Science.gov

Sample records for electronegative ldl inhibit

  1. Gender disparity in LDL-induced cardiovascular damage and the protective role of estrogens against electronegative LDL

    PubMed Central

    2014-01-01

    Background Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. Methods L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor–deficient (db/db) mice by using senescence-associated–β-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17β-estradiol and genistein against electronegative LDL–induced senescence in cultured bovine aortic endothelial cells (BAECs). Results L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17β-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. Conclusion The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men. PMID:24666525

  2. LDL electronegativity index: a potential novel index for predicting cardiovascular disease

    PubMed Central

    Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-01-01

    High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk. PMID:26357481

  3. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome.

  4. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters.

    PubMed

    Lai, Yu-Sheng; Yang, Tzu-Ching; Chang, Po-Yuan; Chang, Shwu-Fen; Ho, Shu-Li; Chen, Hui-Ling; Lu, Shao-Chun

    2016-04-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH), like that of atherosclerosis, involves lipid accumulation, inflammation and fibrosis. Recent studies suggest that oxidized LDL (oxLDL) may be a risk factor for NASH, but oxLDL levels were not directly measured in these studies. The aim of this study was to examine whether there was an association between electronegative LDL [LDL(-)], a mildly oxLDL found in the blood, and the development of NASH using two animal models. Golden Syrian hamsters and C57BL/6 mice were fed a high-fat, high-cholesterol (HFC) diet for 6 or 12weeks, then liver lipid and histopathology, plasma lipoprotein profile and LDL(-) levels were examined. The HFC-diet-fed hamsters and mice had similar levels of hepatic lipid but different histopathological changes, with microvesicular steatosis, hepatocellular hypertrophy, inflammation and bridging fibrosis in the hamsters, but only in mild steatohepatitis with low inflammatory cell infiltration in the mice. It also resulted in a significant increase in plasma levels of LDL cholesterol and LDL(-) in hamsters, but only a slight increase in mice. Moreover, enlarged Kupffer cells, LDL(-) and accumulation of unesterified cholesterol were detected in the portal area of HFC-diet-fed hamsters, but not HFC-diet-fed mice. An in vitro study showed that LDL(-) from HFC-diet-fed hamsters induced TNF-α secretion in rat Kupffer cell through a LOX-1-dependent pathway. Our results strongly suggest that LDL(-) is one of the underlying causes of hepatic inflammation and plays a critical role in the development of NASH. PMID:27012620

  5. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed. PMID:16473450

  6. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes.

    PubMed

    Chu, Yi-Fang; Liu, Rui Hai

    2005-08-26

    Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.

  7. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  8. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1.

    PubMed

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  9. MiR-590-5p Inhibits Oxidized- LDL Induced Angiogenesis by Targeting LOX-1

    PubMed Central

    Dai, Yao; Zhang, Zhigao; Cao, Yongxiang; Mehta, Jawahar L.; Li, Jun

    2016-01-01

    Oxidized low-density lipoprotein (ox-LDL) is, at least in part, responsible for angiogenesis in atherosclerotic regions. This effect of ox-LDL has been shown to be mediated through a specific receptor LOX-1. Here we describe the effect of miR-590-5p on ox-LDL-mediated angiogenesis in in vitro and in vivo settings. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-590-5p mimic or inhibitor followed by treatment with ox-LDL. In other experiments, Marigel plugs were inserted in the mice subcutaneous space. Both in vitro and in vivo studies showed that miR-590-5p mimic (100 nM) inhibited the ox-LDL-mediated angiogenesis (capillary tube formation, cell proliferation and migration as well as pro-angiogenic signals- ROS, MAPKs, pro-inflammatory cytokines and adhesion-related proteins). Of note, miR-590-5p inhibitor (200 nM) had the opposite effects. The inhibitory effect of miR-590-5p on angiogenesis was mediated by inhibition of LOX-1 at translational level. The inhibition of LOX-1 by miR-590-5p was confirmed by luciferase assay. In conclusion, we show that MiR-590-5p inhibits angiogenesis by targeting LOX-1 and suppressing redox-sensitive signals. PMID:26932825

  10. Increased uptake of oxidized LDL by macrophages from type 2 diabetics is inhibited by polyamines.

    PubMed

    Balderas, Francisco L; Quezada-Larios, Marina; García Latorre, Ethel Awilda; Méndez, José D

    2016-02-01

    The aim of this study was to evaluate the effect of polyamines putrescine, spermidine and spermine on human LDL oxidation and to assess the ability of macrophages derived from type 2 diabetic patients to uptake oxLDL. Polyamine effect was compared with α-tocopherol. Four healthy subjects and eight type 2 diabetic patients were included in this study. To characterize type 2 diabetic patients and non-diabetic subjects, laboratory test were carried out. Glucose, glycated haemoglobin (HbA1C), triglycerides, low (LDL) and high density lipoproteins (HDL) and serum lipid peroxidation were measured in blood. The study was performed in three stages. For each stage, ten experimental conditions comparing the effect of polyamines with α-tocopherol (10μM solutions) on LDL oxidation and the uptake of oxLDL by macrophages were analyzed. MDA concentration was found to be significantly higher in type 2 diabetic patients compared to healthy subjects (5.6±0.58 vs. 2.66±0.31μM MDA, respectively, (P<0.05)). Percent of macrophages containing oxLDL was determined by means of red oil staining. The uptake of oxLDL by macrophages derived from diabetic patients was clear. The uptake of oxLDL was inhibited when the oxidation was prevented by polyamines or α-tocopherol. Spermine showed high antioxidant capacity (96.67±1.53% vs. 25.67±2.30%) compared to α-tocopherol (96.67±1.53% vs. 47.00±7.20%) at the concentration tested. In conclusion, polyamines especially spermine, has a potent antioxidant effect compared to α-tocopherol on human LDL oxidation, followed by spermidine and putrescine. The results have clinical relevance in the diabetic complications and add knowledge on the role of polyamines as natural antioxidants. This research is not a clinical evaluation rather a functional analysis utilizing clinical samples.

  11. Competitive inhibition of LDL binding and uptake by HDL in aortic endothelial cells

    SciTech Connect

    Alexander, J.J.; Miguel, R.; Graham, D. )

    1990-09-01

    High-density lipoprotein (HDL) may inhibit the binding and cellular uptake of low-density lipoprotein (LDL) as one means of regulating the delivery of exogenous cholesterol to nonhepatic tissues. This may play an important role in atherogenesis, by altering lipid metabolism in cells of the arterial wall. To verify and better characterize this effect, endothelial cells were harvested from bovine aorta and maintained in tissue culture. Following initial preincubation in lipid-deficient culture media, these cells were incubated for 2 hr at 4 degrees C in media containing 125I-LDL (10 micrograms protein/ml) and varying concentrations of either HDL (0-400 micrograms protein/ml) or comparable amounts of Apoprotein A (Apo A), the major protein component of HDL. Intracellular and trypsin-released counts were assayed separately, as a measurement of cellular uptake and membrane bound LDL, respectively. Results of this study indicated an inhibition of LDL binding and uptake by HDL (P less than 0.005, ANOVA). A similar inhibition was found with Apo A alone (P less than 0.005). When identical studies were performed using 125I-Apoprotein B, the protein component of LDL, and Apo A, the latter was found to inhibit the binding of Apo B to the same extent (P less than 0.0006). These results indicate that HDL does inhibit LDL binding and uptake by bovine aortic endothelial cells and that, because this effect is seen equally with only the protein component of these lipoprotein particles, it is most likely due to competitive binding at the receptor level rather than to stearic hindrance or an alteration of the cell membrane.

  12. A review of PCSK9 inhibition and its effects beyond LDL receptors.

    PubMed

    Dixon, Dave L; Trankle, Cory; Buckley, Leo; Parod, Eric; Carbone, Salvatore; Van Tassell, Benjamin W; Abbate, Antonio

    2016-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an integral role in the degradation of low-density lipoprotein receptors (LDL-R), making it an intriguing target for emerging pharmacotherapy. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved and are available in the United States and European Union. However, much of the PCSK9 story remains to be told. The pipeline for additional pharmacotherapy options is rich with several compounds under development, using alternative strategies for inhibiting PCSK9. Perhaps, more intriguing is the interaction between PCSK9 and non-LDL-R targets, including mediators of inflammation and immunological processes, which remain under intense investigation. This review will discuss the currently available PCSK9 inhibitors, the development of novel approaches to PCSK9 modulation, and the potential non-LDL-R-mediated effects of PCSK9 inhibition.

  13. A review of PCSK9 inhibition and its effects beyond LDL receptors.

    PubMed

    Dixon, Dave L; Trankle, Cory; Buckley, Leo; Parod, Eric; Carbone, Salvatore; Van Tassell, Benjamin W; Abbate, Antonio

    2016-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an integral role in the degradation of low-density lipoprotein receptors (LDL-R), making it an intriguing target for emerging pharmacotherapy. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved and are available in the United States and European Union. However, much of the PCSK9 story remains to be told. The pipeline for additional pharmacotherapy options is rich with several compounds under development, using alternative strategies for inhibiting PCSK9. Perhaps, more intriguing is the interaction between PCSK9 and non-LDL-R targets, including mediators of inflammation and immunological processes, which remain under intense investigation. This review will discuss the currently available PCSK9 inhibitors, the development of novel approaches to PCSK9 modulation, and the potential non-LDL-R-mediated effects of PCSK9 inhibition. PMID:27678423

  14. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    SciTech Connect

    Chen, Jing-Hsien; Tsai, Chia-Wen; Wang, Chi-Ping; Lin, Hui-Hsuan

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  15. Electronegativity Equalization with Pauling Units.

    ERIC Educational Resources Information Center

    Bratsch, Steven G.

    1984-01-01

    Discusses electronegativity equalization using Pauling units. Although Pauling has qualitatively defined electronegativity as the power of an atom in a molecule to attract electrons to itself, Pauling electronegativities are treated in this paper as prebonded, isolated-atom quantities. (JN)

  16. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes

    PubMed Central

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2014-01-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg9-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins. PMID:18078988

  17. NEW CLASS OF DRUGS: THERAPEUTIC RNAi INHIBITION OF PCSK9 AS A SPECIFIC LDL-C LOWERING THERAPY.

    PubMed

    Strat, A L; Ghiciuc, Cristina Mihaela; Lupuşoru, Cătălina Elena; Mitu, F

    2016-01-01

    Hyperlipidemia is a well-known risk factor for coronary heart disease, the leading cause of death for both men and women. Current lipid-lowering treatment is not always efficient, therefore new pharmacological interventions that reduce LDL cholesterol (LDL-C) have been developed. This paper presents new class of specific LDL lipid-lowering drugs under investigation in phase II or III clinical trials. The inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), a key enzyme in cholesterol homeostasis, improve the liver's ability to clear LDL from the plasma, reducing LDL-C levels. Currently, three monoclonal antibodies PCSK9 inhibitors (alirocumab, evolocumab and bococizumab) are evaluated in clinical outcome trials. ALN-PCSsc, the new first-in- class therapeutic RNA interference (RNAi) inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9) is also the first-in-class investigational medicine that acts by turning off PCSK9 synthesis in the liver. The development leadership of ALN-PCSsc has now transferred from Alnylam Pharmaceuticals to The Medicines Company, who has initiated the ORION-1 Phase II study at the beginning of 2016. ALN-PCSsc has significant potential given its highly competitive profile as compared with monoclonal antibodies anti-PCSK9 MAbs, a recently approved class of LDL-C lowering drugs.

  18. NEW CLASS OF DRUGS: THERAPEUTIC RNAi INHIBITION OF PCSK9 AS A SPECIFIC LDL-C LOWERING THERAPY.

    PubMed

    Strat, A L; Ghiciuc, Cristina Mihaela; Lupuşoru, Cătălina Elena; Mitu, F

    2016-01-01

    Hyperlipidemia is a well-known risk factor for coronary heart disease, the leading cause of death for both men and women. Current lipid-lowering treatment is not always efficient, therefore new pharmacological interventions that reduce LDL cholesterol (LDL-C) have been developed. This paper presents new class of specific LDL lipid-lowering drugs under investigation in phase II or III clinical trials. The inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), a key enzyme in cholesterol homeostasis, improve the liver's ability to clear LDL from the plasma, reducing LDL-C levels. Currently, three monoclonal antibodies PCSK9 inhibitors (alirocumab, evolocumab and bococizumab) are evaluated in clinical outcome trials. ALN-PCSsc, the new first-in- class therapeutic RNA interference (RNAi) inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9) is also the first-in-class investigational medicine that acts by turning off PCSK9 synthesis in the liver. The development leadership of ALN-PCSsc has now transferred from Alnylam Pharmaceuticals to The Medicines Company, who has initiated the ORION-1 Phase II study at the beginning of 2016. ALN-PCSsc has significant potential given its highly competitive profile as compared with monoclonal antibodies anti-PCSK9 MAbs, a recently approved class of LDL-C lowering drugs. PMID:27483697

  19. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage.

    PubMed

    Berrougui, Hicham; Isabelle, Maxim; Cherki, Mounia; Khalil, Abdelouahed

    2006-12-14

    The objective of the present study was to elucidate the beneficial properties of aqueous extracts of Marrubium vulgare (AEM) towards cardiovascular disease by protecting human-LDL against lipid peroxidation and promoting HDL-mediated cholesterol efflux. Human-LDL were oxidised by incubation with CuSO(4) in the presence of increased concentrations of AEM (0-100 microg/ml). LDL lipid peroxidation was evaluated by conjugated diene formation, vitamin E disappearance as well as LDL-electrophoretic mobility. HDL-mediated cholesterol efflux assay was carried out in human THP-1 macrophages. Incubation of LDL with AEM significantly prolonged the lag phase (P=0.014), lowered the progression rate of lipid peroxidation (P=0.004), reduced the disappearance of vitamin E and the electrophoretic mobility in a dose-dependent manner. Also, incubation of HDL with AEM significantly increased HDL-mediated cholesterol efflux from THP-1 macrophages implicating an independent ATP binding cassette A1 (ABCA1) pathways. Our findings suggest that M. vulgare provides a source of natural antioxidants, which inhibit LDL oxidation and enhance reverse cholesterol transport and thus can prevent cardiovascular diseases development. These antioxidant properties increase the anti-atherogenic potential of HDL.

  20. c-Ski inhibits autophagy of vascular smooth muscle cells induced by oxLDL and PDGF.

    PubMed

    Li, Jun; Zhao, Li; Yang, Ting; Zeng, Yi-Jun; Yang, Kang

    2014-01-01

    Autophagy is increasingly being recognized as a critical determinant of vascular smooth muscle cell (VSMC) biology. Previously, we have demonstrated that c-Ski inhibits VSMC proliferation stimulated by transforming growth factor β (TGF-β), but it is not clear whether c-Ski has the similar protective role against other vascular injury factors and whether regulation of autophagy is involved in its protective effects on VSMC. Accordingly, in this study, rat aortic A10 VSMCs were treated with 40 µg/ml oxidized low-density lipoprotein (oxLDL) or 20 ng/ml platelet-derived growth factor (PDGF), both of which were autophagy inducers and closely related to the abnormal proliferation of VSMCs. Overexpression of c-Ski in A10 cells significantly suppressed the oxLDL- and PDGF- induced autophagy. This action of c-Ski resulted in inhibiting the cell proliferation, the decrease of contractile phenotype marker α-SMA expression while the increase of synthetic phenotype marker osteopontin expression stimulated by oxLDL or PDGF. Inversely, knockdown of c-Ski by RNAi enhanced the stimulatory effects of oxLDL or PDGF on A10 cell growth and phenotype transition. And further investigation found that inhibition of AKT phosphorylation to downregulate proliferating cell nuclear antigen (PCNA) expression, was involved in the regulation of autophagy and associated functions by c-Ski in the oxLDL- and PDGF-stimulated VSMCs. Collectively, c-Ski may play an important role in inhibiting autophagy to protect VSMCs against some harsh stress including oxLDL and PDGF.

  1. Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage.

    PubMed

    Zhang, Heng; Zhai, Zhenhua; Zhou, Hongyu; Li, Yao; Li, Xiaojie; Lin, Yuhan; Li, Weihong; Shi, Yueping; Zhou, Ming-Sheng

    2015-01-01

    Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor α (TNFα, 160%) and interleukin (IL) 1β (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-IκBα/IκBα in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-IκBα/IκBα. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NFκB pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases. PMID:26576421

  2. Electronegativity and redox reactions.

    PubMed

    Miranda-Quintana, Ramón Alain; Martínez González, Marco; Ayers, Paul W

    2016-08-10

    Using the maximum hardness principle, we show that the oxidation potential of a molecule increases as its electronegativity increases and also increases as its electronegativity in its oxidized state increases. This insight can be used to construct a linear free energy relation for the oxidation potential, which we train on a set of 31 organic redox couples and test on a set of 10 different redox reactions. Better results are obtained when the electronegativity of the oxidized/reduced reagents are adjusted to account for the reagents' interaction with their chemical environment.

  3. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic.

    PubMed

    Fuhrman, B; Volkova, N; Rosenblat, M; Aviram, M

    2000-01-01

    Several lines of evidence suggest that oxidatively modified low-density lipoprotein (LDL) is atherogenic, and that atherosclerosis can be attenuated by natural antioxidants, which inhibit LDL oxidation. This study was conducted to determine the effect of tomato lycopene alone, or in combination with other natural antioxidants, on LDL oxidation. LDL (100 microg of protein/ml) was incubated with increasing concentrations of lycopene or of tomato oleoresin (lipid extract of tomatoes containing 6% lycopene, 0.1% beta-carotene, 1% vitamin E, and polyphenols), after which it was oxidized by the addition of 5 micromol/liter of CuSO4. Tomato oleoresin exhibited superior capacity to inhibit LDL oxidation in comparison to pure lycopene, by up to five-fold [97% vs. 22% inhibition of thiobarbituric acid reactive substances (TBARS) formation, and 93% vs. 27% inhibition of lipid peroxides formation, respectively]. Because tomato oleoresin also contains, in addition to lycopene, vitamin E, flavonoids, and phenolics, a possible cooperative interaction between lycopene and such natural antioxidants was studied. A combination of lycopene (5 micromol/liter) with vitamin E (alpha-tocopherol) in the concentration range of 1-10 micromol/liter resulted in an inhibition of copper ion-induced LDL oxidation that was significantly greater than the expected additive individual inhibitions. The synergistic antioxidative effect of lycopene with vitamin E was not shared by gamma-to-cotrienol. The polyphenols glabridin (derived from licorice), rosmarinic acid or carnosic acid (derived from rosemary), as well as garlic (which contains a mixture of natural antioxidants) inhibited LDL oxidation in a dose-dependent manner. When lycopene (5 micromol/liter) was added to LDL in combination with glabridin, rosmarinic acid, carnosic acid, or garlic, synergistic antioxidative effects were obtained against LDL oxidation induced either by copper ions or by the radical generator AAPH. Similar interactive

  4. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis

    PubMed Central

    Chang, Chiz-Tzung; Wang, Guei-Jane; Kuo, Chin-Chi; Hsieh, Ju-Yi; Lee, An-Sean; Chang, Chia-Ming; Wang, Chun-Cheng; Shen, Ming-Yi; Huang, Chiu-Ching; Sawamura, Tatsuya; Yang, Chao-Yuh; Stancel, Nicole; Chen, Chu-Huang

    2016-01-01

    Abstract Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients. The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1–L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function. Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01–3.53), with a near-linear dose–response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction. Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients. PMID:26765403

  5. MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition.

    PubMed

    Qin, Bing; Cao, Yuze; Yang, Huan; Xiao, Bo; Lu, Zhengqi

    2015-07-01

    Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play an essential role in atherosclerosis. MicroRNAs (miRNAs) are a class of short non-coding RNAs, acting as posttranscriptional regulators of protein-coding genes involved in vascular cell biology. MiRNA-221 and miRNA-222 (miR-221/222) are known to be involved in the regulation of endothelial inflammation and angiogenesis. However, the function of miR-221/222 in ox-LDL-induced ECs apoptosis and atherosclerosis is still unknown. Here, we showed that miR-221/222 expression was markedly down-regulated in ox-LDL-induced apoptotic human umbilical cord vein endothelial cells. MiR-221/222 inhibition enhanced apoptosis in ECs, whereas over-expression of miR-221/222 could partly alleviate apoptotic cell death mediated by ox-LDL through suppression of Ets-1 and its downstream target p21. These findings suggest that manipulation of the miR-221/222-Ets-1-p21 pathway may offer a novel strategy for treatment of endothelial apoptosis and atherosclerosis.

  6. Electronegativity Equalization and Partial Charge

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1974-01-01

    This article elaborates the relationship between covalent radius, homonuclear bond energy, and electronegativity, and sets the background for bond energy calculation by discussing the nature of heteronuclear covalent bonding on the basis of electronegativity equalization and particle charge. (DT)

  7. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway.

    PubMed

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  8. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway

    PubMed Central

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  9. Modeling electronegative plasma discharge

    SciTech Connect

    Lichtenberg, A.J.; Lieberman, M.A.

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  10. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor's role.

    PubMed

    Raal, Frederick J; Giugliano, Robert P; Sabatine, Marc S; Koren, Michael J; Blom, Dirk; Seidah, Nabil G; Honarpour, Narimon; Lira, Armando; Xue, Allen; Chiruvolu, Padmaja; Jackson, Simon; Di, Mei; Peach, Matthew; Somaratne, Ransi; Wasserman, Scott M; Scott, Rob; Stein, Evan A

    2016-06-01

    Lipoprotein (a) [Lp(a)] is independently associated with CVD risk. Evolocumab, a monoclonal antibody (mAb) to proprotein convertase subtilisin/kexin type 9 (PCSK9), decreases Lp(a). The potential mechanisms were assessed. A pooled analysis of Lp(a) and LDL cholesterol (LDL-C) in 3,278 patients from 10 clinical trials (eight phase 2/3; two extensions) was conducted. Within each parent study, biweekly and monthly doses of evolocumab statistically significantly reduced Lp(a) at week 12 versus control (P < 0.001 within each study); pooled median (quartile 1, quartile 3) percent reductions were 24.7% (40.0, 3.6) and 21.7% (39.9, 4.2), respectively. Reductions were maintained through week 52 of the open-label extension, and correlated with LDL-C reductions [with and without correction for Lp(a)-cholesterol] at both time points (P < 0.0001). The effect of LDL and LDL receptor (LDLR) availability on Lp(a) cell-association was measured in HepG2 cells: cell-associated LDL fluorescence was reversed by unlabeled LDL and Lp(a). Lp(a) cell-association was reduced by coincubation with LDL and PCSK9 and reversed by adding PCSK9 mAb. These studies support that reductions in Lp(a) with PCSK9 inhibition are partly due to increased LDLR-mediated uptake. In most situations, Lp(a) appears to compete poorly with LDL for LDLR binding and internalization, but when LDLR expression is increased with evolocumab, particularly in the setting of low circulating LDL, Lp(a) is reduced.

  11. Hyperhalogens and highly electronegative compositions

    DOEpatents

    Jena, Puru; Gantefoer, Gerd

    2016-08-16

    Hyperhalogens, a new class of highly electronegative species, are now invented. A hyperhalogen is a superhalogen-containing composition in which the electron affinity (EA) of the hyperhalogen is even larger than that of the superhalogens they are composed of. Novel production methods are provided in which highly electronegative species are produced by surrounding a central metal atom by superhalogen moieties.

  12. Electronegativity, Bond Energy, and Chemical Reactivity.

    ERIC Educational Resources Information Center

    Myers, R. Thomas

    1979-01-01

    Discusses the Pauling electronegativity concept which rationalizes several kinds of chemical reactions of covalent substances. Electronegativity differences applied to some reactions are demonstrated. (SA)

  13. ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes

    PubMed Central

    Skogsberg, Josefin; Dicker, Andrea; Rydén, Mikael; Åström, Gaby; Nilsson, Roland; Bhuiyan, Hasanuzzaman; Vitols, Sigurd; Mairal, Aline; Langin, Dominique; Alberts, Peteris; Walum, Erik; Tegnér, Jesper; Hamsten, Anders; Arner, Peter; Björkegren, Johan

    2008-01-01

    Background Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. Methods and Findings We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob100/100). Conclusions Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome. PMID:19020660

  14. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte.

    PubMed

    Wu, Zhi-hong; Chen, Ya-qin; Zhao, Shui-ping

    2013-03-01

    Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0-100 μg/ml) for 24h with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by Western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress.

  15. Inhibition of Glutathione Production Induces Macrophage CD36 Expression and Enhances Cellular-oxidized Low Density Lipoprotein (oxLDL) Uptake.

    PubMed

    Yang, Xiaoxiao; Yao, Hui; Chen, Yuanli; Sun, Lei; Li, Yan; Ma, Xingzhe; Duan, Shengzhong; Li, Xiaoju; Xiang, Rong; Han, Jihong; Duan, Yajun

    2015-09-01

    The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism.

  16. Inhibition of Glutathione Production Induces Macrophage CD36 Expression and Enhances Cellular-oxidized Low Density Lipoprotein (oxLDL) Uptake*

    PubMed Central

    Yang, Xiaoxiao; Yao, Hui; Chen, Yuanli; Sun, Lei; Li, Yan; Ma, Xingzhe; Duan, Shengzhong; Li, Xiaoju; Xiang, Rong; Han, Jihong; Duan, Yajun

    2015-01-01

    The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism. PMID:26187465

  17. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.

    PubMed

    Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping; Ramms, Bastian; Lew, Irene; Gonzales, Jon C; Thacker, Bryan E; Basu, Debapriya; Lee, Richard G; Mullick, Adam E; Graham, Mark J; Goldberg, Ira J; Crooke, Rosanne M; Witztum, Joseph L; Esko, Jeffrey D

    2016-08-01

    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. PMID:27400128

  18. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors

    PubMed Central

    Gordts, Philip L.S.M.; Son, Ni-Huiping; Ramms, Bastian; Lew, Irene; Gonzales, Jon C.; Thacker, Bryan E.; Basu, Debapriya; Lee, Richard G.; Mullick, Adam E.; Graham, Mark J.; Goldberg, Ira J.; Crooke, Rosanne M.; Witztum, Joseph L.

    2016-01-01

    Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III–targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO–induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III–rich or ApoC-III–depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. PMID:27400128

  19. Immunization with cationized BSA inhibits progression of disease in ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis.

    PubMed

    Kolbus, Daniel; Wigren, Maria; Ljungcrantz, Irena; Söderberg, Ingrid; Alm, Ragnar; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla N

    2011-06-01

    Immune responses against modified self-antigens generated by hypercholesterolemia play an important role in atherosclerosis identifying the immune system as a possible novel target for prevention and treatment of cardiovascular disease. It has recently been shown that these immune responses can be modulated by subcutaneous injection of adjuvant. In the present study we immunized 25-week old ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis with adjuvant and two different concentrations of the carrier molecule cationized BSA (cBSA). Plasma levels of Th2-induced apolipoprotein B (apoB)/IgG1 immune complexes were increased in the cBSA immunized groups verifying induction of immunity against a self-antigen. Mice were sacrificed at 36 weeks of age and atherosclerosis was monitored by en face Oil red O staining of the aorta. Immunization with 100 μg cBSA inhibited plaque progression, whereas the lower dose (50 μg) did not. In addition, the higher dose induced a more stable plaque phenotype, indicated by a higher content of collagen and less macrophages and T cells in the plaques. Moreover, there was an increased ratio of Foxp3+/Foxp3⁻ T cells in the circulation suggesting activation of a regulatory T cell response. In conclusion, we show that immunization with cBSA induces an immune response against apoB as well as an activation of Treg cells. This was associated with development of a more stable plaque phenotype and reduced atherosclerosis progression.

  20. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages.

    PubMed

    Berrougui, Hicham; Cloutier, Martin; Isabelle, Maxim; Khalil, Abdelouahed

    2006-02-01

    Argan oil is rich in unsaturated fatty acids, tocopherol and phenolic compounds. These protective molecules make further study of its cardiovascular diseases (CVDs) action interesting. Furthermore, no previous study has explored the antioxidant activity of argan oil in comparison with olive oil. The present study was conducted to evaluate the beneficial properties of Virgin argan oil phenolic extracts (VAO-PE) towards CVD by: (A) protecting human (low-density lipoprotein, LDL) against lipid peroxidation and (B) promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. Human LDLs were oxidized by incubation with CuSO(4) in the presence of different concentrations of VAO-PE (0-320mug/ml). LDL lipid peroxidation was evaluated by conjugated diene and MDA formation as well as Vitamin E disappearance. Incubation of LDL with VAO-PE significantly prolonged the lag-phase and lowered the progression rate of lipid peroxidation (P<0.01) and reduced the disappearance of Vitamin E in a concentration-dependent manner. Incubation of HDL with VAO-PE significantly increased the fluidity of the HDL phospholipidic bilayer (P=0.0004) and HDL-mediated cholesterol efflux from THP-1 macrophages. These results suggest that Virgin argan oil provides a source of dietary phenolic antioxidants, which prevent cardiovascular diseases by inhibiting LDL-oxidation and enhancing reverse cholesterol transport. These properties increase the anti-atherogenic potential of HDL. PMID:16019008

  1. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages.

    PubMed

    Berrougui, Hicham; Cloutier, Martin; Isabelle, Maxim; Khalil, Abdelouahed

    2006-02-01

    Argan oil is rich in unsaturated fatty acids, tocopherol and phenolic compounds. These protective molecules make further study of its cardiovascular diseases (CVDs) action interesting. Furthermore, no previous study has explored the antioxidant activity of argan oil in comparison with olive oil. The present study was conducted to evaluate the beneficial properties of Virgin argan oil phenolic extracts (VAO-PE) towards CVD by: (A) protecting human (low-density lipoprotein, LDL) against lipid peroxidation and (B) promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. Human LDLs were oxidized by incubation with CuSO(4) in the presence of different concentrations of VAO-PE (0-320mug/ml). LDL lipid peroxidation was evaluated by conjugated diene and MDA formation as well as Vitamin E disappearance. Incubation of LDL with VAO-PE significantly prolonged the lag-phase and lowered the progression rate of lipid peroxidation (P<0.01) and reduced the disappearance of Vitamin E in a concentration-dependent manner. Incubation of HDL with VAO-PE significantly increased the fluidity of the HDL phospholipidic bilayer (P=0.0004) and HDL-mediated cholesterol efflux from THP-1 macrophages. These results suggest that Virgin argan oil provides a source of dietary phenolic antioxidants, which prevent cardiovascular diseases by inhibiting LDL-oxidation and enhancing reverse cholesterol transport. These properties increase the anti-atherogenic potential of HDL.

  2. Electronegativity and the Bond Triangle

    ERIC Educational Resources Information Center

    Meek, Terry L.; Garner, Leah D.

    2005-01-01

    The usefulness of the bond triangle for categorizing compounds of the main-group elements may be extended by the use of weighted average electronegativities to allow distinction between compounds of the same elements with different stoichiometries. In such cases a higher valency for the central atom leads to greater covalent character and the…

  3. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.

    PubMed

    Rull, Anna; Jayaraman, Shobini; Gantz, Donald L; Rivas-Urbina, Andrea; Pérez-Cuellar, Montserrat; Ordóñez-Llanos, Jordi; Sánchez-Quesada, Jose Luis; Gursky, Olga

    2016-09-01

    Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo. PMID:27233433

  4. Mulberry leaf aqueous fractions inhibit TNF-alpha-induced nuclear factor kappaB (NF-kappaB) activation and lectin-like oxidized LDL receptor-1 (LOX-1) expression in vascular endothelial cells.

    PubMed

    Shibata, Yusuke; Kume, Noriaki; Arai, Hidenori; Hayashida, Kazutaka; Inui-Hayashida, Atsuko; Minami, Manabu; Mukai, Eri; Toyohara, Masako; Harauma, Akiko; Murayama, Toshinori; Kita, Toru; Hara, Saburo; Kamei, Kaeko; Yokode, Masayuki

    2007-07-01

    Mulberry (Morus Alba L., family Moraceae) leaf extracts have various biological effects including inhibition of oxidative modification of low-density lipoprotein (LDL), which is the major cause of atherosclerosis. Endothelial dysfunction elicited by oxidized LDL (Ox-LDL) has been implicated in atherogenesis. Lectin-like Ox-LDL receptor-1 (LOX-1), a cell-surface receptor for atherogenic Ox-LDL, appears to mediate Ox-LDL-induced inflammation, which may be crucial in atherogenesis. Previous studies revealed that expression of LOX-1 is highly inducible by proinflammatory stimuli, including tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), and transforming growth factor-beta (TGF-beta). Therefore, we examined whether mulberry leaf aqueous fractions inhibit LOX-1 expression induced by proinflammatory stimuli. Pretreatment of cultured bovine aortic endothelial cells (BAECs) with mulberry leaf aqueous fractions inhibited TNF-alpha- and LPS-induced expression of LOX-1 at both protein and mRNA levels in a time- and concentration-dependent manner. In contrast, mulberry leaf aqueous fractions did not affect TGF-beta-induced LOX-1 expression. Furthermore, mulberry leaf aqueous fractions inhibited TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) and phosphorylation of inhibitory factor of NF-kappaB-alpha (IkappaB-alpha) in a time- and concentration-dependent fashion. Thus, mulberry leaf aqueous fractions suppress TNF-alpha- and LPS-induced LOX-1 gene expression, by inhibiting NF-kappaB activation.

  5. Patterns of electronegative ions past a cylinder

    NASA Astrophysics Data System (ADS)

    Xiang, Xiaofeng; Wu, Xing; Guo, Li; Ma, Xiaoxun; Xia, Yashen

    2012-10-01

    The behavior of the wake of an electronegative gas flow past either a glass or a magnetic circular cylinder was observed using the smoke wire flow visualization technique. Converging or chaotic vortices for the electronegative flow of air and oxygen past a magnetic cylinder were seen in shedding vortices, especially at higher concentrations of electronegative molecules, eventually leading to the disappearance of a Kármán vortex, possibly due to the effect of ‘interactive solenoids’.

  6. Revised Mulliken Electronegativities I. Calculation and Conversion to Pauling Units.

    ERIC Educational Resources Information Center

    Bratsch, Steven G.

    1988-01-01

    Discusses a revision and extension of the Mulliken electronegativity scale to consider 50 elements. Describes the calculation of valence-state promotion energies and Mulliken atomic electronegativities and the conversion of Mulliken electronegativities to Pauling units. (CW)

  7. LDL Particle Testing

    MedlinePlus

    ... assessing cardiac risk in people who have a personal or family history of heart disease at a young age, especially if their total cholesterol and LDL cholesterol (LDL-C) values are not significantly elevated. LDL subfraction testing is ...

  8. Enhanced Sphingomyelinase Activity Contributes to the Apoptotic Capacity of Electronegative Low-Density Lipoprotein.

    PubMed

    Ke, Liang-Yin; Chan, Hua-Chen; Chen, Chih-Chieh; Lu, Jonathan; Marathe, Gopal K; Chu, Chih-Sheng; Chan, Hsiu-Chuan; Wang, Chung-Ya; Tung, Yi-Ching; McIntyre, Thomas M; Yen, Jeng-Hsien; Chen, Chu-Huang

    2016-02-11

    Sphingomyelinase (SMase) catalyzes the degradation of sphingomyelin to ceramide. In patients with metabolic syndrome or diabetes, circulating plasma ceramide levels are significantly higher than in normal individuals. Our data indicate that electronegative low-density lipoprotein (LDL) shows SMase activity, which leads to increased ceramide levels that can produce pro-inflammatory effects and susceptibility to aggregation. According to sequence alignment and protein structure predictions, the putative catalytic site of SMase activity is in the α2 region of apoB-100. To identify specific post-translational modifications of apoB100 near the catalytic region, we performed data-independent, parallel-fragmentation liquid chromatography/mass spectrometry (LC/MS(E)), followed by data analysis with ProteinLynx GlobalServer v2.4. Results showed that the serine of apoB100 in electronegative LDL was highly O-glycosylated, including S(1732), S(1959), S(2378), S(2408), and S(2429). These findings may support the changing of the α-helix/β-pleated sheets ratio in protein structure analysis. Further study is necessary to confirm the activation of SMase activity by electronegative LDL. PMID:26766134

  9. Ghrelin inhibits oxLDL-induced inflammation in RAW264.7 mouse macrophages through down-regulation of LOX-1 expression via NF-κB signaling pathway.

    PubMed

    Sun, N; Wang, H; Wang, L

    2016-01-01

    Oxidized low-density lipoprotein (oxLDL) is one of the many causes of the initiation and progression of atherosclerosis, which can subsequently promote the uptake of oxLDL by macrophages and lead to inflammation in the blood vessels. In the present study, we evaluated the protective effects of ghrelin on oxLDL-induced RAW264.7 mouse macrophages. Ghrelin was able to inhibit the release of several pro-inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, ghrelin also inhibited the expression of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in oxLDL treated macrophages. Furthermore, we demonstrated that ghrelin could inhibit the expression of p-IκBα, and the inhibitory effects could be blocked by BAY 117082. Taken together, ghrelin possesses anti-inflammatory effects on oxLDL-induced inflammation in macrophages, suggesting that it can prevent or treat atherosclerosis, and deserves to be further studied and developed to be potent drug for treating atherosclerosis. PMID:26950452

  10. Electron density measurements in highly electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we present experimental measurements of the electron density in very electronegative ‘ion–ion’ Ar–SF6 plasmas where previous investigations using Langmuir probes have observed electronegativities of up to 5000. The electron density is measured using a short matched dipole probe technique that provides a tolerance better than  ±2 · 1013 m‑3. The results demonstrate that the electron density in the low pressure plasma source (which contains a magnetic filter) can be reduced to around 2.7 · 1013 m‑3 with a corresponding plasma electronegativity of about 4000; close to that from fluid simulation predictions. The highest electronegativity, and lowest electron density, is achieved with a pure SF6 plasma, while adding only 6% SF6 to Ar allows the electronegativity to be increased from 0 to a few hundred with a corresponding decrease in the electron density by more than a thousand. The impedance probe based on a short matched dipole appears to be a practical diagnostic that can be used for independent measurements of the electron density in very electronegative plasmas, and opens up the possibility to further investigate and optimize electronegative plasma sources.

  11. Electron density measurements in highly electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we present experimental measurements of the electron density in very electronegative ‘ion-ion’ Ar-SF6 plasmas where previous investigations using Langmuir probes have observed electronegativities of up to 5000. The electron density is measured using a short matched dipole probe technique that provides a tolerance better than  ±2 · 1013 m-3. The results demonstrate that the electron density in the low pressure plasma source (which contains a magnetic filter) can be reduced to around 2.7 · 1013 m-3 with a corresponding plasma electronegativity of about 4000; close to that from fluid simulation predictions. The highest electronegativity, and lowest electron density, is achieved with a pure SF6 plasma, while adding only 6% SF6 to Ar allows the electronegativity to be increased from 0 to a few hundred with a corresponding decrease in the electron density by more than a thousand. The impedance probe based on a short matched dipole appears to be a practical diagnostic that can be used for independent measurements of the electron density in very electronegative plasmas, and opens up the possibility to further investigate and optimize electronegative plasma sources.

  12. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2, -9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice.

    PubMed

    Zhai, Xiaoya; Chi, Jufang; Tang, Weiliang; Ji, Zheng; Zhao, Fei; Jiang, Chengjian; Lv, Haitao; Guo, Hangyuan

    2014-01-01

    Many epidemiological studies have strongly suggested an inverse correlation between dietary polyphenol consumption and reduced risks of cardiovascular diseases. Yellow rice wine is a Chinese specialty and one of the three most ancient wines in the world (Shaoxing rice wine, beer, and grape wine). There is a large amount of polyphenol substances in yellow rice wine. This experiment was designed to study the potential beneficial effects of yellow wine polyphenolic compounds (YWPC) from yellow rice wine on progression of atherosclerosis in vivo and to further explore its underlying mechanisms. Six-week-old male LDL-receptor-knockout mice were treated with high-fat diet to establish the mouse model with atherosclerosis. Animals received 10, 30, or 50 mg/kg per day of YWPC or 10 mg/kg per day rosuvastatin or water (vehicle) for 14 weeks. The results indicated that YWPC and rosuvastatin significantly decreased circulating total cholesterol and low-density lipoprotein cholesterol. Compared to the control group, the atherosclerosis lesion area in the rosuvastatin-intervention group and YWPC at doses of 10, 30, and 50 mg/kg per day intervention groups decreased by 74.14%, 18.51%, 40.09%, and 38.42%, respectively. YWPC and rosuvastatin decreased the expression and activity of matrix metalloproteinases (MMP)-2, 9, whereas the expression of the endogenous inhibitors of these proteins, namely, tissue inhibitors of matrix metalloproteinases (TIMP)-1, 2, increased when compared to the control group. It can be concluded that the YWPC is similar to the benefic effects of rosuvastatin on cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions by lowering lipid and modulating the activity and expression of MMP-2, 9 and TIMP-1, 2.

  13. Chemical structures of 4-oxo-flavonoids in relation to inhibition of oxidized low-density lipoprotein (LDL)-induced vascular endothelial dysfunction.

    PubMed

    Yi, Long; Jin, Xin; Chen, Chun-Ye; Fu, Yu-Jie; Zhang, Ting; Chang, Hui; Zhou, Yong; Zhu, Jun-Dong; Zhang, Qian-Yong; Mi, Man-Tian

    2011-01-01

    Vascular endothelial dysfunction induced by oxidative stress has been demonstrated to be the initiation step of atherosclerosis (AS), and flavonoids may play an important role in AS prevention and therapy. Twenty-three flavonoids categorized into flavones, flavonols, isoflavones, and flavanones, all with 4-oxo-pyronenucleus, were examined for what structural characteristics are required for the inhibitory effects on endothelial dysfunction induced by oxidized low-density lipoprotein (oxLDL). Human vascular endothelial cells EA.hy926 were pretreated with different 4-oxo-flavonoids for 2 hs, and then exposed to oxLDL for another 24 hs. Cell viability and the level of malondialdehyde (MDA), nitric oxide (NO) and soluble intercellular adhesion molecule-1 (sICAM-1) were measured, respectively. Then, correlation analysis and paired comparison were used to analyze the structure-activity relationships. Significant correlations were observed between the number of -OH moieties in total or in B-ring and the inhibitory effectson endothelial dysfunction. Furthermore, 3',4'-ortho-dihydroxyl on B-ring, 3-hydroxyl on C-ring and 2,3-double bondwere correlated closely to the inhibitory effects of flavonolson cell viability decrease and lipid peroxidation. 5,7-meta-dihydroxyl group on A-ring was crucial for the anti-inflammatory effects of flavones and isoflavones in endothelial cells. Moreover, the substituted position of B-ring on C3 rather than C2 was important for NO release. Additionally, hydroxylation at C6 position significantly attenuated the inhibitory effects of 4-oxo-flavonoids on endothelial dysfunction. Our findings indicated that the effective agents in inhibiting endothelial dysfunction include myricetin, quercetin, luteolin, apigenin, genistein and daidzein. Our work might provide some evidence for AS prevention and a strategy for the design of novel AS preventive agents.

  14. The Quantification of Electronegativity: Some Precursors

    ERIC Educational Resources Information Center

    Jensen, William B.

    2012-01-01

    This paper calls attention to the early work of the American chemists Worth Rodebush and Groves Cartledge, and their anticipations of a quantitative electronegativity scale, which predate the classic 1932 paper of Linus Pauling by several years. (Contains 2 figures.)

  15. Narrow gap electronegative capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-01

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage Vrf=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density ne0 is depressed below the density nesh at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at Vrf=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  16. Narrow gap electronegative capacitive discharges

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  17. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life. PMID:19299327

  18. Electronegative Guests in CoSb3

    DOE PAGES

    Duan, Bo; Yang, Jiong; Salvador, James R.; He, Yang; Zhao, Bo; Wang, Shanyu; Wei, Ping; Ohuchi, Fumio; Zhang, Wenqing; Hermann, Raphael P.; et al

    2016-04-19

    Introducing guests into a host framework to form a so called inclusion compound can be used to design materials with new and fascinating functionalities. The vast majority of inclusion compounds have electropositive guests with neutral or negatively charged frameworks. Here, we show a series of electronegative guest filled skutterudites with inverse polarity. The strong covalent guest-host interactions observed for the electronegative group VIA guests, i.e., S and Se, feature a unique localized cluster vibration which significantly influences the lattice dynamics, together with the point-defect scattering caused by element substitutions, resulting in very low lattice thermal conductivity values. The findings ofmore » electronegative guests provide a new perspective for guest-filling in skutterudites, and the covalent filler/lattice interactions lead to an unusual lattice dynamics phenomenon which can be used for designing high-efficiency thermoelectric materials and novel functional inclusion compounds with open structures.« less

  19. Generalized Bohm Criterion for Electronegative Complex Plasma

    SciTech Connect

    Chekour, S.; Tahraoui, A.

