile, in other words, to the values of K in a TTM simulation, for target thickness of about two to four times the mean free path of conduction electrons. Our approach based on 1D-TTM and XANES simulations can be used to determine the optimal combination of target geometry and laser fluence for a given target material, which will enable us to tightly constrain the thermophysical parameters under electron-ion nonequilibrium WDM conditions.

  20. Recent intensification of the Walker Circulation and the role of natural sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Allen, R.

    2017-12-01

    In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.

  1. Electron heating in quasi-perpendicular shocks - A Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Veltri, Pierluigi; Mangeney, Andre; Scudder, Jack D.

    1990-01-01

    To study the problem of electron heating in quasi-perpendicular shocks, under the combined effects of 'reversible' motion, in the shock electric potential and magnetic field, and wave-particle interactions a diffusion equation was derived, in the drift (adiabatic) approximation and it was solved by using a Monte Carlo method. The results show that most of the observations can be explained within this framework. The simulation has also definitively shown that the electron parallel temperature is determined by the dc electromagnetic field and not by any wave particle induced heating. Wave-particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons. Some constraints on the wave-particle interaction process may be obtained from a detailed comparison between the simulation and observations. In particular, it appears that the adiabatic approximation must be violated in order to explain the observed evolution of the perpendicular temperature.

  2. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors

    DOE PAGES

    Qu, Xin; Hall, Alex; Klein, Stephen A.; ...

    2015-09-28

    Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less

  3. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    DOE PAGES

    Liu, Tao; Zhang, Tong; Wang, Dong; ...

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU)more » is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. As a result, theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.« less

  4. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    NASA Astrophysics Data System (ADS)

    Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander

    2016-05-01

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.

  5. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  6. Global MHD Simulation of the Coronal Mass Ejection on 2011 March 7: from Chromosphere to 1 AU

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W.; van der Holst, B.; Oran, R.; Sokolov, I.; Toth, G.; Vourlidas, A.; Liu, Y.; Sun, X.; Gombosi, T. I.

    2013-12-01

    In this study, we present magnetohydrodynamics simulation results of a fast CME event that occurred on 2011 March 7 by using the newly developed Alfven Wave Solar Model (AWSoM) in Space Weather Modeling Framework (SWMF). The background solar wind is driven by Alfven-wave pressure and heated by Alfven-wave dissipation in which we have incorporated balanced turbulence at the top of the closed field lines. The magnetic field of the inner boundary is specified with a synoptic magnetogram from SDO/HMI. In order to produce the physically correct CME structures and CME-driven shocks, the electron and proton temperatures are separated so that the electron heat conduction is explicitly treated in conjunction with proton shock heating. Also, collisionless heat conduction is implemented for getting the correct electron temperature at 1 AU. We initiate the CME by using the Gibson-Low flux rope model and simulate the CME propagation to 1 AU. A comprehensive validation study is performed using remote as well as in-situ observations from SOHO, STEREOA/B, ACE, and WIND. Our result shows that the new model can reproduce most of the observed features and the arrival time of the CME is correctly estimated, which suggests the forecasting capability of the new model. We also examine the simulated CME-driven shock structures that are important for modeling the associated solar energetic event (SEP) with diffusive shock acceleration.

  7. Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.

    PubMed

    Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2016-11-01

    With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Buoyancy-Marangoni convection in confined volatile binary fluids subject to a horizontal temperature gradient

    NASA Astrophysics Data System (ADS)

    Qin, Tongran; Grigoriev, Roman

    2017-11-01

    We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.

  9. Thermodynamic understanding of Sn whisker growth on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lin; Jian, Wei; Lin, Bing

    2015-06-07

    Sn whiskers are observed by scanning electron microscope on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging. Only Cu{sub 6}Sn{sub 5} phase appears in the X-ray diffraction patterns and no Sn element is detected in the Cu sublayer by scanning transmission electron microscopy. Based on the interfacial thermodynamics, the intermetallic Cu{sub 6}Sn{sub 5} compound phase may form directly at the Sn grain boundary. Driven by the stress gradient during the formation of Cu{sub 6}Sn{sub 5} compound at Sn grain boundaries, Sn atoms segregate onto the Cu surface and accumulate to form Sn whisker.

  10. Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2016-10-01

    Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.

  11. Enhanced electron mixing and heating in 3-D asymmetric reconnection at the Earth's magnetopause

    DOE PAGES

    Le, Ari Yitzchak; Daughton, William Scott; Chen, Li -Jen; ...

    2017-03-01

    Here, electron heating and mixing during asymmetric reconnection are studied with a 3-D kinetic simulation that matches plasma parameters from Magnetospheric Multiscale (MMS) spacecraft observations of a magnetopause diffusion region. The mixing and heating are strongly enhanced across the magnetospheric separatrix compared to a 2-D simulation. The transport of particles across the separatrix in 3-D is attributed to lower hybrid drift turbulence excited at the steep density gradient near the magnetopause. In the 3-D simulation (and not the 2-D simulation), the electron temperature parallel to the magnetic field within the mixing layer is significantly higher than its upstream value inmore » agreement with the MMS observations.« less

  12. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  13. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Rath, F.; Buchholz, R.

    2016-08-15

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then doesmore » not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.« less

  14. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.

  15. NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team

    2018-01-01

    Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.

  16. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  17. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  18. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, J.D.; Chang, C.H.

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less

  19. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    PubMed

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  20. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  1. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    NASA Astrophysics Data System (ADS)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-01

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST collisionality regime, is predicted.

  2. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k θρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST collisionality regime, is predicted.« less

  3. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  4. Influence of field ionization effect on the divergence of laser-driven fast electrons

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.

    2018-07-01

    The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.

  5. Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.

    PubMed

    Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W

    2011-02-04

    Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.

  6. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  7. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  8. Anomalous magnon Nernst effect of topological magnonic materials

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Wang, X. R.

    2018-05-01

    The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.

  9. Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions.

    PubMed

    Bollig, R; Janka, H-T; Lohs, A; Martínez-Pinedo, G; Horowitz, C J; Melson, T

    2017-12-15

    Muons can be created in nascent neutron stars (NSs) due to the high electron chemical potentials and the high temperatures. Because of their relatively lower abundance compared to electrons, their role has so far been ignored in numerical simulations of stellar core collapse and NS formation. However, the appearance of muons softens the NS equation of state, triggers faster NS contraction, and thus leads to higher luminosities and mean energies of the emitted neutrinos. This strengthens the postshock heating by neutrinos and can facilitate explosions by the neutrino-driven mechanism.

  10. Scaling laws and bulk-boundary decoupling in heat flow.

    PubMed

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  11. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    PubMed Central

    Reilly, John; Glisic, Branko

    2018-01-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496

  12. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  13. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  14. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  15. Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing

    2003-11-01

    Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.

  16. Overview of recent HL-2A experiments

    NASA Astrophysics Data System (ADS)

    Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team

    2017-10-01

    Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.

  17. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  18. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  19. Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions

    NASA Astrophysics Data System (ADS)

    Gültekin, Ö.; Gürcan, Ö. D.

    2018-02-01

    Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.

  20. Roles of Magnetic Reconnection and Developments of Modern Theory^*

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2007-11-01

    The role of reconnection was recognized in Solar and Space Physics and auroral substorms were suggested to originate in the night-side of the Earth's magnetosphere as a result collisionless reconnectionootnotetextB. Coppi, Nature 205, 998 (1965). well before the kind of modern theory employed for this became applied to laboratory plasmas. Experiments have reached low collisionality regimes where, like in space plasmas, the features of the electron distribution and in particular of the electron temperature gradient become important and the factors contributing to the electron thermal energy balance equation (transverse thermal and longitudinal diffusivities, or electron Landau dampingootnotetextB. Coppi, J.W.-K. Mark, L. Sugiyama, G. Bertin, Phys. Rev. Letters 42, 1058 (1978) and J. Drake, et al., Phys. Fluids 26, 2509 (1983). play a key role. For this an asymptotic theory of modes producing macroscopic islands has been developed involving 3 regions, the innermost one related to finite resistivity and the intermediate one to the finite ratio of the to thermal conductivitiesootnotetextB. Coppi, C. Crabtree, and V. Roytershteyn contribution to Paper TH/R2-19, I.A.E.A. Conference 2006.,^4. A background of excited micro-reconnecting modes, driven by the electron temperature gradient, is considered to make this ratio significantootnotetextB. Coppi, in``Collective Phenomena in Macroscopic Systems'' Eds. G. Bertin et al. (World Scientific, 2007) MIT-LNS Report 06/11(2006). ^*Supported in part by the US D.O.E.

  1. Internal transport barriers in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.

    2009-05-01

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  2. Comparison of Microinstability Properties for Stellarator Magnetic Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Rewoldt; L.-P. Ku; W.M. Tang

    2005-06-16

    The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less

  3. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  4. Effective Thermal Conductivity of Graphite Materials with Cracks

    NASA Astrophysics Data System (ADS)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  6. Zonal flow dynamics and control of turbulent transport in stellarators.

    PubMed

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  7. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  8. Electro-diffusion in a plasma with two ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Tang Xianzhu

    2012-08-15

    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratiomore » is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.« less

  9. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Johannes, E-mail: thomas@tp1.uni-duesseldorf.de; Pronold, Jari; Pukhov, Alexander

    2016-05-15

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys.more » Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.« less

  10. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  11. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  12. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.

    2017-12-01

    Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).

  13. Temperature-gradient-induced

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Trittel, Torsten; Stannarius, Ralf

    Freely-suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters were used to study thermally driven migration and convection in the film plane. Film experiments were performed during the 6 minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). We have found an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to the Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 K/mm, with thermally driven convection only setting in when the hot post reaches the transition temperature to the nematic phase. The Observation and Analysis of Smectic Islands in Space (OASIS) flight hardware was launched on SpaceX-6 in April 2015 and experiments on smectic bubbles were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We observed that smectic islands on the surface of the bubbles migrated towards the colder part of the bubble in a temperature gradient. This work was supported by NASA Grant No. NNX-13AQ81G, by the Soft Materials Research Center under NSF MRSEC Grants No. DMR-0820579 and No. DMR-1420736, and by DLR Grants 50WM1127 and 50WM1430.

  14. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu

    2013-08-20

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large rangemore » of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.« less

  15. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  16. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  17. On the tertiary instability formalism of zonal flows in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.

    2018-05-01

    This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF

  18. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  19. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  20. Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?

    NASA Astrophysics Data System (ADS)

    Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.

    2010-11-01

    A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.

  1. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Parker, S. E.; Wan, W.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less

  2. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    PubMed

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  3. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  4. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  5. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  6. Theory-based transport simulations of TFTR L-mode temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, G.

    1992-03-01

    The temperature profiles from a selection of Tokamak Fusion Test Reactor (TFTR) L-mode discharges (17{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Amsterdam, 1990 (EPS, Petit-Lancy, Switzerland, 1990, p. 114)) are simulated with the 1 (1)/(2) -D baldur transport code (Comput. Phys. Commun. {bold 49}, 275 (1988)) using a combination of theoretically derived transport models, called the Multi-Mode Model (Comments Plasma Phys. Controlled Fusion {bold 11}, 165 (1988)). The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{submore » {ital i}}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub {ital i}} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes.« less

  7. Theoretical and computational studies of the sheath of a planar wall

    NASA Astrophysics Data System (ADS)

    Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni

    2012-03-01

    We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).