    2011-11-29

    In this work, we have generalized the computation of Bohm criterion for electronegative complex plasma. For this, we have established a one-dimensional, unmagnetized and stationary theoretical model where the positive ions and dust particles are modeled by fluid equations. The electrons and negative ions are considered in thermodynamic equilibrium; therefore they obey to Boltzmann's statistic. In this case, the numerical results show that the generalized Bohm velocity is small compared to the classical value. For electronegative dusty plasma, the corrections are less important.

  20. Plasma sheath criterion in thermal electronegative plasmas

    SciTech Connect

    Ghomi, Hamid; Khoramabadi, Mansour; Ghorannevis, Mahmod; Shukla, Padma Kant

    2010-09-15

    The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

  1. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide

    PubMed Central

    Vaziri, Nosratola D; Moradi, Hamid; Pahl, Madeleine V; Fogelman, Alan M; Navab, Mohamad

    2010-01-01

    Features of end-stage renal disease such as oxidative stress, inflammation, hypertension, and dyslipidemia are associated with accelerated atherosclerosis and increased risk of death from cardiovascular disease. By inhibiting the formation and increasing the disposal of oxidized lipids, HDL exerts potent antioxidant and anti-inflammatory actions. Given that apolipoproteinA-1 can limit atherosclerosis, we hypothesized that an apolipoproteinA-1 mimetic peptide, 4F, may reduce the proinflammatory properties of LDL and enhance the anti-inflammatory properties of HDL in uremic plasma. To test this, plasma from each of 12 stable hemodialysis patients and age-matched control subjects was incubated with 4F or vehicle. The isolated HDL and LDL fractions were added to cultured human aortic endothelial cells to quantify monocyte chemotactic activity, thus measuring their pro- or anti-inflammatory index. The LDL from the hemodialysis patients was more pro-inflammatory and their HDL was less anti-inflammatory than those of the control subjects. Pre-incubation of the plasma from the hemodialysis patients with 4F decreased LDL pro-inflammatory activity and enhanced HDL anti-inflammatory activity. Whether 4F or other apolipoproteinA-1 mimetic peptides will have any therapeutic benefit in end-stage renal disease will have to be examined directly in clinical studies. PMID:19471321

  2. Electronegativity from Avogadro to Pauling. Part I: Origins of the Electronegativity Concept.

    ERIC Educational Resources Information Center

    Jensen, William B.

    1996-01-01

    Discusses the origins of electronegativity as a qualitative concept in the period between 1809 and 1813. Outlines the contributions of Amedeo Avogadro and Jons Jakob Berzelius to the development of this concept. Contains 53 references. (JRH)

  3. A New Method of Estimating Atomic Charges by Electronegativity Equilibration.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1990-01-01

    Presented is a modification of Bratsch's prescription so that difficult problems are obviated while simple, familiar Pauling electronegativities are retained. Discussed are the equilibration of electronegativity in molecules, group electronegativities, coordination compounds and molecules with dative bonds, ions, and correlation with core…

  4. Inhibition of the NF-κB pathway by R65 ribozyme gene via adeno-associatedvirus serotype 9 ameliorated oxidized LDL induced human umbilical vein endothelial cell injury

    PubMed Central

    Zhai, Hui; Chen, Qing-Jie; Gao, Xiao-Ming; Ma, Yi-Tong; Chen, Bang-Dang; Yu, Zi-Xiang; Li, Xiao-Mei; Liu, Fen; Xiang, Yang; Xie, Jia; Yang, Yi-Ning

    2015-01-01

    Objective: NF-κB signaling plays a central role in the regulation of inflammatory responses in atherosclerosis. R65 ribozyme gene suppresses activation of NF-κB pathway, therefore we studied whether R65 gene therapy can ameliorate oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) injury. Methods and results: Recombinant adeno-associated virus serotype 9 (rAVV9) vector was used to transfect the R65 ribozyme gene (rAVV9-R65) into HUVECs then following ox-LDL stimulation, expression of NF-κB p65 and p50 subunits, inflammatory mediators and cell apoptosis were examined. First, rAVV9-enhanced green fluorescent protein (eGFP)-R65 at 1×107 v.g./cell multiplicity of infection reached a long-lasting and significant increase in R65 gene expression. Second, ox-LDL treatment led to time- and dose-dependent activation of NF-κB pathway, and enhanced inflammatory response and cell death evidenced by increased expression of nuclear NF-κB p65 and p50 subunits, greater production of tumor necrosis factor α, interleukin-6 and von willebrand factor and 20.57% increasedapoptotic HUVECs. Third, over-expression ofR65 gene was 2-fold increased in HUVECs attenuated ox-LDL induced unclear accumulation and expression of p65 subunit and ameliorated inflammation and cell death (all P < 0.05). Conclusion: rAAV9-mediated R65 ribozyme gene transfection in cultured HUVECs effectively inhibits ox-LDL induced activation of NF-κB and production of inflammatory cytokines and prevents cell apoptosis. PMID:26617700

  5. Novel LDL-oriented pharmacotherapeutical strategies.

    PubMed

    Huang, Lin-Zhang; Zhu, Hai-Bo

    2012-04-01

    Elevated levels of low-density cholesterol (LDL-C) are highly correlated with increased risk of cardiovascular diseases (CVD). Thus, current guidelines have recommended progressively lower LDL-C for cholesterol treatment and CVD prevention as the primary goal of therapy. Even so, some patients in the high risk category fail to achieve recommended LDL-C targets with currently available medications. Thereby, additional pharmaceutical strategies are urgently required. In the review, we aim to provide an overview of both current and emerging LDL-C lowering drugs. As for current available LDL-C lowering agents, attentions are mainly focused on statins, niacin, bile acid sequestrants, ezetimibe, fibrates and omega-3 fatty acids. On the other hand, the emerging drugs differ from mechanisms are including: intervention of cholesterol biosynthesis downstream enzyme (squalene synthase inhibitors), inhibition of lipoprotein assembly (antisense mRNA inhibitors of apolipoprotein B and microsomal transfer protein inhibitors), enhanced lipoprotein clearance (proprotein convertase subtilisin kexin type 9, thyroid hormone analogues), inhibition of intestinal cholesterol absorption (Niemann-Pick C1-like 1 protein and acyl coenzyme A:cholesterol acyltransferase inhibitors) and interrupting enterohepatic circulation (apical sodium-dependent bile acid transporter inhibitors). Several ongoing agents are in their different stages of clinical trials, in expectation of promising antihyperlipidemic drugs. Therefore, alternative drugs monotherapy or in combination with statins will be sufficient to reduce LDL-C concentrations to optimal levels, and a new era for better LDL-C managements is plausible. PMID:22306845

  6. Optical electronegativity and refractive index of materials

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Nazeer Ahammed, Y.; Rama Gopal, K.; Raghuram, D. V.

    1998-05-01

    Simple correlations between the energy gap, optical electronegativity and the refractive index are given for various classes of materials such as semiconductors, insulators and oxides. There has been no report in the literature on the direct estimation of optical electronegativity for the wide variety of materials using energy gap values. The present method performance is compared with Moss and Ravindra's relationships. A simple analysis on the average percentage deviation for low and high n value materials is also presented. The average percentage deviation in the present approach reveals that the method proposed proves its identity and soundness compared to that of Moss and Ravindra's relationships. A good agreement is observed between the computed and literature values of refractive indices.

  7. Ambipolar diffusion in strongly electronegative plasma

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Yegorenkov, Vladimir

    2012-10-01

    This paper presents the treatment of the analytical model of ambipolar diffusion in quasi-neutral electronegative plasma consisting of electrons, a single species of negative ions and a single species of positive ions, which was proposed by Thompson J.B. [Proc. Phys. Soc., 73 (1959) 818]. We demonstrate that in plasma with the concentration of negative ions more than 10 times exceeding that of electrons one has to take into account the mobility of negative and positive ions. We established that in strongly electronegative plasma when both conditions α >> 1 (α = n-/ne) and μe << α.μ- hold, the ambipolar diffusion coefficients for positive and negative ions as well as electrons are close to the coefficients of their free diffusion. Consequently in strongly electronegative plasma the diffusion ceases to be ambipolar (even for large plasma concentration) and becomes to be free, i.e. charged particles of different species and sign cease to affect the diffusion motion of each other.

  8. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation.

    PubMed

    Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M; Vattulainen, Ilpo; Kovanen, Petri T; Öörni, Katariina

    2015-06-01

    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.

  9. Langmuir probe analysis in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2014-12-01

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α0 = n-/ne (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (ne, n+, n-), temperatures (Te, T+, T-), and masses (me, m+, m-). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5-10%, including the ion temperatures when α0 > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α0 and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  10. Langmuir probe analysis in electronegative plasmas

    SciTech Connect

    Bredin, Jerome Chabert, Pascal; Aanesland, Ane

    2014-12-15

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  11. Langmuir probe analysis of highly electronegative plasmas

    SciTech Connect

    Bredin, Jerome; Chabert, Pascal; Aanesland, Ane

    2013-04-15

    A Langmuir probe analysis of highly electronegative plasmas is proposed. Analytical models are used to fit the IV-characteristics and their second derivatives above and below the plasma potential. Ion and electron densities are obtained for {alpha} (negative ion to electron density ratio) up to 3000, and the temperature of negative and positive ions is obtained for {alpha} ranging from 100 to 3000. The transport across a localized magnetic barrier is studied using this technique. It is shown that an ion-ion (electron free) plasma is formed downstream from the barrier at the highest magnetic field.

  12. Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments.

    ERIC Educational Resources Information Center

    Jensen, William B.

    2003-01-01

    Traces electronegativity in four fundamental areas of chemistry during the period 1870-1910: (1) the relationship between electronegativity and classical valence; (2) the relationship between electronegativity and periodic law; (3) the relationship between electronegativity thermochemistry; and (4) the relationship between electronegativity and…

  13. Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes

    PubMed Central

    2013-01-01

    Background Qualitative alterations of lipoproteins underlie the high incidence of atherosclerosis in diabetes. The objective of this study was to assess the impact of low-density lipoprotein (LDL) subfraction phenotype on the qualitative characteristics of LDL and high-density lipoprotein (HDL) in patients with type 2 diabetes. Methods One hundred twenty two patients with type 2 diabetes in poor glycemic control and 54 healthy subjects were included in the study. Patients were classified according to their LDL subfraction phenotype. Seventy-seven patients presented phenotype A whereas 45 had phenotype B. All control subjects showed phenotype A. Several forms of modified LDL, HDL composition and the activity and distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) were analyzed. Results Oxidized LDL, glycated LDL and electronegative LDL were increased in both groups of patients compared with the control group. Patients with phenotype B had increased oxidized LDL and glycated LDL concentration than patients with phenotype A. HDL composition was abnormal in patients with diabetes, being these abnormalities more marked in patients with phenotype B. Total Lp-PLA2 activity was higher in phenotype B than in phenotype A or in control subjects. The distribution of Lp-PLA2 between HDL and apoB-containing lipoproteins differed in patients with phenotype A and phenotype B, with higher activity associated to apoB-containing lipoproteins in the latter. Conclusions The presence of LDL subfraction phenotype B is associated with increased oxidized LDL, glycated LDL and Lp-PLA2 activity associated to apoB-containing lipoproteins, as well as with abnormal HDL composition. PMID:23915379

  14. Silencing of Transient Receptor Potential Channel 4 Alleviates oxLDL-induced Angiogenesis in Human Coronary Artery Endothelial Cells by Inhibition of VEGF and NF-κB

    PubMed Central

    Qin, Wen; Xie, Wei; Xia, Ning; He, Qinglin; Sun, Tianwei

    2016-01-01

    Background Transient receptor potential channel 4 (TRPC4) plays central roles in endothelial cell function. The aim of this study was to investigate the silencing effects of TRPC4 on oxidized low-density lipoprotein (oxLDL)-induced angiogenesis in human coronary artery endothelial cells (HCAECs), as well as the underlying molecular mechanism involved in this process. Material/Methods HCAECs were transfected with small interfering RNA (siRNA) targeting TRPC4 (TRPC4-siRNA) or with a negative control (NC)-siRNA. The expression of TRPC4 was confirmed by real-time polymerase chain reaction (RT-PCR) and Western blotting. After the siRNA transfection, oxLDL was added to the medium. Cell proliferation, migration, and in vitro angiogenesis were determined by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), Transwell assay and scratch-wound assay, respectively, and tube formation on Matrigel. Expression of vascular endothelial growth factor (VEGF) and nuclear factor (NF)-κB p65 were assessed by Western blotting. Results Both the mRNA and protein levels of TRPC4 were significantly reduced by transfection with TRPC4-siRNA compared to the control group or NC-siRNA group (P<0.05). Silencing of TRPC4 significantly decreased the cell proliferation, migration, and tube formation (all P<0.05). Furthermore, the expression levels of VEGF and NF-κB p65 were markedly lowered by silencing of TRPC4 in HCAECs. Conclusions These results suggest that silencing of TRPC4 alleviates angiogenesis induced by oxLDL in HCAECs through inactivation of VEGF and NF-κB. Suppression of TRPC4 might be an alternative therapeutic strategy for atherosclerotic neovascularization. PMID:26999308

  15. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis

    PubMed Central

    Nambiar, Sinjitha S.; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-01-01

    Background: Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Materials and Methods: Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. Results: A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. Conclusions: The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract. PMID:24991098

  16. Electronegative Gas Thruster - Direct Thrust Measurement Project

    NASA Technical Reports Server (NTRS)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  17. A novel alkaloid antioxidant, Boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR(-/-) mice.

    PubMed

    Santanam, N; Penumetcha, M; Speisky, H; Parthasarathy, S

    2004-04-01

    A corollary to the oxidation hypothesis of atherosclerosis is that the consumption of antioxidants is beneficial. However, the literature is divided in support of this conclusion. In this study, Boldine, an alkaloid of Peumus boldus and reduced form of RU486, was tested for their antioxidant potency both in, in vitro oxidation system and in mouse models. Boldine decreased the ex-vivo oxidation of low-density lipoprotein (LDL). Two different in vivo studies were performed to study the effect of these compounds on the atherosclerotic lesion formation in LDLR(-/-) mice. In study I, three groups of LDLR(-/-) mice (N = 12 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 and 3 were given 1mg of Boldine or Red RU per day for 12 weeks. In study II, two groups of LDLR(-/-) mice N = 10 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 was given 5mg of Boldine per day. The results indicated that there was a decrease in lesion formation reaching a 40% reduction due to Boldine and 45% reduction by Red RU compared to controls. The in vivo tolerance of Boldine in humans (has been used as an herbal medicine in other diseases) should make it an attractive alternative to Vitamin E. PMID:15064093

  18. A new phenanthrene derivative and two diarylheptanoids from the roots of Brassica rapa ssp. campestris inhibit the growth of cancer cell lines and LDL-oxidation.

    PubMed

    Wu, Qian; Cho, Jin-Gyeong; Yoo, Ki-Hyun; Jeong, Tae-Sook; Park, Ji-Hae; Kim, Su-Yeon; Kang, Ji-Hyun; Chung, In-Sik; Choi, Myung-Sook; Lee, Kyung-Tae; Chung, Hae-Gon; Bang, Myun-Ho; Baek, Nam-In

    2013-04-01

    Brassica rapa ssp. campestris (Brassicaceae) is a conical, deep purple, edible root vegetable commonly known as a turnip. We initiated phytochemical and pharmacological studies to search for biological active compounds from the roots of B. rapa ssp. campestris. We isolated a novel phenanthrene derivative, 6-methoxy-1-[10-methoxy-7-(3-methylbut-2-enyl)phenanthren-3-yl]undecane-2,4-dione, named brassicaphenanthrene A (3) along with two known diarylheptanoid compounds, 6-paradol (1) and trans-6-shogaol (2), through the repeated silica gel (SiO2), octadecyl silica gel, and Sephadex LH-20 column chromatography. The chemical structures of the compounds were determined by spectroscopic data analyses including nuclear magnetic resonance, mass spectrometry, ultraviolet spectroscopy, and infra-red spectroscopy. All compounds exhibited high inhibitory activity against the growth of human cancer lines, HCT-116, MCF-7, and HeLa, with IC50 values ranging from 15.0 to 35.0 μM and against LDL-oxidation with IC50 values ranging from 2.9 to 7.1 μM.

  19. Electronegative low density lipoprotein induces renal apoptosis and fibrosis: STRA6 signaling involved[S

    PubMed Central

    Chen, Chao-Hung; Ke, Liang-Yin; Chan, Hua-Chen; Lee, An-Sheng; Lin, Kun-Der; Chu, Chih-Sheng; Lee, Mei-Yueh; Hsiao, Pi-Jung; Hsu, Chin; Chen, Chu-Huang; Shin, Shyi-Jang

    2016-01-01

    Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. “Stimulated by retinoic acid 6” (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFβ1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1−/− mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease. PMID:27256691

  20. Plasma instabilities in electronegative inductive discharges

    NASA Astrophysics Data System (ADS)

    Marakhtanov, Alexei Mikhail

    Plasma instabilities have been observed in low-pressure inductive discharges, in the transition between low density capacitive mode and high density inductive mode of the discharge when attaching gases such as SF6 and Ar/SF 6 mixtures are used. Oscillations of charged particles, plasma potential and light emitted from the plasma with the frequencies from a few hertz to tens of kilohertz are seen for gas pressures between 1 and 100 mTorr and the discharge power in the range of 75--1200 W. The region of instability increases as the plasma becomes more electronegative and the frequency of plasma oscillations increases as the power, pressure, and gas flow rate increase. The instability frequencies may also depend on the settings of a matching network. A volume-averaged (global) model of the instability has been developed, for a discharge containing time varying densities of electrons, positive ions, and negative ions, and time invariant excited states and neutral densities. The particle and energy balance equations are integrated to produce the dynamical behavior. As pressure or power is varied to cross a threshold, the instability goes through a series of oscillatory states to large scale relaxation oscillations between higher and lower density states. The model qualitatively agrees with experimental observations, and also shows a significant influence of the matching network. A stability analysis of an electronegative discharge has been performed, using a Hurwitz criterion, for a system of linearized particle and power balance differential equations. Capacitive coupling plays a crucial role in the instability process. A variable electrostatic (Faraday) shield has been used to control the capacitive coupling from the excitation coil to the plasma. The plasma instability disappears when the shielded area exceeds 65% of the total area of the coil. The global model of instability gives a slightly higher value of 85% for instability suppression with the same discharge

  1. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution.

    PubMed

    Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio

    2012-07-01

    The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein. PMID:22481012

  2. Coaxial (tubular) glow discharge in electronegative gases

    NASA Astrophysics Data System (ADS)

    Golovitskii, A. P.

    2016-07-01

    The positive-column plasma of a low- and medium-pressure electronegative glow discharge initiated in the gap between two coaxial cylindrical tubes has been considered (the current is directed along the tube axis). It is assumed that the gas mixture contains halogens, and ion diffusion is not negligibly weak. It is found that the coaxial discharge is characterized by plasma separation into three coaxial regions with different compositions in the direction transverse to the current. It has been shown that the ionization and excitation frequencies of atoms are higher than in the purely cylindrical case, even for a small (0.05-0.15) ratio of the radii of the inner and outer walls. An asymptotic analysis of the continuity equations yields analytic expressions that make it possible to rapidly and easily estimate the geometrical parameters of the spatial distributions of charge particle concentrations, as well as energy parameters of the plasma for the radii ratio that exceed 0.3. The conditions for the applicability of analytic relations and their accuracy are established from a comparison of the results of analytic and numerical calculations.

  3. Electronegative plasma equilibria with spatially varying ionization

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.

    2012-12-01

    Electronegative inductive discharges in higher pressure ranges typically exhibit strongly localized ionization near the coil structure, with decay of the electron temperature and ionization into the central discharge region. We use a two-dimensional (2D) fluid code with a chlorine feedstock gas to determine the spatial profiles of the particle densities and electron temperature in a cylindrical transformer-coupled plasma device excited by a stove-top coil on top of the plasma chamber. To compare with one-dimensional (1D) analytical models, the 2D results are area-averaged over the radius. The area-averaged ionization frequency νiz is found to decay exponentially away from the coils, allowing the ansatz of an exponentially decaying axial variation for νiz to be used in a 1D numerical model. The 1D model captures the main features of the axial variations of the area-averaged 2D fluid simulation, indicating that the main diffusion mechanisms act along the axial direction. A simple analytical global discharge model is also developed, accounting for the asymmetric density and ionization profiles. The global model gives the scalings of the ion densities and electron temperature with power and pressure. The 1D and global models are compared with the 2D fluid simulations, showing reasonable agreement.

  4. Cardiovascular endocrinology in 2012: PCSK9-an exciting target for reducing LDL-cholesterol levels.

    PubMed

    Betteridge, D John

    2013-02-01

    Systemic administration of anti-PCSK9 antibodies induces dramatic reductions in LDL-cholesterol levels, and the effect of this therapy on LDL-receptor activity seems to be additive to that of statin therapy. Inhibition of PCSK9 is potentially very important to the clinician, and should enable more patients to achieve their LDL-cholesterol-level goal.

  5. Particle-in-cell simulation of an electronegative plasma under direct current bias studied in a large range of electronegativity

    SciTech Connect

    Oudini, N.; Raimbault, J.-L.; Chabert, P.; Aanesland, A.; Meige, A.

    2013-04-15

    A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths within the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).

  6. Dynamics of dust in the sheath of weakly electronegative plasmas

    SciTech Connect

    Wang Zhengxiong; Wang Xiaogang; Liu Jinyuan; Liu Yue

    2005-01-15

    The dynamics of dust in the sheath of weakly electronegative plasmas are investigated with the single dust model as well as the self-consistently variable dust charge. It is shown that when the dust particles enter the sheath region from the sheath edge with different initial velocities they may display different motion states: levitation in the sheath, returning from the sheath edge, and traversing the sheath region, under action of electrostatic, gravitational, ion-drag, and neutral collision forces. Furthermore, the electronegativity also plays an important role in the dust particle motion states in the sheath besides affecting the distributions of the spatial potential and the charging of the dust particles.

  7. Solitary waves and double layers in a dusty electronegative plasma

    SciTech Connect

    Mamun, A. A.; Shukla, P. K.; Eliasson, B.

    2009-10-15

    A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].

  8. Sheath structure in electronegative plasmas with finite positive ion temperature

    NASA Astrophysics Data System (ADS)

    Palop, J. I. Fernández; Ballesteros, J.; Hernández, M. A.; Crespo, R. Morales; del Pino, S. Borrego

    2004-05-01

    An earlier theoretical work, concerning the sheath structure in electronegative plasmas, is extended to include the effect of the positive ion thermal motion. A significant change is observed in the quantities characterizing the sheath with respect to the cold ion assumption. The sheath is contracted when the positive ion thermal motion is considered causing a decrease in the sheath thickness. The ion saturation current and the floating potential are shown to be distinguished quantities in plasma diagnosis of electronegative plasmas by using plane Langmuir probes.

  9. Design and Preliminary Testing Plan of Electronegative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.

  10. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  11. The influence of framework-gallium in zeolites: Electronegativity and infrared spectroscopic study

    SciTech Connect

    Dompas, D.H.; Mortier, W.J. ); Kenter, O.C.H. ); Janssen, M.J.G.; Verduijn, J.P. )

    1991-05-01

    Based on the influence of the composition (Si/Al and Si/Ga ratio) on the framework vibrations of zeolites with different structure types (FAU, LTL, BETA, MOR, MEL, MFI, TON, and MTW), an electronegativity value for gallium substituted into zeolite frameworks is proposed (Sanderson electronegativity scale). The present electronegativity value agrees with the known physicochemical properties of gallium substituted zeolites.

  12. Cardiovascular disease and dyslipidemia: beyond LDL.

    PubMed

    Pöss, Janine; Custodis, Florian; Werner, Christian; Weingärtner, Oliver; Böhm, Michael; Laufs, Ulrich

    2011-01-01

    Low-density lipoproteins (LDL) are atherogenic and represent a strong cardiovascular risk factor. Therefore, LDL-cholesterol (LDL-C) remains the primary target in lipid lowering therapy. However, since many cardiovascular events occur despite an optimal LDL-C, it is necessary to focus on the remaining cardiovascular risk. Treatment of low high-density lipoprotein-cholesterol (HDL-C) and high triglycerides (TG) are options to achieve cardiovascular risk reduction beyond LDL. HDL mediates reverse cholesterol transport and exerts several other athero-protective effects. Epidemiologic evidence has shown that low HDL-cholesterol (HDL-C) is a strong and independent cardiovascular risk marker. However, since the anti-atherogenic effects of HDL particles rather depend on their functionality rather than on their cholesterol content, an increase in HDL-C concentration does not always have to result in a clinical benefit. Besides established strategies to increase HDL-C, e.g. with fibrates and nicotinic acid, CETP (Cholesteryl ester transfer protein)-inhibition is a promising new therapeutic option. The failure of torcetrapib, the first CETP-inhibitor, seems to be attributed to "off-target" effects. Treatment with the newer CETP-inhibitors dalcetrapib and anacetrapib has been shown to be efficacious and safe - but their usefulness in clinical practice remains to be determined in ongoing clinical endpoint trials. TG concentrations have been shown to correlate with cardiovascular risk. However, interpretation of plasma TG concentrations remains difficult due to considerable intra-individual variability of plasma concentrations. Post-prandial triglyceride concentrations may be better predictors of cardiovascular risk than fasting TG. In patients with hypertriglyceridemia, achievement of the LDL-C goal remains the primary lipid target. The basis of therapy in patients with hypertriglyceridemia are life style modifications. In addition, non-HDL-C should be addressed. For selected

  13. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    NASA Astrophysics Data System (ADS)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  14. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  15. Low-density lipoprotein (LDL)-antioxidant lignans from Myristica fragrans seeds.

    PubMed

    Kwon, Hyun Sook; Kim, Min-Jung; Jeong, Hyung Jae; Yang, Min Suk; Park, Ki Hun; Jeong, Tae-Sook; Lee, Woo Song

    2008-01-01

    Six diarylbutane lignans 1-5 and one aryltetralin lignan 6 were isolated from the methanol (95%) extracts of Myristica fragrans seeds and then 7-methyl ether diarylbutane lignan 4 has proven to be new a compound. Their compounds 1-7 were evaluated for LDL-antioxidant activity to identify the most potent LDL-antioxidant 3 with an IC50 value of 2.6 microM in TBARS assay. Due to its potency, compound 3 was tested for complementary in vitro investigations, such as lag time (140 min at 1.0 microM), relative electrophoretic mobility (REM) of ox-LDL (inhibition of 80% at 20 microM and 72% at 10 microM), and fragmentation of apoB-100 (inhibition of 93% at 20 microM) on copper-mediated LDL oxidation. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by compound 3.

  16. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

    PubMed Central

    Podrez, Eugene A.; Schmitt, David; Hoff, Henry F.; Hazen, Stanley L.

    1999-01-01

    Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2– system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2–)— a major end-product of NO metabolism—resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte–derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2–, occurred at physiological levels of Cl–, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form. PMID:10359564

  17. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase

    SciTech Connect

    Takahashi, Yoshitaka . E-mail: ytaka@fhw.oka-pu.ac.jp; Zhu, Hong; Xu, Wanpeng; Murakami, Takashi; Iwasaki, Tadao; Hattori, Hiroaki; Yoshimoto, Tanihiro

    2005-12-09

    Oxidation of low density lipoprotein (LDL) is a critical step for airtightness, and the role of the 12/15-lipoxygenase (12/15-Lox) as well as LDL receptor-related protein (Lp) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like Joe.1 cells over expressing 12/15-Lox was inhibited by an anti-Lp antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [{sup 3}H]cholesteryl linoleate and [{sup 125}I]apo B, association with the cells of [{sup 3}H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [{sup 125}I]apo B, indicating selective uptake of [{sup 3}H]cholesteryl linoleate from LDL to these cells. An anti-Lp antibody inhibited the selective uptake of [{sup 3}H]cholesteryl ester by 62% and 81% with the 12/15-Lox-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [{sup 3}H]cholesteryl linoleate-labeled 12/15-Lox-expressing cells increased the release of [{sup 3}H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [{sup 3}H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-Lp antibody by 75%. These results strongly suggest that Lp contributes to the LDL oxidation by 12/15-Lox in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.

  18. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.

    PubMed

    Wang, Xianwei; Ding, Zufeng; Lin, Juntang; Guo, Zhikun; Mehta, Jawahar L

    2015-11-01

    Previous studies have shown that oxidized low-density lipoprotein (ox-LDL) inhibits macrophage migration, but the precise mechanisms remain unclear. Lectin-like ox-LDL receptor-1 (LOX-1) is a scavenger receptor that is expressed in macrophages and binds ox-LDL. Calpains, a family of calcium-dependent proteases, influence several aspects of cell migration. In this study, we investigated the role of LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains in this process. Peritoneal macrophages from wild type C57BL/6 mice were exposed to different concentrations of ox-LDL (1-20 μg/mL), and expression of LOX-1 and calpain-1 and -2, cell migration and intracellular calcium (Ca(2+)in) were measured. Our results showed that ox-LDL stimulated LOX-1 and calpain-2 expression, and inhibited calpain-1 expression in a dose- and time-dependent manner. Further, ox-LDL inhibited macrophage migration and increased Ca(2+)in concentration in macrophages. To further elucidate the role of LOX-1 in ox-LDL-impaired macrophage migration, we isolated peritoneal macrophages from LOX-1 knockout mice, and treated them with ox-LDL. Interestingly, calpain-1 expression was much higher, and calpain-2 expression was lower in LOX-1 knockout macrophages than in wild-type macrophages following exposure to ox-LDL. LOX-1 deletion significantly improved macrophage migration and decreased Ca(2+)in concentration. These data indicate that LOX-1 is, at least in part, responsible for the inhibitory effect of ox-LDL on macrophage migration and this process involves calpain-1 and -2. PMID:26393906

  19. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.

    PubMed

    Wang, Xianwei; Ding, Zufeng; Lin, Juntang; Guo, Zhikun; Mehta, Jawahar L

    2015-11-01

    Previous studies have shown that oxidized low-density lipoprotein (ox-LDL) inhibits macrophage migration, but the precise mechanisms remain unclear. Lectin-like ox-LDL receptor-1 (LOX-1) is a scavenger receptor that is expressed in macrophages and binds ox-LDL. Calpains, a family of calcium-dependent proteases, influence several aspects of cell migration. In this study, we investigated the role of LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains in this process. Peritoneal macrophages from wild type C57BL/6 mice were exposed to different concentrations of ox-LDL (1-20 μg/mL), and expression of LOX-1 and calpain-1 and -2, cell migration and intracellular calcium (Ca(2+)in) were measured. Our results showed that ox-LDL stimulated LOX-1 and calpain-2 expression, and inhibited calpain-1 expression in a dose- and time-dependent manner. Further, ox-LDL inhibited macrophage migration and increased Ca(2+)in concentration in macrophages. To further elucidate the role of LOX-1 in ox-LDL-impaired macrophage migration, we isolated peritoneal macrophages from LOX-1 knockout mice, and treated them with ox-LDL. Interestingly, calpain-1 expression was much higher, and calpain-2 expression was lower in LOX-1 knockout macrophages than in wild-type macrophages following exposure to ox-LDL. LOX-1 deletion significantly improved macrophage migration and decreased Ca(2+)in concentration. These data indicate that LOX-1 is, at least in part, responsible for the inhibitory effect of ox-LDL on macrophage migration and this process involves calpain-1 and -2.

  20. Formation of pre-sheath boundary layers in electronegative plasmas

    SciTech Connect

    Vitello, P., LLNL

    1998-05-01

    In electronegative plasmas Coulomb scattering between positive and negative ions can lead to the formation of a pre-sheath boundary layer containing the bulk of the negative ions. The negative ion boundary layer forms when momentum transfer from positive to negative ions dominates the negative ion acceleration from the electric field. This condition is met in Inductively Coupled Plasma reactors that operate at low pressure and high plasma density. Simulations of the GEC reactor for Chlorine and Oxygen chemistries using the INDUCT95 2D model are presented showing the pre-sheath boundary layer structure as a function of applied power and neutral pressure.

  1. The Dynamics of Oxidized LDL during Atherogenesis

    PubMed Central

    Itabe, Hiroyuki; Obama, Takashi; Kato, Rina

    2011-01-01

    Accumulating evidence indicates that oxidized low-density lipoprotein (OxLDL) is a useful marker for cardiovascular disease. The uptake of OxLDL by scavenger receptors leads to the accumulation of cholesterol within the foam cells of atherosclerotic lesions. OxLDL has many stimulatory effects on vascular cells, and the presence of OxLDL in circulating blood has been established. According to the classical hypothesis, OxLDL accumulates in the atherosclerotic lesions over a long duration, leading to advanced lesions. However, recent studies on time-course changes of OxLDL in vivo raised a possibility that OxLDL can be transferred between the lesions and the circulation. In this paper, the in vivo dynamics of OxLDL are discussed. PMID:21660303

  2. Proportional counter device for detecting electronegative species in an air sample

    DOEpatents

    Allman, S.L.; Chen, F.C.; Chen, C.H.

    1994-03-08

    Apparatus for detecting an electronegative species comprises an analysis chamber, an inlet communicating with the analysis chamber for admitting a sample containing the electronegative species and an ionizable component, a radioactive source within the analysis chamber for emitting radioactive energy for ionizing a component of the sample, a proportional electron detector within the analysis chamber for detecting electrons emitted from the ionized component, and a circuit for measuring the electrons and determining the presence of the electronegative species by detecting a reduction in the number of available electrons due to capture of electrons by the electronegative species. 2 figures.

  3. Proportional counter device for detecting electronegative species in an air sample

    DOEpatents

    Allman, Steve L.; Chen, Fang C.; Chen, Chung-Hsuan

    1994-01-01

    Apparatus for detecting an electronegative species comprises an analysis chamber, an inlet communicating with the analysis chamber for admitting a sample containing the electronegative species and an ionizable component, a radioactive source within the analysis chamber for emitting radioactive energy for ionizing a component of the sample, a proportional electron detector within the analysis chamber for detecting electrons emitted from the ionized component, and a circuit for measuring the electrons and determining the presence of the electronegative species by detecting a reduction in the number of available electrons due to capture of electrons by the electronegative species.

  4. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    SciTech Connect

    Dimitrov, Vesselin; Komatsu, Takayuki

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  5. OxLDL or TLR2-induced cytokine response is enhanced by oxLDL-independent novel domain on mouse CD36

    PubMed Central

    Xie, ChengHui; Ng, HangPong; Nagarajan, Shanmugam

    2011-01-01

    OxLDL binding to CD36 is shown to result in macrophage activation and foam cell formation that have been implicated in atherosclerosis. However, CD36 has also been shown to induce inflammatory response to other ligands besides oxLDL. During the course of blocking CD36 oxLDL binding function using anti CD36 antibodies, we have identified a novel domain of CD36 that triggers inflammatory response-independent of oxLDL binding. OxLDL bound to the mouse reporter cell line RAW-Blue induced TNF-α and RANTES mRNA and protein expression. Pretreatment of RAW-Blue cells with an anti-mCD36 mAb, JC63.1, an activating mCD36 mAb, surprisingly did not inhibit oxLDL-induced response. Further, binding of this antibody to CD36 alone induced a pro-inflammatory cytokine response in RAW-Blue cells as well as primary mouse macrophages. The induction of cytokine response was specific only to this antibody and was CD36-dependent, since CD36−/− macrophages failed to induce a similar response. The interaction of the antibody to CD36 led to activation of NF-κB and MAP kinase. Notably, a CD36 peptide blocked oxLDL-induced foam cell formation and macrophage activation. However, the activating mCD36 mAb induced macrophage activation was not inhibited by CD36 peptide. Further, activating mCD36 mAb enhanced oxLDL- or TLR2- or TLR4-mediated inflammatory responses. Collectively, our data provide evidence that activating mCD36 mAb binds to a domain different from the oxLDL-binding domain on mouse CD36, and suggest that interaction at this domain may contribute to oxLDL-independent macrophage inflammatory responses that lead to chronic inflammatory diseases. PMID:21281677

  6. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1.

    PubMed

    Kang, Qiaohua; Chen, Anping

    2009-11-01

    Type II diabetes mellitus (T2DM) is often accompanied by non-alcoholic steatohepatitis (NASH) and associated with hypercholesterolemia, that is, increased levels of plasma low-density lipoprotein (LDL) and oxidized LDL (ox-LDL). Approximately one-third of NASH develops hepatic fibrosis. The role of hypercholesterolemia in T2DM and NASH-associated hepatic fibrogenesis remains obscure. We previously reported that the phytochemical curcumin inhibited the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis, and protected the liver from fibrogenesis in vitro and in vivo. The aims of this study are to evaluate the role of ox-LDL in activation of HSCs, to assess curcumin effects on eliminating the role of ox-LDL, and to further explore the underlying mechanisms. In this report, we observe that ox-LDL alters the expression of genes closely relevant to HSC activation, which is eliminated by curcumin. Curcumin suppresses gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), leading to the blockade of the transport of extracellular ox-LDL into cells. This suppressive effect of curcumin results from the interruption of Wnt signaling and the activation of peroxisome proliferator-activated receptor-gamma (PPARgamma). In conclusion, these results support our initial hypothesis and demonstrate that ox-LDL stimulates HSC activation, which is eliminated by curcumin by suppressing lox-1 expression by interrupting Wnt signaling and stimulating PPARgamma activity. These results provide novel insights into the role of ox-LDL in T2DM and NASH-associated hepatic fibrogenesis and mechanisms by which curcumin suppresses ox-LDL-induced HSC activation, as well as the implication of curcumin in the treatment of T2DM and NASH-associated hepatic fibrosis. PMID:19736547

  7. Scavenger receptors of endothelial cells mediate the uptake and cellular pro-atherogenic effects of carbamylated LDL

    PubMed Central

    Apostolov, Eugene O.; Shah, Sudhir V.; Ray, Debarti; Basnakian, Alexei G.

    2009-01-01

    Objective Carbamylated LDL (cLDL) has been recently shown to have robust pro-atherogenic effects upon human endothelial cells in vitro; suggesting cLDL may have a significant role in atherosclerosis in uremia. The current study was designed to determine, which receptors are used by cLDL and so may cause the pro-atherogenic effects. Methods and Results In ex vivo or in vitro models as well as in intact animals, administration of cLDL was associated with endothelial internalization of cLDL and subendothelial translocation (transcytosis). In vitro recombinant LOX-1 and SREC-1 receptors showed the greatest cLDL binding. However, pretreatment of the endothelial cells with specific inhibiting antibodies demonstrated that cLDL binds mainly to LOX-1 and CD36 receptors. The transcytosis was dependent on SR-A1, SREC-1 and CD36 receptors while LOX-1 receptor was not involved. The cytotoxicity was mediated by several studied scavenger receptors, but cLDL-induced monocyte adhesion depended only on LOX-1. The cLDL-induced synthesis of LOX-1 protein significantly contributed to both cytotoxicity and accelerated monocyte adhesion to endothelial cells. Conclusions Our data suggest that cLDL utilizes unique pattern of scavenger receptors. They show that LOX-1 receptor, and partially, CD36, SREC-1 and SR-A1 receptors are essential for the pro-atherogenic effects of cLDL on human endothelial cells. PMID:19696406

  8. E × B probe measurements in molecular and electronegative plasmas.

    PubMed

    Renaud, D; Gerst, D; Mazouffre, S; Aanesland, A

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F(-) and SF6(-) negative ions in compliance with computer simulations. PMID:26724027

  9. E × B probe measurements in molecular and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Renaud, D.; Gerst, D.; Mazouffre, S.; Aanesland, A.

    2015-12-01

    This paper reports on the design, the building, the calibration, and the use of a compact E × B probe that acts as a velocity filter or a mass filter for ion species. A series of measurements has been performed in the discharge and in the beam of the PEGASES (Plasma Propulsion with Electronegative GASES) ion source. PEGASES is a unique inductively coupled radio-frequency source able to generate a beam of positive and negative ions when operated with an electronegative gas. In this study, experiments have been carried out with SF6. Calibrated E × B probe spectra indicate that the diagnostic tool can be used to determine the ion velocity and the plasma composition even when many molecular fragments are present. In addition, the probe is able to detect both positive and negative ions. Measurements show a large variety of positively charged ions coming from SF6. Conversely, the beam is solely composed of F- and SF 6- negative ions in compliance with computer simulations.

  10. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    PubMed

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  11. Oxidized Low Density Lipoprotein (LDL) Affects Hyaluronan Synthesis in Human Aortic Smooth Muscle Cells*

    PubMed Central

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N.; Hascall, Vincent C.; De Luca, Giancarlo; Passi, Alberto

    2013-01-01

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20–50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL. PMID:23979132

  12. Genetic and metabolic influences on LDL subclasses

    SciTech Connect

    Krauss, R.M.; Rotter, J.I.; Lusis, A.J.

    1994-09-01

    Genetic and environmental factors influence LDL particle size and density, and expression of an atherogenic lipoprotein phenotype (ALP) characterized by predominance of small, dense LDL particles. Linkage of ALP the LDL receptor locus has been reported previously. Quantitative sib-pair relative-pair linkage methodologies were used to test for linkage of LDL particle size to candidate loci in 25 large pedigrees with familial coronary artery disease. Linkage to the LDL receptor gene locus was confirmed (p=0.008). Evidence was also obtained for linkage to the genes for apoCIII, cholesteryl ester transfer protein, and manganese superoxide dismutase. The results suggest multiple genetic determinants of LDL particle size that may involve different metabolic mechanisms giving rise to small, dense LDL and increased atherosclerosis risk.

  13. Demystifying Introductory Chemistry. Part 3: Ionization Energies, Electronegativity, Polar Bonds, and Partial Charges.

    ERIC Educational Resources Information Center

    Spencer, James; And Others

    1996-01-01

    Shows how ionization energies provide a convenient method for obtaining electronegativity values that is simpler than the conventional methods. Demonstrates how approximate atomic charges can be calculated for polar molecules and how this method of determining electronegativities may lead to deeper insights than are typically possible for the…

  14. Curcumin up-regulates LDL receptor expression via the sterol regulatory element pathway in HepG2 cells.

    PubMed

    Dou, Xiaobing; Fan, Chunlei; Wo, Like; Yan, Jin; Qian, Ying; Wo, Xingde

    2008-09-01

    Plasma low-density lipoprotein-cholesterol (LDL-C) is mainly taken up and cleared by the hepatocellular LDL receptor (LDL-R). LDL-R gene expression is regulated by the sterol regulatory element binding proteins (SREBPs). Previous studies have shown that curcumin reduces plasma LDL-C and has hypolipidemic and anti-atherosclerotic effects. Herein, we investigated the effect of curcumin on LDL-R expression and its molecular mechanism in HepG2 cells. Curcumin increased LDL-R expression (mRNA and protein) and the resultant uptake of DiI-LDL in a dose- and time-dependent manner. Using a GFP reporter system in a transfected HepG2/SRE-GFP cell line, we found that curcumin activated the sterol regulatory element of the LDL-R promoter. In HepG2/Insig2 cells, curcumin reversed the inhibition of LDL-R expression induced by Insig2 overexpression. These data demonstrate that curcumin increases LDL-R protein expression and uptake activity via the SREBPs pathway. These findings contribute to our further understanding of the cholesterol-lowering and anti-atherosclerotic effects of curcumin.

  15. Parameter space region in the collisional magnetized electronegative plasma

    SciTech Connect

    Yasserian, Kiomars; Aslaninejad, Morteza

    2010-02-15

    The influence of the elastic collisions on the structure of a magnetized electronegative discharge is investigated. For a constant magnetic field, the profiles of the velocities of positive ions, the density of species, and electric potential are obtained. Furthermore, the positive ion flux is obtained as a function of magnetic field strength for different values of the collision frequency. The results show that in the absence of collision in a constant magnetic field, the discharge structure is uniform while by taking the collision into account, the structure becomes multilayer stratified. By increasing the collision frequency the discharge leaves the multilayer structure, and related oscillations in the plasma potential and space charge vanish. The parameter space region is obtained for collisionless and collisional cases. In this paper it is shown that a combined effect of collision and magnetic field determines the presheath-sheath structure.

  16. The effect of HDL-bound and free PON1 on copper-induced LDL oxidation.

    PubMed

    Bayrak, Ahmet; Bayrak, Tülin; Bodur, Ebru; Kılınç, Kamer; Demirpençe, Ediz

    2016-09-25

    Oxidative modification of LDL plays an important role in the development of atherosclerosis. High-density lipoprotein (HDL) confers protection against atherosclerosis and the antioxidative properties of paraoxonase 1 (PON1) has been suggested to contribute to this effect of HDL. The PON1 exist in two major polymorphic forms (Q and R), which regulate the concentration and activity of the enzyme and alter its ability to prevent lipid oxidation. However, the association of Q192R polymorphism with PON1's capacity to protect against LDL lipoperoxidation is controversial. The aim of this study was to evaluate the effects of the purified PON1 Q192R and the partially purified HDL-bound PON1 Q192R isoenzymes (HDL-PON1 Q192R) on LDL oxidation, with respect to their arylesterase/homocysteine thiolactonase (HTLase) activities. Cupric ion-induced LDL oxidation was reduced up to 48% by purified PON1 Q192, but only 33% by an equivalent activity of PON1 R192. HDL-PON1 Q192 isoenzyme caused a 65% reduction, whereas HDL-PON1 R192 isoenzyme caused only 46% reduction in copper ion-induced LDL oxidation. These findings reflect the fact that PON1 Q and PON1 R allozymes may have different protective characteristics against LDL oxidation. The protection against LDL oxidation provided by HDL-PON1 Q192R isoenzymes is more prominent than the purified soluble enzymes. Inhibition of the Ca(+2)-dependent PON1 Q192R arylesterase/HTLase by the metal chelator EDTA, did not alter PON1's ability to inhibit LDL oxidation. These studies indicate that the active site involvement of the purified enzyme is not similar to the HDL-bound one, in terms of both PON1 arylesterase/HTLase activity and the protection of LDL from copper ion-induced oxidation. Moreover, PON1's ability to protect LDL from oxidation does not seem to require calcium.

  17. Effects of cyclodextrins on the structure of LDL and its susceptibility to copper-induced oxidation.

    PubMed

    Ao, Meiying; Gan, Chaoye; Shao, Wenxiang; Zhou, Xing; Chen, Yong

    2016-08-25

    Cyclodextrins (CDs) have long been widely used as drug/food carriers and were recently developed as drugs for the treatment of diseases (e.g. Niemann-Pick C1 and cancers). It is unknown whether cyclodextrins may influence the structure of low-density lipoprotein (LDL), its susceptibility to oxidation, and atherogenesis. In this study, four widely used cyclodextrins including α-CD, γ-CD, and two derivatives of β-CD (HPβCD and MβCD) were recruited. Interestingly, agarose gel electrophoresis (staining lipid and protein components of LDL with Sudan Black B and Coomassie brilliant blue, respectively but simultaneously) shows that cyclodextrins at relatively high concentrations caused disappearance of the LDL band and/or appearance of an additional protein-free lipid band, implying that cyclodextrins at relatively high concentrations can induce significant electrophoresis-detectable lipid depletion of LDL. Atomic force microscopy (AFM) detected that MβCD (as a representative of cyclodextrins) induced size decrease of LDL particles in a dose-dependent manner, further confirming the lipid depletion effects of cyclodextrins. Moreover, the data from agarose gel electrophoresis, conjugated diene formation, MDA production, and amino group blockage of copper-oxidized LDL show that cyclodextrins can impair LDL susceptibility to oxidation. It implies that cyclodextrins probably help to inhibit atherogenesis by lowering LDL oxidation. PMID:27140842

  18. Effects of cyclodextrins on the structure of LDL and its susceptibility to copper-induced oxidation.

    PubMed

    Ao, Meiying; Gan, Chaoye; Shao, Wenxiang; Zhou, Xing; Chen, Yong

    2016-08-25

    Cyclodextrins (CDs) have long been widely used as drug/food carriers and were recently developed as drugs for the treatment of diseases (e.g. Niemann-Pick C1 and cancers). It is unknown whether cyclodextrins may influence the structure of low-density lipoprotein (LDL), its susceptibility to oxidation, and atherogenesis. In this study, four widely used cyclodextrins including α-CD, γ-CD, and two derivatives of β-CD (HPβCD and MβCD) were recruited. Interestingly, agarose gel electrophoresis (staining lipid and protein components of LDL with Sudan Black B and Coomassie brilliant blue, respectively but simultaneously) shows that cyclodextrins at relatively high concentrations caused disappearance of the LDL band and/or appearance of an additional protein-free lipid band, implying that cyclodextrins at relatively high concentrations can induce significant electrophoresis-detectable lipid depletion of LDL. Atomic force microscopy (AFM) detected that MβCD (as a representative of cyclodextrins) induced size decrease of LDL particles in a dose-dependent manner, further confirming the lipid depletion effects of cyclodextrins. Moreover, the data from agarose gel electrophoresis, conjugated diene formation, MDA production, and amino group blockage of copper-oxidized LDL show that cyclodextrins can impair LDL susceptibility to oxidation. It implies that cyclodextrins probably help to inhibit atherogenesis by lowering LDL oxidation.

  19. LDL cholesterol: controversies and future therapeutic directions.

    PubMed

    Ridker, Paul M

    2014-08-16

    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications.

  20. Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Oudini, N.; Bendib, A.; Ellingboe, A. R.

    2016-08-01

    Langmuir probe (LP) assisted pulsed laser photo-detachment (LPD) of negative ions is one of the frequently used diagnostic techniques in electronegative plasmas. The technique is based on measuring the rise in electron saturation current following photo-detachment. During the photo-detachment process it is assumed that the background electron parameters (temperature and density) remain unchanged in the laser channel and the photo-detached electrons thermalize instantaneously with the background electrons (same temperature). Therefore, the measured electronegativity should be independent of laser wavelengths. However, our recent simulation results (2015 Phys. Plasmas 22 073509) demonstrates a failure of these assumptions and suggests that the measured rise in electron saturation current has a dependence on the laser wavelength. This letter presents experimental evidence in support of these simulation results. In this work, photo-detachment is performed at two different laser wavelengths in an oxygen inductively coupled plasma discharge. Electronegativity measured by LP assisted LPD is compared with those obtained by the hairpin probe (HPP) assisted LPD which is based on quasi-neutrality assumption. The experimental results reveal that the electronegativities measured by LP assisted LPD are affected by the laser wavelength, whereas, electronegativities measured by HPP assisted LPD are almost independent. The discrepancy between the measurements is higher at high electronegativities. In conclusion, the experimental results validate the weakness of assumptions to estimate electronegativity from LPD combined with LP and therefore emphasizes the need of a more realistic model to analyze raw data or an alternate solution is to utilize HPP.

  1. Photo-detachment signal analysis to accurately determine electronegativity, electron temperature, and charged species density

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.

    2016-09-01

    Laser pulse induced photo-detachment combined with Langmuir probing has been introduced to diagnose plasma electronegativity. This technique uses a laser pulse to convert negative ions into electron-atom pairs and tracks the change of electron saturation current by a Langmuir probe. The existing model determines plasma electronegativity as the ratio of electron saturation current before and after detachment. However, this model depends on various assumptions and neglects the formation of a potential barrier between the laser channel and surrounding electronegative plasma. In this letter, we present a new analytical model to analyze photo-detachment signals in order to improve the accuracy of electronegativity measurements and extend this technique for measuring electron temperature and charged species density. This analytical model is supported by Particle-In-Cell simulation of electronegative plasma dynamics following laser photo-detachment. The analysis of the signal, detected on a simulated probe, shows that the present analytical model determines electronegativity, electron temperature, and plasma density with a relative error of ˜20%, ˜20%, and ˜50%, respectively, whereas the electronegativity obtained from a previous model is underestimated by an order of magnitude.

  2. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells.

    PubMed

    Stielow, Claudia; Catar, Rusan A; Muller, Gregor; Wingler, Kirstin; Scheurer, Peter; Schmidt, Harald H H W; Morawietz, Henning

    2006-05-26

    In this study, we investigated effects of a novel NAD(P)H oxidase (Nox)-inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) on oxidized low-density lipoprotein (oxLDL)-mediated reactive oxygen species (ROS) formation in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were cultured to confluence and ROS formation was induced with 50microg/ml oxLDL for 2h. ROS formation was detected by chemiluminescence (CL) using the Diogenes reagent. OxLDL induced ROS formation in human endothelial cells (171+/-12%; n=10, P<0.05 vs. control). This augmented ROS formation in response to oxLDL was completely inhibited by the Nox inhibitor VAS2870 (101+/-9%; n=7, P<0.05 vs. oxLDL). Similar results were obtained with superoxide dismutase (91+/-7%; n=7, P<0.05 vs. oxLDL). However, the Nox4 mRNA expression level was neither changed by oxLDL nor VAS2870. We conclude that VAS2870 could provide a novel strategy to inhibit the augmented endothelial superoxide anion formation in response to cardiovascular risk factors. PMID:16603125

  3. [Comparison of calculated LDL cholesterol (LDL-C) versus measured LDL cholesterol (LDL-M) and potential impact in terms of therapeutic management].

    PubMed

    Reignier, Arnaud; Sacchetto, Emilie; Hardouin, Jean-Benoît; Orsonneau, Jean-Luc; Le Carrer, Didier; Delaroche, Odile; Bigot-Corbel, Edith

    2014-01-01

    LDL-cholesterol value is one of the criteria used by the Haute autorité de santé (HAS) in the management of patients in primary and secondary prevention with the aim to reduce cardiovascular mortality. In this respect, the recommendations have been established based on target to achieve LDL-cholesterol. Currently in France, the determination of LDL-cholesterol is mainly carried out by the Friedewald formula whose limits are well known. However, reliable methods for the determination of LDL-cholesterol exist. We compared the results of calculated and measured LDL-cholesterol obtained from 444 patients presenting normal triglyceridemia values in terms of ranking relative to the thresholds of the HAS. The correlation between the two methods is quite good, but a significant difference (p <0.0001) was observed between the calculated and measured values of LDL-cholesterol. On the other hand in 17% of cases the classification of subjects will be different, with a majority so overestimation of calculated LDL-cholesterol with respect to measured LDL-cholesterol. This overestimation is not proportional, in fact most values measured LDL-cholesterol, the higher the calculate-measured difference is important. The rating difference is particularly important when subjects have between 1 and 3 factors of cardiovascular risk where the target LDL-cholesterol to achieve is between 1.3 and 1.9 g/L. The management of patients with lipid lowering may potentially be dependent on the method used for the determination of LDL-cholesterol.

  4. Are there internal sheaths in unmagnetized electronegative plasmas?

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah

    2009-11-01

    Bounded electronegative plasmas are predicted to have electropositive halos. A recent experiment [1] showed that for a negative ion to electron concentration ratio of α= 0.43 for an Argon-Oxygen plasma, a positive halo was formed as a consequence of negative ions satisfying a Boltzmann relation. When Te/T-> 5+√24 [2] and α> Te/T- [3], the negative ions are predicted to be confined by an internal sheath. Experiments are reported in Ar-SF6 and Ar-Cl2 plasmas aimed at finding the internal sheath by varying the gas concentrations. Experiments are carried out in a hot filament discharge in a multi-dipole chamber. Negative ions concentrations are determined from the phase velocity of C.W. Ion Acoustic Waves. Electron temperature and density are determined using Langmuir probes. Plasma potentials are determined by emissive probes. Argon drift velocities are determined by Laser Induced Flourescence. [1] Ghim, YC and Herskowitz, N, Applied Physics Letters. 94, 15, 151503 (2009) [2] N. Braithwaite and J.E.Allen, J. Physics. D: Appl. Phys 21, 1733 (1988) [3] R. N. Franklin, Plasma Sources Sci. Technol. 11, A31, (2002)

  5. Are there double layers in unmagnetized electronegative plasmas?

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah

    2009-10-01

    Bounded electronegative plasmas are predicted to have electropositive halos. A recent experiment [1] showed that for a negative ion to electron concentration ratio of α=0.43 for an Argon-Oxygen plasma a positive halo was a consequence of negative ion satisfying a Boltzmann relation. When Te/T- is greater than 5+24 [2] and that α is greater than Te/T- [3], the negative ions are predicted to be confined by a double layer. Experiments are reported in Ar-SF6 and Ar-Cl2 plasmas aimed at finding the double layer by varying the gas concentrations. Experiments are carried out in a filament discharge in a multi-dipole chamber, with no magnetic field on the end walls. An unmagnetized boundary of the plasma is set by a bias plate along the axial direction of the chamber. Negative ion concentrations are determined from the phrase velocity of C.W. Ion Acoustic Waves. Electron temperature and density are determined using Langmuir probes. Plasma potentials are determined by emissive probes. Argon drift velocities are determined by Laser Induced Florescence. [1] Ghim, YC and Hershkowitz, N, Applied Physics Letters. 94, 15, 151503 (2009) [2] N. Braithwaite and J. E. Allen, J. Phys. D: Appl. Phys. 21, 1733 (1988) [3] R. N. Franklin, Plasma Sources Sci. Technol. 11, A31, (2002)

  6. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    PubMed

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). PMID:21928287

  7. Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?

    SciTech Connect

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  8. An Improved Experiment to Illustrate the Effect of Electronegativity on Chemical Shift.

    ERIC Educational Resources Information Center

    Boggess, Robert K.

    1988-01-01

    Describes a method for using nuclear magnetic resonance to observe the effect of electronegativity on the chemical shift of protons in similar compounds. Suggests the use of 1,3-dihalopropanes as samples. Includes sample questions. (MVL)

  9. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase

    PubMed Central

    Dong, Yunzhou; Wu, Yong; Wu, Mingyuan; Wang, Shuangxi; Zhang, Junhua; Xie, Zhonglin; Xu, Jian; Song, Ping; Wilson, Kenneth; Zhao, Zhengxing; Lyons, Timothy; Zou, Ming-Hui

    2009-01-01

    Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of ‘heavily oxidized’ glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca2+, augmented production of reactive oxygen species (ROS) and induction of Ca2+-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca2+ levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca2+-dependent manner. PMID:18624772

  10. OxLDL receptor chromatography from live human U937 cells identifies SYK(L) that regulates phagocytosis of oxLDL.

    PubMed

    Howard, Jeffrey C; Florentinus-Mefailoski, Angelique; Bowden, Peter; Trimble, William; Grinstein, Sergio; Marshall, John G

    2016-11-15

    The binding and activation of macrophages by microscopic aggregates of oxLDL in the intima of the arteries may be an important step towards atherosclerosis leading to heart attack and stroke. Microbeads coated with oxLDL were used to activate, capture and isolate the oxLDL receptor complex from the surface of live cells. Analysis of the resulting tryptic peptides by liquid chromatography and tandem mass spectrometry revealed the Spleen Tyrosine Kinase (SYK), and many of SYK's known interaction network including Fc receptors (FCGR2A, FCER1G and FCGR1A) Toll receptor 4 (TLR4), receptor kinases like EGFRs, as well as RNA binding and metabolism proteins. High-intensity precursor ions (∼9*E3 to 2*E5 counts) were correlated to peptides and specific phosphopeptides from long isoform of SYK (SYK-L) by the SEQUEST, OMSSA and X!TANDEM algorithms. Peptides or phosphopeptides from SYK were observed with the oxLDL-microbeads. Pharmacological inhibitors of SYK activity significantly reduced the engulfment of oxLDL microbeads in the presence of serum factors, but had little effect on IgG phagocytosis. Anti SYK siRNA regulated oxLD engulfment in the context of serum factors and or SYK-L siRNA significantly inhibited engulfment of oxLDL microbeads, but not IgG microbeads.

  11. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  12. Levels of Oxidized LDL, Estrogens, and Progesterone in Placenta Tissues and Serum Paraoxonase Activity in Preeclampsia

    PubMed Central

    Açıkgöz, Şerefden; Özmen Bayar, Ülkü; Can, Murat; Güven, Berrak; Mungan, Görkem; Doğan, Suat; Sümbüloğlu, Vildan

    2013-01-01

    In vitro literature studies have suggested that atherosclerotic oxidized low density lipoprotein (OxLDL) inhibits trophoblast invasion. The objective of this study was to determine the levels of OxLDL and to examine the relationship between antioxidative estradiol, estriol, and prooxidative progestin in normal and preeclamptic placental tissues and measure the serum activity of antioxidative paraoxonase (PON1). The study included 30 preeclamptic and 32 normal pregnant women. OxLDL was determined with ELISA, estradiol, unconjugated estriol, and progesterone that were determined with chemiluminescence method in placental tissues. Serum PON1 activity was determined with spectrophotometric method. Levels of OxLDL (P = 0.027), estriol (P < 0.001), estradiol (P = 0.008), and progesterone (P = 0.009) were lower in the placental tissues of preeclamptic group compared to the normal pregnant women. Serum PON1 activity was higher in preeclamptic group (P = 0.040) and preeclamptic group without intrauterine growth restriction (P = 0.008) compared to normal pregnant women. Tissue estriol of preeclamptic group without/with IUGR (P < 0.001, P = 0.002) was lower than the normal group. Results of our study suggest that the events leading to fetoplacental insufficiency lead to a reduction in the levels of estriol limit deposition of OxLDL in placental tissues. The serum PON1 activity is probably important in the inhibition of OxLDL in preeclampsia. PMID:23606795

  13. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  14. Alirocumab: PCSK9 inhibitor for LDL cholesterol reduction.

    PubMed

    Tavori, Hagai; Melone, Michelle; Rashid, Shirya

    2014-10-01

    The proof of concept that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition affects cholesterol levels was first established after the demonstration that PCSK9 loss-of-function mutations result in a significant drop in circulating LDL cholesterol levels. Subsequent studies revealed that PCSK9 binds the epidermal growth factor precursor homology domain-A on the surface LDL Receptor (LDLR) and directs LDLR and PCSK9 for lysosomal degradation. Alirocumab (also known as SAR236553/REGN727) is a monoclonal antibody that binds circulating PCSK9 and blocks its interactions with surface LDLR. Alirocumab clinical trials with different doses on different administration schedules were shown to significantly reduce LDL cholesterol both as a mono-therapy and in combination with statins or ezetimibe. Although there is great potential for anti-PCSK9 therapies in the management of cholesterol metabolism, there is no clear evidence yet that blocking PCSK9 reduces cardiovascular disease outcome. This is being investigated in ongoing Phase III clinical trials with alirocumab. PMID:25244623

  15. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma

    PubMed Central

    Wiesner, Philipp; Tafelmeier, Maria; Chittka, Dominik; Choi, Soo-Ho; Zhang, Li; Byun, Young Sup; Almazan, Felicidad; Yang, Xiaohong; Iqbal, Navaid; Chowdhury, Punam; Maisel, Alan; Witztum, Joseph L.; Handel, Tracy M.; Tsimikas, Sotirios; Miller, Yury I.

    2013-01-01

    Lipoprotein oxidation plays an important role in pathogenesis of atherosclerosis. Oxidized low density lipoprotein (OxLDL) induces profound inflammatory responses in vascular cells, such as production of monocyte chemoattractant protein-1 (MCP-1) [chemokine (C-C motif) ligand 2], a key chemokine in the initiation and progression of vascular inflammation. Here we demonstrate that OxLDL also binds MCP-1 and that the OxLDL-bound MCP-1 retains its ability to recruit monocytes. A human MCP-1 mutant in which basic amino acids Arg-18 and Lys-19 were replaced with Ala did not bind to OxLDL. The MCP-1 binding to OxLDL was inhibited by the monoclonal antibody E06, which binds oxidized phospholipids (OxPLs) in OxLDL. Because OxPLs are carried by lipoprotein(a) [Lp(a)] in human plasma, we tested to determine whether Lp(a) binds MCP-1. Recombinant wild-type but not mutant MCP-1 added to human plasma bound to Lp(a), and its binding was inhibited by E06. Lp(a) captured from human plasma contained MCP-1 and the Lp(a)-associated endogenous MCP-1 induced monocyte migration. These results demonstrate that OxLDL and Lp(a) bind MCP-1 in vitro and in vivo and that OxPLs are major determinants of the MCP-1 binding. The association of MCP-1 with OxLDL and Lp(a) may play a role in modulating monocyte trafficking during atherogenesis. PMID:23667177

  16. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    PubMed

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  17. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    PubMed

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion.

  18. On the space-charge formation in a collisional magnetized electronegative plasma

    SciTech Connect

    Yasserian, Kiomars; Aslaninejad, Morteza

    2012-07-15

    The plasma sheath formation in the vicinity of a surrounding wall of magnetized plasma is studied in the presence of the electronegative ions and the positive ion-neutral background collisions. Fluid equations are used to treat the plasma particles species. By using the Sagdeev potential, the influence of the collisions and the magnetic field on the Bohm criterion are investigated. The space-charge profiles are obtained in the presence of a magnetic field in different collision frequencies as well as electronegative ions concentration. It is shown that the collision and the magnetic field raise a space-charge peak, while the presence of the electronegative ions results in damping the peaks. Moreover, it is observed that in the case of high magnetic field, some fluctuations emerge in the space-charge profiles. The influences of the magnetic field and electronegative ion concentration as well as negative ion temperature on the positive ion kinetic energy reaching the plasma surrounding wall and positive ion velocity perpendicular to the sheath axis are investigated. Finally, the net current through the sheath region is obtained for different collisionality and magnetic field values in both electropositive and electronegative plasmas.

  19. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo1[S

    PubMed Central

    Ni, Yan G.; Di Marco, Stefania; Condra, Jon H.; Peterson, Laurence B.; Wang, Weirong; Wang, Fubao; Pandit, Shilpa; Hammond, Holly A.; Rosa, Ray; Cummings, Richard T.; Wood, Dana D.; Liu, Xiaomei; Bottomley, Matthew J.; Shen, Xun; Cubbon, Rose M.; Wang, Sheng-ping; Johns, Douglas G.; Volpari, Cinzia; Hamuro, Lora; Chin, Jayne; Huang, Lingyi; Zhao, Jing Zhang; Vitelli, Salvatore; Haytko, Peter; Wisniewski, Douglas; Mitnaul, Lyndon J.; Sparrow, Carl P.; Hubbard, Brian; Carfí, Andrea; Sitlani, Ayesha

    2011-01-01

    Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%–50% for over 2 weeks, despite its relatively short terminal half-life (t1/2 = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr. PMID:20959675

  20. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  1. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation.

    PubMed

    Andrikopoulos, Nikolaos K; Kaliora, Andriana C; Assimopoulou, Andreana N; Papapeorgiou, Vassilios P

    2003-05-01

    Naturally occurring gums and resins with beneficial pharmaceutical and nutraceutical properties were tested for their possible protective effect against copper-induced LDL oxidation in vitro. Chiosmastic gum (CMG) (Pistacia lentiscus var. Chia resin) was the most effective in protecting human LDL from oxidation. The minimum and maximum doses for the saturation phenomena of inhibition of LDL oxidation were 2.5 mg and 50 mg CMG (75.3% and 99.9%, respectively). The methanol/water extract of CMG was the most effective compared with other solvent combinations. CMG when fractionated in order to determine a structure-activity relationship showed that the total mastic essential oil, collofonium-like residue and acidic fractions of CMG exhibited a high protective activity ranging from 65.0% to 77.8%. The other natural gums and resins (CMG resin 'liquid collection', P. terebinthus var. Chia resin, dammar resin, acacia gum, tragacanth gum, storax gum) also tested as above, showed 27.0%-78.8% of the maximum LDL protection. The other naturally occurring substances, i.e. triterpenes (amyrin, oleanolic acid, ursolic acid, lupeol, 18-a-glycyrrhetinic acid) and hydroxynaphthoquinones (naphthazarin, shikonin and alkannin) showed 53.5%-78.8% and 27.0%-64.1% LDL protective activity, respectively. The combination effects (68.7%-76.2% LDL protection) of ursolic-, oleanolic- and ursodeoxycholic- acids were almost equal to the effect (75.3%) of the CMG extract in comparable doses. PMID:12748987

  2. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages

    PubMed Central

    Lin, Chin-Sheng; Liu, Pang-Yen; Lian, Chen-Hao; Lin, Ching-Heng; Lai, Jenn-Haung; Ho, Ling-Jun; Yang, Shih-Ping; Cheng, Shu-Meng

    2016-01-01

    Background Macrophages can imbibe low-density lipoprotein (LDL) through scavenger receptors to become foam cells, which is critical in the initiation and progression of atherosclerosis. Mounting evidence suggests that the anti-inflammatory nature of Chinese herbs have the capacity to halt the complex mechanisms underlying atherosclerosis. This study examined the effects of Chinese herbs on foam cell formation. Methods Chinese herbs were obtained from the Sun Ten pharmaceutic company. Using oxidized LDL (OxLDL) uptake and a cell toxicity assay, we screened more than 30 types of Chinese herbs. Western blotting was used to determine expressions of scavenger receptors (SRs) and extracellular-signal-regulated kinase (ERK) activities. Results We found that Gentiana scabra reduced oxidized LDL uptake effectively in THP-1 macrophages (p < 0.05 vs. OxLDL treated control). Moreover, treatment with Gentiana scabra in THP-1 macrophages resulted in decreased expression of scavenger receptor- A (SR-A) (p < 0.05 vs. control). Molecular investigation revealed that Gentiana scabra inhibited SR-A protein expression, possibly by regulating ERK signaling pathways (p < 0.05 vs. control). Conclusions By regulating SR-A expression, Gentiana scabra reduced oxidized LDL uptake in human macrophages. These results support the potential use of Gentiana scabra in treating atherosclerosis. PMID:27471359

  3. Effects of fast monoenergetic electrons on the generalized Bohm criterion for electronegative dusty plasma

    SciTech Connect

    Chekour, S.; Tahraoui, A.; Zaham, B.

    2012-05-15

    In this work, we have generalized the computation of Bohm criterion for electronegative complex plasma in the presence of fast monoenergetic electrons coming from a plane electrode. For this, we have established a 1D, collisionless, stationary, and unmagnetized electronegative plasma sheath model. The electrons and negative ions are considered in thermodynamic equilibrium; however, the positive ions, the dust grains, and the fast monoenergetic electrons are described by cold fluid equations. The generalized Bohm criterion has been calculated by using Sagdeev's pseudo potential method and the dust grain charge equation. The self-consistent relation between the dust grain surface potential at the edge and dust grains density is also derived. The numerical results reveal that the presence of the fast monoenergetic electrons increases the positive ion Mach number. On the other hand, the raise of electronegativity decreases this positive Mach number. The evolution of dust grain surface potential at the sheath edge is also illustrated and discussed.

  4. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis

    PubMed Central

    Binder, Christoph J.; Hartvigsen, Karsten; Chang, Mi-Kyung; Miller, Marina; Broide, David; Palinski, Wulf; Curtiss, Linda K.; Corr, Maripat; Witztum, Joseph L.

    2004-01-01

    During atherogenesis, LDL is oxidized, generating various oxidation-specific neoepitopes, such as malondialdehyde-modified (MDA-modified) LDL (MDA-LDL) or the phosphorylcholine (PC) headgroup of oxidized phospholipids (OxPLs). These epitopes are recognized by both adaptive T cell–dependent (TD) and innate T cell–independent type 2 (TI-2) immune responses. We previously showed that immunization of mice with MDA-LDL induces a TD response and atheroprotection. In addition, a PC-based immunization strategy that leads to a TI-2 expansion of innate B-1 cells and secretion of T15/EO6 clonotype natural IgM antibodies, which bind the PC of OxPLs within oxidized LDL (OxLDL), also reduces atherogenesis. T15/EO6 antibodies inhibit OxLDL uptake by macrophages. We now report that immunization with MDA-LDL, which does not contain OxPL, unexpectedly led to the expansion of T15/EO6 antibodies. MDA-LDL immunization caused a preferential expansion of MDA-LDL–specific Th2 cells that prominently secreted IL-5. In turn, IL-5 provided noncognate stimulation to innate B-1 cells, leading to increased secretion of T15/EO6 IgM. Using a bone marrow transplant model, we also demonstrated that IL-5 deficiency led to decreased titers of T15/EO6 and accelerated atherosclerosis. Thus, IL-5 links adaptive and natural immunity specific to epitopes of OxLDL and protects from atherosclerosis, in part by stimulating the expansion of atheroprotective natural IgM specific for OxLDL. PMID:15286809

  5. Studies with doxazosin on the saturable binding of /sup 125/I-LDL by liver in normocholesterolemic mice

    SciTech Connect

    Nanjee, M.N.; Miller, N.E.

    1987-01-01

    Tissue culture studies have provided evidence that alpha 1-adrenergic receptor inhibition with doxazosin increases the number of low-density lipoprotein (LDL) receptors in human fibroblasts. A similar effect occurring in vivo might explain the reduction of plasma LDL concentration observed in some clinical trials of prazosin. In order to examine this question further, mice were given doxazosin 100 or 400 micrograms/kg/day by i.p. injection for 4 days, after which they were killed, blood was collected and livers were excised. Binding of /sup 125/I-labelled human LDL to tissue homogenates, over the concentration range 30-120 micrograms LDL protein/ml, was measured at 37 degrees C in the absence and presence of excess unlabelled LDL. Woolf plots of the results for saturable binding were found to be compatible with a single class of binding site. In control animals Bmax for this receptor was 867 +/- 117 ng LDL protein/mg tissue protein, and the equilibrium dissociation constant was 32.7 +/- 6.6 micrograms LDL protein/ml (mean +/- SD, n = 5). Doxazosin treatment had no effect on either parameter of /sup 125/I-LDL binding. A trend towards a decrease in liver triglyceride concentration with increasing doses of doxazosin was recorded, but there was no evidence for effects on liver cholesterol or serum lipid concentrations.

  6. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    SciTech Connect

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  7. The effect of HDL-bound and free PON1 on copper-induced LDL oxidation.

    PubMed

    Bayrak, Ahmet; Bayrak, Tülin; Bodur, Ebru; Kılınç, Kamer; Demirpençe, Ediz

    2016-09-25

    Oxidative modification of LDL plays an important role in the development of atherosclerosis. High-density lipoprotein (HDL) confers protection against atherosclerosis and the antioxidative properties of paraoxonase 1 (PON1) has been suggested to contribute to this effect of HDL. The PON1 exist in two major polymorphic forms (Q and R), which regulate the concentration and activity of the enzyme and alter its ability to prevent lipid oxidation. However, the association of Q192R polymorphism with PON1's capacity to protect against LDL lipoperoxidation is controversial. The aim of this study was to evaluate the effects of the purified PON1 Q192R and the partially purified HDL-bound PON1 Q192R isoenzymes (HDL-PON1 Q192R) on LDL oxidation, with respect to their arylesterase/homocysteine thiolactonase (HTLase) activities. Cupric ion-induced LDL oxidation was reduced up to 48% by purified PON1 Q192, but only 33% by an equivalent activity of PON1 R192. HDL-PON1 Q192 isoenzyme caused a 65% reduction, whereas HDL-PON1 R192 isoenzyme caused only 46% reduction in copper ion-induced LDL oxidation. These findings reflect the fact that PON1 Q and PON1 R allozymes may have different protective characteristics against LDL oxidation. The protection against LDL oxidation provided by HDL-PON1 Q192R isoenzymes is more prominent than the purified soluble enzymes. Inhibition of the Ca(+2)-dependent PON1 Q192R arylesterase/HTLase by the metal chelator EDTA, did not alter PON1's ability to inhibit LDL oxidation. These studies indicate that the active site involvement of the purified enzyme is not similar to the HDL-bound one, in terms of both PON1 arylesterase/HTLase activity and the protection of LDL from copper ion-induced oxidation. Moreover, PON1's ability to protect LDL from oxidation does not seem to require calcium. PMID:27510818

  8. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL.

    PubMed

    Camaré, Caroline; Augé, Nathalie; Pucelle, Mélanie; Saint-Lebes, Bertrand; Grazide, Marie-Hélène; Nègre-Salvayre, Anne; Salvayre, Robert

    2016-04-01

    Capillaries of the external part of the normal arterial wall constitute the vasa vasorum network. In atherosclerotic lesions, neovascularization occurs in areas of intimal hyperplasia where it may promote plaque expansion, and intraplaque hemorrhage. Oxidized LDL that are present in atherosclerotic areas activate various angiogenic signaling pathways, including reactive oxygen species and the sphingosine kinase/sphingosine-1-phosphate pathway. We aimed to investigate whether oxidized LDL-induced angiogenesis requires neutral sphingomyelinase-2 activation and the neutral sphingomyelinase-2/sphingosine kinase-1 pathway. The role of neutral sphingomyelinase-2 in angiogenic signaling was investigated in Human Microvascular Endothelial Cells (HMEC-1) forming capillary tube on Matrigel and in vivo in the Matrigel plug assay in C57BL/6 mice and in the chicken chorioallantoic membrane model. Low concentration of human oxidized LDL elicits HMEC-1 capillary tube formation and neutral sphingomyelinase-2 activation, which were blocked by neutral sphingomyelinase-2 inhibitors, GW4869 and specific siRNA. This angiogenic effect was mimicked by low concentration of C6-Ceramide and was inhibited by sphingosine kinase-1 inhibitors. Upstream of neutral sphingomyelinase-2, oxidized LDL-induced activation required LOX-1, reactive oxygen species generation by NADPH oxidase and p38-MAPK activation. Inhibition of sphingosine kinase-1 blocked the angiogenic response and triggered HMEC-1 apoptosis. Low concentration of oxidized LDL was angiogenic in vivo, both in the Matrigel plug assay in mice and in the chorioallantoic membrane model, and was blocked by GW4869. In conclusion, low oxLDL concentration triggers sprouting angiogenesis that involves ROS-induced activation of the neutral sphingomyelinase-2/sphingosine kinase-1 pathway, and is effectively inhibited by GW4869. PMID:26855418

  9. A new method to derive electronegativity from resonant inelastic x-ray scattering

    SciTech Connect

    Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M.; Stolte, W. C.; Lindle, D. W.

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  10. Vibrational spectroscopy: Can density functional theory cope with highly electronegative atoms?

    NASA Astrophysics Data System (ADS)

    Petković, Milena

    2010-12-01

    Vibrational properties of molecules composed solely of highly electronegative atoms are studied by means of density functional methods. Performance of different combinations of exchange and correlation functionals is tested. It is demonstrated that certain functionals can successfully simulate infrared spectra of systems containing only fluorine, oxygen and nitrogen.

  11. Understanding electronegative effects in core-level electron spectroscopies; application to the high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Ramaker, David E.

    1989-12-01

    The nature of the core level reflected in x ray photoelectron spectroscopy, Auger electron spectrosocopy, and x ray absorption near edge structure is considered. An understanding of the effects of anion and cation electronegativity on spectra for the transition metal halides is obtained. This knowledge is applied to understand similar spectra for the high temperature superconductors.

  12. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    SciTech Connect

    Blair, Shamus A.; Thakkar, Ajit J.

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  13. Resveratrol Enhances Autophagic Flux and Promotes Ox-LDL Degradation in HUVECs via Upregulation of SIRT1

    PubMed Central

    Zhang, Yanlin; Cao, Xueqin; Zhu, Wawa; Liu, Zhihua; Liu, Huihui; Zhou, Yande; Cao, Yongjun; Liu, Chunfeng; Xie, Ying

    2016-01-01

    Oxidized low-density lipoprotein- (Ox-LDL-) induced autophagy dysfunction in human vascular endothelial cells contributes to the development of atherosclerosis (AS). Resveratrol (RSV) protects against Ox-LDL-induced endothelium injury. The objective of this study was to determine the mechanisms underlying Ox-LDL-induced autophagy dysfunction and RSV-mediated protection in human umbilical vein endothelial cells (HUVECs). The results showed that Ox-LDL suppressed the expression of sirtuin 1 (SIRT1) and increased LC3-II and sequestosome 1 (p62) protein levels without altering p62 mRNA levels in HUVECs. Pretreatment with bafilomycin A1 (BafA1) to inhibit lysosomal degradation abrogated the Ox-LDL-induced increase in LC3-II protein level. Ox-LDL increased colocalization of GFP and RFP puncta in mRFP-GFP-tandem fluorescent LC3- (tf-LC3-) transfected cells. Moreover, Ox-LDL decreased the expression of mature cathepsin D and attenuated cathepsin D activity. Pretreatment with RSV increased the expression of SIRT1 and LC3-II and increased p62 protein degradation. RSV induced RFP-LC3 aggregation more than GFP-LC3 aggregation. RSV restored lysosomal function and promoted Ox-LDL degradation in HUVECs. All the protective effects of RSV were blocked after SIRT1 was knocked down. These findings demonstrated that RSV upregulated the expression of SIRT1, restored lysosomal function, enhanced Ox-LDL-induced impaired autophagic flux, and promoted Ox-LDL degradation through the autophagy-lysosome degradation pathway in HUVECs. PMID:27069532

  14. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  15. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  16. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  17. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages

    PubMed Central

    Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C.O.; Bausero, Maria A.; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G.; Carlsson, Lena M.S.; Carlsson, Björn

    2006-01-01

    Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1β production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P < 0.05). OxLDLsup could induce both interleukin (IL)-1β and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL. PMID:15993884

  18. Biochemical and ultrastructural analysis of. beta. -VLDL and AC-LDL metabolism by pigeon monocyte-derived macrophages in culture

    SciTech Connect

    Henson, D.A.

    1987-01-01

    It is proposed that monocyte-derived foam cells in atherosclerotic lesions of White Carneau pigeons become lipid-filled through the uptake of lipoproteins including ..beta..-migrating very low density lipoproteins (..beta..-VLDL) and acetylated low density lipoproteins (Ac-LDL). Using iodinated forms of the above lipoproteins, specific and saturable receptors for both ..beta..-VLDL and Ac-LDL were detected on the surface of White Carneau pigeon monocyte-derived macrophages in culture. Competition studies demonstrated the high degree of binding specificity for /sup 125/I-Ac-LDL. Likewise, binding of /sup 125/I-..beta..-VLDL to its receptor was significantly inhibited by excess ..beta..-VLDL, however LDL from both hyper- and normocholesterolemic pigeons were also recognized by the receptor. Upon binding of ..beta..-VLDL and Ac-LDL to their respective receptors, the lipoproteins were rapidly internalized and delivered to intracellular sites of degradation. As measured by the amount of /sup 14/C-oleate incorporated into cholesteryl /sup 14/C-oleate, the cholesterole liberated from the degradation of both ..beta..-VLDL and Ac-LDL stimulated cholesteryl ester synthesis in the pigeon cells. Using lipoproteins conjugated to colloidal gold of visualization with transmission electron microscopy, a major difference in the binding and uptake properties of ..beta..-VLDL-Gold and Ac-LDL-Gold was documented.

  19. The composition and metabolism of large and small LDL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the met...

  20. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation.

    PubMed

    Silaste, Marja-Leena; Alfthan, Georg; Aro, Antti; Kesäniemi, Y Antero; Hörkkö, Sohvi

    2007-12-01

    High dietary intakes of tomato products are often associated with a reduced risk of CVD, but the atheroprotective mechanisms have not been established. This study was conducted to investigate the effects of increased dietary intake of tomato products on plasma lipids and LDL oxidation. The diet intervention included a baseline period, a 3-week low tomato diet (no tomato products allowed) and a 3-week high tomato diet (400 ml tomato juice and 30 mg tomato ketchup daily). Twenty-one healthy study subjects participated in the study. Total cholesterol concentration was reduced by 5.9 (sd 10) % (P = 0.002) and LDL cholesterol concentration by 12.9 (sd 17.0) % (P = 0.0002) with the high tomato diet compared to the low tomato diet. The changes in total and LDL cholesterol concentrations correlated significantly with the changes in serum lycopene (r 0.56, P = 0.009; r 0.60, P = 0.004, total and LDL, respectively), beta-carotene (r 0.58, P = 0.005; r 0.70, P < 0.001) and gamma-carotene concentrations (r 0.64, P = 0.002; r 0.64, P = 0.002). The level of circulating LDL to resist formation of oxidized phospholipids increased 13 % (P = 0.02) in response to the high tomato diet. In conclusion, a high dietary intake of tomato products had atheroprotective effects, it significantly reduced LDL cholesterol levels, and increased LDL resistance to oxidation in healthy normocholesterolaemic adults. These atheroprotective features associated with changes in serum lycopene, beta-carotene and gamma-carotene levels. PMID:17617941

  1. Lysosomal Cholesterol Accumulation Inhibits Subsequent Hydrolysis Of Lipoprotein Cholesteryl Ester

    PubMed Central

    Jerome, W. Gray; Cox, Brian E.; Griffin, Evelyn E.; Ullery, Jody C.

    2010-01-01

    Human macrophages incubated for prolonged periods with mildly oxidized LDL (oxLDL) or cholesteryl ester-rich lipid dispersions (DISP) accumulate free and esterified cholesterol within large, swollen lysosomes similar to those in foam cells of atherosclerosis. The cholesteryl ester (CE) accumulation is, in part, the result of inhibition of lysosomal hydrolysis due to increased lysosomal pH mediated by excessive lysosomal free cholesterol (FC). To determine if the inhibition of hydrolysis was long lived and further define the extent of the lysosomal defect, we incubated THP-1 macrophages with oxLDL or DISP to produce lysosome sterol engorgement and then chased with acetylated LDL (acLDL). Unlike oxLDL or DISP, CE from acLDL normally is hydrolyzed rapidly. Three days of incubation with oxLDL or DISP produced an excess of CE in lipid-engorged lysosomes, indicative of inhibition. After prolonged oxLDL or DISP pretreatment, subsequent hydrolysis of acLDL CE was inhibited. Coincident with the inhibition, the lipid-engorged lysosomes failed to maintain an acidic pH during both the initial pretreatment and subsequent acLDL incubation. This indicates that the alterations in lysosomes were general, long-lived and affected subsequent lipoprotein metabolism. This same phenomenon, occurring within atherosclerotic foam cells, could significantly affect lesion progression. PMID:18312718

  2. Endogenous Ceramide Contributes to the Transcytosis of oxLDL across Endothelial Cells and Promotes Its Subendothelial Retention in Vascular Wall

    PubMed Central

    Li, Wenjing; Yang, Xiaoyan; Xing, Shasha; Bian, Fang; Yao, Wanjing; Bai, Xiangli; Wu, Guangjie; Jin, Si

    2014-01-01

    Oxidized low density of lipoprotein (oxLDL) is the major lipid found in atherosclerotic lesion and elevated plasma oxLDL is recognized to be a risk factor of atherosclerosis. Whether plasma oxLDL could be transported across endothelial cells and initiate atherosclerotic changes remains unknown. In an established in vitro cellular transcytosis model, the present study found that oxLDL could traffic across vascular endothelial cells and further that the regulation of endogenous ceramide production by ceramide metabolizing enzyme inhibitors significantly altered the transcytosis of oxLDL across endothelial cells. It was found that acid sphingomyelinase inhibitor, desipramine (DES), and de novo ceramide synthesis inhibitor, myriocin (MYR), both decreasing the endogenous ceramide production, significantly inhibited the transcytosis of oxLDL. Ceramidase inhibitor, N-oleoylethanolamine (NOE), and sphingomyelin synthase inhibitor, O-Tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609), both increasing the endogenous ceramide production, significantly upregulated the transcytosis of oxLDL. In vivo, injection of fluorescence labeled oxLDL into mice body also predisposed to the subendothelial retention of these oxidized lipids. The observations provided in the present study demonstrate that endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes the initiating step of atherosclerosis—the subendothelial retention of lipids in vascular wall. PMID:24817993

  3. Myeloperoxidase Oxidized LDL Interferes with Endothelial Cell Motility through miR-22 and Heme Oxygenase 1 Induction: Possible Involvement in Reendothelialization of Vascular Injuries

    PubMed Central

    Daher, Jalil; Martin, Maud; Rousseau, Alexandre; Nuyens, Vincent; Fayyad-Kazan, Hussein; Van Antwerpen, Pierre; Courbebaisse, Guy; Martiat, Philippe; Badran, Bassam; Dequiedt, Frank

    2014-01-01

    Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque. PMID:25530680

  4. Nonlinear ion-acoustic double-layers in electronegative plasmas with electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Ghebache, Siham; Tribeche, Mouloud

    2016-04-01

    Weakly nonlinear ion-acoustic (IA) double-layers (DLs), which accompany electronegative plasmas composed of positive ions, negative ions, and nonextensive electrons are investigated. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived using a reductive perturbation method. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. It is shown that the IA wave phase velocity, in different mixtures of negative and positive ions, decreases as the nonextensive parameter q increases, before levelling-off at a constant value for larger q. Moreover, a relative increase of Q involves an enhancement of the IA phase velocity. Existence domains of either solitary waves or double-layers are then presented and their parametric dependence is determined. Owing to the electron nonextensivity, our present plasma model can admit compressive as well as rarefactive IA-DLs.