  8. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  9. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr

    2016-06-15

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less

  10. Progress in Ion Transport Membranes for Gas Separation Applications

    NASA Astrophysics Data System (ADS)

    Bose, Arun C.; Stiegel, Gary J.; Armstrong, Phillip A.; Halper, Barry J.; (Ted) Foster, E. P.

    This chapter describes the evolution and advances of ion transport membranes for gas separation applications, especially separation of oxygen from air. In partnership with the US Department of Energy (DOE), Air Products and Chemicals, Inc. (Air Products) successfully developed a novel class of mixed ion-electron conducting materials and membrane architecture. These novel materials are referred to as ion transport membranes (ITM). Generically, ITMs consist of modified perovskite and brownmillerite oxide solid electrolytes and provide high oxygen anion and electron conduction typically at high temperatures driven by an oxygen potential gradient without the need for external power. The partial pressure ratio across the ITM layer creates the driving force for oxygen separation.

  11. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Trittel, Torsten; Stannarius, Ralf; Eremin, Alexey; Harth, Kirsten; Clark, Noel A.; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2016-01-01

    Freely suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters are used to study thermally driven convection and diffusion in the film plane. The experiments were performed during a six minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). The project served as a preliminary test for a planned ISS Experiment with liquid crystal films (OASIS), and in addition it provided new experimental data on smectic films exposed to in-plane thermal gradients.We find an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to a Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 Kmm, thermally driven convection sets in when the hot post reaches the transition temperature to the nematic phase.An additional experiment was performed under microgravity conditions to test the stability of liquid crystal bridges in different smectic phases.

  12. Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2017-12-01

    Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by ≃ 15 % , resulting in an electron-to-proton temperature ratio of ≃ 0.45. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than ≃ 30 % drop, as we increase the mass ratio from {m}i/{m}e=49 up to {m}i/{m}e=1600). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.

  13. Melt Convection Effects in the Bridgman Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    1998-01-01

    The solidification of a dilute bismuth-tin alloy under Bridgman crystal growth conditions is investigated in support of NASA's MEPHISTO space shuttle flight experiment. Computations are performed in two-dimensions with a uniform grid. The simulation includes the species-concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed; no simplifying steady state approximations are used. Results are obtained under microgravity conditions for pure bismuth, and Bismuth-0.1 at.% Sn and Bi-1.0 at.% Sn alloys. The concentration dependence of the melting temperature is neglected; the solid/liquid interface temperature is assumed to be the melting temperature of pure bismuth for all cases studied. For the Bi-1.0 at.% Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time; this causes increasing solute segregation at the liquid/solid interface.

  14. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  15. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  16. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  17. Demonstration of current drive by a rotating magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Giersch, L.; Slough, J. T.; Winglee, R.

    2007-04-01

    Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.

  18. Experimental Study of Current-Driven Turbulence During Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William

    CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, MIT Participation in the Center for Multiscale Plasma Dynamics, which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department,.more » Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009). In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a spontaneous reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive-potential spikes, which were identified as electron phase-space holes, a class of nonlinear solitary wave known to evolve from a strong beam-on-tail instability. We established that fast electrons were produced by magnetic reconnection. Overall, these instabilities were found to be a consequence of reconnection, specifically the strong energization of electrons, leading to steep gradients in both coordinate- and velocity-space. Estimates (using quasi-linear theory) of the anomalous resistivity due to these modes did not appear large enough to substantially impact the reconnection process. Relevant publications: W. Fox, M. Porkolab, et al, Phys. Rev. Lett. 101, 255003 (2008). W. Fox, M. Porkolab, et al, Phys. Plasmas 17, 072303, (2010).« less

  19. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.

  20. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Effects of eletron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.

  2. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  3. Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong

    2016-10-01

    The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.

  4. Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team

    2018-05-01

    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.

  5. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco

    2017-07-01

    In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.

  6. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  7. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  8. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  9. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for η e, exp ~2.2 with higher growth ratesmore » for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  10. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  11. Validation of buoyancy driven spectral tensor model using HATS data

    NASA Astrophysics Data System (ADS)

    Chougule, A.; Mann, J.; Kelly, M.; Larsen, G. C.

    2016-09-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ɛ), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).

  12. Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I.H.

    The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.

  13. Collision-Driven Negative-Energy Waves and the Weibel Instability of a Relativistic Electron Beam in a Quasineutral Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Anupam; Kumar, Naveen; Shvets, Gennady; Polomarov, Oleg; Pukhov, Alexander

    2008-12-01

    A new model describing the Weibel instability of a relativistic electron beam propagating through a resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D geometry the Weibel instability persists even for collisionless background plasma. The anomalous plasma resistivity in 3D is caused by the two-stream instability.

  14. Analysis of metallic impurity density profiles in low collisionality Joint European Torus H-mode and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.

    2006-04-01

    This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give ground to the idea that in ITER it should be possible to find conditions in which the risk of accumulation of metals such as nickel can be contained.

  15. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.; Frank, L.A.; Huang, C.Y.

    Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less

  16. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lu, WANG; Shuitao, PENG; P, H. DIAMOND

    2018-07-01

    Understanding the generation of intrinsic rotation in tokamak plasmas is crucial for future fusion reactors such as ITER. We proposed a new mechanism named turbulent acceleration for the origin of the intrinsic parallel rotation based on gyrokinetic theory. The turbulent acceleration acts as a local source or sink of parallel rotation, i.e., volume force, which is different from the divergence of residual stress, i.e., surface force. However, the order of magnitude of turbulent acceleration can be comparable to that of the divergence of residual stress for electrostatic ion temperature gradient (ITG) turbulence. A possible theoretical explanation for the experimental observation of electron cyclotron heating induced decrease of co-current rotation was also proposed via comparison between the turbulent acceleration driven by ITG turbulence and that driven by collisionless trapped electron mode turbulence. We also extended this theory to electromagnetic ITG turbulence and investigated the electromagnetic effects on intrinsic parallel rotation drive. Finally, we demonstrated that the presence of turbulent acceleration does not conflict with momentum conservation.

  17. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  18. Optical ray tracing method for simulating beam-steering effects during laser diagnostics in turbulent media.

    PubMed

    Wang, Yejun; Kulatilaka, Waruna D

    2017-04-10

    In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.

  19. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2016-05-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.

  20. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L.

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement ofmore » electron temperature gradient scale length.« less

  1. Start-to-end simulation of the shot-noise driven microbunching instability experiment at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, J.; Ding, Y.; Emma, P.

    The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.

  2. Start-to-end simulation of the shot-noise driven microbunching instability experiment at the Linac Coherent Light Source

    DOE PAGES

    Qiang, J.; Ding, Y.; Emma, P.; ...

    2017-05-23

    The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.

  3. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    NASA Astrophysics Data System (ADS)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  4. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  5. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  6. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  7. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  8. Effects of pH and Redox Gradients on Prebiotic Organic Synthesis and the Generation of Free Energy in Simulated Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Flores, E.; Abedian, Y.; Maltais, T.; Cameron, R.; Hermis, N.; Chin, K.; Russell, M. J.; Baum, M. M.

    2017-07-01

    Hydrothermal minerals in alkaline vents can promote phosphorus and organic concentration, redox reactions driven by catalytic metal sulfides, and the ambient pH and redox gradients can affect the synthesis of organics.

  9. A Comparison of ARTEMIS Observations and Particle-in-cell Modeling of the Lunar Photoelectron Sheath in the Terrestrial Magnetotail

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.

    2012-01-01

    As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.

  10. Nonlinear Electron and Ion Density Modulations Driven by Interfering High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhang, P.; Saleh, N.; Sheng, Z. M.; Widjaja, C.; Umstadter, D.

    2002-11-01

    The optical spectrum from interaction of two crossed ultra short laser beams (400 fs) with underdense plasma is measured at various angles. Enhancement and broadening of the spectrum in the forward direction of one of the beams shows evidence of energy transfer between the two laser beams(G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999).), which is confirmed by a 2-D PIC simulation. The spectrum and scattered power indicate that a large amplitude electron density modulation is driven, which is attributed to the ponderomotive force of the interference, in agreement with simple analysis and simulation(δn/n_0>10). Stokes and anti-Stokes satellites reveals that the energy transfer is accompanied by a large amplitude nonlinear ion acoustic wave created by the laser interference in the strongly driven limit. The wavelength shift indicates that the ion acoustic wave's speed is 2.3×10^6m/s, corresponding to the electron temperature 119 keV, which is attributed to stochastic heating, also found in the simulation. Besides being of interest in basic plasma physics, this research is also relevant to fast igniter fusion or ion acceleration experiments, in which a laser pulse may potentially beat with a reflected weaker pulse, with intensities comparable to those used in the experiment(Y. Sentoku, et al., Appl. Phys. B 74, 207-215 (2002).).

  11. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.

    2015-12-01

    This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flowmore » stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the k x-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas, including the high-k electron transport reduces the improvement, yielding a modest net increase in predicted fusion power compared to the TGLF prediction with the original SAT0 model.« less

  12. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system

    NASA Astrophysics Data System (ADS)

    Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos

    2018-01-01

    The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.

  13. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    NASA Astrophysics Data System (ADS)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  14. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well-separated frequencies. These results are qualitatively reproduced in a simple numerical "thought experiment," described in Chapter VI, which suggests that zonal flows may trigger the L-H transition.

  15. Finite-β Split-weight Gyrokinetic Particle Simulation of Microinstabilities

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Lee, W. W.; Lewandowski, J. L. V.

    2003-10-01

    The finite-β split-weight gyrokinetic particle simulation scheme [1] has been implemented in two-dimensional slab geometry for the purpose of studying the effects of high temperature electrons on microinstabilities. Drift wave instabilities and ion temperature gradient modes are studied in both shearless slab and sheared slab geometries. The linear and nonlinear evolution of these modes, as well as the physics of microtearing, is compared with the results of Reynders [2] and Cummings [3]. [1] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z. Lin, Phys. Plasmas 8, 4435 (2001). [2] J. V. W. Reynders, Ph.D. thesis, Princeton University (1992). [3] J. C. Cummings, Ph.D. thesis, Princeton University (1995).

  16. Simulation of Mach Probes in Non-Uniform Magnetized Plasmas: the Influence of a Background Density Gradient

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2013-10-01

    Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.

  17. Summary Report of Working Group 2: Computation

    NASA Astrophysics Data System (ADS)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-01

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.

  18. Summary Report of Working Group 2: Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-22

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less

  19. Observations of ionospheric electron beams in the plasma sheet.

    PubMed

    Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

    2012-11-16

    Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.

  20. Aspect ratio effects on limited scrape-off layer plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo

    2014-02-01

    The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.

  1. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces

    PubMed Central

    Kalpathy, Sreeram K.; Shreyes, Amrita Ravi

    2017-01-01

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391

  2. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  3. The importance of electrothermal terms in Ohm's law for magnetized spherical implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, J. R., E-mail: jdav@lle.rochester.edu; Betti, R.; Chang, P.-Y.

    2015-11-15

    The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as the heat front moves into gas. The cross-field velocity leads to dynamo generation of an azimuthal magnetic field.more » It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of the MHD routines to the 1D, Lagrangian hydrocode LILAC and the Eulerian version of the 2D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. A Nernst flux limiter ≤0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to preventing the Nernst velocity from exceeding the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less

  4. The importance of electrothermal terms in Ohm's law for magnetized spherical implosions

    DOE PAGES

    Davies, J. R.; Betti, R.; Chang, P. -Y.; ...