  5. Calculation of surface enthalpy of solids from an ab initio electronegativity based model: case of ice.

    PubMed

    Douillard, J M; Henry, M

    2003-07-15

    A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.

  6. The noble gases: how their electronegativity and hardness determines their chemistry.

    PubMed

    Furtado, Jonathan; De Proft, Frank; Geerlings, Paul

    2015-02-26

    The establishment of an internally consistent scale of noble gas electronegativities is a long-standing problem. In the present study, the problem is attacked via the Mulliken definition, which in recent years gained widespread use to its natural appearance in the context of conceptual density functional theory. Basic ingredients of this scale are the electron affinity and the ionization potential. Whereas the latter can be computed routinely, the instability of the anion makes the judicious choice of computational technique for evaluating electron affinities much more tricky. We opted for Puiatti's approach, extrapolating the energy of high ε solvent stabilized anions to the ε = 1 (gas phase) case. The results give negative electron affinity values, monotonically increasing (except for helium which is an outlier in most of the story) to almost zero at eka-radon in agreement with high level calculations. The stability of the B3LYP results is successfully tested both via improving the level of theory (CCSD(T)) and expanding the basis set. Combined with the ionization energies (in good agreement with experiment), an electronegativity scale is obtained displaying (1) a monotonic decrease of χ when going down the periodic table, (2) top values not for the noble gases but for the halogens, as opposed to most (extrapolation) procedures of existing scales, invariably placing the noble gases on top, and (3) noble gases having electronegativities close to the chalcogens. In the accompanying hardness scale (hardly, if ever, discussed in the literature) the noble gases turn out to be by far the farthest the hardest elements, again with a continuous decrease with increasing Z. Combining χ value of the halogens and the noble gases the Ng(δ+)F(δ-) bond polarity emerging from ab initio calculations naturally emerges. In conclusion, the chemistry of the noble gases is for a large part determined by their extreme hardness, equivalent to a high resistance to change in its

  7. Tailored voltage waveform capacitively coupled plasmas in electronegative gases: frequency dependence of asymmetry effects

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Korolov, I.; Bruneau, B.; Derzsi, A.; Johnson, E.; O’Connell, D.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-07-01

    Capacitively coupled radio frequency plasmas operated in an electronegative gas (CF4) and driven by voltage waveforms composed of four consecutive harmonics are investigated for different fundamental driving frequencies using PIC/MCC simulations and an analytical model. As has been observed previously for electropositive gases, the application of peak-shaped waveforms (that are characterized by a strong amplitude asymmetry) results in the development of a DC self-bias due to the electrical asymmetry effect (EAE), which increases the energy of ions arriving at the powered electrode. In contrast to the electropositive case (Korolov et al 2012 J. Phys. D: Appl. Phys. 45 465202) the absolute value of the DC self-bias is found to increase as the fundamental frequency is reduced in this electronegative discharge, providing an increased range over which the DC self-bias can be controlled. The analytical model reveals that this increased DC self-bias is caused by changes in the spatial profile and the mean value of the net charge density in the grounded electrode sheath. The spatio-temporally resolved simulation data show that as the frequency is reduced the grounded electrode sheath region becomes electronegative. The presence of negative ions in this sheath leads to very different dynamics of the power absorption of electrons, which in turn enhances the local electronegativity and plasma density via ionization and attachment processes. The ion flux to the grounded electrode (where the ion energy is lowest) can be up to twice that to the powered electrode. At the same time, while the mean ion energies at both electrodes are quite different, their ratio remains approximately constant for all base frequencies studied here.

  8. Relating Bond Angles of Dihalo- and Tetrahydro--Methanes, -Silanes, and -Germanes to Electronegativities

    ERIC Educational Resources Information Center

    Kirschenbaum, Louis J.; Ruekberg, Ben

    2012-01-01

    Our previous work correlated bond angles of group V and group VI hydrides (AH[subscript 3]E and AH[subscript 2]E[subscript 2], respectively, where E represents a lone electron pair) to the electronegativities of the atoms using the fraction of s character to relate the two. Here we have extended the correlation to the AH[subscript 2]X[subscript 2]…

  9. Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge

    SciTech Connect

    Zhang Quanzhi; Jiang Wei; Wang Younian; Hou Lujing

    2011-01-01

    Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled radio-frequency (CCRF) discharges, was discovered theoretically by Heil et al. [J. Phys. D: Appl. Phys. 41, 165202 (2008)] and was confirmed by experiments and theory/numerical simulations later on for electropositive argon discharges. In this work simulations based on particle-in-cell/Monte Carlo collision are performed to study the EAE on electronegative oxygen plasmas in geometrically symmetric CCRF discharges. Dual frequency discharges operating at 13.56 and 27.12 MHz are simulated for different pressures and the results are compared with those of electropositive argon discharges at the same conditions. It is found that in general the EAE on oxygen discharges has similar behavior as on argon discharge: The self-bias voltage {eta} increases monotonically and almost linearly with the increase in the phase angle {theta} between the two driving voltages in the range 0<{theta}<90 deg. , and the maximum ion energy varies by a factor of 3 by adjusting {theta}. However, the ion flux varies with {theta} by {+-}12% for low pressure and by {+-}15% for higher pressure, due primarily to an enhanced plasma series resonance, which then leads to dramatic changes in plasma density, power absorption and consequently the electronegativity. This may place a limitation for achieving separate control of ion energy and flux for electronegative plasma via the EAE.

  10. Space charge formation and Bohm's criterion in the edge of thermal electronegative plasma

    NASA Astrophysics Data System (ADS)

    Yasserian, Kiomars; Aslaninejad, Morteza

    2016-09-01

    The collisional electronegative plasma space charge is investigated in the presence of the thermal positive ions. The Boltzmann distribution is assumed for electrons and negative ions and fluid equations are used to treat the accelerated positive ion through the sheath region. The influence of the positive ion temperature on the profile of the space charge is obtained for different negative ion concentration and negative ion temperature for collisionless and collisional cases. It is shown that the position of the space charge peak is independent of positive ion temperature while its amplitude depends on the positive ion temperature. The presence of the negative ion leads to damping of the space charge amplitude. In addition the thermal effect of the positive ion on the kinetic energy of the ion extracted from an ion source is studied in difference of collisionality and electronegativity. It is shown that, in the presence of thermal positive ion, the influence of the negative ion temperature on the sheath characteristics disappears. It is observed that in the presence of the hot positive ion, the twofold feature of the space charge starts at higher values of negative ion temperature which is more pronounced in collisional case. Finally, the influences of the positive and negative ion temperature, as well as the electronegativity and collisionality on the net electric current are studied.

  11. Is the Ratio of Antibodies Against Oxidized LDL to Oxidized LDL an Indicator of Cardiovascular Risk in Psoriasis?

    PubMed Central

    Rajappa, Medha; Mohan Thappa, Devinder; Chandrashekar, Laxmisha; Munisamy, Malathi; Revathy, G.

    2016-01-01

    Objectives Psoriasis is a chronic inflammatory skin disease. Chronic inflammation results in increased oxidative stress and oxidizes lipoproteins, increasing their atherogenicity. This study sought to estimate the levels of oxidized low-density lipoprotein (ox-LDL) and antibodies against oxidized LDL (anti-ox-LDL) and compute the ratio of anti-ox-LDL/ox-LDL as a single composite parameter to assess the oxidative lipoprotein burden as an indicator of cardiovascular risk in patients with psoriasis. Methods This cross-sectional study included 45 patients with psoriasis. All patients were given a psoriasis severity index score and their ox-LDL and anti-ox-LDL estimated using ELISA. Results The results of this study show an elevation in the ratio of anti-ox-LDL to ox-LDL in patients with psoriasis, which initiate and perpetuate the pathogenesis of psoriasis and its comorbidity, atherosclerotic cardiovascular disease. Conclusions Our results suggest that an elevated ratio of anti-ox-LDL/ox-LDL can serve as a composite parameter reflecting the total oxidative lipoprotein burden and cardiovascular risk in psoriasis patients. PMID:27602197

  12. Is the Ratio of Antibodies Against Oxidized LDL to Oxidized LDL an Indicator of Cardiovascular Risk in Psoriasis?

    PubMed Central

    Rajappa, Medha; Mohan Thappa, Devinder; Chandrashekar, Laxmisha; Munisamy, Malathi; Revathy, G.

    2016-01-01

    Objectives Psoriasis is a chronic inflammatory skin disease. Chronic inflammation results in increased oxidative stress and oxidizes lipoproteins, increasing their atherogenicity. This study sought to estimate the levels of oxidized low-density lipoprotein (ox-LDL) and antibodies against oxidized LDL (anti-ox-LDL) and compute the ratio of anti-ox-LDL/ox-LDL as a single composite parameter to assess the oxidative lipoprotein burden as an indicator of cardiovascular risk in patients with psoriasis. Methods This cross-sectional study included 45 patients with psoriasis. All patients were given a psoriasis severity index score and their ox-LDL and anti-ox-LDL estimated using ELISA. Results The results of this study show an elevation in the ratio of anti-ox-LDL to ox-LDL in patients with psoriasis, which initiate and perpetuate the pathogenesis of psoriasis and its comorbidity, atherosclerotic cardiovascular disease. Conclusions Our results suggest that an elevated ratio of anti-ox-LDL/ox-LDL can serve as a composite parameter reflecting the total oxidative lipoprotein burden and cardiovascular risk in psoriasis patients.

  13. The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans

    PubMed Central

    Weissglas-Volkov, Daphna; Calkin, Anna C.; Tusie-Luna, Teresa; Sinsheimer, Janet S.; Zelcer, Noam; Riba, Laura; Tino, Ana Maria Vargas; Ordoñez-Sánchez, Maria Luisa; Cruz-Bautista, Ivette; Aguilar-Salinas, Carlos A.; Tontonoz, Peter; Pajukanta, Päivi

    2011-01-01

    Atherosclerotic cardiovascular disease (ASCVD) affects more than 1 in 3 American adults. Hypercholesterolemia is a major treatable risk factor for ASCVD, yet many individuals fail to reach target levels of LDL-cholesterol (LDL-C) through the use of statins and lifestyle changes. The E3 ubiquitin ligase myosin regulatory light chain–interacting protein (MYLIP; also known as IDOL) is a recently identified regulator of the LDL receptor (LDLR) pathway. Genome-wide association studies (GWASs) in populations of mixed European descent have identified noncoding variants in the MYLIP region as being associated with LDL-C levels, but no underlying functional variants were pinpointed. In order to fine-map actual susceptibility variants, we studied a population demographically distinct from the discovery population to ensure a different pattern of linkage disequilibrium. Our analysis revealed that in a Mexican population, the nonsynonymous SNP rs9370867, which encodes the N342S amino acid substitution, is an underlying functional variant that was associated with high total cholesterol and accounted for one of the previous significant GWAS signals. Functional characterization showed that the Asn-encoding allele was associated with more potent LDLR degradation and decreased LDL uptake. Mutagenesis of residue 342 failed to affect intrinsic MYLIP E3 ligase activity, but it was critical for LDLR targeting. Our findings suggest that modulation of MYLIP activity can affect LDL-C levels and that pharmacologic inhibition of MYLIP activity might be a useful strategy in the treatment of dyslipidemia and ASCVD. PMID:21765216

  14. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells

    PubMed Central

    Damián-Zamacona, Salvador; Toledo-Ibelles, Paola; Ibarra-Abundis, Mabel Z.; Uribe-Figueroa, Laura; Hernández-Lemus, Enrique; Macedo-Alcibia, Karla Paola; Delgado–Coello, Blanca; Mas-Oliva, Jaime; Reyes-Grajeda, Juan Pablo

    2016-01-01

    Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and

  15. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation.

    PubMed

    Dias, Irundika H K; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M; Polidori, Maria C; Lip, Gregory Y H; Griffiths, Helen R

    2014-10-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.

  16. Activation of PKC{beta}{sub II} and PKC{theta} is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation

    SciTech Connect

    Heo, Kyung-Sun; Kim, Dong-Uk; Kim, Lila; Nam, Miyoung; Baek, Seung-Tae; Park, Song-Kyu; Park, Youngwoo; Myung, Chang-Seon; Hwang, Sung-Ook Hoe, Kwang-Lae

    2008-03-28

    Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, and LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.

  17. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.

  18. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  19. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  20. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol.

    PubMed

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof

    2016-02-01

    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. PMID:26518877

  1. OxLDL and macrophage survival: essential and oxygen-independent involvement of the Hif-pathway.

    PubMed

    Poitz, David M; Augstein, Antje; Weinert, Sönke; Braun-Dullaeus, Rüdiger C; Strasser, Ruth H; Schmeisser, Alexander

    2011-09-01

    Atherosclerotic plaques are characterized by hypoxic even anoxic areas and by high concentrations of oxidized lipoproteins. Moreover, unstable plaques attract a high number of macrophages despite the proapoptotic background within these plaques. Recently, it was shown that these macrophages are positive for Hif-1α. This subunit is a part of hypoxia-inducible factor 1 (Hif-1), a key transcriptional factor under hypoxia. Till date, it is not understood whether the Hif-system (consisting of Hif-1, Hif-2 and Hif-3) is involved in protection of macrophages under these proatherogenic conditions. The present study delineates that oxLDL causes fundamental changes in the regulation of the Hif-system in primary human macrophages. First, both oxLDL and hypoxia mediate accumulation of Hif-1α protein. Second, treatment with a combination of oxLDL and hypoxia is acting in an additive manner on Hif-1α protein content. Third, oxLDL alone does not increase Hif-2α protein, but abolishes the hypoxic induction of Hif-2α completely. OxLDL treatment alone was not toxic for macrophages under neither normoxia nor hypoxia. But, inhibition of Hif-pathway by adenoviral expression of a dominant-negative mutant combined with oxLDL treatment independently of the oxygen tension leads to apoptosis, as determined by caspase-3 activation and induction of DNA fragmentation. Furthermore, this inhibition also mediates the opening of the mitochondrial permeability transition pore. In conclusion, the present data show that Hif-1α regulation is essential for survival of oxLDL-treated macrophages independent of the oxygen tension. Therefore, this newly characterized mechanism might also have an important influence for the vulnerability of atherosclerotic plaques.

  2. Metabolic origins and clinical significance of LDL heterogeneity.

    PubMed

    Berneis, Kaspar K; Krauss, Ronald M

    2002-09-01

    LDLs in humans comprise multiple distinct subspecies that differ in their metabolic behavior and pathologic roles. Metabolic turnover studies suggest that this heterogeneity results from multiple pathways, including catabolism of different VLDL and IDL precursors, metabolic remodeling, and direct production. A common lipoprotein profile designated atherogenic lipoprotein phenotype is characterized by a predominance of small dense LDL particles. Multiple features of this phenotype, including increased levels of triglyceride rich lipoprotein remnants and IDLs, reduced levels of HDL and an association with insulin resistance, contribute to increased risk for coronary heart disease compared with individuals with a predominance of larger LDL. Increased atherogenic potential of small dense LDL is suggested by greater propensity for transport into the subendothelial space, increased binding to arterial proteoglycans, and susceptibility to oxidative modification. Large LDL particles also can be associated with increased coronary disease risk, particularly in the setting of normal or low triglyceride levels. Like small LDL, large LDL exhibits reduced LDL receptor affinity compared with intermediate sized LDL. Future delineation of the determinants of heterogeneity of LDL and other apoB-containing lipoproteins may contribute to improved identification and management of patients at high risk for atherosclerotic disease.

  3. [PCSK9 Inhibitors - the magic bullet for LDL cholesterol reduction?].

    PubMed

    Richter, Kurt; Barthel, Andreas; Bornstein, Stefan R; El-Armouche, Ali; Wagner, Michael

    2016-06-01

    The proprotein convertase subtilisin / kexin type 9 (PCSK9) plays an important role in LDL cholesterol (LDL-C) metabolism. Subjects harboring loss-of-function mutations in the gene encoding for PCSK9 display markedly reduced LDL-C plasma levels. PCSK9 is secreted by the liver, binds to the LDL receptor and, following endocytosis, induces lysosomal degradation of the receptor together with the bound LDL-C. Current PCSK9 inhibitors are monoclonal antibodies that specifically absorb PCSK9. Subsequently, instead of being degraded the receptor can dissociate from LDL-C and recycle, consecutively resulting in an increased hepatocyte LDL receptor density and higher LDL-C clearance. In clinical trials, the PCSK9 inhibitors alirocumab and evolocumab induced reductions in LDL-C of up to 70 % in statin-treated as well as statin-naïve patients. So far, serious side effects (requiring cessation of drug treatment) occurred only in rare cases. Since this new class of lipid lowering drugs promises a high potential benefit, they have been approved by the EMA even before completion of the studies addressing clinically relevant endpoints like cardiovascular events and mortality. Therefore, the expected publication of these study results in 2017 may allow a better assessment of the efficacy and safety of PCSK9 inhibitors. PMID:27305302

  4. Molecular biology of PCSK9: its role in LDL metabolism.

    PubMed

    Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H

    2007-02-01

    Proprotein convertase subtilisin-like kexin type 9 (PCSK9) is a newly discovered serine protease that destroys low density lipoprotein (LDL) receptors in liver and thereby controls the level of LDL in plasma. Mutations that increase PCSK9 activity cause hypercholesterolemia and coronary heart disease (CHD); mutations that inactivate PCSK9 have the opposite effect, lowering LDL levels and reducing CHD. Although the mechanism of PCSK9 action is not yet clear, the protease provides a new therapeutic target to lower plasma levels of LDL and prevent CHD. PMID:17215125

  5. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages

    PubMed Central

    Varì, Rosaria; Scazzocchio, Beatrice; Santangelo, Carmela; Filesi, Carmelina; Galvano, Fabio; D'Archivio, Massimo; Masella, Roberta; Giovannini, Claudio

    2015-01-01

    Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power. PMID:26180584

  6. Systematic tuning of silicon Schottky barrier height by atomic interlayers with low electronegativities

    NASA Astrophysics Data System (ADS)

    Long, Wei

    The Schottky barrier height (SBH) is of great importance to the functionality of semiconductor devices, as it governs the carrier transport across the metal-semiconductor (MS) interface. The presence of the Fermi level (FL) pinning phenomena makes tuning the SBH a difficult goal to achieve. The technique of "partisan interlayer" (PI) was proposed recently to modify the SBH, where stable adsorbate-terminated semiconductor (ATS) surfaces were used to form SBs with subsequently applied metal. When elements with large electronegativities were used to form the ATS, the PI technique was effective in reducing the n-type SBH and increasing the p-type SBH, driven by the expected transfer of charge from the semiconductor to the adsorbates. In this thesis work, elements with electronegativities smaller than that of the semiconductor are used as surface termination. SBHs for Ag, Au and In on Si surfaces are found to increase for the n-type and decrease for the p-type interfaces, by as much as 0.25eV, when Ga, Mg and K are used to terminate the Si surfaces. The present results are thus in agreement with the expected charge transfers from elements with smaller electronegativities to silicon and illustrate the general validity of the PI technique. The chemical stability of these surfaces likely weakens the MS interaction and leads to the (partial) preservation of the surface dipole at the MS interface. However, large degrees of SBH inhomogeneity are observed for diodes on these surfaces, likely due to insufficient stability of these surfaces to completely withstand metal interaction. These results are discussed within the basic models of SBH formation and the implications of these results for SBH control of MS systems are also addressed.

  7. Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with suprathermal electrons

    SciTech Connect

    Tribeche, Mouloud; Bacha, Mustapha

    2012-12-15

    The combined effects of an oblique magnetic field and electron suprathermality on weak dust-acoustic (DA) waves in a charge varying electronegative dusty plasmas with application to the Halley Comet are investigated. The correct suprathermal electron charging current is derived based on the orbit-motion limited approach. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burger equation. The electron suprathermality, the obliqueness, and magnitude of the magnetic field are found to modify the dispersive properties of the DA shock structure. Our results may aid to explain and interpret the nonlinear oscillations that may occur in the Halley Comet plasma.

  8. Experimental Observation and Computational Analysis of Striations in Electronegative Capacitively Coupled Radio-Frequency Plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Xin; Schüngel, Edmund; Korolov, Ihor; Donkó, Zoltán; Wang, You-Nian; Schulze, Julian

    2016-06-01

    Self-organized spatial structures in the light emission from the ion-ion capacitive rf plasma of a strongly electronegative gas (CF4 ) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations.

  9. Experimental Observation and Computational Analysis of Striations in Electronegative Capacitively Coupled Radio-Frequency Plasmas.

    PubMed

    Liu, Yong-Xin; Schüngel, Edmund; Korolov, Ihor; Donkó, Zoltán; Wang, You-Nian; Schulze, Julian

    2016-06-24

    Self-organized spatial structures in the light emission from the ion-ion capacitive rf plasma of a strongly electronegative gas (CF_{4}) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations. PMID:27391730

  10. Influence of apoE content on receptor binding of large, bouyant LDL in subjects with different LDL subclass phenotypes.

    PubMed

    Barbagallo, C M; Levine, G A; Blanche, P J; Ishida, B Y; Krauss, R M

    1998-03-01

    We investigated the influence of apolipoprotein (apo) E-containing particles on LDL receptor binding of large, buoyant LDL subfractions (LDL I) from subjects with predominantly large (phenotype A) and small (phenotype B) LDL particles. Direct binding by human fibroblast LDL receptors was tested at 4 degrees C before and after removal of apoE-containing particles by immunoaffinity chromatography. The binding affinity of total LDL I in phenotype B was greater than that in phenotype A (Kd of 1.83+/-0.3 and 3.43+/-0.9 nmol/L, respectively, P<.05). LDL I from phenotype B subjects had a higher apoE to apoB molar ratio than did that from phenotype A (0.16+/-0.04 versus 0.06+/-0.02, P<.05). Nondenaturing gradient gel electrophoresis of apoE-containing LDL I isolated by immunoaffinity chromatography revealed a substantially larger peak particle diameter than in apoE-free LDL I, and comparison of LDL I composition before and after immunoaffinity chromatography suggested an increase in triglyceride content of apoE-containing particles. After removal of these particles, there was a greater than twofold reduction in LDL receptor affinity of phenotype B LDL (Kd of 1.83+/-0.3 to 3.76+/-0.6, P<.01), whereas in phenotype A no change was observed (Kd of 3.43+/-0.9 to 3.57+/-0.4, respectively). The receptor affinity of apoE-free LDL I from phenotype A and B subjects did not differ. These findings confirm that large, buoyant LDL particles from phenotype B subjects have a higher LDL receptor affinity than does LDL I from phenotype A subjects and suggest that this difference is due to an increased content of large, triglyceride-enriched, apoE-containing lipoproteins. It is possible that the accumulation of these particles reflects abnormalities in the metabolism of remnant lipoproteins that contribute to atherosclerosis risk in phenotype B subjects.

  11. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    PubMed

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  12. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.

  13. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux. PMID:25436422

  14. LDL uptake by Leishmania amazonensis: involvement of membrane lipid microdomains.

    PubMed

    De Cicco, Nuccia N T; Pereira, Miria G; Corrêa, José R; Andrade-Neto, Valter V; Saraiva, Felipe B; Chagas-Lima, Alessandra C; Gondim, Katia C; Torres-Santos, Eduardo C; Folly, Evelize; Saraiva, Elvira M; Cunha-E-Silva, Narcisa L; Soares, Maurilio J; Atella, Georgia C

    2012-04-01

    Leishmania amazonensis lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this lipid from the host environment. In this study we show that the L. amazonensis takes up and metabolizes human LDL(1) particles in both a time and dose-dependent manner. This mechanism implies the presence of a true LDL receptor because the uptake is blocked by both low temperature and by the excess of non-labelled LDL. This receptor is probably associated with specific microdomains in the membrane of the parasite, such as rafts, because this process is blocked by methyl-β-cyclodextrin (MCBD). Cholesteryl ester fluorescently-labeled LDL (BODIPY-cholesteryl-LDL) was used to follow the intracellular distribution of this lipid. After uptake it was localized in large compartments along the parasite body. The accumulation of LDL was analyzed by flow cytometry using FITC-labeled LDL particles. Together these data show for the first time that L. amazonensis is able to compensate for its lack of lipid synthesis through the use of a lipid importing machinery largely based on the uptake of LDL particles from the host. Understanding the details of the molecular events involved in this mechanism may lead to the identification of novel targets to block Leishmania infection in human hosts.

  15. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  16. Envelope excitations in electronegative plasmas with electrons featuring the Tsallis distribution

    SciTech Connect

    Bains, A. S.; Li, Bo; Tribeche, Mouloud

    2013-09-15

    We examine the modulational instability (MI) of ion-acoustic waves (IAWs) in an electronegative plasma containing positive and negative ions as well as electrons that follow the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the modulational instability of the IAWs is obtained. Inspired by the experimental work of Ichiki et al.[Phys. Plasmas 8, 4275 (2001)], three types of electronegative plasmas are investigated. The effects of various parameters on the propagation of IAWs are discussed in detail numerically. We find that the plasma supports both bright and dark solutions. The presence of the non-extensively distributed electrons is found to play a crucial role in the formation of envelope excitations. The region in the parameter space where the MI exists depends sensitively on the positive to negative ion mass ratio (M) and negative to positive ion density ratio (ν). An extensive range of the nonextensive q-parameters (−1

  17. The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis.

    PubMed

    Yin, Yanlin; Liu, Weiwei; Ji, Guo; Dai, Yalei

    2013-01-01

    Interleukin-10 (IL-10) may have therapeutic potential in various inflammatory diseases, including atherosclerosis, as it can inhibit oxLDL-induced foam cell formation and apoptosis in macrophages. This study investigated the effect of IL-10 on mitogen-activated protein kinase (MAPK) activation, and apoptosis induced by oxidized low-density lipoprotein (oxLDL) in cultured human umbilical vein endothelial cells (HUVEC). The results demonstrated that IL-10 significantly blocked the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) and apoptosis induced by oxLDL. The inhibitory effect of IL-10 on oxLDL-induced apoptosis was partially dependent on reduced p38, but not JNK, phosphorylation. This study also discovered a linkage between IL-10 and p38 MAPK signaling in oxLDL-induced endothelial cell apoptosis. Interestingly, this study found that lectin-like oxidized LDL receptor-1 (LOX-1) was the only scavenger receptor, on the surface of HUVEC, that was upregulated by oxLDL and the increase in LOX-1 was not suppressed by IL-10. This study confirmed that IL-10 significantly upregulated the expression of suppressor of cytokine signaling-3 (SOCS3), whereas SOCS3 knockdown by siRNA effectively blocked the inhibitory effect of IL-10 on p38 MAPK-dependent apoptosis induced by oxLDL. These results showed for the first time, that IL-10 modulated oxLDL-induced apoptosis by upregulating SOCS3, which then interrupted p38 MAPK activation in endothelial cells. These findings support the essential role of p38 MAPK in the interplay of oxLDL and IL-10 in endothelial apoptosis. PMID:23498167

  18. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    SciTech Connect

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  19. Diet-induced increase in plasma oxidized LDL promotes early fibrosis in a renal porcine auto-transplantation model

    PubMed Central

    2014-01-01

    Background In kidney transplantation, the prevalence of hypercholesterolemia as a co-morbidity factor known to affect graft function, is rising due to the increased number of older donors in response to organ shortage as well as to the hyperlipidemic effects of immunosuppressors in recipient. This study aimed to characterize the effects of hypercholesterolemia on renal graft outcome, investigating the role of oxidized low-density lipoprotein (OxLDL). Methods In vivo, we used a porcine preclinical model of renal auto-transplantation modulated by two experimental diets: a normal (n = 6) or a hyperlipidemic diet (n = 5) maintained during the 3 month follow-up after the surgical procedure. Kidney function and OxLDL levels were monitored as well as fibrosis, LOX-1 and TGF beta signaling pathways. In vitro, we used human artery endothelial cells subjected to OxLDL to investigate the TGF beta profibrotic pathway and the role of the scavenger receptor LOX-1. Results Hyperlipidemic diet-induced increase in plasma OxLDL levels at the time of surgery correlated with an increase in proteinuria 3 months after transplantation, associated with an early graft fibrosis combined with an activation of renal TGF beta signaling. These data suggest a direct involvement of OxLDL in the hyperlipidemic diet-induced activation of the pro-fibrotic TGF beta pathway which seems to be activated by LOX-1 signaling. These results were supported by studies with endothelial cells incubated in culture medium containing OxLDL promoting TGF beta expression inhibited by LOX-1 antibody. Conclusions These results implicate OxLDL in the hyperlipidemic diet-promoted fibrosis in transplanted kidneys, suggesting LOX-1 as a potential therapeutic target and reinforce the need to control cholesterol levels in kidney transplant recipients. PMID:24655356

  20. Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling.

    PubMed

    Hung, Ching-Hsia; Chan, Shih-Hung; Chu, Pei-Ming; Lin, Huei-Chen; Tsai, Kun-Ling

    2016-03-01

    It is suggested that oxLDL is decisive in the initiation and development of atherosclerotic injuries. The up-regulation of oxidative stress and the generation of ROS act as key modulators in developing pro-atherosclerotic and anti-atherosclerotic processes in the human endothelial wall. In this present study, we confirmed that metformin enhanced SIRT1 and AMPK expression in human umbilical vein endothelial cells (HUVECs). Metformin also inhibited oxLDL-increased LOX-1 expression and oxLDL-collapsed AKT/eNOS levels. However, silencing SIRT1 and AMPK diminished the protective function of metformin against oxidative injuries. These results provide a new insight regarding the possible molecular mechanisms of metformin. PMID:26885898

  1. Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling

    PubMed Central

    Hung, Ching-Hsia; Chan, Shih-Hung; Chu, Pei-Ming; Lin, Huei-Chen; Tsai, Kun-Ling

    2016-01-01

    It is suggested that oxLDL is decisive in the initiation and development of atherosclerotic injuries. The up-regulation of oxidative stress and the generation of ROS act as key modulators in developing pro-atherosclerotic and anti-atherosclerotic processes in the human endothelial wall. In this present study, we confirmed that metformin enhanced SIRT1 and AMPK expression in human umbilical vein endothelial cells (HUVECs). Metformin also inhibited oxLDL-increased LOX-1 expression and oxLDL-collapsed AKT/eNOS levels. However, silencing SIRT1 and AMPK diminished the protective function of metformin against oxidative injuries. These results provide a new insight regarding the possible molecular mechanisms of metformin. PMID:26885898

  2. An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo.

    PubMed

    Schiele, Felix; Park, John; Redemann, Norbert; Luippold, Gerd; Nar, Herbert

    2014-02-20

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with autosomal dominant hypercholesterolemia, a state of elevated levels of LDL (low-density lipoprotein) cholesterol. Autosomal dominant hypercholesterolemia can result in severe implications such as stroke and coronary heart disease. The inhibition of PCSK9 function by therapeutic antibodies that block interaction of PCSK9 with the epidermal growth factor-like repeat A domain of LDL receptor (LDLR) was shown to successfully lower LDL cholesterol levels in clinical studies. Here we present data on the identification, structural and biophysical characterization and in vitro and in vivo pharmacology of a PCSK9 antibody (mAb1). The X-ray structure shows that mAb1 binds the module 1 of the C-terminal domain (CTD) of PCSK9. It blocks access to an area bearing several naturally occurring gain-of-function and loss-of-function mutations. Although the antibody does not inhibit binding of PCSK9 to epidermal growth factor-like repeat A, it partially reverses PCSK9-induced reduction of the LDLR and LDL cholesterol uptake in a cellular assay. mAb1 is also effective in lowering serum levels of LDL cholesterol in cynomolgus monkeys in vivo. Complete loss of PCSK9 is associated with insufficient liver regeneration and increased risk of hepatitis C infections. Blocking of the CTD is sufficient to partially inhibit PCSK9 function. Antibodies binding the CTD of PCSK9 may thus be advantageous in patients that do not tolerate complete inhibition of PCSK9.

  3. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome

    PubMed Central

    Song, Guohua; Li, Min; Sang, Hui; Zhang, Liying; Li, Xiuhong; Yao, Shutong; Yu, Yang; Zong, Chuanlong; Xue, Yazhuo; Qin, Shucun

    2013-01-01

    We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9–1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome. PMID:23610159

  4. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome.

    PubMed

    Song, Guohua; Li, Min; Sang, Hui; Zhang, Liying; Li, Xiuhong; Yao, Shutong; Yu, Yang; Zong, Chuanlong; Xue, Yazhuo; Qin, Shucun

    2013-07-01

    We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9-1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome.

  5. Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized low-density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release.

    PubMed

    Truman, Jean-Philip; Al Gadban, Mohammed M; Smith, Kent J; Jenkins, Russell W; Mayroo, Nalini; Virella, Gabriel; Lopes-Virella, Maria F; Bielawska, Alicja; Hannun, Yusuf A; Hammad, Samar M

    2012-05-01

    Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to the formation of lipid-laden macrophages (foam cells). Fcγ receptors mediate uptake of oxLDL-IC, whereas scavenger receptors internalize oxLDL. We have previously reported that oxLDL-IC, but not free oxLDL, activate macrophages and prolong their survival. Sphingomyelin is a major constituent of cell membranes and lipoprotein particles and acid sphingomyelinase (ASMase) hydrolyses sphingomyelin to generate the bioactive lipid ceramide. ASMase exists in two forms: lysosomal (L-ASMase) and secretory (S-ASMase). In this study we examined whether oxLDL and oxLDL-IC regulate ASMase differently, and whether ASMase mediates monocyte/macrophage activation and cytokine release. The oxLDL-IC, but not oxLDL, induced early and consistent release of catalytically active S-ASMase. The oxLDL-IC also consistently stimulated L-ASMase activity, whereas oxLDL induced a rapid transient increase in L-ASMase activity before it steadily declined below baseline. Prolonged exposure to oxLDL increased L-ASMase activity; however, activity remained significantly lower than that induced by oxLDL-IC. Further studies were aimed at defining the function of the activated ASMase. In response to oxLDL-IC, heat-shock protein 70B' (HSP70B') was up-regulated and localized with redistributed ASMase in the endosomal compartment outside the lysosome. Treatment with oxLDL-IC induced the formation and release of HSP70-containing and IL-1β-containing exosomes via an ASMase-dependent mechanism. Taken together, the results suggest that oxLDL and oxLDL-IC differentially regulate ASMase activity, and the pro-inflammatory responses to oxLDL-IC are mediated by prolonged activation of ASMase. These findings may contribute to increased understanding of mechanisms mediating macrophage involvement in atherosclerosis.

  6. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  7. Insulin resistance, small LDL particles, and risk for atherosclerotic disease.

    PubMed

    Toth, Peter P

    2014-01-01

    There is a global epidemic of obesity, metabolic syndrome, and diabetes mellitus. Insulin resistance (IR) is etiologic for both metabolic syndrome and diabetes mellitus. IR induces a broad range of toxic systemic effects, including dyslipidemia, hypertension, hyperglycemia, increased production of advanced glycosylation end products, increased inflammatory tone, as well as a prothrombotic and pro-oxidative state. Patients with IR are highly vulnerable to the development of accelerated atherosclerosis as well its clinical sequelae, including coronary artery disease and myocardial infarction, carotid artery disease and ischemic stroke, peripheral arterial disease and claudication/lower extremity amputation, and coronary mortality. Among the most important risk factors patients afflicted with IR develop is the so-called atherogenic lipid triad: large numbers of small, dense low-density lipoprotein (sdLDL) particles, hypertriglyceridemia, and low serum concentrations of high-density lipoprotein cholesterol. Though controversial, much recent evidence suggests that the formation of sdLDL particles in the setting of IR is an important metabolic transition. Some studies suggest that these smaller particles are more atherogenic than their larger, more buoyant counterparts. At least part of the explanation for the apparent augmented atherogenicity of small LDL particles is their reduced systemic clearance by the LDL receptor, increased vulnerability to oxidation rendering them more apt for scavenging by macrophages, and possible increased flux into the subendothelial space of arterial walls. Numerous small studies suggest that sdLDL is highly correlated with cardiovascular events. Cardiovascular medicine is in need of a large prospective, randomized study that would more definitively investigate the impact of small, dense LDL (sdLDL) on risk for cardiovascular disease and whether therapeutic interventions designed to specifically reduce the burden of sdLDL are associated

  8. Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21.

    PubMed

    Khaidakov, Magomed; Mehta, Jawahar L

    2012-01-01

    Dyslipidemia and obesity are primary risk factors for the development of atherosclerosis and are also epidemiologically linked to increased susceptibility to a variety of cancers including breast cancer. One of the prominent features of dyslipidemia is enhanced production of oxidized LDL (ox-LDL), which has been shown to be implicated in key steps of atherogenesis including inflammatory signaling and proliferation of vascular cells. In this study we analyzed the effects of ox-LDL in human mammary epithelial cells (MCF10A). MCF10A cells avidly internalized dil-ox-LDL and exhibited increased proliferative response to ox-LDL within the range of 1-50 µg/ml in a dose-dependent manner. Treatment of cells with 20 µg/ml ox-LDL for 2 and 12 hours was associated with upregulation of LOX-1 and CD36 scavenger receptors while MSR1 and CXLC16 receptors did not change. Ox-LDL-treated cells displayed significant upregulation of NADPH oxidases (subunits P22(phox) and P47(phox)), lipoxygenases-12 and -15, and cytoplasmic, but not mitochondrial, SOD. Ox-LDL also triggered phosphorylation of IκBα coupled with nuclear translocation of NF-κB and stimulated p44/42 MAPK, PI3K and Akt while intracellular PTEN (PI3K/Akt pathway inhibitor and target of miR-21) declined. Quantitative PCR revealed increased expression of hsa-miR-21 in ox-LDL treated cells coupled with inhibition of miR-21 target genes. Further, transfection of MCF10A cells with miR-21 inhibitor prevented ox-LDL mediated stimulation of PI3K and Akt. We conclude that, similarly to vascular cells, mammary epithelial cells respond to ox-LDL by upregulation of proliferative and pro-inflammatory signaling. We also report for the first time that part of ox-LDL triggered reactions in MCF10A cells is mediated by oncogenic hsa-miR-21 through inhibition of its target gene PTEN and consequent activation of PI3K/Akt pathway.

  9. Uptake and catabolism of modified LDL in scavenger-receptor class A type I/II knock-out mice.

    PubMed Central

    Van Berkel, T J; Van Velzen, A; Kruijt, J K; Suzuki, H; Kodama, T

    1998-01-01

    The liver is the major organ responsible for the uptake of modified low-density lipoprotein (LDL) from the blood circulation, with endothelial and Kupffer cells as major cellular uptake sites. Scavenger-receptors, which include various classes, are held responsible for this uptake. Mice deficient in scavenger-receptor class A types I and II were created and the fate of acetylated LDL (Ac-LDL) in vivo and its interaction with liver endothelial, Kupffer and peritoneal macrophages was characterized. Surprisingly, the decay in vivo (t12 < 2 min), tissue distribution and liver uptake (at 5 min it was 77.4 +/- 4.6% of the injected dose) of Ac-LDL in the knock-out mice were not significantly different from control mice (t12 < 2 min and liver uptake 79.1 +/- 4.6% of the injected dose). A separation of mice liver cells into parenchymal, endothelial and Kupffer cells 10 min after injection of Ac-LDL indicated that in both control and knock-out mice the liver endothelial cells were responsible for more than 70% of the liver uptake. Both in control and knock-out mice, preinjection of polyinosinic acid (poly I, 200 microg) completely blocked the liver uptake, indicating that both in control and knock-out mice the scavenger-receptors are sensitive to poly I. Preinjection of suboptimal poly I concentrations (20 and 50 microg) provided evidence that the serum decay and liver uptake of Ac-LDL is more readily inhibited in the knock-out mice as compared with the control mice, indicating less efficient removal of Ac-LDL in vivo in the knock-out mice under these conditions. Studies in vitro with isolated liver endothelial and Kupffer cells from knock-out mice indicate that the cell association of Ac-LDL during 2 h at 37 degrees C is 50 and 53% of the control, respectively, whereas the degradation reaches values of 58 and 63%. For peritoneal macrophages from knock-out mice the cell association of Ac-LDL was identical to the control mice whereas the Ac-LDL degradation in cells from the

  10. Dust acoustic shock wave in electronegative dusty plasma: Roles of weak magnetic field

    SciTech Connect

    Ghosh, Samiran; Ehsan, Z.; Murtaza, G.

    2008-02-15

    The effects of nonsteady dust charge variations and weak magnetic field on small but finite amplitude nonlinear dust acoustic wave in electronegative dusty plasma are investigated. The dynamics of the nonlinear wave are governed by a Korteweg-de Vries Burger equation that possesses dispersive shock wave. The weak magnetic field is responsible for the dispersive term, whereas nonsteady dust charge variation is responsible for dissipative term, i.e., the Burger term. The coefficient of dissipative term depends only on the obliqueness of the magnetic field. It is found that for parallel propagation the dynamics of the nonlinear wave are governed by the Burger equation that possesses monotonic shock wave. The relevances of the findings to cometary dusty plasma, e.g., Comet Halley are briefly discussed.

  11. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications. PMID:27478888

  12. Electronegativity estimator built on QTAIM-based domains of the bond electron density.

    PubMed

    Ferro-Costas, David; Pérez-Juste, Ignacio; Mosquera, Ricardo A

    2014-05-15

    The electron localization function, natural localized molecular orbitals, and the quantum theory of atoms in molecules have been used all together to analyze the bond electron density (BED) distribution of different hydrogen-containing compounds through the definition of atomic contributions to the bonding regions. A function, gAH , obtained from those contributions is analyzed along the second and third periods of the periodic table. It exhibits periodic trends typically assigned to the electronegativity (χ), and it is also sensitive to hybridization variations. This function also shows an interesting S shape with different χ-scales, Allred-Rochow's being the one exhibiting the best monotonical increase with regard to the BED taken by each atom of the bond. Therefore, we think this χ can be actually related to the BED distribution.

  13. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  14. A Simplified Model Joining the Sheath and the Plasma in Electronegative Plasmas

    NASA Astrophysics Data System (ADS)

    Fernández Palop, J. I.; Ballesteros, J.; Hernández, M. A.; Crespo, R. Morales; Del Pino, S. Borrego

    2004-02-01

    An extension of the previous work which only dealt with the sheath zone is used to analyze the wall-plasma interaction in electronegative plasmas. Ionization is introduced as the presheath mechanism. This extension includes the joining of the sheath and the plasma solutions. For certain plasma parameters a stratified presheath is obtained. In this case, the plasma and the sheath solutions are matched in a very simplified way, by introducing a discontinuity in the electric field. This discontinuity is equivalent to consideration of a negatively charged layer between the presheath and the sheath. The parameter space region in which this matching should be made has been delimited. The model includes the previous one in the limiting case of no ionization.

  15. LDL biochemical modifications: a link between atherosclerosis and aging

    PubMed Central

    Alique, Matilde; Luna, Carlos; Carracedo, Julia; Ramírez, Rafael

    2015-01-01

    Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein (LDL) is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the arterial wall by reactive oxygen species (ROS). Evidence suggests that common risk factors for atherosclerosis raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular senescence are well-established markers for atherosclerosis. This review examines LDL modifications and discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and oxidative stress, and the link between aging and atherosclerosis. PMID:26637360

  16. Identification of 4-hydroxy-2-nonenal-histidine adducts that serve as ligands for human lectin-like oxidized LDL receptor-1.

    PubMed

    Kumano-Kuramochi, Miyuki; Shimozu, Yuuki; Wakita, Chika; Ohnishi-Kameyama, Mayumi; Shibata, Takahiro; Matsunaga, Shigeru; Takano-Ishikawa, Yuko; Watanabe, Jun; Goto, Masao; Xie, Qiuhong; Komba, Shiro; Uchida, Koji; Machida, Sachiko

    2012-02-15

    LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have identified products of lipid peroxidation of OxLDL that serve as ligands for LOX-1. We used CHO (Chinese-hamster ovary) cells that stably express LOX-1 to evaluate the ability of BSA modified by lipid peroxidation to compete with AcLDL (acetylated low-density lipoprotein). We found that HNE (4-hydroxy-2-nonenal)-modified proteins most potently inhibited the uptake of AcLDL. On the basis of the findings that HNE-modified BSA and oxidation of LDL resulted in the formation of HNE-histidine Michael adducts, we examined whether the HNE-histidine adducts could serve as ligands for LOX-1. The authentic HNE-histidine adduct inhibited the uptake of AcLDL in a dose-dependent manner. Furthermore, we found the interaction of LOX-1 with the HNE-histidine adduct to have a dissociation constant of 1.22×10(-8) M using a surface plasmon resonance assay. Finally, we showed that the HNE-histidine adduct stimulated the formation of reactive oxygen species and activated extracellular-signal-regulated kinase 1/2 and NF-κB (nuclear factor κB) in HAECs (human aortic endothelial cells); these signals initiate endothelial dysfunction and lead to atherosclerosis. The present study provides intriguing insights into the molecular details of LOX-1 recognition of OxLDL.

  17. Involvement of NADPH oxidase in up-regulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts induced by oxidized LDL and in apolipoprotein E-deficient mice.

    PubMed

    Zhao, Ruozhi; Moghadasian, Mohammed H; Shen, Garry X

    2011-09-01

    The present study demonstrated that oxidized LDL (oLDL) increased the generation of superoxide and hydrogen peroxide (H(2)O(2)), the abundances of NADPH oxidase (NOX)4, NOX2, p22-phox and lectin-like oLDL receptor-1 (LOX-1) in wild-type or heat shock factor-1 (HSF1)-deficient mouse embryo fibroblasts (MEF). LOX-1 antibody inhibited LDL or oLDL-induced expression of NOX components in MEF. Abundance of HSF1 or plasminogen activator inhibitor-1 (PAI-1) was increased by oLDL in wild-type, but not in HSF1-deficient MEF. Diphenyleneiodonium or siRNA for NOX or p22-phox inhibited oLDL-induced increases of HSF1, PAI-1 and H(2)O(2) in MEF. Increased NOX4, NOX2, LOX1, HSF1 and PAI-1 were detected in aortae and hearts of apolipoprotein E-knockout (apoE-KO) mice compared to controls, which were associated with increased serum cholesterol or plasma PAI-1. The results suggest that NOX is required for oLDL-induced HSF1 or PAI-1 expression in MEF, which was supported by the up-regulation of NOX, LOX-1, HSF1 and PAI-1 in apoE-KO mice.

  18. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism.

    PubMed

    Miyosawa, Katsutoshi; Watanabe, Yuichiro; Murakami, Kentaro; Murakami, Takeshi; Shibata, Haruki; Iwashita, Masaya; Yamazaki, Hiroyuki; Yamazaki, Koichi; Ohgiya, Tadaaki; Shibuya, Kimiyuki; Mizuno, Ken; Tanabe, Sohei; Singh, Sasha A; Aikawa, Masanori

    2015-07-15

    Despite significant reduction of cardiovascular events by statin treatment, substantial residual risk persists, driving emerging needs for the development of new therapies. We identified a novel cholesteryl ester transfer protein (CETP) inhibitor, K-312, that raises HDL and lowers LDL cholesterol levels in animals. K-312 also suppresses hepatocyte expression of proprotein convertase subtilisin/kexin 9 (PCSK9), a molecule that increases LDL cholesterol. We explored the underlying mechanism for the reduction of PCSK9 expression by K-312. K-312 inhibited in vitro human plasma CETP activity (IC50; 0.06 μM). Administration of K-312 to cholesterol-fed New Zealand White rabbits for 18 wk raised HDL cholesterol, decreased LDL cholesterol, and attenuated aortic atherosclerosis. Our search for additional beneficial characteristics of this compound revealed that K-312 decreases PCSK9 expression in human primary hepatocytes and in the human hepatoma cell line HepG2. siRNA silencing of CETP in HepG2 did not compromise the suppression of PCSK9 by K-312, suggesting a mechanism independent of CETP. In HepG2 cells, K-312 treatment decreased the active forms of sterol regulatory element-binding proteins (SREBP-1 and -2) that regulate promoter activity of PCSK9. Chromatin immunoprecipitation assays demonstrated that K-312 decreased the occupancy of SREBP-1 and SREBP-2 on the sterol regulatory element of the PCSK9 promoter. PCSK9 protein levels decreased by K-312 treatment in the circulating blood of cholesterol-fed rabbits, as determined by two independent mass spectrometry approaches, including the recently developed, highly sensitive parallel reaction monitoring method. New CETP inhibitor K-312 decreases LDL cholesterol and PCSK9 levels, serving as a new therapy for dyslipidemia and cardiovascular disease.

  19. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes

    PubMed Central

    Zhao, Minglei; Yang, Songguang; Liu, Xuncheng; Wu, Keqiang

    2015-01-01

    Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening). The plant hormone abscisic acid (ABA) and DELAY OF GERMINATION1 (DOG1) protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2) act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2, and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy. PMID:25852712

  20. Calpain-1 Mediated Disorder of Pyrophosphate Metabolism Contributes to Vascular Calcification Induced by oxLDL.

    PubMed

    Tang, Futian; Chan, Erqing; Lu, Meili; Zhang, Xiaowen; Dai, Chunmei; Mei, Meng; Zhang, Suping; Wang, Hongxin; Song, Qing

    2015-01-01

    We previously reported that oxidized low density lipoprotein (oxLDL) accelerated the calcification in aorta of rats and rat vascular smooth muscle cells (RVSMCs). However, the molecular mechanism underlying the acceleration remains poorly understood. The present study aimed to investigate the role of calpain-1, Ca2+-sensitive intracellular cysteine proteases, in the vascular calcification of rats treated with both high dose of vitamin D2 and high cholesterol diet. The results showed that calpain activity significantly increased in calcified aortic tissue of rats and RVSMCs treated with oxLDL. Specific calpain inhibitor I (CAI, 0.5mg/kg, intraperitoneal) inhibited the vascular calcification in rats with hypercholesterolemia accompanied by the increase in the level of extracellular inorganic pyrophosphate (PPi), the endogenous inhibitor of vascular calcification. In addition, CAI increased the content of adenosine triphosphate (ATP), decreased the activity, mRNA and protein expression of alkaline phosphatase (ALP) and reduced the production of superoxide anion in calcified aortic tissue. CAI also increased the activity of ATP synthase as well as protein expression of ATP5D, δ subunit of ATP synthase. In the in vitro study, suppression of calpain-1 using siRNA assay inhibited the calcium deposition, increased the levels of PPi and ATP, improved the activity of ATP synthase as well as protein expression of ATP5D in RVSMCs treated with oxLDL. Calpain-1 suppression also decreased the activity, mRNA and protein expression of ALP and reduced the mitochondrial ROS (Mito-ROS) production in RVSMCs. However, mito-TEMPO, the mitochondria-targeted ROS scavenger, reduced the calcium deposition, increased the PPi in culture medium, decreased the activity, mRNA and protein expression of ALP in RVSMCs treated with oxLDL. Taken together, the results suggested that calpain-1 activation plays critical role in vascular calcification caused by oxLDL, which might be mediated by PPi

  1. Estradiol protective role in atherogenesis through LDL structure modification

    NASA Astrophysics Data System (ADS)

    Papi, Massimiliano; Brunelli, Roberto; Ciasca, Gabriele; Maiorana, Alessandro; Maulucci, Giuseppe; Palmieri, Valentina; Parasassi, Tiziana; De Spirito, Marco

    2016-07-01

    Relevant physiological functions are exerted by circulating low density lipoprotein (LDL) as well as eventual pathological processes triggering atherogenesis. Modulation of these functions can well be founded on modifications of LDL structure. Given its large dimension, multicomponent organization and strong interactions between the protein apoB-100 and lipids, determining LDL 3D structure remains a challenge. We propose a novel quantitative physical approach to this complex biological problem. We introduce a three-component model, fitted to small angle x-ray scattering data on LDL maintained in physiological conditions, able to achieve a consistent 3D structure. Unexpected features include three distinct protein domains protruding out of a sphere, quite rough in its surface, where several core lipid areas are exposed. All LDL components are affected by 17-β-estradiol (E2) binding to apoB-100. Mostly one of the three protruding protein domains, dramatically reducing its presence on the surface and with a consequent increase of core lipids’ exposure. This result suggests a structural basis for some E2 protecting roles and LDL physiological modifications.

  2. Modulation of oxidized-LDL receptor-1 (LOX1) contributes to the antiatherosclerosis effect of oleanolic acid.

    PubMed

    Jiang, Qixiao; Wang, Daoyan; Han, Yantao; Han, Zhiwu; Zhong, Weizhen; Wang, Chunbo

    2015-12-01

    Oleanolic acid (OA) is a bioactive pentacyclic triterpenoid. The current work studied the effects and possible mechanisms of OA in atherosclerosis. Quails (Coturnix coturnix) were treated with high fat diet with or without OA. Atherosclerosis was assessed by examining lipid profile, antioxidant status and histology in serum and aorta. Human umbilical vein endothelial cells (HUVECs) were exposed to 200μg/mL ox-LDL for 24h, then cell viability was assessed with MTT assay; reactive oxygen species (ROS) was assessed with DCFDA staining. Expression levels of LOX-1, NADPH oxidase subunits, nrf2 and ho-1 were measured with real time PCR and western blotting. Furthermore, LOX-1 was silenced with lentivirus and the expression levels assessment was repeated. OA treatment improved the lipid profile and antioxidant status in quails fed with high fat diet. Histology showed decreased atherosclerosis in OA treated animals. Ox-LDL exposure decreased viability and induced ROS generation in HUVECs, and this progression was alleviated by OA pretreatment. Moreover, elevated expression of LOX-1, NADPH oxidase subunits, nrf2 and ho-1 were observed in ox-LDL exposed HUVECs. OA pretreatment prevented ox-LDL induced increase of LOX-1 and NADPH oxidase subunits expression, while further increased nrf2 and ho-1 expression. Silencing of LOX-1 abolished ox-LDL induced effects in cell viability, ROS generation and gene expression. OA could alleviate high fat diet induced atherosclerosis in quail and ox-LDL induced cytotoxicity in HUVECs; the potential mechanism involves modulation of LOX-1 activity, including inhibition of expression of NADPH oxidase subunits and increase of the expression of nrf2 and ho-1. PMID:26510581

  3. Dissociable and nondissociable forms of platelet-activating factor acetylhydrolase in human plasma LDL: implications for LDL oxidative susceptibility.

    PubMed

    McCall, M R; La Belle, M; Forte, T M; Krauss, R M; Takanami, Y; Tribble, D L

    1999-01-29

    Platelet-activating factor acetylhydrolase (PAF-AH) is transported by lipoproteins in plasma and is thought to possess both anti-inflammatory and anti-oxidative activity. It has been reported that PAF-AH is recovered primarily in small, dense LDL and HDL following ultracentrifugal separation of lipoproteins. In the present studies, we aimed to further define the distribution of PAF-AH among lipoprotein fractions and subfractions, and to determine whether these distributions are affected by the lipoprotein isolation strategy (FPLC versus sequential ultracentrifugation) and LDL particle distribution profile. When lipoproteins were isolated by FPLC, the bulk (approximately 85%) of plasma PAF-AH activity was recovered within LDL-containing fractions, whereas with ultracentrifugation, there was a redistribution to HDL (which contained approximately 18% of the activity) and the d>1.21 g/ml fraction (which contained approximately 32%). Notably, re-ultracentrifugation of isolated LDL did not result in any further movement of PAF-AH to higher densities, suggesting the presence of dissociable and nondissociable forms of the enzyme on LDL. Differences were noted in the distribution of PAF-AH activity among LDL subfractions from subjects exhibiting the pattern A (primarily large, buoyant LDL) versus pattern B (primarily small, dense LDL) phenotype. In the latter group, there was a relative depletion of PAF-AH activity in subfractions in the intermediate to dense range (d=1.039-1.047 g/ml) with a corresponding increase in enzyme activity recovered within the d>1.21 g/ml ultracentrifugal fraction. Thus, there appears to be a greater proportion of the dissociable form of PAF-AH in pattern B subjects. In both populations, most of the nondissociable activity was recovered in a minor small, dense LDL subfraction. Based on conjugated dienes as a measure of lipid peroxidation, variations in PAF-AH activity appeared to contribute to variations in oxidative behavior among

  4. Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial123

    PubMed Central

    Hernáez, Álvaro; Remaley, Alan T; Farràs, Marta; Fernández-Castillejo, Sara; Subirana, Isaac; Schröder, Helmut; Fernández-Mampel, Mireia; Muñoz-Aguayo, Daniel; Sampson, Maureen; Solà, Rosa; Farré, Magí; de la Torre, Rafael; López-Sabater, María-Carmen; Nyyssönen, Kristiina; Zunft, Hans-Joachim F; Covas, María-Isabel; Fitó, Montserrat

    2015-01-01

    Background: Olive oil polyphenols have shown protective effects on cardiovascular risk factors. Their consumption decreased oxidative stress biomarkers and improved some features of the lipid profile. However, their effects on LDL concentrations in plasma and LDL atherogenicity have not yet been elucidated. Objective: Our objective was to assess whether the consumption of olive oil polyphenols could decrease LDL concentrations [measured as apolipoprotein B-100 (apo B-100) concentrations and the total number of LDL particles] and atherogenicity (the number of small LDL particles and LDL oxidizability) in humans. Methods: The study was a randomized, cross-over controlled trial in 25 healthy European men, aged 20–59 y, in the context of the EUROLIVE (Effect of Olive Oil Consumption on Oxidative Damage in European Populations) study. Volunteers ingested 25 mL/d raw low-polyphenol-content olive oil (LPCOO; 366 mg/kg) or high-polyphenol-content olive oil (HPCOO; 2.7 mg/kg) for 3 wk. Interventions were preceded by 2-wk washout periods. Effects of olive oil polyphenols on plasma LDL concentrations and atherogenicity were determined in the sample of 25 men. Effects on lipoprotein lipase (LPL) gene expression were assessed in another sample of 18 men from the EUROLIVE study. Results: Plasma apo B-100 concentrations and the number of total and small LDL particles decreased (mean ± SD: by 5.94% ± 16.6%, 11.9% ± 12.0%, and 15.3% ± 35.1%, respectively) from baseline after the HPCOO intervention. These changes differed significantly from those after the LPCOO intervention, which resulted in significant increases of 6.39% ± 16.6%, 4.73% ± 22.0%, and 13.6% ± 36.4% from baseline (P < 0.03). LDL oxidation lag time increased by 5.0% ± 10.3% from baseline after the HPCOO intervention, which was significantly different only relative to preintervention values (P = 0.038). LPL gene expression tended to increase by 26% from baseline after the HPCOO intervention (P = 0.08) and did

  5. LDL-Cholesterol: Standards of Treatment 2016: A German Perspective.

    PubMed

    März, Winfried; Scharnagl, Hubert; Gouni-Berthold, Ioanna; Silbernagel, Günther; Dressel, Alexander; Grammer, Tanja B; Landmesser, Ulf; Dieplinger, Hans; Windler, Eberhard; Laufs, Ulrich

    2016-10-01

    Decreasing low-density lipoprotein cholesterol (LDL-C) is one of the few established and proven principles for the prevention and treatment of atherosclerosis. The higher the individual cardiovascular risk, the higher the benefit of lipid-lowering pharmacotherapy. Therefore, treatment options are chosen based on a patient's total cardiovascular risk. The latter depends not only on the levels of LDL-C but also on the presence of cardiovascular disease (CVD) and on the number and severity of other risk factors. Current guidelines recommend the lowering of LDL-C to 115 mg/dl (3 mmol/l) in patients with low and moderate risk. The LDL-C treatment target is <100 mg/dl (2.6 mmol/l) for patients at high risk and <70 mg/dl (1.8 mmol/l) for patients at very high risk. Although lifestyle measures remain a fundamental part of treatment, many patients require drug therapy to achieve their LDL-C targets. Statins are the drugs of choice, with other options including ezetimibe and the newly available monoclonal antibodies against PCSK9 (proprotein convertase subtilisin/kexin type 9). In some cases, bile acid-binding sequestrants and fibrates can also be considered. Nicotinic acid is no longer available in Germany. PCSK9 antibodies decrease LDL-C about 50-60 % and are well tolerated. Their effects on clinical endpoints are being investigated in large randomized trials. The aim of the present review is to summarize the current guidelines and treatment options for hypercholesterolemia. Moreover, we provide an appraisal of PCSK9 antibodies and propose their use in selected patient populations, particularly in those at very high cardiovascular risk whose LDL-C levels under maximally tolerated lipid-lowering therapy are significantly over their treatment target. PMID:27430233

  6. LDL-cholesterol signaling induces breast cancer proliferation and invasion.

    PubMed

    dos Santos, Catarina Rodrigues; Domingues, Germana; Matias, Inês; Matos, João; Fonseca, Isabel; de Almeida, José Mendes; Dias, Sérgio

    2014-01-15

    Lipids and cholesterol in particular, have long been associated with breast cancer (BC) onset and progression. However, the causative effects of elevated lipid levels and breast cancer remain largely undisclosed and were the subject of the present study.We took advantage of well-established in vitro and in vivo models of cholesterol enrichment to exploit the mechanism involved in LDL-cholesterol favouring BC growth and invasiveness. We analyzed its effects in models that mimic different BC subtypes and stages.Our data show that LDL-cholesterol (but not HDL-cholesterol) promotes BC cells proliferation, migration and loss of adhesion, hallmarks of the epithelial to mesenchymal transition. In vivo studies modeling cholesterol levels showed that breast tumors are consistently larger and more proliferative in hypercholesterolemic mice, which also have more frequently lung metastases. Microarray analysis revealed an over expression of intermediates of Akt and ERK pathways suggesting a survival response induced by LDL, confirmed by WB analyses. Gene expression analysis also evidenced an activation of ErbB2 signaling pathway and decreased expression of adhesion molecules (cadherin-related family member3, CD226, Claudin 7 and Ocludin) in the cells exposed to LDL.Together, the present work shows novel mechanistic evidence that high LDL-cholesterol levels promote BC progression. These data provide rationale for the clinical control of cholesterol levels in BC patients.

  7. Polymorphic DNA haplotypes at the LDL receptor locus.

    PubMed Central

    Leitersdorf, E; Chakravarti, A; Hobbs, H H

    1989-01-01

    Mutations in the low-density lipoprotein (LDL) receptor gene result in the autosomal dominant disorder familial hypercholesterolemia (FH). Many different LDL receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL receptor genes for prenatal diagnosis of homozygous FH or to study the role of the LDL receptor gene in polygenic hypercholesterolemia requires the use of closely linked RFLPs. In the present study we used 10 different RFLPs, including three newly described polymorphisms, to construct 123 independent haplotypes from 20 Caucasian American pedigrees. Our sample contained 31 different haplotypes varying in frequency from 0.8% to 29.3%; the five most common haplotypes account for 67.5% of the sample. The heterozygosity and PIC of each site were determined, and these values disclosed that eight of the RFLPs were substantially polymorphic. Linkage-disequilibrium analysis of the haplotype data revealed strong nonrandom associations among all 10 RFLPs, especially among those sites clustered in the 3' region of the gene. Evolutionary analysis suggests the occurrence of both mutational and recombinational events in the generation of the observed haplotypes. A strategy for haplotype analysis of the LDL receptor gene in individuals of Caucasian American descent is presented. Images Figure 2 Figure 3 PMID:2563635

  8. Mitotic Spindle Defects and Chromosome Mis-Segregation Induced by LDL/Cholesterol—Implications for Niemann-Pick C1, Alzheimer’s Disease, and Atherosclerosis

    PubMed Central

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer’s disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy–in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis’ first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol’s aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  9. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    PubMed

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer's disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  10. β Common Receptor Mediates Erythropoietin-Conferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages

    PubMed Central

    Lu, Kuo-Yun; Yu, Yuan-Bin; Tsai, Feng-Chuan

    2015-01-01

    Erythropoietin (EPO), the key factor for erythropoiesis, also protects macrophage foam cells from lipid accumulation, yet the definitive mechanisms are not fully understood. β common receptor (βCR) plays a crucial role in the nonhematopoietic effects of EPO. In the current study, we investigated the role of βCR in EPO-mediated protection in macrophages against oxidized low-density lipoprotein- (oxLDL-) induced deregulation of lipid metabolism and inflammation. Here, we show that βCR expression was mainly in foamy macrophages of atherosclerotic aortas from apolipoprotein E-deficient mice. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in macrophages. Inhibition of βCR activation by neutralizing antibody or small interfering RNA (siRNA) abolished the EPO-conferred protection in oxLDL-induced lipid accumulation. Furthermore, EPO-promoted cholesterol efflux and upregulation of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 were prevented by pretreatment with βCR neutralizing antibody or βCR siRNA. Additionally, blockage of βCR abrogated the EPO-conferred anti-inflammatory action on oxLDL-induced production of macrophage inflammatory protein-2. Collectively, our findings suggest that βCR may play an important role in the beneficial effects of EPO against oxLDL-elicited dysfunction of macrophage foam cells. PMID:26101463

  11. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  12. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion–ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  13. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  14. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  15. Two-dimensional particle-in-cell simulations of transport in a magnetized electronegative plasma

    SciTech Connect

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.

    2010-11-15

    Particle transport in a uniformly magnetized electronegative plasma is studied in two-dimensional (2D) geometry with insulating (dielectric) boundaries. A 2D particle-in-cell (PIC) code is employed, with the results compared to analytic one-dimensional models that approximate the end losses as volume losses. A modified oxygen reaction set is used to scale to the low densities used in PIC codes and also to approximately model other gases. The principal study is the limiting of the transverse electron flow due to strong electron magnetization. The plasma in the PIC calculation is maintained by axial currents that vary across the transverse dimension. For a cosine current profile nearly uniform electron temperature is obtained, which at the B-fields studied (600-1200 G) give a small but significant fraction (0.25 or less) of electron to negative ion transverse loss. For a more transverse-confined current, and approximating the higher mass and attachment reaction rate of iodine, the fraction of electron to negative ion transverse loss can be made very small. The models which have been constructed reasonably approximate the PIC results and indicate that the cross-field transport is nearly classical.

  16. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion-ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  17. Discovery of Metabolically Stabilized Electronegative Polyacridine-PEG Peptide DNA Open Polyplexes

    PubMed Central

    Fernandez, Christian A.; Baumhover, Nicholas J.; Anderson, Kevin; Rice, Kevin G.

    2010-01-01

    Cationic condensing peptides and polymers bind electrostatically to DNA to form cationic polyplexes. While many cationic polyplexes are able to achieve in vitro transfection mediated through electrostatic interactions, few have been able to mediate gene transfer in vivo. The present study describes the development and testing of polyacridine PEG-peptides that bind to plasmid DNA by intercalation resulting in electronegative open polyplex DNA. Polyacridine PEG-peptides were prepared by chemically conjugating 6-(9-acridinylamino) hexanoic acid onto side chains of Lys in PEG-Cys-Trp-(Lys)3, 4, or 5. The resulting PEG-Cys-Trp-(Lys-(Acr))3, 4, or 5 peptides bound tightly to DNA by polyintercalation, rather than electrostatic binding. Unlike polycationic polyplexes, polyacridine PEG-peptide polyplexes were anionic and open coiled, as revealed by zeta potential and atomic force microscopy. PEG-Cys-Trp-(Lys-(Acr))5 showed the highest DNA binding affinity and the greatest ability to protect DNA from metabolism by DNase. Polyacridine PEG-peptide DNA open polyplexes were dosed intramuscularly and electroporated in mice to demonstrate their functional activity in gene transfer. These results establish polyacridine PEG-peptide DNA open polyplexes as a novel gene delivery method for in vivo use. PMID:20218669

  18. A review on ion-ion plasmas created in weakly magnetized electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Aanesland, A.; Bredin, J.; Chabert, P.

    2014-08-01

    Ion-Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion-ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion-ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion-ion region is dropping only by a factor of 2-3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects.

  19. Formation of collisional sheath in electronegative plasma with two species of positive ions

    SciTech Connect

    Moulick, R. Goswami, K. S.

    2015-03-15

    Sheath formation is investigated for electronegative plasma in presence of two species of positive ions in collisional environment. The gas under consideration is a mixture of oxygen and argon. Argon is the considered as having fixed volume and impact of collision is studied with increasing pressure of oxygen. Fluid equations are solved for three species namely, the two positive ions and a negative ion. Electrons are considered to follow Boltzmann distribution. Collision is modeled by constant mean free path model and has been used as a parameter. It has been found that collision enhances the sheath formation. The negative ion core is nearly unaffected by the presence of collision and is governed by the electric potential. The negative flux field is, however, affected by the presence of collision and shows a steady behavior in front of the wall. The two positive ions are heavily affected by the presence of collision and the modeling is such that their equilibrium densities can be estimated by solving simultaneous cubic equations.

  20. Differential changes in ornithine aminotransferase self-affinity produced by exposure to basic amino acids and increases in the intrinsic electronegativity of the enzyme monomer

    SciTech Connect

    Boernke, W.E.; Stevens, F.J.; Edwards, J.J.; Peraino, C.

    1982-06-01

    In a previous study ornithine aminotransferase (OAT) was shown to exhibit concentration-dependent self-association in two stages (45,000 M/sub r/ monomers aggregate to form 140,000 to 150,000 M/sub r/ trimers; the trimers then aggregate to form higher-molecular-weight complexes). In an attempt to characterize further the molecular mechanisms involved in OAT aggregation, the present study examined the effects of basic amino acids and keto acids on the aggregation process. Results indicate that basic amino acids (ornithine and lysine) inhibit the association of monomers to form trimers, apparently by interaction with carboxyl groups on the surfaces of the monomers. The aggregation of trimers to form higher-molecular-weight assemblies is not affected by basic amino acids, and neither aggregation stage is affected by the keto acids, ..cap alpha..-ketoglutarate, or oxaloacetate. Two different OAT preparations (one fresh, the other 18 months old) differed in aggregation characteristics; the older preparation showed reduced self-affinity at both aggregation stages, but both preparations had similar catalytic efficiencies. Electrophoretic studies indicated that the older preparation contained variants of the enzyme monomer with greater electronegativity than did the fresh preparation. These findings led to the conclusion that OAT purification exposes ionically labile but catalytically insignificant domains on the monomer surface, and the loss of positively charged groups from such regions diminishes the OAT aggregation potential.

  1. Boron tracedrug design for neutron dynamic therapeutics for LDL.

    PubMed

    Hori, Hitoshi; Nazumi, Yoshijiro; Uto, Yoshihiro

    2013-01-01

    We describe our solution for removal of the low-density lipoprotein (LDL) depot contained in proteins and lipids as a 'druggable' target for atherosclerotic cardiovascular diseases by neutron dynamic therapy (NDT), which we developed using boron tracedrugs for NDT against bovine serum albumin as a model protein. Thus, we examined, among our developed boron tracedrugs, a boron-containing curcuminoid derivative UTX-51, to destroy freshly isolated human LDL dynamically under irradiated thermal neutron to obtain a decreased intensity of band of LDL treated with UTX-51 and thermal neutron irradiation in their SDS-PAGE and electrophoresis analysis. These results suggest that UTX-51 might be a novel candidate of 'beyond chemical' therapeutic agents for atherosclerotic cardiovascular disease.

  2. Boron tracedrug design for neutron dynamic therapeutics for LDL.

    PubMed

    Hori, Hitoshi; Nazumi, Yoshijiro; Uto, Yoshihiro

    2013-01-01

    We describe our solution for removal of the low-density lipoprotein (LDL) depot contained in proteins and lipids as a 'druggable' target for atherosclerotic cardiovascular diseases by neutron dynamic therapy (NDT), which we developed using boron tracedrugs for NDT against bovine serum albumin as a model protein. Thus, we examined, among our developed boron tracedrugs, a boron-containing curcuminoid derivative UTX-51, to destroy freshly isolated human LDL dynamically under irradiated thermal neutron to obtain a decreased intensity of band of LDL treated with UTX-51 and thermal neutron irradiation in their SDS-PAGE and electrophoresis analysis. These results suggest that UTX-51 might be a novel candidate of 'beyond chemical' therapeutic agents for atherosclerotic cardiovascular disease. PMID:23852519

  3. Comparison of Plasma Characteristics between Electro-Positive and Electro-Negative Gases in Two-Dimensional Model

    NASA Astrophysics Data System (ADS)

    So, Soon-Youl; Sugawara, Hirotake; Sakai, Yosuke

    2001-10-01

    Analysis of plasmas is necessary for high-quality electronic material processing and its general control. Study of the electro-positive and electro-negative discharges for etching and deposition is important as such analysis. For example, a one-dimensional fluid model has been developed for these discharges and their properties were compared in a previous report.(N. Nakano and T. Makabe, J. Phys. D: Appl. Phys. 28), 31--5 (1995) In this work, a two-dimensional fluid model of rf plasma was developed for a cylindrically symmetric coordinate system based on the GEC reference cell. Ar and SiH4 are taken as electro-positive and electro-negative discharge media. The calculation was performed at 100--500 mTorr at 13.56 MHz (rf). The model is based on continuity equations for the plasma species and electron energy conservation coupled with Poisson's equation. The calculation result predicts that the plasma structures in a periodic steady state show an off-axis maximum of the plasma density due to the guard ring and dc self-bias of the powered electrode. Then, the results are compared to those of a one-dimensional. We discuss the characteristics of electro-positive and electro-negative discharges in comparison between one- and two-dimensional models.

  4. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    SciTech Connect

    Zhang, Fenxi; Wang, Congrui; Jing, Suhua; Ren, Tongming; Li, Yonghai; Cao, Yulin; Lin, Juntang

    2013-04-15

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.

  5. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    PubMed Central

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  6. LDL cholesterol, statins and PCSK 9 inhibitors.

    PubMed

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20-30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through 'Risk evaluation and Mitigation Strategy (REMS)'. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  7. Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress.

    PubMed

    Bertin, Riccardo; Chen, Zheng; Marin, Raffaella; Donati, Maddalena; Feltrinelli, Angela; Montopoli, Monica; Zambon, Sabina; Manzato, Enzo; Froldi, Guglielmina

    2016-08-01

    Studies indicate that oxidative modifications of endothelium and LDL play a preeminent role in atherogenesis; therefore, the preservation of the endothelial antioxidant capacity and the inhibition of LDL oxidation by use of plant-derived compounds are an appealing strategy against several vascular disorders. On this basis, baicalein, eupatorin, galangin, magnolol, myricetin, oleuropein, silibinin and bilobalide were studied against various oxidative conditions. The radical scavenging capacity was analysed using DPPH and ORAC assays. Furthermore, the LDL oxidation was detected by measuring the formation of thiobarbituric acid reactive substances (TBARS) and by monitoring the oxidation kinetics. Further, we used cultured HUVEC to investigate the activities of the polyhydroxyl compounds towards the oxidative stress induced by H2O2. The lowest levels of TBARS were observed in the presence of oleuropein and baicalein, while myricetin, magnolol and eupatorin inhibited these ones to a lesser extent. In addition, oleuropein and myricetin exhibited higher protection in copper-induced LDL oxidation kinetics. However, only myricetin and galangin showed significant protective effects against H2O2 oxidative injury in HUVEC cells. Taken all together the results indicate myricetin as the most active agent among the selected plant-derived polyhydroxyl compounds, with prominent capacities against ox-LDL and ROS production in HUVEC. PMID:27470387

  8. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts.

    PubMed

    Gunathilake, K D Prasanna P; Rupasinghe, H P Vasantha

    2014-04-01

    Oxidative modification of low-density lipoprotein (LDL) is thought to play a key role in atherosclerotic plaque formation. Currently, there is a renewed interest in ginger because of its antioxidants and cardioprotective properties. The effects of ethanol, methanol, ethyl acetate, and hexane solvent extracts of ginger and pure major ginger constituents on Cu(2+)-induced oxidation of human LDL in vitro were examined. The LDL oxidation inhibition by ethanol, methanol, ethyl acetate, and hexane extracts of ginger was 71%, 76%, 67%, and 67%, respectively, at their optimum extraction conditions. Inhibition of LDL oxidation by water extracts of ginger, which was prepared by ultrasonic-assisted extraction conditions of 52°C for 15 min, was about 43%. Phenolic bioactives of ginger-6-gingerols, 8-gingerols, 10-gingerols, and 6-shogaol-seem to be strong inhibitors of Cu(+2)-induced LDL oxidation. Overall, ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

  9. In silico Screening of Chemical Libraries to Develop Inhibitors That Hamper the Interaction of PCSK9 with the LDL Receptor

    PubMed Central

    Min, Dong-Kook; Lee, Hyun-Sook; Lee, Narae; Lee, Chan Joo; Song, Hyun Joo; Yang, Ga Eul; Yoon, Dojun

    2015-01-01

    Purpose Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) and promotes degradation of the LDLR. Inhibition of PCSK9 either by reducing its expression or by blocking its activity results in the upregulation of the LDLR and subsequently lowers the plasma concentration of LDL-cholesterol. As a modality to inhibit PCSK9 action, we searched the chemical library for small molecules that block the binding of PCSK9 to the LDLR. Materials and Methods We selected 100 chemicals that bind to PCSK9 where the EGF-AB fragment of the LDLR binds via in silico screening of the ChemBridge chemical library, using the computational GOLD algorithm analysis. Effects of chemicals were evaluated using the PCSK9-LDLR binding assay, immunoblot analysis, and the LDL-cholesterol uptake assay in vitro, as well as the fast performance liquid chromatography assay for plasma lipoproteins in vivo. Results A set of chemicals were found that decreased the binding of PCSK9 to the EGF-AB fragment of the LDLR in a dose-dependent manner. They also increased the amount of the LDLR significantly and subsequently increased the uptake of fluorescence-labeled LDL in HepG2 cells. Additionally, one particular molecule lowered the plasma concentration of total cholesterol and LDL-cholesterol significantly in wild-type mice, while such an effect was not observed in Pcsk9 knockout mice. Conclusion Our findings strongly suggest that in silico screening of small molecules that inhibit the protein-protein interaction between PCSK9 and the LDLR is a potential modality for developing hypercholesterolemia therapeutics. PMID:26256967

  10. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    PubMed

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  11. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  12. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  13. [A simple test for quantitative determination of LDL-cholesterol].

    PubMed

    Mertz, D P; Thuilot, G

    1986-05-01

    The subject of the report is a novel precipitation test for the quantitative recording of LDL cholesterol based on the precipitation of LDL by dextran sulphate. Parallel assays of LDL cholesterol according to the new method and using quantitative lipoprotein electrophoresis as reference showed the results, in terms of the individual values and collectively, to be practically identical for a wide concentration range of various lipids and lipoproteins in the serum. The concentration ratio of the means obtained according to the two methods is 1.014 +/- 0.102 (standard deviation). The regression function displays a correlation coefficient of 0.9470. Double assays with the new technique yield a variation coefficient of 1.7 +/- 0.4%. Limitations of the method, which are insignificant for application in practice, are pointed out. The new precipitation method is simple, safe and useful for the quantitative estimation of the LDL cholesterol concentration in freshly obtained human serum. The method requires only little time and equipment.

  14. Emerging LDL therapies: Using human genetics to discover new therapeutic targets for plasma lipids.

    PubMed

    Cohen, Jonathan C

    2013-01-01

    In humans, genetic variation occurs through different types of alleles that vary in frequency and severity of effect. Mendelian mutations, such as those in the low-density lipoprotein (LDL) receptor (LDLR) that result in familial hypercholesterolemia, are rare and have powerful phenotypic effects. Conversely, alleles that are common in the population (such that homozygotes for the minor allele are present even in modest sample sizes) typically have very modest phenotypic effects. In the middle of the spectrum are "Goldilocks" alleles such as mutations in the gene for proprotein convertase subtilisin/kexin type 9 (PCSK9). Loss-of-function mutations in PCSK9 result in significantly decreased LDL-cholesterol levels and a disproportionately large reduction in coronary heart disease risk by reducing the exposure to LDL-cholesterol throughout life. Several agents to inhibit PCSK9 are currently in development, demonstrating the potential utility of translating genetics into clinical therapeutics. To date, most investigations aimed at identifying the genes responsible for hypercholesterolemia have used linkage analysis, which requires samples collected from multiple families with defects in the same gene, or common variant analysis which requires thousands of samples from the population. However, case studies have shown that with advances in whole genome sequencing or exome sequencing (targeted exome capture), the process of discovering causal genetic mutations can be significantly streamlined. Astute clinical observation of individual patients and their families with atypical lipid profiles, followed by sequencing of the affected individual, has the potential to lead to important findings regarding the genetic mutations that cause lipid abnormalities. PMID:23642322

  15. Tenascin-C Produced by Oxidized LDL-Stimulated Macrophages Increases Foam Cell Formation through Toll-like Receptor-4

    PubMed Central

    Liu, Rui; He, Yong; Li, Bo; Liu, Jun; Ren, Yingang; Han, Wei; Wang, Xing; Zhang, Lihua

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease in which both innate and adaptive immunity are involved. Although there have been major advances in the involvement of toll-like receptor 4 (TLR4) and CD36 in the initiation and development of this disease, detailed mechanisms remain unknown. Here, we show that tenascin-C (TN-C) can stimulate foam cell formation and this can be inhibited by a TLR4-blocking antibody or CD36 gene silencing. Our results identify TN-C-TLR4 activation as a common molecular mechanism in oxLDL-stimulated foam cell formation and atherosclerosis. In addition, CD36 is the major scavenger receptor responsible for the TN-C-mediated foam cell formation. Taken together, we have identified that TN-C produced by oxLDL-stimulated macrophages increases foam cell formation through TLR4 and scavenger receptor CD36. PMID:22699754

  16. Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women.

    PubMed

    Williams, P T; Vranizan, K M; Krauss, R M

    1992-05-01

    Nondenaturing gradient gel electrophoresis of plasma low density lipoprotein (LDL) has been used to identify major LDL subclasses that are influenced by genetic and other factors. In the present paper, this technique has been extended by measuring absorbance of lipid- or protein-stained gels as an index of concentration at intervals of 0.05 nm across the entire LDL particle size range (21.8-30 nm) in moderately overweight men (n = 115) and women (n = 78). When LDL absorbance levels were correlated with other lipoprotein variables, we found that the strengths of the correlations with each of triglycerides, apolipoprotein (apo) B, high density lipoprotein (HDL)2, and apoA-I achieve relative maximum values for two regions within the small LDL range (21-26 nm), one within LDL-IVB (22-23.2 nm) and a second within LDL-III (24.2-25.5 nm). We also found that the increase in LDL accompanying higher triglyceride levels occurs below 25.5 nm in men and between 24.5 and 26.5 nm in women, suggesting either that triglycerides are related to different LDL subclasses in men and women, or that particle sizes of metabolically homologous LDL subclasses may differ in men and women. As compared to analytic ultracentrifuge measurements, gradient gel measurements of LDL absorbance by the procedure described here provide greater resolution of LDL subclasses but less precision in estimating LDL levels.

  17. Lectin-like Oxidized Low-Density Lipoprotein (LDL) Receptor (LOX-1): A Chameleon Receptor for Oxidized LDL.

    PubMed

    Zeya, Bushra; Arjuman, Albina; Chandra, Nimai Chand

    2016-08-16

    LOX-1, one of the main receptors for oxLDL, is found mainly on the surface of endothelial cells. It is a multifacet 52 kDa type II transmembrane protein that structurally belongs to the C-type lectin family. It exists with short intracellular N-terminal and long extracellular C-terminal hydrophilic domains separated by a hydrophobic domain of 26 amino acids. LOX-1 acts like a bifunctional receptor either showing pro-atherogenicity by activating the NFκB-mediated down signaling cascade for gene activation of pro-inflammatory molecules or playing an atheroprotective agent by receptor-mediated uptake of oxLDL in the presence of an anti-inflammatory molecule like IL-10. Mildly, moderately, and highly oxidized LDL show their characteristic features upon LOX-1 activation and its ligand binding indenture. The polymorphic LOX-1 genes are intensively associated with increased susceptibility to myocardial diseases. The splicing variant LOX IN dimerizes with the native form of LOX-1 and protects cells from damage by oxidized LDL. In the developing field of regenerating medicine, LOX-1 is a potential target for therapeutic intervention.

  18. Lectin-like Oxidized Low-Density Lipoprotein (LDL) Receptor (LOX-1): A Chameleon Receptor for Oxidized LDL.

    PubMed

    Zeya, Bushra; Arjuman, Albina; Chandra, Nimai Chand

    2016-08-16

    LOX-1, one of the main receptors for oxLDL, is found mainly on the surface of endothelial cells. It is a multifacet 52 kDa type II transmembrane protein that structurally belongs to the C-type lectin family. It exists with short intracellular N-terminal and long extracellular C-terminal hydrophilic domains separated by a hydrophobic domain of 26 amino acids. LOX-1 acts like a bifunctional receptor either showing pro-atherogenicity by activating the NFκB-mediated down signaling cascade for gene activation of pro-inflammatory molecules or playing an atheroprotective agent by receptor-mediated uptake of oxLDL in the presence of an anti-inflammatory molecule like IL-10. Mildly, moderately, and highly oxidized LDL show their characteristic features upon LOX-1 activation and its ligand binding indenture. The polymorphic LOX-1 genes are intensively associated with increased susceptibility to myocardial diseases. The splicing variant LOX IN dimerizes with the native form of LOX-1 and protects cells from damage by oxidized LDL. In the developing field of regenerating medicine, LOX-1 is a potential target for therapeutic intervention. PMID:27419271

  19. TRPM7 channel regulates ox-LDL-induced proliferation and migration of vascular smooth muscle cells via MEK-ERK pathways.

    PubMed

    Lin, Jinghan; Zhou, Shanshan; Zhao, Tingting; Ju, Ting; Zhang, Liming

    2016-02-01

    Transient receptor potential melastatin 7 (TRPM7) plays a key role in the pathophysiological response of multiple cell types. However, the role of TRPM7 channels in ox-LDL-induced proliferation and migration of VSMC remains unclear. This study used the thoracic aorta VSMCs to explore the effects of ox-LDL on cell proliferation and migration and to investigate the underlying molecular mechanisms and signaling pathways. Data demonstrated that ox-LDL significantly increased TRPM7 activity, and induced VSMC proliferation and migration. VSMC proliferation and migration were inhibited by nonspecific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7. Furthermore, the phosphorylation of ERK1/2 and MEK1/2 associated with cell proliferation and migration decreased in TRPM7-deficient VSMC. Therefore, TRPM7 may constitute a useful target for the treatment of atherosclerosis. PMID:26900082

  20. Effect of nafamostat mesilate on bradykinin generation and hemodynamics during LDL apheresis.

    PubMed

    Kojima, S; Shiba, M; Kuramochi, M; Yamamoto, A

    1995-02-01

    Dextran-sulfate (DS) cellulose used for low-density lipoprotein (LDL) apheresis seems to be a weak activator of the contact phase of the intrinsic coagulation pathway because the surface of this substance has negative charges. Heparin, a commonly used anticoagulant, has no effect on this process whereas the process is inhibited by a newly developed anticoagulant, nafamostat mesilate (NM). The effects on bradykinin generation were compared between heparin and NM. Five patients with severe hypercholesterolemia were treated with LDL apheresis using either heparin or NM on a different day. During apheresis with heparin, factor XII, high molecular weight kininogen, and prekallikrein were markedly decreased by passing through the DS column. A distinct generation of bradykinin was observed by passing plasma through the DS column, and this led to the rise of bradykinin levels from 12 +/- 5 (mean +/- SE) to 72 +/- 14 pg/ml after treatment of 1,000 ml of plasma. NM suppressed almost completely the rise of bradykinin levels. Although blood pressure was apt to decrease during apheresis with heparin, there was no significant difference in blood pressure between heparin and NM. Since an angiotensin-converting enzyme inhibitor may lead to a marked rise in blood levels of bradykinin by suppressing its degradation, the use of NM is recommended for apheresis in patients taking this drug. PMID:7763192

  1. Glutathione preconditioning attenuates Ac-LDL-induced macrophage apoptosis via protein kinase C-dependent Ac-LDL trafficking.