    2015-11-06

    The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as a heat front moves into the gas. The cross-field velocity leads to dynamo generation of an azimuthal magneticmore » field. It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of MHD routines to the 1-D, Lagrangian hydrocode LILAC and the Eulerian version of the 2-D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. In addition, a Nernst flux limiter ≤ 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to maintaining the Nernst velocity below the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less

  5. Modulation of Core Turbulent Density Fluctuations by Large-Scale Neoclassical Tearing Mode Islands in the DIII-D Tokamak

    DOE PAGES

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; ...

    2016-05-26

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  6. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    NASA Astrophysics Data System (ADS)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.

  7. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    PubMed

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  8. Simulation of ion-temperature-gradient turbulence in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B I; Dimits, A M; Kim, C

    Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less

  9. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  10. Stabilizing effect of helical current drive on tearing modes

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Lu, X. Q.; Dong, J. Q.; Gong, X. Y.; Zhang, R. B.

    2018-01-01

    The effect of helical driven current on the m = 2/n = 1 tearing mode is studied numerically in a cylindrical geometry using the method of reduced magneto-hydro-dynamic simulation. The results show that the local persistent helical current drive from the beginning time can be applied to control the tearing modes, and will cause a rebound effect called flip instability when the driven current reaches a certain value. The current intensity threshold value for the occurrence of flip instability is about 0.00087I0. The method of controlling the development of tearing mode with comparative economy is given. If the local helical driven current is discontinuous, the magnetic island can be controlled within a certain range, and then, the tearing modes stop growing; thus, the flip instability can be avoided. We also find that the flip instability will become impatient with delay injection of the driven current because the high order harmonics have been developed in the original O-point. The tearing mode instability can be controlled by using the electron cyclotron current drive to reduce the gradient of the current intensity on the rational surfaces.

  11. Knudsen pump inspired by Crookes radiometer with a specular wall

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Hardt, Steffen; Shahabi, Vahid; Roohi, Ehsan

    2017-03-01

    A rarefied gas is considered in a channel consisting of two infinite parallel plates between which an evenly spaced array of smaller plates is arranged normal to the channel direction. Each of these smaller plates is assumed to possess one ideally specularly reflective and one ideally diffusively reflective side. When the temperature of the small plates differs from the temperature of the sidewalls of the channel, these boundary conditions result in a temperature profile around the edges of each small plate that breaks the reflection symmetry along the channel direction. This in turn results in a force on each plate and a net gas flow along the channel. The situation is analyzed numerically using the direct simulation Monte Carlo method and compared with analytical results where available. The influence of the ideally specularly reflective wall is assessed by comparing with simulations using a finite accommodation coefficient at the corresponding wall. The configuration bears some similarity to a Crookes radiometer, where a nonsymmetric temperature profile at the radiometer vanes is generated by different temperatures on each side of the vane, resulting in a motion of the rotor. The described principle may find applications in pumping gas on small scales driven by temperature gradients.

  12. Laser-driven relativistic electron beam interaction with solid dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phasemore » shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.« less

  13. Experimental observation of the thermocapillary driven motion of bubbles in a molten glass under low gravity conditions

    NASA Technical Reports Server (NTRS)

    Smith, H. D.; Mattox, D. M.; Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.

    1982-01-01

    An experiment was carried out on board a Space Processing Applications Rocket with the aim of demonstrating bubble migration in molten glass due to a temperature gradient under low gravity conditions. During the flight, a sample of a sodium borate melt with a specific bubble array, contained in a platinum/fused silica cell, was subjected to a well defined temperature gradient for more than 4 minutes. Photographs taken at one second intervals during the experiment clearly show that the bubbles move toward the hot spot on the platinum heater strip. This result is consistent with the predictions of the theory of thermocapillary driven bubble motion.

  14. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    PubMed

    Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

  15. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  16. Expansion of Non-Quasi-Neutral Limited Plasmas Driven by Two-Temperature Electron Clouds

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Honrubia, Javier

    2017-10-01

    Fast heating of an isolated solid mass, under irradiation of ultra-intense ultra-short laser pulse, to averaged temperatures of order of keV is theoretically studied. Achievable maximum ion temperatures are determined as a consequence of the interplay of the electron-to-ion energy deposition and nonrelativistic plasma expansion, where fast ion emission plays an important role in the energy balance. To describe the plasma expansion, we develop a self-similar solution, in which the plasma is composed of three fluids, i.e., ions and two-temperature electrons. Under the condition of isothermal electron expansion in cylindrical geometry, such a fluid system, self-consistently incorporated with the Poisson equation, is fully solved. The charge separation and resultant accelerated ion population due to the induced electrostatic field are quantitatively presented. The analytical model is compared with two-dimensional hydrodynamic simulations to provide practical working windows for the target and laser parameters for the fast heating.

  17. Electron heating in the exhaust of magnetic reconnection with negligible guide field

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Bessho, Naoki; Kistler, Lynn M.; Shuster, Jason R.; Guo, Ruilong

    2016-03-01

    Electron heating in the magnetic reconnection exhaust is investigated with particle-in-cell simulations, space observations, and theoretical analysis. Spatial variations of the electron temperature (Te) and associated velocity distribution functions (VDFs) are examined and understood in terms of particle energization and randomization processes that vary with exhaust locations. Inside the electron diffusion region (EDR), the electron temperature parallel to the magnetic field (Te∥) exhibits a local minimum and the perpendicular temperature (Te⊥) shows a maximum at the current sheet midplane. In the intermediate exhaust downstream from the EDR and far from the magnetic field pileup region, Te⊥/Te∥ is close to unity and Te is approximately uniform, but the VDFs are structured: close to the midplane, VDFs are quasi-isotropic, whereas farther away from the midplane, VDFs exhibit field-aligned beams directed toward the midplane. In the far exhaust, Te generally increases toward the midplane and the pileup region, and the corresponding VDFs show counter-streaming beams. A distinct population with low v∥ and high v⊥ is prominent in the VDFs around the midplane. Test particle results show that the magnetic curvature near the midplane produces pitch angle scattering to generate quasi-isotropic distributions in the intermediate exhaust. In the far exhaust, electrons with initial high v∥ (v⊥) are accelerated mainly through curvature (gradient-B) drift opposite to the electric field, without significant pitch angle scattering. The VDF structures predicted by simulations are observed in magnetotail reconnection measurements, indicating that the energization mechanisms captured in the reported simulations are applicable to magnetotail reconnection with negligible guide field.

  18. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  19. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    NASA Astrophysics Data System (ADS)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  20. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  1. Sound control by temperature gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu

    2009-11-01

    This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    NASA Astrophysics Data System (ADS)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.

  3. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  4. Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear.

    PubMed

    Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H

    2009-06-05

    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.

  5. Suppressing magnetic island growth by resonant magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  6. Photo-Nernst current in graphene

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Aivazian, Grant; Fei, Zaiyao; Ross, Jason; Cobden, David H.; Xu, Xiaodong

    2016-03-01

    Photocurrent measurements provide a powerful means of studying the spatially resolved optoelectronic and electrical properties of a material or device. Generally speaking there are two classes of mechanism for photocurrent generation: those involving separation of electrons and holes, and thermoelectric effects driven by electron temperature gradients. Here we introduce a new member in the latter class: the photo-Nernst effect. In graphene devices in a perpendicular magnetic field we observe photocurrent generated uniformly along the free edges, with opposite sign at opposite edges. The signal is antisymmetric in field, shows a peak versus gate voltage at the neutrality point flanked by wings of opposite sign at low fields, and exhibits quantum oscillations at higher fields. These features are all explained by the Nernst effect associated with laser-induced electron heating. This `photo-Nernst’ current provides a simple and clear demonstration of the Shockley-Ramo nature of long-range photocurrent generation in a gapless material.

  7. Numerical Simulation and Experimental Casting of Nickel-Based Single-Crystal Superalloys by HRS and LMC Directional Solidification Processes

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng

    2017-04-01

    Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.

  8. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  9. Instabilities and transport in Hall plasmas with ExB drift

    NASA Astrophysics Data System (ADS)

    Smolyakov, Andrei

    2016-10-01

    Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.

  10. Quantification of the effect of temperature gradients in soils on subsurface radon signal

    NASA Astrophysics Data System (ADS)

    Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam

    2017-04-01

    Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.

  11. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    NASA Astrophysics Data System (ADS)

    Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA

    2010-04-01

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  12. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  13. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  14. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  15. Photoionization and heating of a supernova-driven turbulent interstellar medium

    NASA Astrophysics Data System (ADS)

    Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.

    2014-06-01

    The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.

  16. B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.

    2017-05-01

    Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.

  17. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    DOE PAGES

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; ...

    2016-10-20

    Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser.more » Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.« less

  18. Does thermophoresis reduce aggregate stability?

    NASA Astrophysics Data System (ADS)

    Sachs, Eyal; Sarah, Pariente

    2017-04-01

    Thermophoresis is mass flow driven by a thermal gradient. As a result of Seebeck effect and Soret effect, colloids can move from the hot to the cold region or vice versa, depending on the electrolyte composition and on the particle size. This migration of colloids can weaken aggregates. The effect of raindrop temperatures on runoff generation and erosion on clayey soil was investigated in sprinkling experiments with a laboratory rotating disk rain simulator. The experiments were applied to Rhodoxeralt (Terra Rossa) soil with two pre-prepared moisture contents: hygroscopic and field capacity. For each moisture content three rainfall temperatures were applied: 2, 20, and 35°C. Erosion was generally lower in the pre-wetted soil than in the dry soil (12.5 and 24.4 g m-2 per 40 mm of rain,respectively). Whereas there was no significant effect of raindrop temperature on the dry soil the soil that was pre-moistened to field capacity was affected by rainwater temperature: runoff and erosion were high when the temperature difference between rainfall and soil surface was high, sediment yields were 13.9, 5.2, and 18.3 g m-2 per 40 mm of rain, for rain temperature of 2, 20, and 35 °C, respectively. It is reasonable to conclude that thermophoresis caused by thermal gradients within the soil solution reduces the stability of aggregates and then increase the soil losses.

  19. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase. Finally, through magenetometry and SANS, the magneto-crystalline anisotropy of highly doped LSCO is studied and the easy and hard magnetization axes are determined.

  20. Self-Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Self-Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating.

    PubMed

    Wang, Chengbing; Ling, San; Yang, Jin; Rao, Dewei; Guo, Zhiguang

    2018-01-01

    Phase transformation between carbon allotropes usually requires high pressures and high temperatures. Thus, the development of low-temperature phase transition approaches between carbon allotropes is highly desired. Herein, novel amorphous carbon nanocapsules are successfully synthesized by pulsed plasma glow discharge. These nanocapsules are comprised of highly strained carbon clusters encapsulated in a fullerene-like carbon matrix, with the formers serving as nucleation sites. These nucleation sites favored the formation of a diamond unit cell driven by the self-nanoscopic local excessive pressure, thereby significantly decreasing the temperature required for its transformation into a diamond nanocrystal. Under moderate electron beam irradiation (10-20 A cm -2 ) without external heating, self-organization of the energetic carbon clusters into diamond nanocrystals is achieved, whereas the surrounding fullerene-like carbon matrix remains nearly unchanged. Molecular dynamics simulations demonstrate that the defective rings as the active sites dominate the phase transition of amorphous carbon to diamond nanocrystal. The findings may open a promising route to realize phase transformation between carbon allotropes at a lower temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  2. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient threshold is found to be rather insensitive to the temperature ratio i/Te$ , at least for i/Te\\lesssim 1$ , and to be a growing function of the density gradient scale for i/Te\\gtrsim 1$ . For Wendelstein 7-X, the new critical temperature gradient is a growing function of the temperature ratio. The importance of these findings for the assessment of turbulence in stellarators and low-shear tokamak configurations is discussed.