    PubMed

    Rosenson-Schloss, Rene S; Chnari, Evangelia; Brieva, Thomas A; Dang, Anh; Moghe, Prabhas V

    2005-01-01

    Oxidized low-density lipoprotein (ox-LDL) incorporation into intimally resident vascular cells via scavenger receptors marks one of the early steps in atherosclerosis. Cellular apoptotic damage results from two major serial intracellular events: the binding and scavenger receptor-mediated uptake of oxidizable lipoproteins and the intracellular oxidative responses of accumulated lipoproteins. Most molecular approaches to prevent apoptotic damage have focused on singular events within the cascade of lipoprotein trafficking. To identify a multifocal strategy against LDL-induced apoptosis, we evaluated the role of cellular preconditioning by glutathione-ethyl ester (GSH-Et), a native redox regulator, in the prevention of the uptake and apoptotic effects of an oxidizable scavenger receptor-specific ligand, acetylated low-density lipoprotein (Ac-LDL). Our results indicate that GSH-Et-mediated protein kinase C (PKC) pathway modulation regulates Ac-LDL binding and incorporation into GSH-Et preconditioned cells and subsequently delays reactive oxygen intermediate generation and apoptotic conversion. The GSH-Et protective effects on apoptosis and Ac-LDL binding were reversed by calphostin C, a PKC inhibitor, and were accompanied by an increase in PKC phosphorylation. However, the rate of reactive oxygen intermediate accumulation was not increased following calphostin C treatment, suggesting that GSH-Et may play an important nonreactive oxygen-intermediate-based protective role in regulating apoptotic dynamics. Overall, we report on the novel role for GSH-Et preconditioning as a molecular strategy to limit lipoprotein entry into the cells, which presents a proactive modality to prevent cellular apoptosis in contrast with the prevalent antioxidant approaches that treat damage retroactively. PMID:15618124

  2. Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas

    SciTech Connect

    Oudini, N.; Taccogna, F.; Aanesland, A.

    2014-06-15

    Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.

  3. Smallest LDL particles are most strongly related to coronarydisease progression in men

    SciTech Connect

    Williams, Paul T.; Superko, H. Robert; Haskell, William L.; Alderman, Edwin L.; Blanche, Patricia J.; Holl, Laura Glines; Krauss,Ronald M.

    2002-12-03

    Objective-LDLs include particle subclasses that havedifferent mobilities on polyacrylamide gradient gels: LDL-I (27.2to 28.5nm), LDL-IIa (26.5 to 27.2 nm), LDL-IIb (25.6 to 26.5 nm), LDL-IIIa (24.7to 25.6 nm), LDL-IIIb (24.2 to 24.7nm), LDL-IVa (23.3 to 24.2 nm), andLDL-IVb (22.0 to 23.3 nm in diameter). We hypothesized that theassociationbetween smaller LDL particles and coronary artery disease(CAD) risk might involve specific LDL subclasses.Methods andResults-Average 4-year onstudy lipoprotein measurements were comparedwith annualized rates of stenosischange from baseline to 4 years in 117men with CAD. The percentages of total LDL and HDL occurringwithinindividual subclasses were measured by gradient gelelectrophoresis. Annual rate of stenosis change was relatedconcordantlyto onstudy averages of total cholesterol (P 0.04), triglycerides (P0.05), VLDL mass (P 0.03),total/HDL cholesterol ratio (P 0.04), LDL-IVb(P 0.01), and HDL3a (P 0.02) and inversely to HDL2-mass (P 0.02)and HDL2b(P 0.03). The average annual rate in stenosis change was 6-fold morerapid in the fourth quartile ofLDL-IVb (5.2 percent) than in the firstquartile ( 2.5 percent, P 0.03). Stepwise multiple regression analysisshowed thatLDL-IVb was the single best predictor of stenosischange.Conclusions-LDL-IVb was the single best lipoprotein predictor ofincreased stenosis, an unexpected result, given thatLDL-IVb representsonly a minor fraction of total LDL. (Arterioscler Thromb Vasc Biol.2003;23:314-321.)

  4. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    PubMed

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  5. Outdoor temperature is associated with serum HDL and LDL

    PubMed Central

    Halonen, Jaana I.; Zanobetti, Antonella; Sparrow, David; Vokonas, Pantel S.; Schwartz, Joel

    2015-01-01

    Background While exposures to high and low air temperatures are associated with cardiovascular mortality, the underlying mechanisms are poorly understood. The risk factors for cardiovascular disease include high levels of total cholesterol and low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL). We investigated whether temperature was associated with changes in circulating lipid levels, and whether this might explain part of the association with increased cardiovascular events. Methods The study cohort consisted of 478 men in the greater Boston area with a mean age of 74.2 years. They visited the clinic every 3–5 years between 1995–2008 for physical examination and to complete questionnaires. We excluded from analyses all men taking statin medication and all days with missing data, resulting in a total of 862 visits. Associations between three temperature variables (ambient, apparent, and dew point temperature) and serum lipid levels (total cholesterol, HDL, LDL, and triglycerides) were studied with linear mixed models that included possible confounders such as air pollution and a random intercept for each subject. Results We found that HDL decreased −1.76% (95% CI: −3.17 – −0.32, lag 2 days), and −5.58% (95% CI: −8.87 – −2.16, moving average of 4 weeks) for each 5°C increase in mean ambient temperature. For the same increase in mean ambient temperature, LDL increased by 1.74% (95% CI: 0.07 – 3.44, lag 1 day) and 1.87% (95% CI: 0.14 – 3.63, lag 2 days). These results were also similar for apparent and dew point temperatures. No changes were found in total cholesterol or triglycerides in relation to temperature increase. Conclusions Changes in HDL and LDL levels associated with an increase in ambient temperature may be among the underlying mechanisms of temperature-related cardiovascular mortality. PMID:21172696

  6. Human LDL Structural Diversity Studied by IR Spectroscopy

    PubMed Central

    Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.

    2014-01-01

    Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788

  7. Immunoregulation by low density lipoproteins in man. Inhibition of mitogen-induced T lymphocyte proliferation by interference with transferrin metabolism.

    PubMed Central

    Cuthbert, J A; Lipsky, P E

    1984-01-01

    Human low density lipoprotein (LDL, d = 1.020-1.050 g/ml) inhibits mitogen-stimulated T lymphocyte DNA synthesis. Because both LDL and transferrin bind to specific cell surface receptors and enter cells by the similar means of receptor-mediated endocytosis, and because transferrin is necessary for lymphocyte DNA synthesis, we investigated the possibility that LDL may inhibit mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL inhibited mitogen-stimulated lymphocyte [3H]thymidine incorporation in a concentration-dependent manner. The degree of inhibition was most marked in serum-free cultures, but was also observed in serum-containing cultures. The addition of transferrin not only augmented mitogen-induced lymphocyte [3H]thymidine incorporation in serum-free medium but also completely reversed the inhibitory effect of LDL in both serum-free and serum-containing media. Similar results were obtained when lymphocyte proliferation was assayed by counting the number of cells in culture. Transferrin also reversed the inhibition of lymphocyte responses caused by very low density lipoproteins and by cholesterol. The ability of transferrin to reverse the inhibitory effect of lipoproteins was specific, in that native but not denatured transferrin was effective whereas a variety of other proteins were ineffective. These results indicate that LDL inhibits mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL only inhibited lymphocyte responses after a 48-h incubation if present from the initiation of the culture. By contrast, transferrin reversed inhibition when added after 24 h of the 48-h incubation. LDL did not inhibit lymphocyte responses by nonspecifically associating with transferrin. In addition, the acquisition of specific lymphocyte transferrin receptors was not blocked by LDL. Moreover, transferrin did not prevent the binding and uptake of fluorescent-labeled LDL by activated lymphocytes

  8. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    PubMed

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  9. Measured versus calculated LDL-cholesterol in subjects with type 2 diabetes

    PubMed Central

    Fawwad, Asher; Sabir, Rubina; Riaz, Musarrat; Moin, Hassan; Basit, Abdul

    2016-01-01

    Objective: There is a strong positive association between increased low-density lipoprotein cholesterol (LDL-C) and coronary heart disease (CHD). The accuracy of LDL-C estimation is essential and critically important. The aim of present study was to compare calculated LDL-C with direct homogeneous assay in patients with type 2 diabetes. Methods: This observational study was carried out at Baqai Institute of Diabetology and Endocrinology (BIDE) from January 2011 to December 2013. A total of 9620 patients with type 2 diabetes were included in the study. Fasting blood glucose, total Cholesterol, triglyceride, HDL cholesterol and LDL cholesterol were obtained using standard methods. Calculated LDL-C was obtained by Friedewald formula. Results: Mean difference of measured and calculated LDL-C was found to be -0.25, 6.63 and 46.55 mg/dl at triglyceride levels < 150 mg/dl, 150 - 400 mg/dl and ≥ 400 mg/dl, respectively. The result shows that the difference between measured and calculated LDL-C increases as the triglyceride level increases. Conclusions: The findings of our study suggested that calculated LDL-C was lower, as compared to measured LDL-C, which may cause misclassifications that may have an impact on therapeutic decisions in patients with diabetes. Calculated LDL-C may depend on triglyceride levels so LDL-C should be measured by direct assay in routine clinical laboratories. PMID:27648047

  10. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis[S

    PubMed Central

    Melchior, John T.; Sawyer, Janet K.; Kelley, Kathryn L.; Shah, Ramesh; Wilson, Martha D.; Hantgan, Roy R.; Rudel, Lawrence L.

    2013-01-01

    Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr−/− mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment. PMID:23804810

  11. The role of vascular peroxidase 1 in ox-LDL-induced vascular smooth muscle cell calcification.

    PubMed

    Tang, Yixin; Xu, Qian; Peng, Haiyang; Liu, Zhaoya; Yang, Tianlun; Yu, Zaixin; Cheng, Guangjie; Li, Xiaohui; Zhang, Guogang; Shi, Ruizheng

    2015-12-01

    Reactive oxygen species (ROS)-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) is associated with the pathogenesis of vascular calcification. Vascular peroxidase 1 (VPO1), a peroxidase in the cardiovascular system, utilizes the hydrogen peroxide (H2O2) produced by co-expressed NADPH oxidases to produce hypochlorous acid (HOCl) and catalyze peroxidative reactions. The aim of this study was to determine whether VPO1 plays a role in the osteogenic differentiation of VSMCs in the setting of the vascular calcification induced by oxidized low-density lipoprotein (ox-LDL). In cultured primary rat VSMCs, we observed that the expression of VPO1 was significantly increased in combination with increases in calcification, as demonstrated via increased mineralization, as well as increased alkaline phosphatase (ALP) activity and up-regulated runt-related transcription factor 2 (Runx2) expression in ox-LDL-treated cells. Ox-LDL-induced VSMC calcification and Runx2 expression were both inhibited by knockdown of VPO1 using a small interfering RNA or by an NADPH oxidase inhibitor. Moreover, the knockdown of VPO1 in VSMCs suppressed the production of HOCl and the phosphorylation of AKT, ERK and P38 MAPK. Furthermore, HOCl treatment facilitated the phosphorylation of AKT, ERK1/2 and P38 MAPK and the expression of Runx2, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) and SB203580 (a specific inhibitor of P38 MAPK) significantly attenuated the HOCl-induced up-regulation of Runx2. Collectively, these results demonstrated that VPO1 promotes ox-LDL-induced VSMC calcification via the VPO1/HOCl/PI3K/AKT, ERK1/2, and P38 MAPK/Runx2 signaling pathways.

  12. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  13. Clinical- and cost-effectiveness of LDL particle-guided statin therapy: a simulation study.

    PubMed

    Folse, Henry J; Goswami, Devesh; Rengarajan, Badri; Budoff, Matthew; Kahn, Richard

    2014-09-01

    We used the Archimedes Model, a mathematical simulation model (Model) to estimate the clinical- and cost-effectiveness of using LDL particle concentration (LDL-P) as an adjunct or alternative to LDL cholesterol (LDL-C) to guide statin therapy. LDL-P by NMR has been shown to be a better measure of cardiovascular disease (CVD) risk than LDL-C, and may therefore be a better gauge of the need for and response to statin treatment. Using the Model, we conducted a virtual clinical trial comparing the use of LDL-C alone, LDL-P alone, and LDL-C and LDL-P together to guide treatment in the general adult population, and in high-risk, dyslipidemic subpopulations. In the general population, the 5-year major adverse cardiovascular event (MACE) relative risk reduction (RRR) of LDL-P alone compared to the control arm (LDL-C alone) was 5.0% (95% CI, 4.7-5.3; p < .0001); using both LDL-C and LDL-P (dual markers) led to 3.0% RRR compared to the control arm (95% CI, 2.8-3.3; p < .0001). For individuals with diabetes, the RRR was 7.3% (95% CI, 6.4-8.2; p < .0001) for LDL-P alone and 6.9% for dual markers (95% CI, 6.1-7.8; both, p < .0001). In the general population, the costs per quality-adjusted life year (QALY) associated with the use of LDL-P alone were $76,052 at 5 years and $8913 at 20 years and $142,825 at 5 years and $25,505 at 20 years with the use of both markers. In high-risk subpopulations, the use of LDL-P alone was cost-saving at 5 years; whereas the cost per QALY for the use of both markers was $14,250 at 5 years and $859 at 20 years for high-risk dyslipidemics, $19,192 at 5 years and $649 at 20 years for diabetics, and $9030 at 5 years and $7268 at 20 years for patients with prior CHD. In conclusion, the model estimates that using LDL-P to guide statin therapy may reduce the risk of CVD events to a greater extent than does the use of LDL-C alone and maybe cost-effective or cost-saving for high-risk patients. PMID:25050538

  14. Clinical- and cost-effectiveness of LDL particle-guided statin therapy: a simulation study.

    PubMed

    Folse, Henry J; Goswami, Devesh; Rengarajan, Badri; Budoff, Matthew; Kahn, Richard

    2014-09-01

    We used the Archimedes Model, a mathematical simulation model (Model) to estimate the clinical- and cost-effectiveness of using LDL particle concentration (LDL-P) as an adjunct or alternative to LDL cholesterol (LDL-C) to guide statin therapy. LDL-P by NMR has been shown to be a better measure of cardiovascular disease (CVD) risk than LDL-C, and may therefore be a better gauge of the need for and response to statin treatment. Using the Model, we conducted a virtual clinical trial comparing the use of LDL-C alone, LDL-P alone, and LDL-C and LDL-P together to guide treatment in the general adult population, and in high-risk, dyslipidemic subpopulations. In the general population, the 5-year major adverse cardiovascular event (MACE) relative risk reduction (RRR) of LDL-P alone compared to the control arm (LDL-C alone) was 5.0% (95% CI, 4.7-5.3; p < .0001); using both LDL-C and LDL-P (dual markers) led to 3.0% RRR compared to the control arm (95% CI, 2.8-3.3; p < .0001). For individuals with diabetes, the RRR was 7.3% (95% CI, 6.4-8.2; p < .0001) for LDL-P alone and 6.9% for dual markers (95% CI, 6.1-7.8; both, p < .0001). In the general population, the costs per quality-adjusted life year (QALY) associated with the use of LDL-P alone were $76,052 at 5 years and $8913 at 20 years and $142,825 at 5 years and $25,505 at 20 years with the use of both markers. In high-risk subpopulations, the use of LDL-P alone was cost-saving at 5 years; whereas the cost per QALY for the use of both markers was $14,250 at 5 years and $859 at 20 years for high-risk dyslipidemics, $19,192 at 5 years and $649 at 20 years for diabetics, and $9030 at 5 years and $7268 at 20 years for patients with prior CHD. In conclusion, the model estimates that using LDL-P to guide statin therapy may reduce the risk of CVD events to a greater extent than does the use of LDL-C alone and maybe cost-effective or cost-saving for high-risk patients.

  15. Effects of lowering LDL cholesterol on progression of kidney disease.

    PubMed

    Haynes, Richard; Lewis, David; Emberson, Jonathan; Reith, Christina; Agodoa, Lawrence; Cass, Alan; Craig, Jonathan C; de Zeeuw, Dick; Feldt-Rasmussen, Bo; Fellström, Bengt; Levin, Adeera; Wheeler, David C; Walker, Rob; Herrington, William G; Baigent, Colin; Landray, Martin J

    2014-08-01

    Lowering LDL cholesterol reduces the risk of developing atherosclerotic events in CKD, but the effects of such treatment on progression of kidney disease remain uncertain. Here, 6245 participants with CKD (not on dialysis) were randomly assigned to simvastatin (20 mg) plus ezetimibe (10 mg) daily or matching placebo. The main prespecified renal outcome was ESRD (defined as the initiation of maintenance dialysis or kidney transplantation). During 4.8 years of follow-up, allocation to simvastatin plus ezetimibe resulted in an average LDL cholesterol difference (SEM) of 0.96 (0.02) mmol/L compared with placebo. There was a nonsignificant 3% reduction in the incidence of ESRD (1057 [33.9%] cases with simvastatin plus ezetimibe versus 1084 [34.6%] cases with placebo; rate ratio, 0.97; 95% confidence interval [95% CI], 0.89 to 1.05; P=0.41). Similarly, allocation to simvastatin plus ezetimibe had no significant effect on the prespecified tertiary outcomes of ESRD or death (1477 [47.4%] events with treatment versus 1513 [48.3%] events with placebo; rate ratio, 0.97; 95% CI, 0.90 to 1.04; P=0.34) or ESRD or doubling of baseline creatinine (1189 [38.2%] events with treatment versus 1257 [40.2%] events with placebo; rate ratio, 0.93; 95% CI, 0.86 to 1.01; P=0.09). Exploratory analyses also showed no significant effect on the rate of change in eGFR. Lowering LDL cholesterol by 1 mmol/L did not slow kidney disease progression within 5 years in a wide range of patients with CKD.

  16. Hepatic apo B-100 lipoproteins and plasma LDL heterogeneity in African green monkeys

    SciTech Connect

    Murthy, V.N.; Marzetta, C.A.; Rudel, L.L.; Zech, L.A.; Foster, D.M. )

    1990-06-01

    The contribution of hepatic apolipoprotein (apo) B-100 lipoproteins to plasma low-density lipoprotein (LDL) metabolic heterogeneity was examined in African green monkeys. Hepatic 3H-labeled very low-density lipoproteins (VLDL) (d less than 1.006, where d is density in g/ml) or hepatic 131I-labeled LDL (1.030 less than d less than 1.063) were isolated from perfused livers and injected simultaneously with autologous plasma 125I-LDL into African green monkeys. Serial blood samples were taken, and the distribution of radioactivity among various subfractions of apo B-100 lipoproteins was determined using density-gradient ultracentrifugation. Compartmental models were developed to describe simultaneously the kinetics of hepatic lipoproteins and plasma LDL. In five of seven studies, the metabolic behavior of LDL derived from radiolabeled hepatic lipoprotein precursors differed from the metabolic behavior of radiolabeled autologous plasma LDL. These differences could be described by different models supporting two hypotheses with different physiological interpretations: (1) lipoproteins of donor and recipient animals are kinetically distinct, and/or (2) plasma LDL derived from various potential sources are kinetically distinct. Compartmental modeling was used to test these hypotheses, which were not accessible to testing by conventional experimental methodologies. The kinetic analyses of these studies suggest that plasma LDL may be derived from a variety of precursors, including hepatic VLDL and hepatic LDL, with each source giving rise to metabolically distinct plasma LDL.

  17. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  18. PREVENTION OF ATHEROSCLEROSIS WITH LDL-C LOWERING – LIPOPROTEIN CHANGES AND INTERACTIONS: THE SANDS STUDY

    PubMed Central

    Howard, Wm. James; Russell, Marie; Fleg, Jerome L.; Mete, Mihriye; Ali, Tauqeer; Devereux, Richard B.; Galloway, James M.; Otvos, James D.; Ratner, Robert E.; Roman, Mary J.; Silverman, Angela; Umans, Jason G.; Weissman, Neil J.; Wilson, Charlton; Howard, Barbara V.

    2009-01-01

    Background Lowering low-density lipoprotein cholesterol (LDL-C) with statins reduces atherosclerosis. LDL and high-density lipoprotein (HDL) are commonly measured by their cholesterol content, but non-HDL cholesterol, LDL particle number (LDL-P), or total apolipoprotein B (apoB) may better predict cardiovascular risk. Few studies have examined relations among lipoprotein levels and composition before and after interventions to lower LDL-C and non-HDL-C. Objective To measure changes in carotid artery intimal media thickness (CIMT) and lipid concentration and composition during 36 months of statin therapy. Methods Analyses were conducted on 418 diabetic individuals, with complete data and no prior cardiovascular events, who were randomized to aggressive (AG) versus standard (STD) treatment for LDL-C, non-HDL-C, and systolic blood pressure (SBP) as part of the Stop Atherosclerosis in Native Diabetics Study (SANDS). Results The AG group achieved average LDL-C and non-HDL-C of 71mg/dL and 100mg/dL and a decrease in CIMT. No significant interactions were observed between treatment effect and initial levels of LDL-C, non-HDL-C, HDL-C, triglycerides, apoB, or LDL-P. Decreases in LDL-C (p<.005) and non-HDL-C (p<.001) were independently correlated with CIMT regression in the AG group. Changes in apoB and LDL-P showed borderline correlations with CIMT regression (p=.07 and p=.09). Conclusions In diabetic adults with no prior cardiovascular events, treatment to current targets for lipids and SBP reduces atherosclerosis progression and when more aggressive targets are met, atherosclerosis regresses. The aggressive targets for LDL-C and non-HDL-C appeared to be the main determinants of CIMT regression and were more predictive of this outcome than changes in LDL-P or apoB. PMID:20161568

  19. Chelation of copper reduces inhibition by oxidized lipoproteins of endothelium-dependent relaxation in porcine coronary arteries.

    PubMed

    Hayashi, T; Ishikawa, T; Kuzuya, M; Naito, M; Yamada, K; Asai, K; Hidaka, H; Iguchi, A

    1994-01-01

    We examined the effect of dialyzing oxidized low-density lipoprotein (oLDL) against Krebs-Ringer solution, in the absence (yielding d-oLDL) or presence (yielding EDTA-oLDL) of ethylenediamine tetraacetic acid (EDTA), to investigate the mechanism that underlies the inhibition of endothelium-dependent relaxation (EDR) by o-LDL. Oxidation of LDL by exposure to Cu2+ resulted in the formation of a thiobarbituric acid-reacting substance (TBARS) and lipid hydroperoxide (LPO). At a concentration of 5 mg/dl, d-oLDL markedly attenuated EDR in the porcine coronary artery. Analysis of d-oLDL by gel filtration revealed that TBARS was ditributed in both the lipoprotein and the aqueous phases, whereas LPO was present only in the lipoprotein particles. Lysophosphatidylcholine (LPC), which has been suggested to be responsible for the impairment of EDR by oLDL, was present not only in the lipoprotein but also in the aqueous phase. However, EDR inhibitory activity was observed only in the oLDL particles, not in the aqueous phase. Almost all Cu2+ associated with the oLDL particles was removed by dialysis of oLDL against Krebs-Ringer solution containing EDTA. EDTA-oLDL or native LDL, at concentrations as high as 75 mg/dl, exerted only a moderate inhibitory action on EDR, Both TBARS and LPO in EDTA-oLDL were distributed only in the lipoprotein particles, not in the aqueous phase. These results demonstrate that the impairment of EDR by oLDL is related both to LPO and to transition metal ions such as Cu2+ associated with the lipoprotein particles, not to the amount of the TBARS or negative charge, and that factors other than LPC may affect EDR.

  20. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Bacha, Mustapha; Tribeche, Mouloud

    2016-08-01

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (˜104 km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  1. Collisionless damping of dust-acoustic waves in a charge varying electronegative dusty plasma with nonthermal ions

    NASA Astrophysics Data System (ADS)

    Benzekka, Moufida; Tribeche, Mouloud

    2016-07-01

    The aim of the present communication is to investigate the charge variation induced nonlinear dust acoustic wave damping in a charge varying electronegative dusty plasma with nonthermal ions. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries equation (dK-dV). The latter is significantly modified by the nonthermal negative ions effects. It may be useful to note that we consider nonthermal negative ions because of the role of their distribution into the formation and dynamics of nonlinear dust acoustic structures. Moreover, the observation of nonthermal ion distributions made by Phobos and Nozomi motivated us to consider non- Maxwellian ions.

  2. Influence of valence, electronegativity, atomic radii, and crest-trough interaction with phonons on the high-temperature copper oxide superconductors

    SciTech Connect

    Pauling, L.

    1987-07-13

    Several structural features, including electron transfer between atoms of different electronegativity, oxygen deficiency, and unsynchronized resonance of valence bonds, as well as tight binding of atoms and the presence of both hypoelectronic and hyperelectronic elements, cooperatre to confer metallic properties and high-temperature superconductivity on compounds such as (Sr,Ba,Y,La)/sub 2/CuO/sub 4-//sub y/. .AE

  3. A Study of the Extended Lipid Profile including Oxidized LDL, Small Dense LDL, Lipoprotein (a) and Apolipoproteins in the Assessment of Cardiovascular Risk in Hypothyroid Patients

    PubMed Central

    Bansal, Sanjiv Kumar

    2016-01-01

    Introduction Hypothyroidism is one of the most common metabolic disorders associated with dyslipidemia which poses a higher risk of Coronary Artery Disease (CAD) in such patients. Biochemical markers which can pick up the risk promptly are becoming imperative now-a-days and thus the assessment beyond the conventional lipid profile is the need of the hour. Aims To assess the association of non-conventional lipid parameters like small dense Low Density Lipoprotein (sd LDL), oxidized Low Density Lipoprotein (ox LDL), Apolipoprotein A (Apo A1), Apolipoprotein B (Apo B) and Lipoprotein (a) {Lp(a)} in hypothyroid patients and compare their values with the conventional lipid parameters such as Total Cholesterol (TC), Triglyceride (TG), Low-Density Lipoprotein Cholesterol (LDL-C) and High-Density Lipoprotein Cholesterol (HDL-C). Materials and Methods One hundred and thirty clinically proven patients of hypothyroidism aged 20-60 years and equal number of age and gender matched healthy individuals were included in this case control study. Serum sd LDL, ox LDL, Apo A1, Apo B, Lp (a), lipid profile, Thyroid Stimulating Hormone (TSH), Free Triiodothyronine (FT3) and Free Tetraiodothyronine (FT4) levels were measured in both the groups. The data was recorded and analysed on SPSS system. The results of cases and controls were compared by student t-test and one-way ANOVA. All the parameters were correlated with TSH by Pearson’s correlation. Results We found significantly high levels of sd LDL, ox LDL, Apo B, Lp (a), TC, TG, LDL-C in cases as compared to the controls. Ox LDL has shown maximum correlation with serum TSH (p<0.0001, r=0.801) followed by sd LDL (p<0.0001, r=0.792), Apo B (p<0.001, r=0.783) and LDL-C (p<0.001, r=0.741). Moreover, ox LDL and sd LDL were found to be increased in normolipidemic hypothyroid patients thereby giving a strong supportive evidence that estimation of these parameters can become fundamental in prompt identification of the high risk patients of

  4. Parametric study of a Schamel equation for low-frequency dust acoustic waves in dusty electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Sabetkar, Akbar; Dorranian, Davoud

    2015-08-01

    In this paper, our attention is first concentrated on obliquely propagating properties of low-frequency (ω ≪ ωcd) "fast" and "slow" dust acoustic waves, in the linear regime, in dusty electronegative plasmas with Maxwellian electrons, kappa distributed positive ions, negative ions (following the combination of kappa-Schamel distribution), and negatively charged dust particles. So, an explicit expression for dispersion relation is derived by linearizing a set of dust-fluid equations. The results show that wave frequency ω in long and short-wavelengths limit is conspicuously affected by physical parameters, namely, positive to negative temperature ion ratio (βp), trapping parameter of negative ions (μ), magnitude of the magnetic field B0 (via ωcd), superthermal index ( κn,κp ), and positive ion to dust density ratio (δp). The signature of the penultimate parameter (i.e., κn) on wave frequency reveals that the frequency gap between the modes reduces (escalates) for k kc r ), where kcr is critical wave number. Alternatively, for weakly nonlinear analysis, reductive perturbation theory has been used to construct 1D and 3D Schamel Korteweg-de Vries (S-KdV) equations, whose nonlinearity coefficient prescribes only compressive soliton for all parameter values of interest. The survey manifests that deviation of ions from Maxwellian behavior leads intrinsic properties of solitary waves to be evolved in opposite trend. Additionally, at lower proportion of trapped negative ions, solitary wave amplitude mitigates, whilst the trapping parameter has no effect on both spatial width and the linear wave. The results are discussed in the context of the Earth's mesosphere of dusty electronegative plasma.

  5. Propolis Reduces Phosphatidylcholine-Specific Phospholipase C Activity and Increases Annexin a7 Level in Oxidized-LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Xuan, Hongzhuan; Li, Zhen; Wang, Jiying; Fu, Chongluo; Yuan, Jianlong; Hu, Fuliang

    2014-01-01

    To understand the mechanisms underlying the regulating dyslipidemia action of Chinese propolis and Brazilian green propolis, we investigated their effects on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and annexin a7 (ANXA7) level which play crucial roles in the control of the progress of atherosclerosis. Furthermore, active oxygen species (ROS) levels, nuclear factor-KappaB p65 (NF-κB p65), and mitochondrial membrane potential (MMP) were also investigated in oxidized-LDL- (ox-LDL-) stimulated human umbilical vein endothelial cells (HUVECs). Our data indicated that the treatment of both types of propolis 12.5 μg/mL significantly increased cell viability and attenuated apoptosis rate, increased ANXA7 level, and decreased PC-PLC activity. Both types of propolis also inhibited ROS generation as well as the subsequent MMP collapse, and NF-κB p65 activation induced by ox-LDL in HUVECs. Our results also indicated that Chinese propolis and Brazilian green propolis had similar biological activities and prevented ox-LDL induced cellular dysfunction in HUVECs. PMID:24864152

  6. The IDOL–UBE2D complex mediates sterol-dependent degradation of the LDL receptor

    PubMed Central

    Zhang, Li; Fairall, Louise; Goult, Benjamin T.; Calkin, Anna C.; Hong, Cynthia; Millard, Christopher J.; Tontonoz, Peter; Schwabe, John W.R.

    2011-01-01

    We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2–E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1–4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain–UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL–UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL–UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL–UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake. PMID:21685362

  7. Sex Differences in the Impact of the Mediterranean Diet on LDL Particle Size Distribution and Oxidation

    PubMed Central

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2015-01-01

    Sex differences have been previously highlighted in the cardioprotective effects of the Mediterranean diet (MedDiet). The objective of this study was to investigate whether sex differences also exist with regard to LDL particle size distribution and oxidation. Participants were 37 men and 32 premenopausal women (24–53 years) with slightly elevated LDL-C concentrations (3.4–4.9 mmol/L) or total cholesterol/HDL-C ≥5.0. Variables were measured before and after a four-week isoenergetic MedDiet. Sex differences were found in response to the MedDiet for the proportion of medium LDL (255–260 Å) (p for sex-by-time interaction = 0.01) and small, dense LDL (sdLDL; <255 Å) (trend; p for sex-by-time interaction = 0.06), men experiencing an increase in the proportion of medium LDL with a concomitant reduction in the proportion of sdLDL, while an opposite trend was observed in women. A sex difference was also noted for estimated cholesterol concentrations among sdLDL (p for sex-by-time interaction = 0.03), with only men experiencing a reduction in response to the MedDiet. The MedDiet marginally reduced oxidized LDL (oxLDL) concentrations (p = 0.07), with no sex difference. Results suggest that short-termconsumption of the MedDiet leads to a favorable redistribution of LDL subclasses from smaller to larger LDL only in men. These results highlight the importance of considering sex issues in cardiovascular benefits of the MedDiet. PMID:25988764

  8. Sex Differences in the Impact of the Mediterranean Diet on LDL Particle Size Distribution and Oxidation.

    PubMed

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2015-05-01

    Sex differences have been previously highlighted in the cardioprotective effects of the Mediterranean diet (MedDiet). The objective of this study was to investigate whether sex differences also exist with regard to LDL particle size distribution and oxidation. Participants were 37 men and 32 premenopausal women (24-53 years) with slightly elevated LDL-C concentrations (3.4-4.9 mmol/L) or total cholesterol/HDL-C ≥5.0. Variables were measured before and after a four-week isoenergetic MedDiet. Sex differences were found in response to the MedDiet for the proportion of medium LDL (255-260 Å) (p for sex-by-time interaction = 0.01) and small, dense LDL (sdLDL; <255 Å) (trend; p for sex-by-time interaction = 0.06), men experiencing an increase in the proportion of medium LDL with a concomitant reduction in the proportion of sdLDL, while an opposite trend was observed in women. A sex difference was also noted for estimated cholesterol concentrations among sdLDL (p for sex-by-time interaction = 0.03), with only men experiencing a reduction in response to the MedDiet. The MedDiet marginally reduced oxidized LDL (oxLDL) concentrations (p = 0.07), with no sex difference. Results suggest that short-term consumption of the MedDiet leads to a favorable redistribution of LDL subclasses from smaller to larger LDL only in men. These results highlight the importance of considering sex issues in cardiovascular benefits of the MedDiet.

  9. Cytokeratin 8 in Association with sdLDL and ELISA Development

    PubMed Central

    Ashmaig, Mohmed

    2015-01-01

    Background: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Cytokeratins (CKs) which may also be expressed in vascular smooth muscle cells (SMCs) are generally considered to be markers for the differentiation of epithelial cells. Small, dense, low-density lipoprotein (sdLDL) particles, also termed LDL-IV, independently predict risk of CVD. Aims: The aims of this study were to develop an analytical method, apart from ultracentrifugation capable of isolating sdLDL in order to study any associated proteins. Materials and Methods: Using modified gradient gel electrophoresis (GGE), de-identified sdLDL-enriched plasma was used to physically elute and isolate sdLDL particles. To validate the finding, additional plasma from 77 normal and 48 higher risk subjects were used to measure sdLDL particles and CK8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting method were used to identify the characteristics of proteins associated with sdLDL. An enzyme-linked immunosorbent assay (ELISA) method was developed and validated for the measurement of CK8 in plasma. Results: The validation of the CK8 ELISA method showed good analytical performance. The isolated sdLDL particles were verified with nondenaturing GGE with the apolipoprotein B component confirmed by Western immunoblotting. Confirmed by SDS-PAGE and Western immunoblotting, CK8 was associated with sdLDL. Two-tailed statistical analysis showed that CK8 and sdLDL particles were significantly higher in the high-risk CVD group compared to control group (P < 0.01 and P < 0.01, respectively). Conclusion: This study reports a novel association between CK8 and sdLDL in individuals with CVD who have a predominance of sdLDL. PMID:26713292

  10. Extracts of human atherosclerotic lesions modify LDL inducing enhanced macrophage uptake

    SciTech Connect

    Hoff, H.F.; O'Neill, J.

    1986-03-01

    Both an LDL-like fraction isolated from human aortic plaques and LDL incubated with cultured aortic endothelial or smooth muscle cells have been shown to be internalized by macrophages in vitro in an unregulated fashion leading to foam cell formation. Lipid peroxidation induced by free radicals released from cells was shown to be responsible for cell-modified LDL. The authors incubated LDL with a supernatant fraction of leached, i.e. non-homogenized, extracts of aortic plaques for one hour at 37/sup 0/C, to determine whether extracellular components present in arteries were also capable of modifying LDL. Extract-treated LDL showed the following changes relative to untreated LDL: 1) increased electrophretic mobility, 2) altered pattern of B-100 on SDS-PAGE, i.e. presence of a doublet with higher M/sub r/ than B-100, and 3) enhanced uptake by cultured mouse peritoneal macrophages as measured by increased degradation of /sup 125/I-LDL, and increased stimulation of cholesterol esterification using /sup 14/C-oleate. Extracts from homogenized plaques and grossly normal intima induced similar changes. The modification was tissue specific in that extracts of arteries but not of liver, muscle or skin modified LDL. Protease degradation of LDL during incubation was probably not responsible since inhibitors did not prevent modification. It is possible that products of lipid peroxidation present in extracellular lipid of arteries may propagate free radicals or be incorporated into LDL, leading to modifications similar to those found in cell-modified LDL.

  11. Nitric oxide-mediated endothlium-dependent vasodilation is impaired with borderline high-LDL cholesterol.

    PubMed

    Diehl, Kyle J; Stauffer, Brian L; Greiner, Jared J; Weil, Brian R; DeSouza, Christopher A

    2012-02-01

    The experimental aims of this study were to determine: (1) whether nitric oxide-mediated endothelium-dependent vasodilation is blunted in adult humans with borderline high plasma low-density lipoprotein (LDL)-cholesterol compared with adults with optimal/near optimal LDL-cholesterol levels; and, if so: (2) whether the magnitude of impairment in adults with borderline high LDL-cholesterol is similar to adults with high LDL-cholesterol. Forearm blood flow responses to intraarterial infusions of acetylcholine and sodium nitroprusside were measured in 50 middle-aged (43-64 year) adults: 20 in the optimal/near optimal LDL-cholesterol range (<130 mg/dL); 20 with borderline high LDL-cholesterol (130-159 mg/dL); and 10 with high LDL-cholesterol ($160 mg/dL). In addition, blood flow responses to acetylcholine were determined in the absence and presence of the endothelial nitric oxide synthase inhibitor N(G) -monomethyl-L-arginine (L-NMMA). Vasodilation to acetylcholine was ~20% lower (p < 0.05) in the borderline high (from 4.3 ± 0.2 to 12.3 ± 0.8 mL/100 mL tissue/min) and high (from 4.3 ± 0.3 to 12.0 ± 0.5 mL/100 mL tissue/min) LDL-cholesterol groups compared with the optimal/near optimal (from 4.4 ± 0.2 to 14.5 ± 0.5 mL/100 mL tissue/min) LDL-cholesterol group. L-NMMA significantly reduced (~30%) the vasodilator response to acetylcholine in the optimal/near optimal LDL-cholesterol group but not the borderline high or high LDL-cholesterol groups. Borderline high LDL-cholesterol is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

  12. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits.

    PubMed Central

    Shaish, A; Daugherty, A; O'Sullivan, F; Schonfeld, G; Heinecke, J W

    1995-01-01

    Oxidatively damaged LDL may be of central importance in atherogenesis. Epidemiological evidence suggests that high dietary intakes of beta-carotene and vitamin E decreases the risk for atherosclerotic vascular disease, raising the possibility that lipid-soluble antioxidants slow vascular disease by protecting LDL from oxidation. To test this hypothesis, we fed male New Zealand White rabbits a high-cholesterol diet or the same diet supplemented with either 1% probucol, 0.01% vitamin E, 0.01% all-trans beta-carotene, or 0.01% 9-cis beta-carotene; then we assessed both the susceptibility of LDL to oxidation ex vivo and the extent of aortic atherosclerosis. As in earlier studies, probucol protected LDL from oxidation and inhibited lesion formation. In contrast, vitamin E modestly inhibited LDL oxidation but did not prevent atherosclerosis. While beta-carotene had no effect on LDL oxidation ex vivo, the all-trans isomer inhibited lesion formation to the same degree as probucol. Moreover, all-trans beta-carotene was undetectable in LDL isolated from rabbits fed the compound, although tissue levels of retinyl palmitate were increased. The effect of all-trans beta-carotene on atherogenesis can thus be separated from the resistance of LDL to oxidation, indicating that other mechanisms may account for the ability of this compound to prevent vascular disease. Our results suggest that metabolites derived from all-trans beta-carotene inhibit atherosclerosis in hypercholesterolemic rabbits, possibly via stereospecific interactions with retinoic acid receptors in the artery wall. PMID:7560102

  13. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells.

    PubMed

    Sangle, Ganesh V; Zhao, Ruozhi; Mizuno, Tooru M; Shen, Garry X

    2010-09-01

    Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22(phox) prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes

  14. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells

    SciTech Connect

    Chouinard, Julie A.; Grenier, Guillaume; Khalil, Abdelouahed; Vermette, Patrick

    2008-10-01

    There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidal force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.

  15. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells.

    PubMed

    Chouinard, Julie A; Grenier, Guillaume; Khalil, Abdelouahed; Vermette, Patrick

    2008-10-01

    There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidal force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis. PMID:18692495

  16. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  17. Chemical sympathectomy induces arterial accumulation of native and oxidized LDL in hypercholesterolemic rats.

    PubMed

    Hachani, Rafik; Dab, Houcine; Sakly, Mohsen; Vicaut, Eric; Callebert, Jacques; Sercombe, Richard; Kacem, Kamel

    2012-01-26

    The aim of the present study was to examine the effect of sympathectomy on plasmatic and arterial native and oxLDL levels, as well as arterial LDL receptors (LDLR) and scavenger receptors in hypercholesterolemic rats, which are normally protected against atherosclerosis. Neonatal Wistar rats received subcutaneous injections of either guanethidine for sympathectomy (Gua+HC) or vehicle (HC), then were fed 1% cholesterol for three months. Intact normocholesterolemic rats were used as control of the HC group. Total cholesterol (TC) and LDL-cholesterol were evaluated in the plasma and the abdominal aorta by an auto-analyzer. Plasmatic and aortic oxLDL and native LDL-apo B100 were assessed by a sandwich ELISA. Aortic and hepatic native LDLR and aortic scavenger receptors (CD36 and SR-A) were quantified at mRNA and protein levels by real time PCR and western immunoblot. The effect of hypercholesterolemia was limited to an increase in plasmatic TC and LDL-cholesterol and a decrease in aortic apoB100 and aortic and hepatic LDLR. Hypercholesterolemia and sympathectomy in combination increased markedly plasmatic and aortic TC, LDL-cholesterol, apo B100 and oxLDL together with aortic scavenger receptors, but reduced markedly aortic and hepatic LDLR. Sympathectomy broke down the rat's protection against hypercholesterolemia by promoting accumulation of native and oxLDL in the aorta via scavenger receptors.

  18. [Association between food behavior and hypercholesterolemia-LDL in university students].

    PubMed

    Salazar Ruiz, Erika Nohemi; Márquez Sandoval, Yolanda Fabiola; Vizmanos Lamotte, Bárbara; Altamirano Martínez, Martha Betzaida; Salgado Bernabé, Aralia Berenice; Salgado Goytia, Lorenzo; Muñoz Valle, José Francisco; Parra Rojas, Isela

    2015-06-01

    Introducción: la hipercolesterolemia-LDL (H-LDL) se asocia a mayor riesgo de enfermedad cardiovascular. La asociacion entre H-LDL y alimentacion se ha centrado en aspectos nutrimentales. El estudio de la asociacion entre el comportamiento alimentario (CA) y la H-LDL en estudiantes universitarios podria brindar elementos de correccion y/o prevencion nutricional en esta poblacion. Objetivo: evaluar la asociacion entre CA e H-LDL en estudiantes universitarios. Métodos: estudio transversal realizado en una muestra de 167 estudiantes de la Universidad Autonoma de Guerrero, Mexico. Se midio el colesterol-LDL serico, considerandose hipercolesterolemia una concentracion ≥100 mg/dL. El CA se evaluo mediante un cuestionario previamente validado. La asociacion entre CA e H-LDL se determino con una regresion logistica bivariada, ajustando por sexo, edad, nivel socioeconomico, tabaquismo, ingesta de energia, actividad fisica, presencia o no de obesidad y antecedentes familiares. Resultados: consumir el almuerzo (colacion matutina) se asocio con un 63% de menos riesgo de H-LDL (OR 0,37; 95% IC 0,15, 0,90). Ingerir alimentos fuera de casa una o dos veces a la semana, se asocio con cuatro veces mas riesgo de H-LDL (R 5,14; 95% IC 1,12, 23,62). Los sujetos que referian consumir alimentos en exceso (1 o 2, y 3 o mas veces/semana) tuvieron mayor riesgo de H-LDL (OR 3,26; 95% IC 1,10, 9,64 y OR 10,52; 95% IC 2,66, 41,60, respectivamente). Conclusiones: algunos CA habituales de los estudiantes universitarios de Guerrero implican mayor riesgo de H-LDL. Por ello, promover acciones correctivas y/o preventivas centradas en estos CA podria mejorar la salud de esta poblacion.

  19. Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer.