  3. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X. Q.; Xiong, Z.; Nevins, W. M.

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  4. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.

    2008-05-01

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  5. TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.

    PubMed

    Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R

    2008-05-30

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  6. Ion and Electron Energization in Guide Field Reconnection Outflows with Kinetic Riemann Simulations and Parallel Shock Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Drake, J. F.; Swisdak, M.

    2017-12-01

    How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.

  7. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2015-02-09

    This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining quantitative data regarding the mid-Cretaceous hydrologic cycle in the KWIB. Our goal is to encourage the incorporation of isotopic tracers into GCM simulations of the mid-Cretaceous, and to show how our empirical data and mass balance model estimates help constrain the boundary conditions. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  10. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  11. Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.-H.; Sugama, H.; Graduate University for Advanced Studies

    2006-11-30

    Recent progress of the gyrokinetic-Vlasov simulations on the ion temperature gradient (ITG) turbulence in tokamak and helical systems is reported, where the entropy balance is checked as a reference for the numerical accuracy. The tokamak ITG turbulence simulation carried out on the Earth Simulator clearly captures a nonlinear generation process of zonal flows. The tera-flops and tera-bytes scale simulation is also applied to a helical system with the same poloidal and toroidal periodicities of L = 2 and M = 10 as in the Large Helical Device.

  12. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  13. Interplay between protons and electrons in a firehose-unstable plasma: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Maneva, Yana

    2017-04-01

    Kinetic plasma instabilities originating from unstable, non-Maxwellian shapes of the velocity distribution functions serve as internal degrees of freedom in plasma dynamics, and play an important role near solar current sheets and in solar wind plasmas. In the presence of strong temperature anisotropy (different thermal spreads in the velocity space with respect to the mean magnetic field), plasmas are unstable either to the firehose mode or to the mirror mode in the case of predominant parallel and perpendicular temperatures, respectively. The growth rates of these instabilities and their thresholds depend on plasma properties, such as the temperature anisotropy and the plasma beta. The physics of the temperature anisotropy-driven instabilities becomes even more diverse for various shapes of velocity distribution functions and the particle species of interest. Recent studies based on a linear instability analysis show an interplay in the firehose instability between protons and electrons when the both types of particle species are prone to unstable velocity distribution functions and their instability thresholds. In this work we perform for the first time 3D nonlinear PIC (particle-in-cell) numerical simulations to test for the linear-theory prediction of the simultaneous proton-electron firehose instability. The simulation setup allows us not only to evaluate the growth rate of each firehose instability, but also to track its nonlinear evolution and the related wave-particle interactions such as the pitch-angle scattering or saturation effects. The specialty of our simulation is that the magnetic and electric fields have a low numerical noise level by setting a sufficiently large number of super-particles into the simulation box and enhancing the statistical significance of the velocity distribution functions. We use the iPIC3D code with fully periodic boundaries under various conditions of the electron-to-proton mass ratio, which gives insight into the instability interplay at the intermediate electron-proton and on the scaling of our results towards more realistic particle settings.

  14. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    PubMed

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  15. Multiscale interaction between a large scale magnetic island and small scale turbulence

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Kim, J.; Kwon, J.-M.; Park, H. K.; In, Y.; Lee, W.; Lee, K. D.; Yun, G. S.; Lee, J.; Kim, M.; Ko, W.-H.; Lee, J. H.; Park, Y. S.; Na, Y.-S.; Luhmann, N. C., Jr.; Park, B. H.

    2017-12-01

    Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence can mutually interact via coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island steepens outside and flattens inside the island. The T e turbulence can appear in increased T e gradient regions. The combined effects of the T e gradient and the poloidal flow shear determines the two-dimensional distribution of the T e turbulence. When the poloidal vortex flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like an electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the vortex flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.

  16. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    NASA Astrophysics Data System (ADS)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  17. Electron temperature response to ECRH on FTU tokamak in transient conditions.

    NASA Astrophysics Data System (ADS)

    Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.

    2001-10-01

    Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.

  18. Controlled simulation of optical turbulence in a temperature gradient air chamber

    NASA Astrophysics Data System (ADS)

    Toselli, Italo; Wang, Fei; Korotkova, Olga

    2016-05-01

    Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.

  19. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Treesearch

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  20. Fluid helium at conditions of giant planetary interiors

    PubMed Central

    Stixrude, Lars; Jeanloz, Raymond

    2008-01-01

    As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

  1. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world

    NASA Astrophysics Data System (ADS)

    Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian

    2014-05-01

    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.

  2. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2012-01-27

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Study of transport phenomena in laser-driven, non- equilibrium plasmas in the presence of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.

    2017-10-01

    We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with Hydra, a radiation-magnetohydrodyanmics code, showed increasing electron plasma temperature with increasing B-field strength - the result of thermal transport inhibition perpendicular to the B-field. The influence of this thermal transport inhibition on the experimental observables as a function of external field strength and target density will be shown and compared with simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by LDRD project 17-ERD-027.

  4. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment

    PubMed Central

    Groskreutz, Stephen R.; Weber, Stephen G.

    2016-01-01

    In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A’s temperature rise, TEC B’s temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25–75 °C) at each of twelve mobile phases compositions (0.05–0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-minute separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF. PMID:27836226

  5. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment.

    PubMed

    Groskreutz, Stephen R; Weber, Stephen G

    2016-11-25

    In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less

  7. Optimization of thermoacoustic engine driven thermoacoustic refrigerator using response surface methodology

    NASA Astrophysics Data System (ADS)

    Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2017-02-01

    Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.

  8. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  9. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  10. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  11. Reassessing Pliocene temperature gradients

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.

    2017-12-01

    With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.

  12. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less

  13. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  14. Mirror force induced wave dispersion in Alfvén waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less

  15. Experimental investigation on circumferential and axial temperature gradient over fuel channel under LOCA

    NASA Astrophysics Data System (ADS)

    Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.

    2014-06-01

    In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.

  16. Influence of sub-surface damage evolution on low-energy-plasma-driven deuterium permeation through tungsten

    NASA Astrophysics Data System (ADS)

    Kapser, Stefan; Balden, Martin; Fiorini da Silva, Tiago; Elgeti, Stefan; Manhard, Armin; Schmid, Klaus; Schwarz-Selinger, Thomas; von Toussaint, Udo

    2018-05-01

    Low-energy-plasma-driven deuterium permeation through tungsten at 300 K and 450 K has been investigated. Microstructural analysis by scanning electron microscopy, assisted by focused ion beam, revealed sub-surface damage evolution only at 300 K. This damage evolution was correlated with a significant evolution of the deuterium amount retained below the plasma-exposed surface. Although both of these phenomena were observed for 300 K exposure temperature only, the deuterium permeation flux at both exposure temperatures was indistinguishable within the experimental uncertainty. The permeation flux was used to estimate the maximum ratio of solute-deuterium to tungsten atoms during deuterium-plasma exposure at both temperatures and thus in the presence and absence of damage evolution. Diffusion-trapping simulations revealed the proximity of damage evolution to the implantation surface as the reason for an only insignificant decrease of the permeation flux.

  17. Thermally Driven Electronic Topological Transition in FeTi

    NASA Astrophysics Data System (ADS)

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; Mauger, L.; Lucas, M. S.; Tracy, S. J.; Stone, M. B.; Abernathy, D. L.; Xiao, Yuming; Fultz, B.

    2016-08-01

    Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M5- phonon mode in B 2 -ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M5- phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

  18. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment

    DOE PAGES

    Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; ...

    2017-05-09

    Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less

  19. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O. S.; Rosen, M. D.

    2017-05-01

    We present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the "Biermann battery" mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1 , where Ωe=e B /mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0 by ˜20 % . This indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.

  20. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  1. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  2. Extended Subadiabatic Layer in Simulations of Overshooting Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Käpylä, Petri J.; Arlt, Rainer; Rheinhardt, Matthias

    2017-08-20

    We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper partsmore » of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.« less

  3. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  4. Porosity Gradient Development Around Karst Features due to Tidal Pumping in Eastern Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.

    2016-12-01

    Water exchange between karst features and the porous matrix around them has been observed in karst aquifers by previous research. The exchange is driven by hydraulic head gradients caused by stormwater runoff or sea tides and may cause mineral dissolution. The authors of this work proposed a conceptual model of porosity development under tidal variations of hydraulic head is proposed. Simulations of reactive transport and porosity evolution were conducted to explore the porosity gradient development around a karst feature. Simulations account for petrophysical properties of porous media and groundwater geochemical characteristics. Data used in simulations corresponds to an eogenetic karst aquifer found on the eastern coast of Yucatan Peninsula in Mexico. Simulations include both analytical and numerical solutions of porosity increase caused by mineral dissolution. The estimated rate of porosity development and associated wall retreat (3-30 cm/100 yr) are large enough to develop karst cavities on time periods relevant to karst formation in the study area (10K yr). The analytical solution could be used to assess porosity increase in rock samples and can be also applied to model slow reactions in porous media under flow driven by sinusoidal hydraulic boundary conditions. The results show a possible alternative mechanism of karst cavity development in a high conductive limestone rock matrix aquifer.

  5. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  6. From convection rolls to finger convection in double-diffusive turbulence

    PubMed Central

    Verzicco, Roberto; Lohse, Detlef

    2016-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474

  7. Multi-Field/-Scale Interaction of Neoclassical Tearing Modes with Turbulence and Impact on Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Bardoczi, Laszlo

    Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction. As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth. The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively. Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case. It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation. These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the threshold island width for temperature flattening and turbulence reduction to occur at the O-point. This suggests that the physics of island transition could be related to turbulence penetration into the island. In addition, a novel, anisotropic, non-linear heat transport model of magnetic islands with spatially non-uniform cross-field thermal diffusivity was developed. This model was utilized to derive the diffusivity at the O-point from measured electron temperature data and it was found that the diffusivity at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport. As the anomalously large values of the diffusivity are often attributed to turbulence driven transport, the reduction of the diffusivity is consistent with the found turbulence reduction at the O-point. Complementing the experimental results of turbulence-NTM interaction described in this thesis, qualitative comparisons were carried out for the first time to GENE non-linear gyrokinetic turbulence simulations employing static magnetic islands. These simulations qualitatively replicate the measured 2D response of turbulence as well as the observed scaling with island size. The consequences of the observed NTM-turbulence interaction on the global plasma confinement were studied via analyses of simultaneous changes in NTM amplitude, plasma profiles, turbulence, fluxes and confinement. It was found that the global confinement degradation is intimately linked to the turbulence enhancement outside of the island region (induced by the island). Experimentally observed local turbulence and transport reduction at the O-point, as well as the effect of global confinement decrease was incorporated in the dynamical equation of NTMs, which shows that the NTM growth rate increases when turbulence and gradients are reduced inside the island (right after the transition from small to large island regime). Additionally, the shrinking of NTM islands due to strong temperature perturbations associated with Edge Localized Modes was observed. Simultaneous increase in turbulence level at the O-point was also observed and the data suggests that this temporal increase of turbulence level at the O-point accelerates NTM recovery after the ELM-crash. This is facilitated via the fast turbulent cross-field transport that leads to a rapid restoration of the flat profile (and bootstrap current perturbation) at the O-point. Finally, a series of low torque H-mode experiments were carried out to measure the perturbed ion temperature and toroidal flow profiles via CER across slowly rotating islands. Comparison of the observed flow perturbation to the gyrokinetic simulations suggests that large islands develop a vortex like plasma flow circulating around the O-point.

  8. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  9. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  10. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  11. Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.

    PubMed

    Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang

    2016-02-01

    This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.

  12. Transport and Stability in C-Mod ITBs in Diverse Regimes

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Howard, N. T.; Kasten, C. P.; Mikkelsen, D.; Reinke, M. L.; Rice, J. E.; White, A. E.; Rowan, W. L.; Bespamyatnov, I.

    2012-10-01

    Internal Transport Barriers (ITBs) in C-Mod feature highly peaked density and pressure profiles and are typically induced by the introduction of radio frequency power in the ion cyclotron range of frequencies (ICRF) with the second harmonic of the resonance for minority hydrogen ions positioned off-axis at the plasma half radius on either the low or high field side of the plasma. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin< 1. Thus they allow exploration of ITB dynamics in a reactor relevant regime. Recently, linear and non-linear gyrokinetic simulations have demonstrated that changes in the ion temperature and plasma rotation profiles, coincident with the application of off-axis ICRF heating, contribute to greater stability to ion temperature gradient driven fluctuation in the plasma. This results in reduced turbulent driven outgoing heat flux. To date, ITB formation in C-Mod has only been observed in EDA H-mode plasmas with moderate (2-3 MW) ICRF power. Experiments to explore the formation of ITBs in other operating regimes such as I-mode and also with high ICRF power are being undertaken to understand further the process of ITB formation and sustainment, especially with regard to turbulent driven transport.

  13. Evidence of the Lower Thermospheric Winter-to-Summer Circulation From SABER CO2 Observations

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Burns, Alan; Yue, Jia

    2017-10-01

    Numerical studies have shown that there is a lower thermospheric winter-to-summer circulation that is driven by wave dissipation and that it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere, and in the composition of the thermosphere. However, the characteristics of this circulation are poorly known. Direct observations of it are difficult, but it leaves clear signatures in tracer distributions. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has obtained CO2 concentration from 2002 to present. This data set, combined with simulations by the Whole Atmosphere Community Climate Model, provides an unprecedented opportunity to infer the morphology of this circulation in both the summer and winter hemispheres. Our study show that there exists a maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; in the winter hemisphere, the maximum vertical gradient of CO2 is located at a higher altitude, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation; the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km.

  14. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  15. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  16. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding ``hydrodynamics-only'' models. A simple analytical model supports our numerical results, indicating that the inclusion of neutrino transport reduces the entropy-driven (lepton-driven) convection growth rates and asymptotic velocities by a factor ~3 (50) at the neutrinosphere and a factor ~250 (1000) at ρ = 1012 g cm-3, for both our 15 and 25 M⊙ models. Moreover, when transport is included, the initial postbounce entropy gradient is smoothed out by neutrino diffusion, whereas the initial lepton gradient is maintained by electron capture and neutrino escape near the neutrinosphere. Despite the maintenance of the lepton gradient, proto-neutron star convection does not develop over the 100 ms duration typical of all our simulations, except in the instance where ``low-test'' intial conditions are used, which are generated by core-collapse and bounce simulations that neglect neutrino-electron scattering and ion-ion screening corrections to neutrino-nucleus elastic scattering. Models favoring the development of proto-neutron star convection either by starting with more favorable, albeit artificial (low-test), initial conditions or by including transport corrections that were ignored in our ``fiducial'' models were considered. Our conclusions nonetheless remained the same. Evidence of proto-neutron star convection in our two-dimensional entropy snapshots was minimal, and, as in our fiducial models, the angle-averaged convective velocities when neutrino transport was included remained orders of magnitude smaller than their counterparts in the corresponding hydrodynamics-only models.

  17. Turbulent Nuclear Burning of Carbon Fuel in Double-Degenerate White Dwarfs

    NASA Astrophysics Data System (ADS)

    Mozumdar, Pritom; Fisher, Robert

    2018-01-01

    Type Ia supernovae (SNe Ia) are of interest as standardizable cosmological candles, though their stellar progenitors are still poorly understood. The double-degenerate (DD) channel is promising, but the mechanism for the explosion remains a matter of active investigation. A long-standing problem in modeling SNe Ia is the fact that 3D simulations leave the length scales crucial for a possible detonation unresolved. In this work, we have performed local 3D hydrodynamical adaptive mesh refinement simulations of driven turbulence for various initial conditions characteristic of the DD scenario, which are capable of capturing length scales relevant to the Zel’dovich gradient mechanism. Because the carbon burning rate is highly sensitive to temperature in this regime, we demonstrate that turbulence can dramatically enhance the nuclear burning rate, and we investigate the connection to a possible detonation.

  18. Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Dushenko, Sergey; Shinjo, Teruya; Shiraishi, Masashi

    2018-05-01

    The lateral thermal gradient of an yttrium iron garnet (YIG) film under microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM)—the unidirectional spin-wave heat conveyer effect—was demonstrated only by the excitation using coplanar waveguides. Here, we show that the effect exists even under YIG excitation using the ESR cavity—a tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance field under 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to different magnetic dampings near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable to the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.

  19. Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations.

    PubMed

    Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter

    2016-07-27

    How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.

  20. Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation

    NASA Astrophysics Data System (ADS)

    Royle, R.; Sentoku, Y.; Mancini, R. C.; Paraschiv, I.; Johzaki, T.

    2017-06-01

    Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of nonthermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, picls, that has been extended with a self-consistent radiation transport model and Monte Carlo models for photoionization and K L L Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that picls-simulated pulse transmissions using the Ecker-Kröll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent picls results and those of analogous simulations by the CR code scfly, which was used in the analysis of the experiments to accurately reproduce the observed K α emissions and pulse transmissions. Finally, it is shown that the effects of the nonthermal electrons are negligible for the conditions of the particular experiments under investigation.

  1. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  2. Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Tu, K. N.

    2006-11-01

    The electromigration-induced back stress in Pb-free SnAgCu solder was studied by an area array of nanoindentation markers on the cross section of a solder joint. The marker movements driven by combined electron wind force and electromigration-induced back stress gradient were measured at different locations. The back stress gradient was determined from the observation of marker motion using the proposed model. With the applied current density of 104A/cm2 at 125°C, the stress gradient near the anode is 97kPa/μm.

  3. Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo

    DOE PAGES

    Burls, N. J.; Fedorov, A. V.

    2014-09-13

    We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less

  4. Understanding differences between DELFT3D and empirical predictions of alongshore sediment transport gradients

    USGS Publications Warehouse

    List, Jeffrey; Benedet, Lindino; Hanes, Daniel M.; Ruggiero, Peter

    2009-01-01

    Predictions of alongshore transport gradients are critical for forecasting shoreline change. At the previous ICCE conference, it was demonstrated that alongshore transport gradients predicted by the empirical CERC equation can differ substantially from predictions made by the hydrodynamics-based model Delft3D in the case of a simulated borrow pit on the shoreface. Here we use the Delft3D momentum balance to examine the reason for this difference. Alongshore advective flow accelerations in our Delft3D simulation are mainly driven by pressure gradients resulting from alongshore variations in wave height and setup, and Delft3D transport gradients are controlled by these flow accelerations. The CERC equation does not take this process into account, and for this reason a second empirical transport term is sometimes added when alongshore gradients in wave height are thought to be significant. However, our test case indicates that this second term does not properly predict alongshore transport gradients.

  5. Particle-in-cell study of the ion-to-electron sheath transition

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; ...

    2016-08-09

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within T e/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electronmore » sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.« less

  6. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Xiong, Z; Nevins, W M

    The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  7. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Xiong, Z; Nevins, W

    The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  8. Thermally Driven Electronic Topological Transition in FeTi

    DOE PAGES

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; ...

    2016-08-08

    In this paper, ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M 5 - phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. Finally, the thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M 5 - phonon mode andmore » an adiabatic electron-phonon interaction with an unusual temperature dependence.« less

  9. Development of a Novel, Bicombinatorial Approach to Alloy Development, and Application to Rapid Screening of Creep Resistant Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Martin, Brian

    Combinatorial approaches have proven useful for rapid alloy fabrication and optimization. A new method of producing controlled isothermal gradients using the Gleeble Thermomechanical simulator has been developed, and demonstrated on the metastable beta-Ti alloy beta-21S, achieving a thermal gradient of 525-700 °C. This thermal gradient method has subsequently been coupled with existing combinatorial methods of producing composition gradients using the LENS(TM) additive manufacturing system, through the use of elemental blended powders. This has been demonstrated with a binary Ti-(0-15) wt% Cr build, which has subsequently been characterized with optical and electron microscopy, with special attention to the precipitate of TiCr2 Laves phases. The TiCr2 phase has been explored for its high temperature mechanical properties in a new oxidation resistant beta-Ti alloy, which serves as a demonstration of the new bicombinatorial methods developed as applied to a multicomponent alloy system.

  10. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    NASA Astrophysics Data System (ADS)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  11. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  12. Thermal transport dynamics in the quasi-single helicity state

    NASA Astrophysics Data System (ADS)

    McKinney, I. J.; Terry, P. W.

    2017-06-01

    A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.

  13. Stationary temperature profiles in a liquid nanochannel: Comparisons between molecular-dynamics simulation and classical hydrostatics

    NASA Astrophysics Data System (ADS)

    Okumura, Hisashi; Heyes, David M.

    2006-12-01

    We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from ∞ (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.

  14. Stationary temperature profiles in a liquid nanochannel: comparisons between molecular-dynamics simulation and classical hydrostatics.

    PubMed

    Okumura, Hisashi; Heyes, David M

    2006-12-01

    We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.

  15. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    PubMed

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A simulation of dielectrophoresis force actuated liquid lens

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyin; Xia, Jun

    2009-11-01

    Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.

  17. Suppression of Collisionless Magnetic Reconnection in Asymmetric Current Sheets

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, Michael

    2016-01-01

    Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux.

  18. Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.

    PubMed

    Thompson, Michael W; Atchley, Anthony A; Maccarone, Michael J

    2005-04-01

    Following the experimental method of Thompson and Atchley [J. Acoust. Soc. Am. 117, 1828-1838 (2005)] laser Doppler anemometry (LDA) is used to investigate the influences of a thermoacoustically induced axial temperature gradient and of fluid inertia on the acoustic streaming generated in a cylindrical standing-wave resonator filled with air driven sinusoidally at a frequency of 308 Hz. The axial component of Lagrangian streaming velocity is measured along the resonator axis and across the diameter at acoustic-velocity amplitudes of 2.7, 4.3, 6.1, and 8.6 m/s at the velocity antinodes. The magnitude of the axial temperature gradient along the resonator wall is varied between approximately 0 and 8 K/m by repeating measurements with the resonator either surrounded by a water jacket, suspended within an air-filled tank, or wrapped in foam insulation. A significant correlation is observed between the temperature gradient and the behavior of the streaming: as the magnitude of the temperature gradient increases, the magnitude of the streaming decreases and the shape of the streaming cell becomes increasingly distorted. The observed steady-state streaming velocities are not in agreement with any available theory.