    PubMed

    Khaidakov, Magomed; Mitra, Sona; Kang, Bum-Yong; Wang, Xianwei; Kadlubar, Susan; Novelli, Giuseppe; Raj, Vinay; Winters, Maria; Carter, Weleetka C; Mehta, Jawahar L

    2011-01-01

    Recent studies have linked expression of lectin-like ox-LDL receptor 1 (OLR1) to tumorigenesis. We analyzed microarray data from Olr1 knockout (KO) and wild type (WT) mice for genes involved in cellular transformation and evaluated effects of OLR1 over-expression in normal mammary epithelial cells (MCF10A) and breast cancer cells (HCC1143) in terms of gene expression, migration, adhesion and transendothelial migration. Twenty-six out of 238 genes were inhibited in tissues of OLR1 KO mice; the vast majority of OLR1 sensitive genes contained NF-κB binding sites in their promoters. Further studies revealed broad inhibition of NF-kB target genes outside of the transformation-associated gene pool, with enrichment themes of defense response, immune response, apoptosis, proliferation, and wound healing. Transcriptome of Olr1 KO mice also revealed inhibition of de novo lipogenesis, rate-limiting enzymes fatty acid synthase (Fasn), stearoyl-CoA desaturase (Scd1) and ELOVL family member 6 (Elovl6), as well as lipolytic phospholipase A2 group IVB (Pla2g4b). In studies comparing MCF10A and HCC1143, the latter displayed 60% higher OLR1 expression. Forced over-expression of OLR1 resulted in upregulation of NF-κB (p65) and its target pro-oncogenes involved in inhibition of apoptosis (BCL2, BCL2A1, TNFAIP3) and regulation of cell cycle (CCND2) in both cell lines. Basal expression of FASN, SCD1 and PLA2G4B, as well as lipogenesis transcription factors PPARA, SREBF2 and CREM, was higher in HCC1143 cells. Over-expression of OLR1 in HCC1143 cells also enhanced cell migration, without affecting their adherence to TNFα-activated endothelium or transendothelial migration. On the other hand, OLR1 neutralizing antibody inhibited both adhesion and transmigration of untreated HCC1143 cells. We conclude that OLR1 may act as an oncogene by activation of NF-kB target genes responsible for proliferation, migration and inhibition of apoptosis and de novo lipogenesis genes.

  20. Symmetry breaking in the planar configurations of disilicon tetrahalides: Pseudo-Jahn-Teller effect parameters, hardness and electronegativity.

    PubMed

    Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood

    2015-11-21

    CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the

  1. Symmetry breaking in the planar configurations of disilicon tetrahalides: Pseudo-Jahn-Teller effect parameters, hardness and electronegativity.

    PubMed

    Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood

    2015-11-21

    CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the

  2. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer.

    PubMed

    Pires, L A; Hegg, R; Freitas, F R; Tavares, E R; Almeida, C P; Baracat, E C; Maranhão, R C

    2012-06-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

  3. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    PubMed Central

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy. PMID:22570085

  4. Nox2 Modification of LDL Is Essential for Optimal Apolipoprotein B-mediated Control of agr Type III Staphylococcus aureus Quorum-sensing

    PubMed Central

    Hall, Pamela R.; Elmore, Bradley O.; Spang, Cynthia H.; Alexander, Susan M.; Manifold-Wheeler, Brett C.; Castleman, Moriah J.; Daly, Seth M.; Peterson, M. Michal; Sully, Erin K.; Femling, Jon K.; Otto, Michael; Horswill, Alexander R.; Timmins, Graham S.; Gresham, Hattie D.

    2013-01-01

    Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I–IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling. PMID:23459693

  5. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    PubMed

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  6. The hydrophobic tunnel present in LOX-1 is essential for oxidized LDL recognition and binding.

    PubMed

    Francone, Omar L; Tu, Meihua; Royer, Lori J; Zhu, Jian; Stevens, Kimberly; Oleynek, Joseph J; Lin, Zhiwu; Shelley, Lorraine; Sand, Thomas; Luo, Yi; Kane, Christopher D

    2009-03-01

    Lectin-like oxidized LDL (ox-LDL) receptor-1 (LOX-1) is a type-II transmembrane protein that belongs to the C-type lectin family of molecules. LOX-1 acts as a cell surface endocytosis receptor and mediates the recognition and internalization of ox-LDL by vascular endothelial cells. Internalization of ox-LDL by LOX-1 results in a number of pro-atherogenic cellular responses implicated in the development and progression of atherosclerosis. In an effort to elucidate the functional domains responsible for the binding of ox-LDL to the receptor, a series of site-directed mutants were designed using computer modeling and X-ray crystallography to study the functional role of the hydrophobic tunnel present in the LOX-1 receptor. The isoleucine residue (I(149)) sitting at the gate of the channel was replaced by phenylalanine, tyrosine, or glutamic acid to occlude the channel opening and restrict the docking of ligands to test its functional role in the binding of ox-LDL. The synthesis, intracellular processing, and cellular distribution of all mutants were identical to those of wild type, whereas there was a marked decrease in the ability of the mutants to bind ox-LDL. These studies suggest that the central hydrophobic tunnel that extends through the entire LOX-1 molecule is a key functional domain of the receptor and is critical for the recognition of modified LDL.

  7. Calcium-activated potassium channels mask vascular dysfunction associated with oxidized LDL exposure in rabbit aorta.

    PubMed

    Bocker, J M; Miller, F J; Oltman, C L; Chappell, D A; Gutterman, D D

    2001-05-01

    Endothelium-dependent vasodilation is impaired in atherosclerosis. Oxidized low density lipoprotein (ox-LDL) plays an important role, possibly through alterations in G-protein activation. We examined the effect of acute exposure to ox-LDL on the dilator responses of isolated rabbit aorta segments. We sought also to evaluate the specificity of this dysfunction for dilator stimuli that traditionally operate through a Gi-protein mechanism. Aortic segments were prepared for measurement of isometric tension. After contraction with prostaglandin F2alpha, relaxation to thrombin, adenosine diphosphate (ADP), or the endothelium-independent agonists, sodium nitroprusside (SNP) or papaverine was examined. Maximal relaxation to thrombin was impaired in the presence of ox-LDL (17.7+/-3.7% p<0.05) compared to control (no LDL) (52.6+/-4.0%). Ox-LDL did not affect maximal relaxation to ADP or SNP. However, in the presence of charybdotoxin (CHTX: calcium-activated potassium channel inhibitor) ox-LDL impaired relaxation to ADP (17.4+/-3.2%). CHTX did not affect control (no LDL) responses to ADP (69.6+/-5.0%) or relaxation to thrombin or papaverine. In conclusion, ox-LDL impairs relaxation to thrombin, but in the case of ADP, calcium-activated potassium channels compensate to maintain this relaxation. PMID:11605770

  8. Predominance of large LDL and reduced HDL2 cholesterol in normolipidemic men with coronary artery disease.

    PubMed

    Campos, H; Roederer, G O; Lussier-Cacan, S; Davignon, J; Krauss, R M

    1995-08-01

    Previous studies have indicated that a predominance of small, dense LDL particles is associated with coronary artery disease (CAD) risk. In the present study we examined the LDL peak particle diameter (determined by lipid-stained 2% to 16% gradient gel electrophoresis) in 92 normolipidemic men with CAD (total cholesterol < 200 mg/dL and triglyceride < 250 mg/dL) and 92 matched healthy controls. Plasma triglyceride, LDL cholesterol, and apo B levels were similar in subjects with CAD and in control subjects, whereas subjects with CAD had decreased HDL2 cholesterol levels (mean +/- SEM, 10 +/- 0.7 compared with 15 +/- 0.7 mg/dL in control subjects; P < .0002). Mean LDL particle diameter (+/- SEM) was increased in the subjects with CAD compared with control subjects (26.8 +/- 0.08 and 26.4 +/- 0.08 nm, respectively; P < .001). The association between large LDL size and CAD was significant (P < .0001) after adjustments were made for age, body mass index, HDL cholesterol levels, and VLDL cholesterol levels. An LDL particle size distribution characterized by a predominance of the largest of three classes of LDL particles (> 26.8 nm) was more prevalent among subjects with CAD (43%) than among control subjects (25%) (P < .002). Among subjects with this LDL size profile, subjects with CAD had significantly higher (P < .05) VLDL triglyceride, VLDL cholesterol, and VLDL apo B levels and significantly lower (P < .0001) HDL2 cholesterol levels than controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia.

    PubMed

    Qiu, C; Phung, T T T; Vadachkoria, S; Muy-Rivera, M; Sanchez, S E; Williams, M A

    2006-01-01

    Oxidative stress plays an important role in the pathophysiology of preeclampsia. In a case-control study of 99 women with preeclampsia and 99 controls, we assessed maternal plasma oxidized low-density lipoprotein (oxidized LDL) in relation to preeclampsia risk. Logistic regression procedures were used to derive odds ratios (OR) and 95 % confidence intervals (CI). Plasma oxidized LDL was determined using enzyme immunoassay. Maternal plasma oxidized LDL was significantly positively correlated with lipids in both cases and controls. After adjusting for nulliparity, pre-pregnancy body mass index, physical inactivity, family history of chronic hypertension and plasma vitamin C concentrations, women who had elevated oxidized LDL concentrations ( > or = 50 U/l) experienced a 2.9-fold increased risk of preeclampsia when compared with women having lower oxidized LDL concentrations (95 % CI 1.4-5.9). The risk of preeclampsia was markedly increased in women who had both elevated oxidized LDL and elevated triglyceride concentrations (OR=8.9, 95 % CI 3.1-26.2). Women with both elevated oxidized LDL and low vitamin C concentrations experienced a 9.8-fold increased risk of preeclampsia (95 % CI 3.0-32.2). Our results confirm the role of oxidative stress in the pathogenesis of preeclampsia. Prospective studies are needed to determine if elevated oxidized LDL concentrations can predict the occurrence of preeclampsia.

  10. Platelet Activation by Low Concentrations of Intact Oxidized LDL Particles Involves the PAF Receptor

    PubMed Central

    Chen, Rui; Chen, Xi; Salomon, Robert G.; McIntyre, Thomas M.

    2008-01-01

    Objective Mitochondrial depolarization aids platelet activation. Oxidized LDL (oxLDL) contains the medium length oxidatively truncated phospholipid hexadecyl azelaoyl-lysoPAF (HAz-LPAF) that disrupts mitochondrial function in nucleated cells, so oxLDL may augment platelet activation. Methods and Results Flow cytometry showed intact oxLDL particles synergized with sub-threshold amounts of soluble agonists to increase intracellular Ca++, and initiate platelet aggregation and surface expression of activated gpIIb/IIIa and P-selectin. oxLDL also induced aggregation and increased intracellular Ca++ in FURA2-labeled cells by itself at low, although not higher, concentrations. HAz-LPAF, alone and in combination with sub-stimulatory amounts of thrombin, rapidly increased cytoplasmic Ca++ and initiated aggregation. HAz-LPAF depolarized mitochondria in intact platelets, but this required concentrations beyond those that directly activated platelets. An unexpectedly large series of chemically pure truncated phospholipids generated by oxidative fragmentation of arachidonoyl-, docosahexaneoyl-, or linoleoyl alkyl phospholipids were platelet agonists. The PAF receptor, thought to effectively recognize only phospholipids with very short sn-2 residues, was essential for platelet activation because PAF receptor agonists blocked signaling by all these medium length phospholipids and oxLDL. Conclusions Intact oxLDL particles activate platelets through the PAF receptor, and the PAF receptor responds to a far wider range of oxidized phospholipids in oxLDL than anticipated. PMID:19112165

  11. [Synthesis and application of the polyacrylamide beads acting as LDL adsorbent's matrices].

    PubMed

    Yu, Xixun; Li, Li; Yue, Yilun; Chen, Huaiqing

    2004-08-01

    This study in pursuit of the synthetic technologies and structure characterization of polyacrylamide-based matrices (PAM beads) for low density lipoprotein (LDL) adsorbent and their adsorbability for LDL was intended for an experimental evidence of developing advanced matrices for LDL adsorbent. PAM beads were synthesized by inverse suspension polymerization, and their structure characterization was characterized by SEM, image analyzer and small angle X-ray scattering. The tripeptide serine-aspartic-glutamic acid (SDE) was coupled on the PAM beads to prepare the LDL adsorbents whose adsorbability for LDL was determined in vitro. The results showed that the PAM beads with the average size diameter 142.1 microm and the average pore diameter 119.8 nm could act as the matrices in accordance with the requirement of adsorbent for LDL. When the amount of acrylamide and the crosslinking agent N,N'-methylene-bis(acrylamide) was fixed, the average pore diameter decreased with the increase of the crosslinking agent content. Although the nonspecific binding of PAM beads for LDL was low, they could selectively adsorb LDL after coupling the SDE on the PAM beads.

  12. [Synthesis and application of the polyacrylamide beads acting as LDL adsorbent's matrices].

    PubMed

    Yu, Xixun; Li, Li; Yue, Yilun; Chen, Huaiqing

    2004-08-01

    This study in pursuit of the synthetic technologies and structure characterization of polyacrylamide-based matrices (PAM beads) for low density lipoprotein (LDL) adsorbent and their adsorbability for LDL was intended for an experimental evidence of developing advanced matrices for LDL adsorbent. PAM beads were synthesized by inverse suspension polymerization, and their structure characterization was characterized by SEM, image analyzer and small angle X-ray scattering. The tripeptide serine-aspartic-glutamic acid (SDE) was coupled on the PAM beads to prepare the LDL adsorbents whose adsorbability for LDL was determined in vitro. The results showed that the PAM beads with the average size diameter 142.1 microm and the average pore diameter 119.8 nm could act as the matrices in accordance with the requirement of adsorbent for LDL. When the amount of acrylamide and the crosslinking agent N,N'-methylene-bis(acrylamide) was fixed, the average pore diameter decreased with the increase of the crosslinking agent content. Although the nonspecific binding of PAM beads for LDL was low, they could selectively adsorb LDL after coupling the SDE on the PAM beads. PMID:15357437

  13. Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery.

    PubMed

    Zhou, Mingyong; Hu, Qiaobin; Wang, Taoran; Xue, Jingyi; Luo, Yangchao

    2016-11-20

    Five polysaccharides, pectin, carboxymethyl cellulose (CMC), gum arabic, carrageenan and alginate, were studied to form complex nanogels with egg yolk low density lipoprotein (LDL). All nanogels were smaller than 85nm with high negative zeta potential, while LDL/carrageenan and LDL/alginate nanogels exhibited more heterogeneous size distribution. Fourier transform infrared spectrum suggested that hydrogen bonds, hydrophobic and electrostatic interactions were involved to form nanogels. Overall, significant expansion of nanogels was observed after encapsulation of curcumin, being studied as a model lipophilic nutrient. Fluorescence spectra evidenced that LDL provided non-polar microenvironment for curcumin and polysaccharides played an important role in the encapsulation process. All nanogels showed sustained release of curcumin under simulated gastrointestinal conditions. Furthermore, nanoscale, smooth and spherical ultrafine dry powders of nanogels were obtained by innovative nano spray drying technology. Our study indicated that LDL/polysaccharides may serve as potential oral delivery systems for lipophilic nutrients.

  14. Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery.

    PubMed

    Zhou, Mingyong; Hu, Qiaobin; Wang, Taoran; Xue, Jingyi; Luo, Yangchao

    2016-11-20

    Five polysaccharides, pectin, carboxymethyl cellulose (CMC), gum arabic, carrageenan and alginate, were studied to form complex nanogels with egg yolk low density lipoprotein (LDL). All nanogels were smaller than 85nm with high negative zeta potential, while LDL/carrageenan and LDL/alginate nanogels exhibited more heterogeneous size distribution. Fourier transform infrared spectrum suggested that hydrogen bonds, hydrophobic and electrostatic interactions were involved to form nanogels. Overall, significant expansion of nanogels was observed after encapsulation of curcumin, being studied as a model lipophilic nutrient. Fluorescence spectra evidenced that LDL provided non-polar microenvironment for curcumin and polysaccharides played an important role in the encapsulation process. All nanogels showed sustained release of curcumin under simulated gastrointestinal conditions. Furthermore, nanoscale, smooth and spherical ultrafine dry powders of nanogels were obtained by innovative nano spray drying technology. Our study indicated that LDL/polysaccharides may serve as potential oral delivery systems for lipophilic nutrients. PMID:27561504

  15. Studies on serum LDL-cholesterol in second and third trimester of pregnancy.

    PubMed

    Husain, F; Latif, S A; Uddin, M M

    2010-07-01

    The present study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh, Bangladesh during the period of July 2006 to June 2007 to evaluate the effect of pregnancy on serum LDL-cholesterol. The serum concentrations of LDL-cholesterol was measured in 100cases during their 2nd and 3rd trimester of pregnancy and in a control group of 100 cases of non pregnant women which was matched on reproductive age. Data were analyzed by computer with SPSS program using unpaired student 't' test. The result showed that the pregnant women had significantly higher concentrations of serum LDL-cholesterol. Higher concentrations of serum LDL-cholesterol was more common in pregnant than control and reaching maximum at 3rd trimester of pregnancy. This may be a purely physiological response to pregnancy or it may be indicative of pathology in some women. These results warrant a follow up study to investigative whether the LDL hypercholesterolemia persists after parturition.

  16. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL).

    PubMed

    Yu, Wei; Ying, Huihui; Tong, Fudan; Zhang, Chen; Quan, Yanping; Zhang, Yaozhou

    2013-01-01

    Although the 30K family proteins are important anti-apoptotic molecules in silkworm hemolymph, the underlying mechanism remains to be investigated. This is especially the case in human vascular endothelial cells (HUVECs). In this study, a 30K protein, 30Kc6, was successfully expressed and purified using the Bac-to-Bac baculovirus expression system in silkworm cells. Furthermore, the 30Kc6 expressed in Escherichia coli was used to generate a polyclonal antibody. Western blot analysis revealed that the antibody could react specifically with the purified 30Kc6 expressed in silkworm cells. The In vitro cell apoptosis model of HUVEC that was induced by oxidized low density lipoprotein (Ox-LDL) and in vivo atherosclerosis rabbit model were constructed and were employed to analyze the protective effects of the silkworm protein 30Kc6 on these models. The results demonstrated that the silkworm protein 30Kc6 significantly enhanced the cell viability in HUVEC cells treated with Ox-LDL, decreased the degree of DNA fragmentation and markedly reduced the level of 8-isoprostane. This could be indicative of the silkworm protein 30Kc6 antagonizing the Ox-LDL-induced cell apoptosis by inhibiting the intracellular reactive oxygen species (ROS) generation. Furthermore, Ox-LDL activated the cell mitogen activated protein kinases (MAPK), especially JNK and p38. As demonstrated with Western analysis, 30Kc6 inhibited Ox-LDL-induced cell apoptosis in HUVEC cells by preventing the MAPK signaling pathways. In vivo data have demonstrated that oral feeding of the silkworm protein 30Kc6 dramatically improved the conditions of the atherosclerotic rabbits by decreasing serum levels of total triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Furthermore, 30Kc6 alleviated the extent of lesions in aorta and liver in the atherosclerotic rabbits. These data are not only helpful in understanding the anti

  17. Bis(monoacylglycero)phosphate reduces oxysterol formation and apoptosis in macrophages exposed to oxidized LDL.

    PubMed

    Arnal-Levron, Maud; Chen, Yinan; Delton-Vandenbroucke, Isabelle; Luquain-Costaz, Céline

    2013-07-01

    Atherosclerosis is a major cardiovascular complication of diseases associated with increased oxidative stress that favors oxidation of circulating low density lipoproteins (LDLs). Oxidized LDL (oxLDL) is considered as highly atherogenic as it induces a strong accumulation of cholesterol in subendothelial macrophages leading to the formation of foam cells and emergence of atherosclerotic plaque. OxLDL is enriched in oxidation products of cholesterol called oxysterols, some of which have been involved in the ability of oxLDL to induce cellular oxidative stress and cytotoxicity, mainly by apoptosis. Little is known about the possible contribution of cell-generated oxysterols toward LDL-associated oxysterols in cellular accumulation of oxysterols and related apoptosis. Using both radiochemical and mass analyzes, we showed that oxLDL greatly enhanced oxysterol production by RAW macrophages in comparison with unloaded cells or cells loaded with native LDL. Most oxysterols were produced by non-enzymatic routes (7-ketocholesterol and 7α/β-hydroyxycholesterol) but enzymatically formed 7α-, 25- and 27-hydroxycholesterol were also quantified. Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid preferentially found in late endosomes. We and others have highlighted the role of BMP in the regulation of intracellular cholesterol metabolism/traffic in macrophages. We here report that cellular BMP accumulation was associated with a significantly lower production of oxysterols upon oxLDL exposure. Of note, potent pro-apoptotic 7-ketocholesterol was the most markedly decreased. OxLDL-induced cell cytotoxicity and apoptosis were consistently attenuated in BMP-enriched cells. Taken together, our data suggest that BMP exerts a protective action against the pro-apoptotic effect of oxLDL via a reduced production of intracellular pro-apoptotic oxysterols. PMID:23542536

  18. Differing alpha-tocopherol oxidative lability and ascorbic acid sparing effects in buoyant and dense LDL.

    PubMed

    Tribble, D L; Thiel, P M; van den Berg, J J; Krauss, R M

    1995-11-01

    The enhanced oxidizability of smaller, more dense LDL is explained in part by a lower content of antioxidants, including ubiquinol-10 and alpha-tocopherol. In the present studies, we also observed greater rates of depletion of alpha-tocopherol (mole per mole LDL per minute) in dense (d = 1,040 to 1,054 g/mL) compared with buoyant (d = 1,026 to 1,032 g/mL) LDL in the presence of either Cu2+ or the radical-generating agent 2-2'-azobis (2-amidinopropane)dihydrochloride. Differences were particularly pronounced at the lowest Cu2+ concentration tested (0.25 mumol/L), with a fivefold greater rate in dense LDL. At higher concentrations (1.0 and 2.5 mumol/L Cu2+), there was a greater dependence of depletion rate on initial amount of alpha-tocopherol, which was reduced in dense LDL, thus resulting in smaller subfraction-dependent differences in depletion rates. Inclusion of ascorbic acid (15 mumol/L), an aqueous antioxidant capable of recycling alpha-tocopherol by hydrogen donation, was found to extend the course of Cu(2+)-induced alpha-tocopherol depletion in both buoyant and dense LDL, but this effect was more pronounced in dense LDL (time to half-maximal alpha-tocopherol depletion was extended 15.6-fold and 21.2-fold in buoyant and dense LDL, respectively, at 2.5 mumol/L Cu2+; P< .05). Thus, dense LDL exhibits more rapid alpha-tocopherol depletion and conjugated diene formation than buoyant LDL when oxidation is performed in the absence of ascorbic acid, but these differences are reversed in the presence of ascorbic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. On the scaling of rf and dc self-bias voltages with pressure in electronegative capacitively coupled plasmas

    SciTech Connect

    Agarwal, Ankur; Dorf, Leonid; Rauf, Shahid; Collins, Ken

    2012-03-15

    Higher gas densities and lower diffusion losses at higher operating pressures typically lead to increased charged species densities (and hence flux) for a constant power deposition in capacitively coupled plasmas (CCP). As a result, one would expect that the bias radio-frequency (rf) voltage required to deposit a given power in a CCP reactor decreases with increasing operating pressure. These observations may not hold true in multiple frequency CCPs, commonly used for dielectric etching in microelectronics fabrication, due to nonlinear interactions between the rf sources. Wafer-based measurements of the rf and self-generated direct current (dc) bias voltages in a dual-frequency capacitively coupled electronegative plasma were made, which indicate that the rf and dc voltages vary nonmonotonically with pressure. These experimental results are presented in this paper and a computational plasma model is used to explain the experimental observations for varying 60 MHz and 13 MHz powers in the Ar/CF{sub 4}/CHF{sub 3} plasma over a pressure range of 25 to 400 mTorr. The authors found that while the ion density increases with pressure, the increase is most dominant near the electrode with the high frequency source (60 MHz). The rf and dc bias voltages are ultimately influenced by both charged species density magnitudes and spatial profiles.

  20. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-01

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF4 gas determined the presheath exit velocities of all significant positive ions: CF3+, CF2+, CF+, and F+. At higher bias voltages, we detected essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.

  1. Planar and non-planar dust ion-acoustic solitary waves in a quantum dusty electronegative plasma

    NASA Astrophysics Data System (ADS)

    Tasnim, S.; Islam, S.; Mamun, A. A.

    2012-03-01

    A theoretical investigation has been made on nonlinear propagation of planar and non-planar solitary waves in a quantum dusty electronegative plasma, whose constituents are quantum electrons, positive ions, negative ions, and arbitrarily charged stationary dust. The reductive perturbation method has been used to derive the Korteweg-de Vries and modified Korteweg-de Vries equations for studying the basic features of solitary waves, which are associated with both positive and negative ion dynamics. The effects of quantum parameter (H), positive and negative ion mass ratio (μin), as well as dust and positive ion number densities (β) on the basic features (polarity, height, and width) of planar solitary waves have been studied. It has been also found that the properties of dust ion-acoustic solitary waves in non-planar cylindrical or spherical geometry differ from those in planar one-dimensional geometry. The implications of our results in space (viz., interstellar compact objects like neutron stars) and laboratory experiments (e.g., intense laser solid density plasma experiments) have been briefly discussed.

  2. Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice.

    PubMed

    Fattori, Elena; Cappelletti, Manuela; Lo Surdo, Paola; Calzetta, Alessandra; Bendtsen, Claus; Ni, Yan G; Pandit, Shilpa; Sitlani, Ayesha; Mesiti, Giuseppe; Carfí, Andrea; Monaci, Paolo

    2012-08-01

    Successful development of drugs against novel targets crucially depends on reliable identification of the activity of the target gene product in vivo and a clear demonstration of its specific functional role for disease development. Here, we describe an immunological knockdown (IKD) method, a novel approach for the in vivo validation and functional study of endogenous gene products. This method relies on the ability to elicit a transient humoral response against the selected endogenous target protein. Anti-target antibodies specifically bind to the target protein and a fraction of them effectively neutralize its activity. We applied the IKD method to the in vivo validation of plasma PCSK9 as a potential target for the treatment of elevated levels of plasma LDL-cholesterol. We show that immunization with human-PCSK9 in mice is able to raise antibodies that cross-react and neutralize circulating mouse-PCSK9 protein thus resulting in increased liver LDL receptor levels and plasma cholesterol uptake. These findings closely resemble those described in PCSK9 knockout mice or in mice treated with antibodies that inhibit PCSK9 by preventing the PCSK9/LDLR interaction. Our data support the IKD approach as an effective method to the rapid validation of new target proteins.

  3. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    SciTech Connect

    Hossain, Ekhtear; Ota, Akinobu; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Takahashi, Miyuki; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  4. LDL of Taiwanese vegetarians are less oxidizable than those of omnivores.

    PubMed

    Lu, S C; Wu, W H; Lee, C A; Chou, H F; Lee, H R; Huang, P C

    2000-06-01

    The vegetarians in Taiwan consume diets high in polyunsaturated fatty acids. To investigate whether this dietary pattern results in high susceptibility of LDL to oxidation, 109 long-term (8 +/- 5 y) male and female vegans and lactovegetarians (ages 31-45 y) from Taipei and females from Hualien and matched omnivores were recruited to have 24-h-recall dietary assessments and blood lipid analysis. Body mass index and blood pressure were significantly lower in all vegetarian groups than in the matched omnivore groups (P < 0.05). Vegetarians consumed less energy except in the males and less protein, fat and cholesterol (P < 0.05). The mean polyunsaturated/saturated fatty acid (P/S) ratio of 2.4 in vegetarian diet was about two times that in omnivore diet (P < 0. 001). The concentrations of plasma total- and LDL-cholesterol (LDL-C) but not HDL-cholesterol (HDL-C) were significantly lower (P < 0.001) and resulting HDL-C/LDL-C ratio was 38, 46 and 30% higher (P < 0.01) in Taipei female, male and Hualien female vegetarians, respectively, than in the matched omnivores. Plasma triglyceride concentration was significantly lower only in the Hualien women vegetarians (31%, P < 0.001) than in the matched omnivores. The lag time of conjugated diene formation in LDL oxidized in vitro induced by copper was longer in Taipei female (62%, P < 0.001), male (29%, P < 0.05) and Hualien female (38%, P < 0.01), and the production of thiobarbituric acid reactive substances (TBARS) in LDL after 2-4 h of oxidation was 22-32% less (P < 0.005) in Taipei male and Hualien female vegetarians than the matched omnivores. Lag time of LDL oxidation was negatively related to LDL arachidonic (r = -0.55, P = 0.0003) and eicosapentaenoic (r = -0.47, P = 0.003) acid contents. LDL-TBARS production was negatively related to LDL linoleic acid content (r = -0.36, P = 0.023), but positively related to LDL arachidonic (r = 0.56, P = 0.0002) and eicosapentaenoic (r = 0.45, P = 0.004) acids. No significant

  5. Facile preparation of heparinized polysulfone membrane assisted by polydopamine/polyethyleneimine co-deposition for simultaneous LDL selectivity and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Fang, Fei; Liu, Yang; Li, Jing; Huang, Xiaojun

    2016-11-01

    Low-density lipoprotein (LDL) gains worldwide attention for decades as the key risk factor to atherosclerosis that progressively deteriorating into cardiovascular diseases. Until recent years, LDL-apheresis comes to be extensively used as a direct and efficient LDL removal method, with LDL adsorption materials particularly important. In this paper, a new strategy based on the co-deposition of polydopamine (PDA) with polyethylenimine (PEI) onto polysulfone (PSf) membranes, then subsequent heparinization by amino-carbonyl reactions, to achieve LDL selectivity and simultaneous biocompatibility, is proposed. Surface properties of modified PSf membranes are characterized by ATR-FTIR, XPS, FESEM, Zeta potential and WCA measurements. LDL adsorption ability is investigated by ELISA, while blood biocompatibility is evaluated by platelet adhesion experiments. Results suggest that heparin-modified PSf membranes show high selectivity for LDL removal and fine biocompatibility in contact with plasma, as excellent potential materials for LDL-apheresis.

  6. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis.

    PubMed

    Di Pietro, Natalia; Formoso, Gloria; Pandolfi, Assunta

    2016-09-01

    Atherosclerosis is a progressive disease in which endothelial cell dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation, lead to the loss of vascular homeostasis. Oxidized low-density lipoprotein (oxLDL) may play a pre-eminent function in atherosclerotic lesion formation, even if their role is still debated. Several types of scavenger receptors (SRs) such as SR-AI/II, SRBI, CD36, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), toll-like receptors (TLRs) and others can promote the internalization of oxLDL. They are expressed on the surface of vascular wall cells (endothelial cells, macrophages and smooth muscle cells) and they mediate the cellular effects of oxLDL. The key influence of both oxLDL and SRs on the atherogenic process has been established in atherosclerosis-prone animals, in which antioxidant treatment and/or silencing of SRs has been shown to reduce atherogenesis. Despite some discrepancies, the indication from cohort studies that there is an association between oxLDL and cardiovascular (CV) events seems to point toward a role for oxLDL in atherosclerotic plaque progress and disruption. Finally, randomized clinical trials using antioxidants have demonstrated benefits only in high-risk patients, suggesting that additional proofs are still needed to better define the involvement of each type of modified LDL in the development of atherosclerosis. PMID:27256928

  7. ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression.

    PubMed

    Tang, Yao; Zhao, Jianting; Shen, Liming; Jin, Yiqi; Zhang, Zhixuan; Xu, Guoxiong; Huang, Xianchen

    2016-06-24

    Oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury including cytoskeleton reorganization, which is closely related to actin-related protein 2/3 (Arp2/3) complex. The aim of this study was to investigate the role of Arp2/3 complex in ox-LDL-induced endothelial dysfunction. In this study, we found that Arp2 and Arp3 expression was increased under atherosclerotic conditions both in ApoE-/- mice and in ox-LDL-stimulated human coronary artery endothelial cells (HCAECs). Arp2/3 complex inhibitor CK666 significantly reduced ox-LDL-induced ROS generation and cytoskeleton reorganization, and increased NO release in HCAECs. Pretreatment with LOX-1- but not CD36-blocking antibody markedly decreased ox-LDL-induced Arp2 and Arp3 expression. Moreover, Rac-1 siRNA remarkably suppressed ox-LDL-stimulated Arp2 and Arp3 expression. Additionally, CK666 reduced endothelial nitric oxide synthase (eNOS) expression and atherosclerotic lesions in ApoE-/- mice. Collectively, ox-LDL induces endothelial dysfunction by activating LOX-1/Rac-1 signaling and upregulating Arp2/3 complex expression. PMID:27181356

  8. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment

    PubMed Central

    Song, Liping; Li, Hui; Sunar, Ulas; Chen, Juan; Corbin, Ian; Yodh, Arjun G; Zheng, Gang

    2007-01-01

    Low density lipoproteins (LDLs) are naturally occurring nanoparticles that are biocompatible, biodegradable and non-immunogenic. Moreover, the size of LDL particle is precisely controlled (~22 nm) by its apoB-100 component, setting them apart from liposomes and lipid micelles. LDL particles have long been proposed as a nanocarrier for targeted delivery of diagnostics and therapeutics to LDL receptor (LDLR)-positive cancers. Here, we report the design and synthesis of a novel naphthalocyanine (Nc)-based photodynamic therapy (PDT) agent, SiNcBOA, and describe its efficient reconstitution into LDL core (100:1 payload). Possessing a near-infrared (NIR) absorption wavelength (>800 nm) and extremely high extinction coefficient (>105 M–1cm–1), SiNcBOA holds the promise of treating deeply seated tumors. Reconstituted LDL particles (r-Nc-LDL) maintain the size and shape of native LDL as determined by transmission electron microscopy, and also retain their LDLR-mediated uptake by cancer cells as demonstrated by confocal microscopy. Its preferential uptake by tumor vs normal tissue was confirmed in vivo by noninvasive optical imaging technique, demonstrating the feasibility of using this nanoparticle for NIR imaging-guided PDT of cancer. PMID:18203443

  9. Decreased training volume and increased carbohydrate intake increases oxidized LDL levels.

    PubMed

    Välimäki, I A; Vuorimaa, T; Ahotupa, M; Kekkonen, R; Korpela, R; Vasankari, T

    2012-04-01

    We studied effects of probiotics and training volume on oxidized LDL lipids (ox-LDL), serum antioxidant potential (s-TRAP) and serum antioxidants (s-α-tocopherol, s-γ-tocopherol, s-retinol, s-β-carotene and s-ubiquinone-10) in marathon runners during 3-months training period, 6-days preparation period and marathon run. Runners (n=127) were recruited for a randomized, double-blind intervention during which they received either Lactobacillus rhamnosus GG (LGG, probiotic group) or placebo drink (placebo group) during whole study. During the preparation period, subjects decreased training and increased carbohydrate intake. Blood samples were taken at baseline, before 6-days preparation, before and immediately after the marathon. Probiotics did not have any effect on ox-LDL, s-TRAP or serum antioxidants levels during the study. Interestingly, ox-LDL increased by 28% and 33% during the preparation period and decreased by 16% and 19% during the marathon run in the placebo and probiotic groups, respectively (in all, P<0.001). No changes were seen in s-TRAP before marathon, but during run s-TRAP raised by 16% in both groups (both, P<0.001). The increase of ox-LDL level during the preparative period after several months' training suggests that aerobic training may reduce the concentration of ox-LDL and that decrease of training together with increased energy intake, mainly carbohydrate, before marathon is capable of increasing the level of ox-LDL.

  10. Red wine mitigates the postprandial increase of LDL susceptibility to oxidation.

    PubMed

    Natella, F; Ghiselli, A; Guidi, A; Ursini, F; Scaccini, C

    2001-05-01

    The aim of the present study was to verify the extent of oxidative stress induced by a meal at plasma and LDL level, and to investigate the capacity of red wine to counteract this action. In two different sessions, six healthy men ate the same test meal consisting of "Milanese" meat and fried potatoes. The meal was taken either with 400 ml red wine or with an isocaloric hydroalcoholic solution. Oxidative stress at plasma level was estimated through the measure of ascorbic acid, alpha-tocopherol, protein SH groups, uric acid, and antioxidant capacity, measured before and 1 and 3 h after the meal. The change in the resistance of LDL to oxidative modification was taken as an index of exposure to pro-oxidants. The susceptibility to Cu(II)-catalyzed oxidation of baseline and postprandial LDL was measured as conjugated dienes formation, tryptophan residues, and relative electrophoretic mobility. The experimental meal taken with wine provoked a significant increase in the total plasma antioxidant capacity and in the plasma concentration of alpha-tocopherol and SH groups. Postprandial LDL was more susceptible to metal-catalyzed oxidation than the homologous baseline LDL after the ethanol meal. On the contrary, postprandial LDL obtained after the wine meal was as resistant or more resistant to lipid peroxidation than fasting LDL.

  11. LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress.

    PubMed

    Wei, Dangheng; Chen, Yongpeng; Tang, Chaojun; Huang, Hua; Liu, Lushan; Wang, Zuo; Li, Ruming; Wang, Guixue

    2013-03-01

    Atherosclerosis is an inflammatory disease of large and medium sized arteriole walls that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. However, the mechanisms that lead to the initiation of atherosclerosis are not fully understood. In this study, endothelial cells (ECs) were incubated with LDL for 24 h, and then the lipid was detected with Oil Red O staining and cholesterol ester was assayed with high-performance liquid chromatography (HPLC). F-actin was examined by fluorescence microscopy and the viscoelasticity of ECs was investigated using the micropipette aspiration technique. Then, a parallel-plate flow chamber device was used to observe the adhesion and retention of ECs under shear stress. The results demonstrated that elevated LDL significantly increased the cellular lipid content and induced the rearrangement of cytoskeletal F-actin. The initial rapid deformability (l/K 1 + l/K 2) was reduced by elevated cellular LDL levels, while membrane viscosity (μ) was increased by LDL accumulation. After treatment with 150 mg L(-1) LDL for 24 h, the adhesion of ECs under fluid shear stress was significantly decreased (p < 0.05). These results suggested that LDL induced cellular lipid accumulation and cytoskeleton reorganization which increased the cellular stiffness and decreased the adhesion of ECs.

  12. Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins

    PubMed Central

    Brunner, Monika; Gruber, Miriam; Schmid, Diethart; Baran, Halina; Moeslinger, Thomas

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL) is assumed to be a major causal agent in hypercholesteraemia-induced atherosclerosis. Because the proliferation of lipid-loaden macrophages within atherosclerotic lesions has been described, we investigated the dependence of macrophage proliferation on the inhibition of inducible nitric oxide synthase (iNOS) by hypochlorite oxidized LDL. Ox-LDL induces a dose dependent inhibition of inducible nitric oxide synthesis in lipopolysaccharide-interferon stimulated mouse macrophages (J774.A1) with concomitant macrophage proliferation as assayed by cell counting, tritiated-thymidine incorporation and measurement of cell protein. Native LDL did not influence macrophage proliferation and inducible nitric oxide synthesis. iNOS protein and mRNA was reduced by HOCl-oxidized LDL (0-40 µg/ml) as revealed by immunoblotting and competitive semiquantitative PCR. Macrophage proliferation was increased by the addition of the iNOS inhibitor L-NAME. The addition of ox-LDL to L-NAME containing incubations induced no further statistically significant increase in cell number. Nitric oxide donors decreased ox-LDL induced macrophage proliferation and nitric oxide scavengers restored macrophage proliferation to the initial values achieved by ox-LDL. The decrease of cytosolic DNA fragments in stimulated macrophages incubated with ox-LDL demonstrates that the proliferative actions of ox-LDL are associated with a decrease of NO-induced apoptosis. Our data show that inhibition of iNOS dependent nitric oxide production caused by hypochlorite oxidized LDL enhances macrophage proliferation. This might be a key event in the pathogenesis of atherosclerotic lesions. PMID:26600745

  13. Apolipoprotein E isoform phenotype and LDL subclass response to a reduced-fat diet.

    PubMed

    Dreon, D M; Fernstrom, H A; Miller, B; Krauss, R M

    1995-01-01

    We investigated the association of apolipoprotein (apo) E isoform phenotype with lipoprotein response to reduced dietary fat intake in 103 healthy men (apoE3/2, n = 10; apoE3/3, n = 65; and apoE4/3, 4/4, n = 28). In a randomized, crossover design, subjects consumed high-fat (46%) and low-fat (24%) diets for 6 weeks each. High-fat LDL cholesterol differed among phenotypes, with apoE4/3, 4/4 > apoE3/3 > apoE3/2. Reduction of LDL cholesterol on the low-fat diet was greater for apoE4/3, 4/4 than apoE3/3 (P < .05). There was no significant change in plasma apoB level within any of the apoE phenotype groups on the low-fat diet. This result, together with measurements of LDL subfraction mass by analytical ultracentrifugation, indicated that the primary basis for the diet-induced reduction in LDL cholesterol was not reduced LDL particle number but rather a shift from large, buoyant, cholesterol-rich LDL particles (flotation rate, 7 to 12) to smaller, denser LDL particles (flotation rate, 0 to 7). The magnitude of this effect was related to apoE phenotype, with progressively greater reductions in levels of large LDL (P < .01) from apoE3/2 to apoE3/3 to apoE4/3, 4/4. These results indicate that reduced dietary fat lowers levels of large, buoyant LDL particles by an apoE-dependent mechanism.

  14. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  15. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    PubMed

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  16. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  17. Adrenocortical LDL receptor function negatively influences glucocorticoid output.

    PubMed

    van der Sluis, Ronald J; Van Eck, Miranda; Hoekstra, Menno

    2015-09-01

    Over 50% of the cholesterol needed by adrenocortical cells for the production of glucocorticoids is derived from lipoproteins. However, the overall contribution of the different lipoproteins and associated uptake pathways to steroidogenesis remains to be determined. Here we aimed to show the importance of LDL receptor (LDLR)-mediated cholesterol acquisition for adrenal steroidogenesis in vivo. Female total body LDLR knockout mice with a human-like lipoprotein profile were bilaterally adrenalectomized and subsequently provided with one adrenal either expressing or genetically lacking the LDLR under their renal capsule to solely modulate adrenocortical LDLR function. Plasma total cholesterol levels and basal plasma corticosterone levels were identical in the two types of adrenal transplanted mice. Strikingly, restoration of adrenal LDLR function significantly reduced the ACTH-mediated stimulation of adrenal steroidogenesis (P<0.001), with plasma corticosterone levels that were respectively 44-59% lower (P<0.01) as compared to adrenal LDLR negative controls. In addition, LDLR positive adrenal transplanted mice exhibited a significant decrease (-39%; P<0.001) in their plasma corticosterone level under fasting stress conditions. Biochemical analysis did not show changes in the expression of genes involved in cholesterol mobilization. However, LDLR expressing adrenal transplants displayed a marked 62% reduction (P<0.05) in the transcript level of the key steroidogenic enzyme HSD3B2. In conclusion, our studies in a mouse model with a human-like lipoprotein profile provide the first in vivo evidence for a novel inhibitory role of the LDLR in the control of adrenal glucocorticoid production. PMID:26136384

  18. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells.

    PubMed

    Hossain, Ekhtear; Ota, Akinobu; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Takahashi, Miyuki; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. PMID:24145059

  19. Electronically stimulated adsorbate dissociation in the presence of an electronegative coadsorbate: (NO2+O) on Pt(111)

    NASA Astrophysics Data System (ADS)

    Orlando, T. M.; Burns, A. R.; Jennison, D. R.; Stechel, E. B.

    1992-04-01

    The effects of an electronegative coadsorbate on the stimulated dissociation of a chemisorbed molecule are investigated using state-resolved laser-ionization spectroscopy of those dissociation fragments which leave the surface. Specifically, we examine the NO(2ΠΩ=1/2,3/2) and O(3PJ) fragment energies and yields resulting from electron- (6-350 eV) stimulated dissociation of chemisorbed NO2 as a function of preadsorbed atomic O coverage. The most dramatic effect associated with O coverage (up to ΘO=0.75 monolayer) is a large (a factor of 26) enhancement in the specific NO2 dissociation yield. There is also an O-induced narrowing of the translational energy distributions and a decrease in both the rotational and vibrational energy of the NO fragment. The dissociation threshold of ~10 eV, together with lifetime arguments, suggest that the dominant excitation(s) are shallow-valence two-hole excitations. The above observations can be understood in terms of reduced substrate charge-transfer screening of these excitations. In addition, we observe a distinct propensity (>4:1 at low J) for populating the upper (Ω=3/2) over the lower (Ω=1/2) level of the spin-orbit-split NO(2ΠΩ) ground state, whereas the spin-orbit population of the O(3PJ) fragment is statistical (2J+1) within experimental error. The O(3PJ) yield derives from dissociation of nitro-bound NO2 (N end down); no O(3PJ) yield can be associated with side-bonded NO2.

  20. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect

    Rafalskyi, Dmytro Popelier, Lara; Aanesland, Ane

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied

  1. Evaluation of 99mTc-LDL for studying lipoprotein metabolism and imaging atherosclerotic lesions in vivo

    SciTech Connect

    Vallabhajosula, S.; Ginsberg, H.N.; Badimon, J.J.; Brown, C.; Lipszyc, H.; Fuster, V.; Goldsmith, S.J.