  19. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  20. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  1. An Optical Trap for Relativistic Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Ping

    2002-11-01

    Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the injection of electrons into laser-driven plasma waves, will also be presented. With crossed beams, the energy of a laser-accelerated electron beam is increased and its emittance is decreased compared with a single beam, potentially paving the way towards an all-optical monoenergetic electron injector.

  2. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  3. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  4. Operation Regime Analysis of Conduction Cooled Cavities through Multi-Physics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, R.; Kanareykin, A.; Kephart, R. D.

    Euclid Techlabs in collaboration with Fermilab IARC (Batavia, IL) is developing industrial superconducting 10MeV electron linac [1, 2]. Cryocoolers are to be used for cooling instead of liquid helium bath to simplify the linac infrastructure [3]. The cavity linked to commercially available cryo-cooler cold head [4, 5] through highly conductive aluminium (AL) strips. However, this solution raises a problem of contact thermal resistance. This paper shows some results of Comsol multyphysics simulations of the cavity cooling by AL strips. Some insight was obtained on the acceptable range of contact resistance. Operation regimes were obtained at different accelerating gradients and cavitymore » temperatures. The results of simula-tion are presented and discussed.« less

  5. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  6. Intraspecific Adaptations to Thermal Gradients in a Cosmopolitan Coccolithophore

    NASA Astrophysics Data System (ADS)

    Matson, P. G.; Ladd, T. M.; Iglesias-Rodriguez, D.

    2016-02-01

    The species concept in marine phytoplankton has enormous biological complexity. Differences in genomic, morphological, physiological, biogeochemical, and ecological/biogeographic properties between strains of the same species can be comparable or even exceed those between species. This complexity is particularly pronounced in the cosmopolitan coccolithophore species Emiliania huxleyi. This bloom-forming species is found at nearly every latitude in a variety of environments including upwelling regions, and exposed to large temperature gradients. We present results from experiments using two strains of E. huxleyi isolated from different latitudes and environmental conditions. Tests involved semi-continuous culturing in lab manipulation experiments to determine how carbon fixation, growth, and morphology respond to temperature-driven alterations in physico-chemical conditions. This talk will discuss the observed differences in physiology within an ecological context and the implications of these biogeochemical differences in modeling carbon fluxes driven by phytoplankton.

  7. Numerical Study of Current Driven Instabilities and Anomalous Electron Transport in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan

    Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.

  8. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  9. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    2015-11-15

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening ofmore » its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.« less

  10. Edge gyrokinetic theory and continuum simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Dorr, M. R.; Hittinger, J. A.; Bodi, K.; Candy, J.; Cohen, B. I.; Cohen, R. H.; Colella, P.; Kerbel, G. D.; Krasheninnikov, S.; Nevins, W. M.; Qin, H.; Rognlien, T. D.; Snyder, P. B.; Umansky, M. V.

    2007-08-01

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.

  11. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.

    2017-05-01

    Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, W. A.; Koning, J. M.; Strozzi, D. J.

    Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less

  13. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    DOE PAGES

    Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...

    2017-03-30

    We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less

  14. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE PAGES

    Lee, P.; Audet, T. L.; Lehe, R.; ...

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  15. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, P.; Audet, T. L.; Lehe, R.

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  16. NASA Tech Briefs, April 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.

  17. Designing a Dielectric Laser Accelerator on a Chip

    NASA Astrophysics Data System (ADS)

    Niedermayer, Uwe; Boine-Frankenheim, Oliver; Egenolf, Thilo

    2017-07-01

    Dielectric Laser Acceleration (DLA) achieves gradients of more than 1GeV/m, which are among the highest in non-plasma accelerators. The long-term goal of the ACHIP collaboration is to provide relativistic (>1 MeV) electrons by means of a laser driven microchip accelerator. Examples of ’’slightly resonant” dielectric structures showing gradients in the range of 70% of the incident laser field (1 GV/m) for electrons with beta=0.32 and 200% for beta=0.91 are presented. We demonstrate the bunching and acceleration of low energy electrons in dedicated ballistic buncher and velocity matched grating structures. However, the design gradient of 500 MeV/m leads to rapid defocusing. Therefore we present a scheme to bunch the beam in stages, which does not only reduce the energy spread, but also the transverse defocusing. The designs are made with a dedicated homemade 6D particle tracking code.

  18. Effect of anomalous transport on kinetic simulations of the H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.

    2009-11-01

    The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649

  19. Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Ganji, D. D.; Taeibi-Rahni, M.; Vakilipour, Shidvash

    2017-07-01

    In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.

  20. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, K.; Holec, M.; Fontes, C. J.

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  1. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE PAGES

    Falk, K.; Holec, M.; Fontes, C. J.; ...

    2018-01-10

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  2. Comment on “In-depth Plasma-Wave Heating of Dense Plasma Irradiated by Short Laser Pulses”

    DOE PAGES

    Kemp, A. J.; Sentoku, Y.

    2016-04-14

    Sherlock et al. have reported on the heating of solid density targets by collisional damping of wakefields that are driven by relativistic electron bunches generated in relativistic laser matter interaction. Analyzing collisional particle-in-cell simulations they calculate the fast electron current jf inside the plasma by adding contributions from electrons with energies greater than E cut = 50 keV; time-integrating the specific resistive energy deposition η j2f they arrive at a temperature profile and compare the result to the one 'measured' in their simulation, defined as the energy of particles with E < 30 keV; the discrepancy is due to collisionalmore » damping of wake fields (CDW). Here, we disagree with their metric of fast current, which leads to false conclusions about CDW heating being a volumetric, rather than surface effect.« less

  3. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.

    2018-01-01

    This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.

  4. Directed high-power THz radiation from transverse laser wakefield excited in an electron density filament

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas

    2017-10-01

    A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.

  5. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    NASA Astrophysics Data System (ADS)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  6. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  7. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  8. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and acceleration of intense proton beams from laser-irradiated foils.

  9. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas. Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.

  10. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    DTIC Science & Technology

    2014-01-30

    mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the

  11. First steps towards modeling of ion-driven turbulence in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Warmer, F.; Xanthopoulos, P.; Proll, J. H. E.; Beidler, C. D.; Turkin, Y.; Wolf, R. C.

    2018-01-01

    Due to foreseen improvement of neoclassical confinement in optimised stellarators—like the newly commissioned Wendelstein 7-X (W7-X) experiment in Greifswald, Germany—it is expected that turbulence will significantly contribute to the heat and particle transport, thus posing a limit to the performance of such devices. In order to develop discharge scenarios, it is thus necessary to develop a model which could reliably capture the basic characteristics of turbulence and try to predict the levels thereof. The outcome will not only be affordable, using only a fraction of the computational cost which is normally required for repetitive direct turbulence simulations, but would also highlight important physics. In this model, we seek to describe the ion heat flux caused by ion temperature gradient (ITG) micro-turbulence, which, in certain heating scenarios, can be a strong source of free energy. With the aid of a relatively small number of state-of-the-art nonlinear gyrokinetic simulations, an initial critical gradient model (CGM) is devised, with the aim to replace an empirical model, stemming from observations in prior stellarator experiments. The novel CGM, in its present form, encapsulates all available knowledge about ion-driven 3D turbulence to date, also allowing for further important extensions, towards an accurate interpretation and prediction of the ‘anomalous’ transport. The CGM depends on the stiffness of the ITG turbulence scaling in W7-X, and implicitly includes the nonlinear zonal flow response. It is shown that the CGM is suitable for a 1D framework turbulence modeling.

  12. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  13. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE PAGES

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.; ...

    2017-06-26

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  14. Results from a Set of Three-Dimensional Numerical Experiments of a Hot Jupiter Atmosphere

    NASA Technical Reports Server (NTRS)

    Mayne, Nathan J.; Debras, Flirian; Baraffe, Isabelle; Thuburn, John; Amundsen, David S.; Acreman, David M.; Smith, Chris; Browning, Matthew K.; Manners, James; Wood Nigel

    2017-01-01

    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.

  15. Intrinsic rotation, hysteresis and back transition in reversed shear internal transport barriers

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Terzolo, L.; Yi, S.; Hahm, T. S.

    2011-07-01

    A study of intrinsic rotation and hysteresis in ion thermal internal transport barrier (ITB) is presented. Global flux-driven gyrofluid simulations are performed. It is found that significant co-current intrinsic rotation (0.1 <~ Mth <~ 0.2, where Mth is the thermal Mach number) can be produced in ITB plasmas. Exploration of the relationship between the intrinsic rotation and the ITB temperature gradient leads to a novel scaling of intrinsic rotation in ITB plasmas. Long time power ramp simulations with self-consistently evolving profiles clearly demonstrate the existence of hysteresis in reversed shear ITBs. It is shown that intrinsic rotation plays an important role in ITB dynamics and is responsible for determining unique properties of ITB hysteresis. A negative feedback mechanism based on destruction of E × B shear prevails in barrier back transition, triggered by an outward momentum transport event during the power ramp down.

  16. Impact of neoclassical tearing mode–turbulence multi-scale interaction in global confinement degradation and magnetic island stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoczi, Lazlo; Carter, Troy A.; La Haye, Robert J.

    Recent measurements of turbulent density (more » $$\\tilde{n}$$) and electron-temperature ($$\\tilde{T}$$ e) fluctuations have reported turbulence modifications by Neoclassical Tearing Mode (NTM) islands: turbulence decreases (increases) inside (outside) the island region when the island width (W) exceeds a threshold (W T), in qualitative agreement with gyrokinetic simulations. As the cross-field transport in tokamaks is dominantly driven by turbulence, these observations call into question the conventional understanding of confinement degradation by NTMs and magnetic island stability physics. The experimental data presented here support the following points: (i) When profiles flatten at the O-point and gradients increase outside of the island, $$\\tilde{n}$$ decreases (increases) inside (outside) the island. Along with the parallel transport resulting in increased fluxes inside the island, the increase of $$\\tilde{n}$$ outside of the island offers an explanation for the temporal increase of fluxes in that region. As the plasma stored energy (WMHD) gradually decreases in synchronization with the island growth and saturation, gradients, $$\\tilde{n}$$ and fluxes also decrease outside the island until they become about the same as before NTM onset. These fluxes balance the constant sources, and the plasma comes to a steady state at lower W MHD. (ii) Turbulence reduction in the O-point region has a destabilizing effect on the island. This effect is, however, nearly compensated by the reduced confinement. In conclusion, these observations suggest that driving turbulence in the island region could lead to smaller saturated islands offering a path toward better confinement and safer operation of reactor-scale fusion devices.« less

  17. Impact of neoclassical tearing mode–turbulence multi-scale interaction in global confinement degradation and magnetic island stability

    DOE PAGES

    Bardoczi, Lazlo; Carter, Troy A.; La Haye, Robert J.; ...

    2017-12-08

    Recent measurements of turbulent density (more » $$\\tilde{n}$$) and electron-temperature ($$\\tilde{T}$$ e) fluctuations have reported turbulence modifications by Neoclassical Tearing Mode (NTM) islands: turbulence decreases (increases) inside (outside) the island region when the island width (W) exceeds a threshold (W T), in qualitative agreement with gyrokinetic simulations. As the cross-field transport in tokamaks is dominantly driven by turbulence, these observations call into question the conventional understanding of confinement degradation by NTMs and magnetic island stability physics. The experimental data presented here support the following points: (i) When profiles flatten at the O-point and gradients increase outside of the island, $$\\tilde{n}$$ decreases (increases) inside (outside) the island. Along with the parallel transport resulting in increased fluxes inside the island, the increase of $$\\tilde{n}$$ outside of the island offers an explanation for the temporal increase of fluxes in that region. As the plasma stored energy (WMHD) gradually decreases in synchronization with the island growth and saturation, gradients, $$\\tilde{n}$$ and fluxes also decrease outside the island until they become about the same as before NTM onset. These fluxes balance the constant sources, and the plasma comes to a steady state at lower W MHD. (ii) Turbulence reduction in the O-point region has a destabilizing effect on the island. This effect is, however, nearly compensated by the reduced confinement. In conclusion, these observations suggest that driving turbulence in the island region could lead to smaller saturated islands offering a path toward better confinement and safer operation of reactor-scale fusion devices.« less

  18. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  19. Bridgman Crystal Growth of an Alloy with Thermosolutal Convection Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    2000-01-01

    The solidification of a dilute alloy (bismuth-tin) under Bridgman crystal growth conditions is investigated. Computations are performed in two dimensions with a uniform grid. The simulation includes the species concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed, with no simplifying steady state approximations. Results are obtained under microgravity conditions for pure bismuth, and for Bi-0.1 at.%Sn and Bi-1.0 at.%Sn alloys, and compared with experimental results obtained from crystals grown in the microgravity environment of space. For the Bi-1.0 at.%Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. The concentration-dependence of the melting temperature is incorporated in the model for the Bi-1.0 at.%Sn alloy. Satisfactory correspondence is obtained between the predicted and experimental results in terms of solute concentrations in the solidified crystal.

  20. Interactions between solidification and compositional convection in mushy layers

    NASA Technical Reports Server (NTRS)

    Worster, M. Grae

    1994-01-01

    Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.

  1. Analytic Energy Gradients for Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Theory.

    PubMed

    Maradzike, Elvis; Gidofalvi, Gergely; Turney, Justin M; Schaefer, Henry F; DePrince, A Eugene

    2017-09-12

    Analytic energy gradients are presented for a variational two-electron reduced-density-matrix (2-RDM)-driven complete active space self-consistent field (CASSCF) method. The active-space 2-RDM is determined using a semidefinite programing (SDP) algorithm built upon an augmented Lagrangian formalism. Expressions for analytic gradients are simplified by the fact that the Lagrangian is stationary with respect to variations in both the primal and the dual solutions to the SDP problem. Orbital response contributions to the gradient are identical to those that arise in conventional CASSCF methods in which the electronic structure of the active space is described by a full configuration interaction (CI) wave function. We explore the relative performance of variational 2-RDM (v2RDM)- and CI-driven CASSCF for the equilibrium geometries of 20 small molecules. When enforcing two-particle N-representability conditions, full-valence v2RDM-CASSCF-optimized bond lengths display a mean unsigned error of 0.0060 Å and a maximum unsigned error of 0.0265 Å, relative to those obtained from full-valence CI-CASSCF. When enforcing partial three-particle N-representability conditions, the mean and maximum unsigned errors are reduced to only 0.0006 and 0.0054 Å, respectively. For these same molecules, full-valence v2RDM-CASSCF bond lengths computed in the cc-pVQZ basis set deviate from experimentally determined ones on average by 0.017 and 0.011 Å when enforcing two- and three-particle conditions, respectively, whereas CI-CASSCF displays an average deviation of 0.010 Å. The v2RDM-CASSCF approach with two-particle conditions is also applied to the equilibrium geometry of pentacene; optimized bond lengths deviate from those derived from experiment, on average, by 0.015 Å when using a cc-pVDZ basis set and a (22e,22o) active space.

  2. Study of the operating parameters of a helicon plasma discharge source using PIC-MCC simulation technique

    NASA Astrophysics Data System (ADS)

    Jaafarian, Rokhsare; Ganjovi, Alireza; Etaati, Gholamreza

    2018-01-01

    In this work, a Particle in Cell-Monte Carlo Collision simulation technique is used to study the operating parameters of a typical helicon plasma source. These parameters mainly include the gas pressure, externally applied static magnetic field, the length and radius of the helicon antenna, and the frequency and voltage amplitude of the applied RF power on the helicon antenna. It is shown that, while the strong radial gradient of the formed plasma density in the proximity of the plasma surface is substantially proportional to the energy absorption from the existing Trivelpiece-Gould (TG) modes, the observed high electron temperature in the helicon source at lower static magnetic fields is significant evidence for the energy absorption from the helicon modes. Furthermore, it is found that, at higher gas pressures, both the plasma electron density and temperature are reduced. Besides, it is shown that, at higher static magnetic fields, owing to the enhancement of the energy absorption by the plasma charged species, the plasma electron density is linearly increased. Moreover, it is seen that, at the higher spatial dimensions of the antenna, both the plasma electron density and temperature are reduced. Additionally, while, for the applied frequencies of 13.56 MHz and 27.12 MHz on the helicon antenna, the TG modes appear, for the applied frequency of 18.12 MHz on the helicon antenna, the existence of helicon modes is proved. Moreover, by increasing the applied voltage amplitude on the antenna, the generation of mono-energetic electrons is more probable.

  3. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    NASA Astrophysics Data System (ADS)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  4. Electron temperature gradient scale at collisionless shocks.

    PubMed

    Schwartz, Steven J; Henley, Edmund; Mitchell, Jeremy; Krasnoselskikh, Vladimir

    2011-11-18

    Shock waves are ubiquitous in space and astrophysics. They transform directed flow energy into thermal energy and accelerate energetic particles. The energy repartition is a multiscale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. While large scale features of ion heating are known, the electron heating and smaller scale fields remain poorly understood. We determine for the first time the scale of the electron temperature gradient via electron distributions measured in situ by the Cluster spacecraft. Half of the electron heating coincides with a narrow layer several electron inertial lengths (c/ω(pe)) thick. Consequently, the nonlinear steepening is limited by wave dispersion. The dc electric field must also vary over these small scales, strongly influencing the efficiency of shocks as cosmic ray accelerators.

  5. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.

    1990-04-01

    Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less

  6. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar System where life could have emerged.

  7. The ion temperature gradient: An intrinsic property of Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.

    2017-08-01

    Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.

  8. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  9. Sensitivity of Coupled Tropical Pacific Model Biases to Convective Parameterization in CESM1

    NASA Astrophysics Data System (ADS)

    Woelfle, M. D.; Yu, S.; Bretherton, C. S.; Pritchard, M. S.

    2018-01-01

    Six month coupled hindcasts show the central equatorial Pacific cold tongue bias development in a GCM to be sensitive to the atmospheric convective parameterization employed. Simulations using the standard configuration of the Community Earth System Model version 1 (CESM1) develop a cold bias in equatorial Pacific sea surface temperatures (SSTs) within the first two months of integration due to anomalous ocean advection driven by overly strong easterly surface wind stress along the equator. Disabling the deep convection parameterization enhances the zonal pressure gradient leading to stronger zonal wind stress and a stronger equatorial SST bias, highlighting the role of pressure gradients in determining the strength of the cold bias. Superparameterized hindcasts show reduced SST bias in the cold tongue region due to a reduction in surface easterlies despite simulating an excessively strong low-level jet at 1-1.5 km elevation. This reflects inadequate vertical mixing of zonal momentum from the absence of convective momentum transport in the superparameterized model. Standard CESM1simulations modified to omit shallow convective momentum transport reproduce the superparameterized low-level wind bias and associated equatorial SST pattern. Further superparameterized simulations using a three-dimensional cloud resolving model capable of producing realistic momentum transport simulate a cold tongue similar to the default CESM1. These findings imply convective momentum fluxes may be an underappreciated mechanism for controlling the strength of the equatorial cold tongue. Despite the sensitivity of equatorial SST to these changes in convective parameterization, the east Pacific double-Intertropical Convergence Zone rainfall bias persists in all simulations presented in this study.

  10. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  11. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  12. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, R.A.; Krommes, J.A.

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for themore » model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.« less

  13. Structural, electronic, magnetic and thermodynamic properties of Ni1-xTixO alloys an ab initio calculation and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.

    2018-06-01

    Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.

  14. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  15. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation,more » and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.« less

  16. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.

  17. Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.

    PubMed

    Chapman, T; Berger, R L; Brunner, S; Williams, E A

    2013-05-10

    The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.

  18. Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study

    NASA Astrophysics Data System (ADS)

    Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.

    2018-05-01

    Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.

  19. Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto

    2006-01-01

    The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.

  20. Continuum Edge Gyrokinetic Theory and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Xiong, Z; Dorr, M R

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regimemore » with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.« less

  1. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  2. Electronic and Thermoelectric Properties of Ternary Chalcohalide Semiconductors: First Principles Study

    NASA Astrophysics Data System (ADS)

    Khan, Wilayat; Hussain, Sajjad; Minar, Jan; Azam, Sikander

    2018-02-01

    Ternary chalcohalides have been widely utilized for different device applications. The thermoelectric properties of SbSI, SbSeI and SbSBr have been investigated by theoretical simulations, and the findings have been performed using BoltzTraP code, based on semi-classical Boltzmann transport theory. In this study, we simulated the electronic structures using the Englo-Vosko generalized gradient approximation employed in the WIEN2k program. From the electronic band structures, we found a combination of light and heavy bands around the Fermi level in the valence band, which strongly affect the effective masses of the carriers. The entire thermoelectric parameters, like the electrical, the electronic part of the thermal conductivities, the Seebeck coefficient and the power factor have been analysed as functions of temperature and chemical potential. The correlation between the effective masses and the thermoelectric properties is also included in the discussion because the effective mass reveals the mobility of the carriers which in turn affect the thermoelectric properties. The substitution of sulfur reveals high electrical conductivity and a smaller Seebeck coefficient based on effective mass leads to the increase in the power factor.

  3. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    NASA Astrophysics Data System (ADS)

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  4. Effects of heavy ions on electron temperatures in the solar corona and solar wind

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1972-01-01

    The effects of the reduction in the thermal conductivity due to heavy ions on electron temperatures in the solar corona and solar wind are examined. Large enhancements of heavy ions in the corona appear to be necessary to give appreciable changes in the thermal gradient of the electrons.

  5. Thermal Conductivity within Nanoparticle Powder Beds

    NASA Astrophysics Data System (ADS)

    Wilson, Mark; Chandross, Michael

    Non-equilibrium molecular dynamics is utilized to compute thermal transport properties within nanoparticle powder beds. In the realm of additive manufacturing of metals, the electronic contribution to thermal conduction is critical. To this end, our simulations incorporate the two temperature model, coupling a continuum representation of the electronic thermal contribution and the atomic phonon system. The direct method is used for conductivity determination, wherein thermal gradients between two different temperature heat flux reservoirs are calculated. The approach is demonstrated on several example cases including 304L stainless steel. The results from size distribution variations of mono/poly-disperse systems are extrapolated to predict values at the micron length scale, along with bulk properties at infinite system sizes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. A gas-puff-driven theta pinch for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2012-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.

  7. Generalized two-temperature model for coupled phonon-magnon diffusion.

    PubMed

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  8. Nonlinear Full-f Edge Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.; Umansky, M. V.

    2008-11-01

    TEMPEST is a nonlinear full-f 5D electrostatic gyrokinetic code for simulations of neoclassical and turbulent transport for tokamak plasmas. Given an initial density perturbation, 4D TEMPEST simulations show that the kinetic GAM exists in the edge in the form of outgoing waves [1], its radial scale is set by plasma profiles, and the ion temperature inhomogeneity is necessary for GAM radial propagation. From an initial Maxwellian distribution with uniform poloidal profiles on flux surfaces, the 5D TEMPEST simulations in a flux coordinates with Boltzmann electron model in a circular geometry show the development of neoclassical equilibrium, the generation of the neoclassical electric field due to neoclassical polarization, and followed by a growth of instability due to the spatial gradients. 5D TEMPEST simulations of kinetic GAM turbulent generation, radial propagation, and its impact on transport will be reported. [1] X. Q. Xu, Phys. Rev. E., 78 (2008).

  9. Forest gradient response in Sierran landscapes: the physical template

    USGS Publications Warehouse

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.

  10. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    NASA Astrophysics Data System (ADS)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  11. Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel

    2012-01-01

    Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?

  12. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  13. Heat-Flux Measurements from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2015-11-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux qSH = - κ∇Te and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Thermoelectrically cooled temperature-gradient apparatus for comparative cell and virus temperature studies.

    PubMed

    Clark, H F; Kaminski, F; Karzon, D T

    1970-05-01

    Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.

  15. Collaborative designing and job satisfaction of airplane manufacturing engineers: A case study

    NASA Astrophysics Data System (ADS)

    Johnson, Michael David, Sr.

    The group III-nitride system of materials has had considerable commercial success in recent years in the solid state lighting (SSL) and power electronics markets. The need for high efficient general lighting applications has driven research into InGaN based blue light emitting diodes (LEDs), and demand for more efficient power electronics for telecommunications has driven research into AlGaN based high electron mobility transistors (HEMTs). However, the group III-nitrides material properties make them attractive for several other applications that have not received as much attention. This work focuses on developing group III-nitride based devices for novel applications. GaN is a robust, chemically inert, piezoelectric material, making it an ideal candidate for surface acoustic wave (SAW) devices designed for high temperature and/or harsh environment sensors. In this work, SAW devices based on GaN are developed for use in high temperature gas or chemical sensor applications. To increase device sensitivity, while maintaining a simple one-step photolithography fabrication process, devices were designed to operate at high harmonic frequencies. This allows for GHz regime operation without sub-micron fabrication. One potential market for this technology is continuous emissions monitoring of combustion gas vehicles. In addition to SAW devices, high electron mobility transistors (HEMTs) were developed. The epitaxial structure was characterized and the 2-D electron gas concentrations were simulated and compared to experimental results. Device fabrication processes were developed and are outlined. Fabricated devices were electrically measured and device performance is discussed.

  16. Laser-plasma interactions in direct-drive ignition plasmas

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Michel, D. T.; Igumenshchev, I. V.; Hu, S. X.; Yaakobi, B.; Myatt, J. F.; Edgell, D. H.; Follett, R.; Glebov, V. Yu; Goncharov, V. N.; Kessler, T. J.; Maximov, A. V.; Radha, P. B.; Sangster, T. C.; Seka, W.; Short, R. W.; Solodov, A. A.; Sorce, C.; Stoeckl, C.

    2012-12-01

    Direct-drive ignition is most susceptible to multiple-beam laser-plasma instabilities, as the single-beam intensities are low (Is ˜ 1014 W cm-2) and the electron temperature in the underdense plasma is high (Te ≃ 3.5 keV). Cross-beam energy transfer is driven by multiple laser beams and can significantly reduce the hydrodynamic efficiency in direct-drive experiments on OMEGA (Boehly et al 1997 Opt. Commun. 133 495). Reducing the radii of the laser beams significantly increases the hydrodynamic efficiency at the cost of an increase in the low-mode modulations. Initial 2D hydrodynamic simulations indicate that zooming, transitioning the laser-beam radius prior to the main drive, does not increase low-mode nonuniformities. The combination of zooming and dynamic bandwidth reduction will provide a 30% effective increase in the drive energy on OMEGA direct-drive implosions. It was shown that two-plasmon decay (TPD) can be driven by multiple laser beams and both planar and spherical experiments were performed to study the hot electrons generated by TPD. The fraction of laser energy converted to hot electrons scales with the hot-electron temperature for all geometries and over a wide range of intensities. At ignition-relevant intensities, the fraction of laser energy converted to hot electrons is measured to decrease by an order of magnitude when the ablator material is changed from carbon-hydrogen to aluminum. The TPD results are compared with a multiple-beam linear theory and a nonlinear Zakharov model.

  17. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  18. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Qingtao; Li, Liyu; Nie, Zimin

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less

  20. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    NASA Astrophysics Data System (ADS)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; La Haye, R. J.; Bañón Navarro, A.; McKee, G. R.

    2017-06-01

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to interaction with Edge Localized Modes (ELMs) is reported for the first time. This work shows that perturbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n = 2/1 islands (m/n being the poloidal/toroidal mode numbers). In synchronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability due to modified pressure gradient (∇p) and perturbed bootstrap current (δjBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations ( n ˜ ) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n ˜ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measurements suggest that n ˜ accelerates NTM recovery after an ELM crash via accelerating the relaxation of ∇p at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing ∇p and therefore restoring δjBS at the O-point. The key physics of the relationship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-β tokamak plasmas.

  1. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  2. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE PAGES

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.; ...

    2017-06-08

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  3. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    PubMed

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  4. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  5. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  6. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  7. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less

  8. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  9. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE PAGES

    Santala, M. K.; Raoux, S.; Campbell, G. H.

    2015-12-24

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  10. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H.; Raoux, S.

    2015-12-21

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured withmore » time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  11. Simulation on the Performance of a Driven Fan Made by Polyester/Epoxy interpenetrate polymer network (IPN)

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd

    2017-08-01

    The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.

  12. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less

  13. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  14. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  15. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.

    1989-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  16. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the BSR-derived temperatures. These results are consistent with the interpretation of cold seawater being pumped into the ridge from both flanks, cooling the temperature field. In summary, the thermal data are consistence with previously proposed fluid circulation model.

  17. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  18. Phase space effects on fast ion transport modeling in tokamaks

    NASA Astrophysics Data System (ADS)

    Podesta, Mario

    2015-11-01

    Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  19. Flux-driven simulations of turbulence collapse

    DOE PAGES

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...

    2015-03-12

    In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less

  20. Nonlocal electron energy transport and flux inhibition in laser produced plasmas in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2011-10-01

    As the mean free path of the heat conducting electrons in laser produced plasmas can, at certain points, be greater than the temperature gradient scale length, the classical, local model can be invalid. More energetic electrons can advance ahead of the main heat front and preheat the fusion target. Also, experiments show that the main heat front does not propagate as rapidly as classical theory would predict, so there is heat flux inhibition. This latter effect is usually treated by limiting the flux to some arbitrary fraction f of the free streaming flux; f's have ranged from 0.03 to 0.3. However the choice of flux limit is arbitrary and the choice affects plasma temperature, which in turn affects thresholds for laser plasma instabilities; too low a limit has given too high a temperature and false optimism regarding instability threshold. We have developed a velocity dependent Krook model for nonlocal electron energy transport. It shows preheat and flux limitation are not separate effects, but are two sides of the same coin. The model gives an analytic solution for the nonlocal electron energy flux, and it is relatively simple and inexpensive to incorporate in a fluid simulation run at the ion time scale. It shows that in some sense, preheat is subtracted from the main electron energy flux, thereby giving rise to flux limitation. We have developed the theory and compared it with Fokker Planck simulations of simple configurations. We have incorporated the model into our code FAST2D and used it to model foil acceleration and evaluate and compare a number of competing physical effects in one and two dimensions, and compared with experiments. We have investigated the effect on spherical implosions, especially the effect on corona temperature, pressure, fuel adiabat and preheat, and ultimately gain. Supported by ONR and NNSA/DoE.

  1. Parallel closure theory for toroidally confined plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.

    2017-10-01

    We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  2. Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature

    NASA Astrophysics Data System (ADS)

    Moshizi, S. A.; Zamani, M.; Hosseini, S. J.; Malvandi, A.

    2017-05-01

    Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance.

  3. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  4. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    NASA Astrophysics Data System (ADS)

    Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.

    2010-08-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  5. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    PubMed

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  6. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  8. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

    DOE PAGES

    MacLellan, D.  A.; Carroll, D.  C.; Gray, R.  J.; ...

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  9. Gyrokinetic particle simulations of the effects of compressional magnetic perturbations on drift-Alfvenic instabilities in tokamaks

    DOE PAGES

    Dong, Ge; Bao, Jian; Bhattacharjee, Amitava; ...

    2017-08-10

    The compressional component of magnetic perturbation δB- || to can play an important role in drift-Alfvenic instabilities in tokamaks, especially as the plasma β increases (β is the ratio of kinetic pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation model incorporating δB- ||, and verified the model in kinetic Alfven wave simulations using the Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20% when δB- || is neglected for β e = 0.02, and that δB- ||more » to has stabilizing effects on the ion temperature gradient instability, but negligible effects on the collisionless trapped electron mode. Lastly, the KBM growth rate decreases about 15% when equilibrium current is neglected.« less

  10. A mechanism for the formation and sustainment of the self-organized global profile and E   ×   B staircase in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, W.; Kishimoto, Y.; Imadera, K.; Li, J. Q.; Wang, Z. X.

    2018-05-01

    The mechanism for the formation and sustainment of a self-organized global profile and the ‘ E   ×   B staircase’ are investigated through simulations of a flux-driven ion temperature gradient (ITG) turbulence based on GKNET, a 5D global gyrokinetic code. The staircase is found to be initiated from the radially extended ITG mode structures with nearly up-down symmetry during the saturation phase, and is established as it evolves into a quasi-steady turbulence, leading to a self-organized global temperature profile and to meso-scale isomorphic profiles of the radial electric field and the temperature gradient. It is found that the quasi-regular E   ×   B shear flow pattern is primarily originated from an even-symmetrical zonal flow produced by the extended ITG mode, which flow pattern exhibits an in-phase relation with the mean flow variation induced by the temperature relaxation. Consequently, the staircase is initiated through the profiles of total electric field and temperature gradient with a self-organized manner. Since the sign of E   ×   B shear flow at the central part are opposite to that at both edges, it disintegrates the ITG mode into smaller scale eddies. Meanwhile, smaller scale eddies tend to be aligned radially by spontaneous phase matching, which can provide the growth of mode amplitude and the formation of radially extended mode structures, leading to the bursty heat transport. This process is repeated quasi-periodically, sustaining self-organized structures and the E   ×   B staircase. Moreover, the equilibrium mean field is found to be of specific importance in causing the structures and dynamics from meso- to macro scales in toroidal plasmas.

  11. Large eddy simulations of time-dependent and buoyancy-driven channel flows

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1993-01-01

    The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.

  12. Variational assimilation of VAS data into the mass model

    NASA Technical Reports Server (NTRS)

    Cram, J. M.; Kaplan, M. L.

    1984-01-01

    Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Wang, W. X.; Ethier, S.

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  14. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2016-09-01

    Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.

  15. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.

    2018-05-01

    Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively coupled plasmas.

  16. Heat and mass transfer analogy for condensation of humid air in a vertical channel

    NASA Astrophysics Data System (ADS)

    Desrayaud, G.; Lauriat, G.

    This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.

  17. Idealized modeling of convective organization with changing sea surface temperatures using multiple equilibria in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sentić, Stipo; Sessions, Sharon L.

    2017-06-01

    The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.

  18. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, G.; Lin, Z.

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  19. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE PAGES

    Dong, G.; Lin, Z.

    2016-12-19

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  20. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction.

    PubMed

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2018-06-14

    Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top