    1985-05-01

    Radioiodinated low density lipoprotein (LDL) used for studying LDL kinetics is not suitable for nuclear scintigraphy. /sup 99m/Tc-LDL, (Tc-LDL) with ideal physical imaging characteristics is being evaluated for the noninvasive identification of atherosclerotic lesions. LDL was labeled with Tc-99m and purified by gel chromatography (labeling efficiency 28 +- 8%). Human LDL labeled with Tc-99m and I-131 were injected simultaneously into a normal cynomolgus monkey. The plasma decay curves of the two tracers were identical (T1/2:4.5hrs) indicating that Tc-LDL is stable in plasma and is similar to /sup 131/I-LDL. Gamma camera images obtained at 30 min post injection showed that 40% of the activity of both tracers was in the liver. Over the next 4-8 hours, I-131 activity in the liver diminished and appeared in the lower abdomen and thyroid (representing deiodination) while Tc-99m activity in the liver remained stable indicating higher stability of Tc-LDL within hepatocytes. Tc-LDL (rabbit) was injected into normal rabbits and rabbits fed on an atherogenic 0.5% cholesterol diet for 3 months (ATR). 24 hour images showed significant uptake of Tc-LDL in the aorta of ART only. The isolated aorta from ATR showed Tc-LDL uptake in the lesions identified as ''fatty streaks'' by Sudan IV staining. These results suggest that Tc-LDL is stable in vivo and appears to be an efficient agent to identify sites of normal catabolism of LDL as well as uptake of LDL by fatty vascular lesions.

  2. Selective resistance of LDL core lipids to iron-mediated oxidation. Implications for the biological properties of iron-oxidized LDL.

    PubMed

    Tribble, D L; Chu, B M; Levine, G A; Krauss, R M; Gong, E L

    1996-12-01

    Although the nature and consequences of oxidative changes in the chemical constituents of low density lipoproteins (LDLs) have been extensively examined, the physical dynamics of LDL oxidation and the influence of physical organization on the biological effects of oxidized LDLs have remained relatively unexplored. To address these issues, in the present studies we monitored surface- and core-specific peroxidative stress relative to temporal changes in conjugated dienes (CDs), particle charge (an index of oxidative protein modification), and LDL-macrophage interactions. Peroxidative stress in LDL surface and core compartments was evaluated with the site-specific, oxidation-labile fluorescent probes parinaric acid (PnA) and PnA cholesteryl ester (PnCE), respectively. When oxidation was initiated by Cu2+, oxidative loss of the core probe (PnCE) closely followed that of the surface probe (PnA), as indicated by the time to 50% probe depletion (t1/2; 15.5 +/- 7.8 and 30.4 +/- 12 minutes for PnA and PnCE, respectively). Both probes were more resistant in LDL exposed to Fe3+ (t1/2, 53.2 +/- 8.1 and 346.7 +/- 155.4 minutes), although core probe resistance was much greater with this oxidant (PnCE t1/2/PnA t1/2 5.8 vs 2.0 for Cu2+). Despite differences in the rate and extent of oxidative changes in Cu(2+)- versus Fe(3+)-exposed LDLs, PnCE loss occurred in close correspondence with CD formation and appeared to precede changes in particle charge under both conditions. Exposure of LDLs to hemin, a lipophilic Fe(3+)-containing porphyrin that becomes incorporated into the LDL particle, resulted in rapid loss of PnCE and simultaneous changes in particle, charge, even at concentrations that yielded increases in CDs and thiobarbituric acid-reactive substances similar to those obtained with free Fe3+. These results suggest that oxidation of the LDL hydrophobic core occurs in conjunction with accelerated formation of CDs and may be essential for LDL protein modification. In accordance

  3. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study

    PubMed Central

    Elkan, Ann-Charlotte; Sjöberg, Beatrice; Kolsrud, Björn; Ringertz, Bo; Hafström, Ingiäld; Frostegård, Johan

    2008-01-01

    Introduction The purpose of this study was to investigate the effects of vegan diet in patients with rheumatoid arthritis (RA) on blood lipids oxidized low-density lipoprotein (oxLDL) and natural atheroprotective antibodies against phosphorylcholine (anti-PCs). Methods Sixty-six patients with active RA were randomly assigned to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 year. Thirty patients in the vegan group completed more than 3 months on the diet regimen. Blood lipids were analyzed by routine methods, and oxLDL and anti-PCs were analyzed by enzyme-linked immunosorbent assay. Data and serum samples were obtained at baseline and after 3 and 12 months. Results Mean ages were 50.0 years for the vegan group and 50.8 years for controls. Gluten-free vegan diet induced lower body mass index (BMI) and low-density lipoprotein (LDL) and higher anti-PC IgM than control diet (p < 0.005). In the vegan group, BMI, LDL, and cholesterol decreased after both 3 and 12 months (p < 0.01) and oxLDL after 3 months (p = 0.021) and trendwise after 12 months (p = 0.090). Triglycerides and high-density lipoprotein did not change. IgA anti-PC levels increased after 3 months (p = 0.027) and IgM anti-PC levels increased trendwise after 12 months (p = 0.057). There was no difference in IgG anti-PC levels. In the control diet group, IgM anti-PC levels decreased both after 3 and 12 months (p < 0.01). When separating vegan patients into clinical responders and non-responders at 12 months, the effects on oxLDL and anti-PC IgA were seen only in responders (p < 0.05). Conclusion A gluten-free vegan diet in RA induces changes that are potentially atheroprotective and anti-inflammatory, including decreased LDL and oxLDL levels and raised anti-PC IgM and IgA levels. PMID:18348715

  4. Differential Complement Activation Pathways Promote C3b Deposition on Native and Acetylated LDL thereby Inducing Lipoprotein Binding to the Complement Receptor 1

    PubMed Central

    Klop, Boudewijn; van der Pol, Pieter; van Bruggen, Robin; Wang, Yanan; de Vries, Marijke A.; van Santen, Selvetta; O'Flynn, Joseph; van de Geijn, Gert-Jan M.; Njo, Tjin L.; Janssen, Hans W.; de Man, Peter; Jukema, J. Wouter; Rabelink, Ton J.; Rensen, Patrick C. N.; van Kooten, Cees; Cabezas, Manuel Castro

    2014-01-01

    Lipoproteins can induce complement activation resulting in opsonization and binding of these complexes to complement receptors. We investigated the binding of opsonized native LDL and acetylated LDL (acLDL) to the complement receptor 1 (CR1). Binding of complement factors C3b, IgM, C1q, mannose-binding lectin (MBL), and properdin to LDL and acLDL were investigated by ELISA. Subsequent binding of opsonized LDL and acLDL to CR1 on CR1-transfected Chinese Hamster Ovarian cells (CHO-CR1) was tested by flow cytometry. Both native LDL and acLDL induced complement activation with subsequent C3b opsonization upon incubation with normal human serum. Opsonized LDL and acLDL bound to CR1. Binding to CHO-CR1 was reduced by EDTA, whereas MgEGTA only reduced the binding of opsonized LDL, but not of acLDL suggesting involvement of the alternative pathway in the binding of acLDL to CR1. In vitro incubations showed that LDL bound C1q, whereas acLDL bound to C1q, IgM, and properdin. MBL did neither bind to LDL nor to acLDL. The relevance of these findings was demonstrated by the fact that ex vivo up-regulation of CR1 on leukocytes was accompanied by a concomitant increased binding of apolipoprotein B-containing lipoproteins to leukocytes without changes in LDL-receptor expression. In conclusion, CR1 is able to bind opsonized native LDL and acLDL. Binding of LDL to CR1 is mediated via the classical pathway, whereas binding of acLDL is mediated via both the classical and alternative pathways. Binding of lipoproteins to CR1 may be of clinical relevance due to the ubiquitous cellular distribution of CR1. PMID:25349208

  5. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  6. Oxidized low-density lipoprotein (Ox-LDL) impacts on erythrocyte viscoelasticity and its molecular mechanism.

    PubMed

    Wang, Xiang; Yang, Li; Liu, Yao; Gao, Wei; Peng, Weiyan; Sung, K-L Paul; Sung, Lanping Amy

    2009-10-16

    The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.

  7. The autoantibody repertoire against copper- or macrophage-modified LDL differs in normolipidemics and hypercholesterolemic patients.

    PubMed

    Fernvik, Eva C; Ketelhuth, Daniel F J; Russo, Momtchilo; Gidlund, Magnus

    2004-03-01

    We have analyzed the antibody repertoire from normo- and hypercholesterolemic subjects to investigate how it can be related to macrophage-dependent modification of low-density lipoproteins, in comparison to the commonly used copper-oxidized LDL. Preexisting natural antibodies in plasma from normo- and hypercholesterolemic individuals were tested for their reactivity against copper ion oxidized LDL and LDL modified by macrophages. A crosswise comparison between these two antigen preparations demonstrated a different antibody repertoire in normo- and hypercholesterolemic patients. This study suggest that the search for antibodies that can influence the progression or regression of an atherosclerotic process has to take into account the process by which LDL is modified, and the repertoire of antibodies that is generated in the normal population, in comparison to that with, or at risk for, coronary artery diseases. PMID:15024184

  8. Association of Small Dense LDL Serum Levels and Circulating Monocyte Subsets in Stable Coronary Artery Disease

    PubMed Central

    Krychtiuk, Konstantin A.; Kastl, Stefan P.; Pfaffenberger, Stefan; Lenz, Max; Hofbauer, Sebastian L.; Wonnerth, Anna; Koller, Lorenz; Katsaros, Katharina M.; Pongratz, Thomas; Goliasch, Georg; Niessner, Alexander; Gaspar, Ludovit; Huber, Kurt; Maurer, Gerald; Dostal, Elisabeth; Wojta, Johann; Oravec, Stanislav; Speidl, Walter S.

    2015-01-01

    Objective Atherosclerosis is considered to be an inflammatory disease in which monocytes and monocyte-derived macrophages play a key role. Circulating monocytes can be divided into three distinct subtypes, namely in classical monocytes (CM; CD14++CD16-), intermediate monocytes (IM; CD14++CD16+) and non-classical monocytes (NCM; CD14+CD16++). Low density lipoprotein particles are heterogeneous in size and density, with small, dense LDL (sdLDL) crucially implicated in atherogenesis. The aim of this study was to examine whether monocyte subsets are associated with sdLDL serum levels. Methods We included 90 patients with angiographically documented stable coronary artery disease and determined monocyte subtypes by flow cytometry. sdLDL was measured by an electrophoresis method on polyacrylamide gel. Results Patients with sdLDL levels in the highest tertile (sdLDL≥4mg/dL;T3) showed the highest levels of pro-inflammatory NCM (15.2±7% vs. 11.4±6% and 10.9±4%, respectively; p<0.01) when compared with patients in the middle (sdLDL=2-3mg/dL;T2) and lowest tertile (sdLDL=0-1mg/dL;T1). Furthermore, patients in the highest sdLDL tertile showed lower CM levels than patients in the middle and lowest tertile (79.2±8% vs. 83.9±7% and 82.7±5%; p<0.01 for T3 vs. T2+T1). Levels of IM were not related to sdLDL levels (5.6±4% vs. 4.6±3% vs. 6.4±3% for T3, T2 and T1, respectively). In contrast to monocyte subset distribution, levels of circulating pro- and anti-inflammatory markers were not associated with sdLDL levels. Conclusion The atherogenic lipoprotein fraction sdLDL is associated with an increase of NCM and a decrease of CM. This could be a new link between lipid metabolism dysregulation, innate immunity and atherosclerosis. PMID:25849089

  9. Bioactive oat β-glucan reduces LDL cholesterol in Caucasians and non-Caucasians

    PubMed Central

    2011-01-01

    Background There is increasing global acceptance that viscous soluble fibers lower serum LDL cholesterol (LDL-C), but most evidence for this comes from studies in Caucasians. To see if oat β-glucan lowers LDL-C in Caucasians and non-Caucasians we conducted a post-hoc analysis of the results of a randomized, controlled, double-blind, multi-center clinical trial whose primary aim was to determine if molecular-weight (MW) influenced the LDL-C-lowering effect of oat β-glucan. Results Caucasian and non-Caucasian subjects with LDL-C-C ≥ 3.0 and ≤ 5.0 mmol/L (n = 786 screened, n = 400 ineligible, n = 19 refused, n = 367 randomized, n = 345 completed, n = 1 excluded for missing ethnicity) were randomly assigned to consume cereal containing wheat-fiber (Control, n = 74:13 Caucasian:non-Caucasian) or 3 g high-MW (3H, 2,250,000 g/mol, n = 67:19), 4 g medium-MW (4 M, 850,000 g/mol, n = 50:17), 3 g medium-MW (3M, 530,000 g/mol, n = 54:9) or 4 g low-MW (4 L, 210,000 g/mol, n = 51:12) oat β-glucan daily for 4 weeks. LDL-C after 4 weeks was influenced by baseline LDL-C (p < 0.001) and treatment (p = 0.003), but not ethnicity (p = 0.74). In all subjects, compared to control, 3 H, 4 M and 3 M reduced LDL-C significantly by 4.8 to 6.5%, but 4 L had no effect. Compared to control, the bioactive oat β-glucan treatments (3H, 4M and 3M) reduced LDL-C by a combined mean (95% CI) of 0.18 (0.06, 0.31) mmol/L (4.8%, n = 171, p = 0.004) in Caucasians, a value not significantly different from the 0.37 (0.09, 0.65) mmol/L (10.3%, n = 45, p = 0.008) reduction in non-Caucasians. Conclusion We conclude that oat β-glucan reduces LDL-C in both Caucasians and non-Caucasians; there was insufficient power to determine if the magnitude of LDL-C-lowering differed by ethnicity. Trial Registration ClinicalTrials.gov: NCT00981981 PMID:22118569

  10. Suppression of EC-SOD by oxLDL During Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Makino, Junya; Asai, Rei; Hashimoto, Mao; Kamiya, Tetsuro; Hara, Hirokazu; Ninomiya, Masayuki; Koketsu, Mamoru; Adachi, Tetsuo

    2016-11-01

    Reactive oxygen species (ROS) produced by endothelial cells and macrophages play important roles in atherogenesis because they promote the formation of oxidized low-density lipoproteins (oxLDL). Extracellular-superoxide dismutase (EC-SOD) is mainly produced by vascular smooth muscle cells (VSMCs), is secreted into the extracellular space, and protects cells from the damaging effects of the superoxide anion. Thus, the expression of EC-SOD in VSMCs is crucial for protecting cells against atherogenesis; however, oxLDL-induced changes in the expression of EC-SOD in VSMCs have not yet been examined. We herein showed that oxLDL decreased EC-SOD mRNA and protein levels by binding to lectin-like oxidized LDL receptor-1 (LOX-1). Moreover, we demonstrated the significant role of mitogen-activated protein kinase (MEK)/extracellular-regulated protein kinase (ERK) signaling in oxLDL-elicited reductions in the expression of EC-SOD and proliferation of VSMCs. The results obtained with the FCS treatment indicate that oxLDL-elicited reductions in the expression of EC-SOD are related to the proliferation of VSMCs. We herein showed for the first time that luteolin, a natural product, restored oxLDL-induced decreases in the expression of EC-SOD and proliferation of VSMCs. Collectively, the results of the present study suggest that oxLDL accelerates the development of atherosclerosis by suppressing the expression of EC-SOD and also that luteolin has potential as a treatment for atherosclerosis. J. Cell. Biochem. 117: 2496-2505, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990420

  11. Serum LDL (Low Density Lipoprotein) As a Risk Factor for Ischemic Stroke.

    PubMed

    Biswas, N; Sangma, M A

    2016-07-01

    Atherosclerosis is the main risk factor of ischaemic stroke. Dyslipidaemia is the main cause of atherosclerosis. High levels of LDL, also called "bad" cholesterol, seem to provoke stroke. This case control study was conducted in Mymensingh Medical College Hospital during the period of January 2012 to December 2012. The study was carried out to measure the level of serum LDL (Low Density Lipoprotein) of ischaemic stroke patients admitted in Medicine wards of Mymensingh Medical College Hospital and the result of this study was compared with the level of LDL cholesterol in age matched controls. Sample size was 384 which had been selected by inclusion and exclusion criteria. Out of 384 samples 192 were cases and 192 were controls. Mean age ±SD was 57.0±10.85 years in cases and 57.43±10.64 years in controls. Elderly people are the most vulnerable group for developing stroke. LDL cholesterol level was more than 130mg/dl was found 88.54% among cases and 33.85% among controls, the difference was statistically significant (p<0.05). Mean LDL level ±SD were 145±13.59mg/dl in cases and 125.01±10.73mg/dl in controls. Odds ratio of LDL cholesterol were 15.0979 and 95% confidence limits were 8.8396 to 25.7869 among cases and controls. This study explored study population with higher LDL cholesterol was over fifteen times more likely to developed ischaemic stroke. Early detection of high LDL cholesterol in the way to prevent ischaemic stroke and thereby reduced the morbidity and mortality of ischaemic stroke. PMID:27612886

  12. LDL apheresis for cholesterol embolism following coronary artery bypass graft surgery--a case report.

    PubMed

    Sanai, Toru; Matsui, Rei; Hirano, Tadashi

    2006-01-01

    A 76-year-old man without any prior history of abnormal urinalysis findings or renal insufficiency demonstrated mild renal dysfunction after coronary bypass graft surgery (CABG). Two months after CABG, pain and blueness in the toes (blue toe syndrome) appeared and, the serum creatinine level (S-Cr) increased from 1.2 to 2.0 mg/dL. On admission (3 months later), the urinary protein level was 0.5 g/day, white blood cell count 8,300/microL with eosinophils (Eo) 10.5%, S-Cr 2.1 mg/dL, and low-density lipoprotein (LDL) 106 mg/dL. Acute renal failure and blue toe syndrome due to a cholesterol embolism (CE) were diagnosed. Alprostadil 40 microg/day orally for 2 weeks and alprostadil 40 microg/day intravenously were used for 5 weeks, and Eo were 250/microL, S-Cr 2.5 mg/dL; however, blue toe syndrome gradually developed. At 8 weeks after admission, limaprost alfadex 30 microg/day orally was used for 3 weeks. However, the Eo gradually rose to 1,520/microL, S-Cr to 3.0 mg/dL, and LDL to 135 mg/dL, and LDL apheresis was therefore performed 20 times for CE. The data just after LDL apheresis was performed 10 times were as follows: Eo 1,120/microL, S-Cr 4.0 mg/dL, and LDL 89 mg/dL, and blue toe syndrome had disappeared. At 10 months after the first LDL apheresis, the Eo were 630/microL, S-Cr 2.9 mg/dL, and LDL 109 mg/dL. As a result, LDL apheresis was found to be beneficial for the treatment of CE with acute renal failure and blue toe syndrome after CABG.

  13. ATVB Council Statement: Non-statin LDL-lowering Therapy and Cardiovascular Risk Reduction

    PubMed Central

    Hegele, Robert A.; Gidding, Samuel S.; Ginsberg, Henry N.; McPherson, Ruth; Raal, Frederick J.; Rader, Daniel J.; Robinson, Jennifer G.; Welty, Francine K.

    2015-01-01

    Pharmacologic reduction of low-density lipoprotein (LDL) cholesterol using statin drugs is foundational therapy to reduce cardiovascular disease (CVD) risk. Here we consider the place of non-statin therapies that also reduce LDL cholesterol in prevention of CVD. Among conventional non-statins, placebo-controlled randomized clinical trials showed that bile acid sequestrants, niacin and fibrates given as monotherapy each reduce CVD end points. From trials in which patients’ LDL cholesterol was already well-controlled on a statin, adding ezetimibe incrementally reduced CVD end points, while adding a fibrate or niacin showed no incremental benefit. Among emerging non-statins, monoclonal antibodies against proprotein convertase subtilisin kexin type 9 (PCSK9) added to a statin and given for up to 78 weeks showed preliminary evidence of reductions in CVD outcomes. While these promising early findings contributed to the recent approval of these agents in Europe and the US, much larger and longer duration outcomes studies are ongoing for definitive proof of CVD benefits. Other non-statin agents recently approved in the US include lomitapide and mipomersen, which both act via distinctive LDL-receptor independent mechanisms to substantially reduce LDL cholesterol in homozygous familial hypercholesterolemia. We also address some unanswered questions, including measuring alternative biochemical variables to LDL cholesterol, evidence for treating children with monitoring of subclinical atherosclerosis, and potential risks of extremely low LDL cholesterol. As evidence for benefit in CVD prevention accumulates, we anticipate that clinical practice will shift towards more assertive LDL-lowering treatment, using both statins and non-statins initiated earlier in appropriately selected patients. PMID:26376908

  14. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials

    PubMed Central

    Armah, Charlotte N; Derdemezis, Christos; Traka, Maria H; Dainty, Jack R; Doleman, Joanne F; Saha, Shikha; Leung, Wing; Potter, John F; Lovegrove, Julie A; Mithen, Richard F

    2015-01-01

    Scope Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. Methods and results One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: –1.8%, –12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, –7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: –2.1%, –8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, –5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). Conclusion Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C. PMID:25851421

  15. Walnut-enriched diet increases the association of LDL from hypercholesterolemic men with human HepG2 cells.

    PubMed

    Muñoz, S; Merlos, M; Zambón, D; Rodríguez, C; Sabaté, J; Ros, E; Laguna, J C

    2001-12-01

    In a randomized, cross-over feeding trial involving 10 men with polygenic hypercholesterolemia, a control, Mediterranean-type cholesterol-lowering diet, and a diet of similar composition in which walnuts replaced approximately 35% of energy from unsaturated fat, were given for 6 weeks each. Compared with the control diet, the walnut diet reduced serum total and LDL cholesterol by 4.2% (P = 0.176), and 6.0% (P = 0.087), respectively. No changes were observed in HDL cholesterol, triglycerides, and apolipoprotein A-I levels or in the relative proportion of protein, triglycerides, phospholipids, and cholesteryl esters in LDL particles. The apolipoprotein B level declined in parallel with LDL cholesterol (6.0% reduction). Whole LDL, particularly the triglyceride fraction, was enriched in polyunsaturated fatty acids from walnuts (linoleic and alpha-linolenic acids). In comparison with LDL obtained during the control diet, LDL obtained during the walnut diet showed a 50% increase in association rates to the LDL receptor in human hepatoma HepG2 cells. LDL uptake by HepG2 cells was correlated with alpha-linolenic acid content of the triglyceride plus cholesteryl ester fractions of LDL particles (r(2) = 0.42, P < 0.05). Changes in the quantity and quality of LDL lipid fatty acids after a walnut-enriched diet facilitate receptor-mediated LDL clearance and may contribute to the cholesterol-lowering effect of walnut consumption.

  16. Rapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-κB/LOX-1 Pathway

    PubMed Central

    Liu, Zhi-Hua; Cao, Yong-Jun; Liu, Chun-Feng; Zhang, Yan-Lin; Xie, Ying

    2016-01-01

    Background Lectin-like oxidized low-density lipoprotein-1 (LOX-1) is the major receptor for oxidized low density lipoprotein (ox-LDL) uptake in human umbilical vein endothelial cells (HUVECs). Previously, we found that rapamycin inhibited ox-LDL accumulation in HUVECs, and this effect was related to its role in increasing the activity of autophagy-lysosome pathway. In this study, we determined whether rapamycin could also reduce ox-LDL uptake in HUVECs and investigated the underlying signaling mechanisms. Results Flow cytometry and live cell imaging showed that rapamycin reduced Dil-ox-LDL accumulation in HUVECs. Furthermore, rapamycin reduced the ox-LDL-induced increase in LOX-1 mRNA and protein levels. Western blotting showed that rapamycin inhibited mechanistic target of rapamycin (mTOR), p70s6k and IκBα phosphorylation triggered by ox-LDL. Flow cytometry implied that mTOR, NF-κB knockdown and NF-κB inhibitors significantly reduced Dil-ox-LDL uptake. Moreover, immunofluorescent staining showed that rapamycin reduced the accumulation of p65 in the nucleus after ox-LDL treatment for 30 h. mTOR knockdown decreased LOX-1 protein production and IκBα phosphorylation induced by ox-LDL. NF-κB knockdown and NF-κB inhibitors reduced LOX-1 protein production, but did not inhibit mTOR phosphorylation stimulated by ox-LDL. Conclusions These findings demonstrate that rapamycin reduce mTOR phosphorylation and subsequently inhibit NF-κB activation and suppresses LOX-1, resulting in a reduction in ox-LDL uptake in HUVECs. PMID:26752047

  17. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    SciTech Connect

    Miida, T.; Fielding, C.J.; Fielding, P.E. )

    1990-11-01

    The transfer of ({sup 3}H)cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t{sub 1/2} at 37{degree}C of 51 {plus minus} 8 min and an activation energy of 18.0 kCal mol{sup {minus}1}. There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major {alpha}-migrating class (HDL{sub 2b}) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL{sub 2b} to smaller {alpha}HDL (particularly HDL{sub 3}) driven enzymatically by the lecithin-cholesterol acyltransferase reaction. Rates of transfer among {alpha}HDL were most rapid from the largest {alpha}HDL fraction (HDL{sub 2b}), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the {alpha}HDL pathyway, with little label in pre-{beta}HDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-{beta}HDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol.

  18. Human LDL core cholesterol ester packing: three-dimensional image reconstruction and SAXS simulation studies

    PubMed Central

    Liu, Yuhang; Luo, Dong; Atkinson, David

    2011-01-01

    Human LDL undergoes a reversible thermal order-disorder phase transition associated with the cholesterol ester packing in the lipid core. Structural changes associated with this phase transition have been shown to affect the resistance of LDL to oxidation in vitro studies. Previous electron cryo-microscopy studies have provided image evidence that the cholesterol ester is packed in three flat layers in the core at temperatures below the phase transition. To study changes in lipid packing, overall structure and particle morphology in three dimensions (3D) subsequent to the phase transition, we cryo-preserved human LDL at a temperature above phase transition (53°C) and examined the sample by electron microscopy and image reconstruction. The LDL frozen from 53°C adopted a different morphology. The central density layer was disrupted and the outer two layers formed a “disrupted shell”-shaped density, located concentrically underneath the surface density of the LDL particle. Simulation of the small angle X-ray scattering curves and comparison with published data suggested that this disrupted shell organization represents an intermediate state in the transition from isotropic to layered packing of the lipid. Thus, the results revealed, with 3D images, the lipid packing in the dynamic process of the LDL lipid-core phase transition. PMID:21047995

  19. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    PubMed Central

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  20. The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis[S

    PubMed Central

    Xu, Yu-Xin; Ashline, David; Liu, Li; Tassa, Carlos; Shaw, Stanley Y.; Ravid, Katya; Layne, Matthew D.; Reinhold, Vernon; Robbins, Phillips W.

    2015-01-01

    Perlecan is a major heparan sulfate (HS) proteoglycan in the arterial wall. Previous studies have linked it to atherosclerosis. Perlecan contains a core protein and three HS side chains. Its core protein has five domains (DI–DV) with disparate structures and DII is highly homologous to the ligand-binding portion of LDL receptor (LDLR). The functional significance of this domain has been unknown. Here, we show that perlecan DII interacts with LDL. Importantly, the interaction largely relies on O-linked glycans that are only present in the secreted DII. Among the five repeat units of DII, most of the glycosylation sites are from the second unit, which is highly divergent and rich in serine and threonine, but has no cysteine residues. Interestingly, most of the glycans are capped by the negatively charged sialic acids, which are critical for LDL binding. We further demonstrate an additive effect of HS and DII on LDL binding. Unlike LDLR, which directs LDL uptake through endocytosis, this study uncovers a novel feature of the perlecan LDLR-like DII in receptor-mediated lipoprotein retention, which depends on its glycosylation. Thus, perlecan glycosylation may play a role in the early LDL retention during the development of atherosclerosis. PMID:25528754

  1. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.

    PubMed

    Lange, Leslie A; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M; Smith, Joshua D; Turner, Emily H; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-Ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A; Holmen, Oddgeir L; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C; Correa, Adolfo; Griswold, Michael E; Jakobsdottir, Johanna; Smith, Albert V; Schreiner, Pamela J; Feitosa, Mary F; Zhang, Qunyuan; Huffman, Jennifer E; Crosby, Jacy; Wassel, Christina L; Do, Ron; Franceschini, Nora; Martin, Lisa W; Robinson, Jennifer G; Assimes, Themistocles L; Crosslin, David R; Rosenthal, Elisabeth A; Tsai, Michael; Rieder, Mark J; Farlow, Deborah N; Folsom, Aaron R; Lumley, Thomas; Fox, Ervin R; Carlson, Christopher S; Peters, Ulrike; Jackson, Rebecca D; van Duijn, Cornelia M; Uitterlinden, André G; Levy, Daniel; Rotter, Jerome I; Taylor, Herman A; Gudnason, Vilmundur; Siscovick, David S; Fornage, Myriam; Borecki, Ingrid B; Hayward, Caroline; Rudan, Igor; Chen, Y Eugene; Bottinger, Erwin P; Loos, Ruth J F; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M; Gabriel, Stacey B; O'Donnell, Christopher J; Post, Wendy S; North, Kari E; Reiner, Alexander P; Boerwinkle, Eric; Psaty, Bruce M; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P; Cupples, L Adrienne; Kooperberg, Charles; Wilson, James G; Nickerson, Deborah A; Abecasis, Goncalo R; Rich, Stephen S; Tracy, Russell P; Willer, Cristen J

    2014-02-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.

  2. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress

    PubMed Central

    Sima, Anca V; Botez, Gabriela M; Stancu, Camelia S; Manea, Adrian; Raicu, Monica; Simionescu, Maya

    2010-01-01

    Abstract The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low-density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product-modified-LDL (AGE-LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE-LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE-LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein-1 (MCP-1). The results show that exposure of hSMC to AGE-LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up-regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP-1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE-LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro-oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP-1). These results may partly explain the contribution of AGE-LDL and hSMC to the accelerated atherosclerosis in diabetes. PMID:19818091

  3. Protective activity of plicatin B against human LDL oxidation induced in metal ion-dependent and -independent processes. Experimental and theoretical studies.

    PubMed

    Turchi, G; Alagona, G; Lubrano, V

    2009-11-01

    Oxidation of low-density lipoproteins (LDL) is thought to be a major factor in the pathophysiology of atherosclerosis. Natural antioxidants have been shown to protect LDL from oxidation and to inhibit atherogenic developments in animals. Structurally related prenylated pterocarpans, erybraedin C and bitucarpin A, and the prenylchalcone plicatin B were examined for their ability to inhibit LDL oxidation in vitro. The kinetic profile of peroxidation is characterized by the lag time of oxidation (t(lag)), the maximal rate of oxidation (V(max)) and the maximal accumulation of oxidation products (OD(max)). Specific variation of the set of kinetic parameters by antioxidants may provide important information about the mechanism of inhibitory action of a given compound. At equimolar concentrations (1 microM) the prenylated derivatives tested were found to inhibit 1 microM copper sulphate-induced oxidation of LDL (50 microg protein/ml) in accordance with the following order of activity: plicatin B>erybraedin Cbitucarpin A. Structural aspects, such as hydrogen-donating substituents, their number and arrangement in the aromatic ring moieties, and the prenyl and methoxy substituents, were investigated in order to explain the findings obtained. It is well known that the antioxidant activity of flavonoids is believed to be caused by a combination of transition metal chelation and free-radical-scavenging activities. To investigate these differences we comparatively studied the protective mechanism of plicatin B in copper-dependent or -independent LDL oxidation. The latter was mediated by 2,2'-azo-bis-(2-amidinopropane) dihydrochloride (ABAP). We measured the formation of conjugated dienes (OD(234 nm)). Plicatin B (0.2-1.5 microM) delayed the Cu(2+) (1 microM) promoted oxidation as conjugate diene formation (t(lag)) of the LDL by 45.2-123.5 min and reduced V(max) by 0.46-0.29 microM/min. In the ABAP (0.2mM) promoted LDL oxidation t(lag) increased by 67.2-110.2 min through plicatin

  4. Simvastatin Efficiently Lowers Small LDL-IgG Immune Complex Levels: A Therapeutic Quality beyond the Lipid-Lowering Effect

    PubMed Central

    Ferstl, Ulrika; Ledinski, Gerhard; Binder, Josepha; Cvirn, Gerhard; Stojakovic, Tatjana; Trauner, Michael; Koidl, Christoph; Tafeit, Erwin; Amrein, Karin; Scharnagl, Hubert; Jürgens, Günther; Hallström, Seth

    2016-01-01

    We investigated a polyethylene glycol non-precipitable low-density lipoprotein (LDL) subfraction targeted by IgG and the influence of statin therapy on plasma levels of these small LDL-IgG-immune complexes (LDL-IgG-IC). LDL-subfractions were isolated from 6 atherosclerotic subjects and 3 healthy individuals utilizing iodixanol density gradient ultracentrifugation. Cholesterol, apoB and malondialdehyde (MDA) levels were determined in each fraction by enzymatic testing, dissociation-enhanced lanthanide fluorescence immunoassay and high-performance liquid chromatography, respectively. The levels of LDL-IgG-IC were quantified densitometrically following lipid electrophoresis, particle size distribution was assessed with dynamic light scattering and size exclusion chromatography. The influence of simvastatin (40 mg/day for three months) on small LDL-IgG-IC levels and their distribution among LDL-subfractions (salt gradient separation) were investigated in 11 patients with confirmed coronary artery disease (CAD). We demonstrate that the investigated LDL-IgG-IC are small particles present in atherosclerotic patients and healthy subjects. In vitro assembly of LDL-IgG-IC resulted in particle density shifts indicating a composition of one single molecule of IgG per LDL particle. Normalization on cholesterol levels revealed MDA values twice as high for LDL-subfractions rich in small LDL-IgG-IC if compared to dominant LDL-subfractions. Reactivity of affinity purified small LDL-IgG-IC to monoclonal antibody OB/04 indicates a high degree of modified apoB and oxidative modification. Simvastatin therapy studied in the CAD patients significantly lowered LDL levels and to an even higher extent, small LDL-IgG-IC levels without affecting their distribution. In conclusion simvastatin lowers levels of small LDL-IgG-IC more effectively than LDL-cholesterol and LDL-apoB levels in atherosclerotic patients. This antiatherogenic effect may additionally contribute to the known beneficial

  5. MicroRNA-141 inhibits vascular smooth muscle cell proliferation through targeting PAPP-A

    PubMed Central

    Zhang, Yudong; Chen, Bainan; Ming, Liu; Qin, Hongsong; Zheng, Liu; Yue, Zhang; Cheng, Zhixin; Wang, Yannan; Zhang, Dawei; Liu, Chunmei; Bin, Wang; Hao, Qingzhi; Song, Fuchen; Ji, Bo

    2015-01-01

    It is well known that ox-LDL plays key roles in the development of atherosclerosis, partly by inducing vascular smooth muscle cells (VSMCs) proliferation. Recent findings have revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many physiological and pathological conditions. However, the role and function of miRNAs on ox-LDL induced VSMC proliferation are not fully elucidated. In this study, we showed that ox-LDL could suppress miR-141 expression and inhibition of miR-141 could promote VSMCs proliferation. Moreover, we found that PAPPA was the direct target gene of miR-141. Overexpression of PAPPA impaired the miR-141-induced inhibition of proliferation in the VSMCs. Taken together; miR-141 may play important roles in ox-LDL-induced abnormal proliferation of the VSMC. PMID:26823756

  6. Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with nonthermal ions: Application to Halley Comet plasma

    SciTech Connect

    Tribeche, Mouloud; Bacha, Mustapha

    2013-10-15

    Weak dust-acoustic waves (DAWs) are addressed in a nonthermal charge varying electronegative magnetized dusty plasmas with application to the Halley Comet. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burger equation. The positive ion nonthermality, the obliqueness, and magnitude of the magnetic field are found to modify the dispersive and dissipative properties of the DA shock structure. Our results may aid to explain and interpret the nonlinear oscillations that may occur in the Halley Comet Plasma.

  7. Ezetimibe's effect on platelet aggregation and LDL tendency to peroxidation in hypercholesterolaemia as monotherapy or in addition to simvastatin

    PubMed Central

    Hussein, Osamah; Minasian, LiLia; Itzkovich, Yaroslav; Shestatski, Karina; Solomon, Lizora; Zidan, Jamal

    2008-01-01

    AIMS To investigate the effect of lowering low-density lipoprotein-cholesterol (LDL-C) on platelet aggregation and LDL tendency to peroxidation by ezetimibe alone or with simvastatin in hypercholesterolaemia. METHODS Sixteen patients with LDL-C >3.4 mmol l−1 received ezetimibe for 3 months (Part I). Twenty-two patients on fixed simvastatin dose with LDL-C >2.6 mmol l−1 were enrolled (Part II). Part II patients continued simvastatin treatment 20 mg day−1 for 6 weeks, then received 20 mg day−1 simvastatin combined with ezetimibe 10 mg day−1 for another 6 weeks. The tendency of LDL to peroxidation measured by lag time in minutes required for initiation of LDL oxidation and by LDL oxidation at maximal point (plateau) was measured before and after ezetimibe treatment. RESULTS Part I: Ezetimibe 10 mg daily for 3 months decreased plasma LDL-C level 16% (P = 0.002), prolonged lag time to LDL oxidation from 144 ± 18 min to 195 ± 16 min (P < 0.001), decreasing maximal aggregation from 83 ± 15% to 60 ± 36% (P = 0.04). Part II: Serum level LDL-C decreased 23% (P = 0.02) and lag time in minutes to LDL oxidation was prolonged from 55.9 ± 16.5 to 82.7 ± 11.6 (P < 0.0001) using combined simvastatin–ezetimibe therapy. There were no differences in platelet aggregation. CONCLUSIONS Ezetimibe was associated with decreased platelet aggregation and LDL tendency to peroxidation. Treatment with ezetimibe in addition to simvastatin has an additive antioxidative effect on LDL. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Statins demonstrate a pleiotropic effect which contributes beyond the hypocholesterolaemic effect to prevent atherosclerosis. WHAT THIS STUDY ADDS Ezetimibe has an antioxidative effect when given as monotherapy or as an add-on to the statin, simvastatin. PMID:18241285

  8. Physicochemical study of floranol, its copper(II) and iron(III) complexes, and their inhibitory effect on LDL oxidation.

    PubMed

    Botelho, Françoise V; Alvarez-Leite, Jacqueline I; Lemos, Virginia S; Pimenta, Adriano M C; Calado, Hállen D R; Matencio, Tulio; Miranda, Cristiano T; Pereira-Maia, Elene C

    2007-06-01

    The antioxidant activity of floranol (3,5,7,2'-tetrahydroxy-6-methoxy-8-prenylflavanone), a new flavonoid isolated from the roots of Dioclea grandiflora, was evaluated by the inhibition of human low-density lipoprotein (LDL) oxidation. Floranol increased its oxidation lag-phase significantly in a dose-dependent manner. As the antioxidant mechanism may involve metal coordination, we have undertaken a detailed study of floranol interactions with Cu(II) and Fe(III) by combination of UV-visible (UV-Vis) and mass spectrometries and cyclic voltammetry. The acidity constants of the ligand as well as the stability constants of the metal complexes were calculated. The pKa values of 6.58, 11.97 and 13.87 were determined and the following acidity order is proposed 7-OH>5-OH>2'-OH. The best fit between experimental and calculated spectra was obtained assuming the formation of two Cu(II) complexes: [CuL] logbeta=19.34+/-0.05 and [CuL(2)](2-) logbeta=26.4+/-0.10 and three Fe(III) complexes: [FeL(3)](3-) logbeta=44.72+/-0.09, [FeL(2)](-) logbeta=35.32+/-0.08 and [FeL](+) logbeta=19.51+/-0.04. In addition, copper and iron reduction is less favorable in the presence of floranol. These results indicate that floranol can efficiently bind Cu(II) and Fe(III) ions thus preventing their effect on LDL oxidation. PMID:17462741

  9. Association of Apolipoprotein B, LDL-C and vascular stiffness in Adolescents with Type 1 Diabetes

    PubMed Central

    Bjornstad, Petter; Nguyen, Nhung; Reinick, Christina; Maahs, David M.; Bishop, Franziska K.; Clements, Scott A.; Snell-Bergeon, Janet K.; Lieberman, Rachel; Pyle, Laura P.; Daniels, Stephen R.; Wadwa, R. Paul

    2014-01-01

    Objective LDL cholesterol (LDL-C) is the current lipid standard for cardiovascular disease (CVD) risk assessment in type 1 diabetes. Apolipoprotein B (apoB) may be helpful to further stratify CVD-risk. We explored the association between apoB and pulse wave velocity (PWV) to determine if apoB would improve CVD-risk stratification, especially in type 1 diabetes adolescents with borderline LDL-C (100-129mg/dL). We hypothesized that type 1 diabetes adolescents with borderline LDL-C and elevated apoB (≥90mg/dL) would have increased PWV compared to those with borderline LDL-C and normal apoB (<90mg/dL), and that apoB would explain more of the variability of PWV than alternative lipid indices. Methods Fasting lipids, including apoB, were collected in 267 adolescents, age 12-19 years, with diabetes-duration >5 years and HbA1c 8.9±1.6%. Triglyceride to HDL-C ratio (TG/HDL-C) and nonHDL-cholesterol (nonHDL-C) were calculated. PWV was measured in the carotid-femoral segment. Results ApoB, nonHDL-C and TG/HDL-C correlated with PWV (p<0.0001). ApoB, nonHDL-C and TG/HDL-C remained significantly associated with PWV in fully-adjusted models. In adolescents with borderline LDL-C (n=61), PWV was significantly higher in those with elevated apoB than in those with normal apoB (5.6±0.6 vs. 5.2±0.6m/s, p<0.01), and also remained significant after adjustment for CVD-risk factors (p=0.0002). Moreover, in those with borderline LDL-C, apoB explained more of the variability of PWV than nonHDL-C and TG/HDL-C. Conclusion Elevated apoB is associated with increased arterial stiffness in type 1 diabetes adolescents. Measurement of apoB in addition to LDL-C may be helpful in stratifying CVD-risk in type 1 diabetes adolescents, especially in those with borderline LDL-C. PMID:25539881

  10. Increased Small Dense LDL and Intermediate-Density Lipoprotein With Albuminuria in Type 1 Diabetes

    PubMed Central

    Sibley, Shalamar D.; Hokanson, John E.; Steffes, Michael W.; Purnell, Jonathan Q; Marcovina, Santica M.; Cleary, Patricia A.; Brunzell, John D.

    2009-01-01

    OBJECTIVE This population study examines the relationship between LDL density and persistent albuminuria in subjects with type 1 diabetes at the end of the Diabetes Control and Complications Trial (DCCT). RESEARCH DESIGN AND METHODS Subjects were classified as persistently normoalbuminuric (albumin excretion rate [AER] <30 mg/d, n = 1,056), microalbuminuric (AER ≥30–299 mg/day, n = 80), and macroalbuminuric (AER = 300 mg/day, n = 24) based on the last two AER measures. RESULTS Triglyceride (P <0.01) and LDL cholesterol (P <0.01) levels were higher in macroalbuminuric subjects compared with normoalbuminuric subjects. Cholesterol distribution by density-gradient ultracentrifugation showed an increase in intermediate-density lipoprotein (IDL) and a shift in peak LDL from buoyant toward more dense particles with progressive albuminuria. In the entire group, there was a significant negative correlation between the peak buoyancy of LDL particles and albuminuria (r = −0.238, P <0.001, n = 1,160). This correlation persisted in the normoalbuminuric DCCT group (r = −0.138, P<0.001, n = 1,056). CONCLUSIONS As albuminuria increases in subjects with type 1 diabetes, dyslipidemia occurs with an increase in IDL and dense LDL that may lead to increased cardiovascular disease. PMID:10388983

  11. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms.

    PubMed

    Pereira, Adriana S A; Cavalcanti, Marília G S; Zingali, Russolina B; Lima-Filho, José L; Chaves, Maria E C

    2015-03-01

    Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.

  12. Mutilocus genetic determinants of LDL particle size in coronary artery disease families

    SciTech Connect

    Rotter, J.I.; Bu, X.; Cantor, R.M.

    1996-03-01

    Recent interest in atherosclerosis has focused on the genetic determinants of low-density lipoprotein (LDL) particle size, because of (1) the association of small dense LDL particles with a three-fold increased risk for coronary artery disease (CAD) and (2) the recent report of linkage of the trait to the LDL receptor (chromosome 19). By utilizing nonparametric quantitative sib-pair and relative-pair-analysis methods in CAD families, we tested for linkage of a gene or genes controlling LDL particle sizes with the genetic loci for the major apolipoproteins and enzymes participating in lipoprotein metabolism. We confirmed evidence for linkage to the LDL receptor locus (P = .008). For six candidate gene loci, including apolipoprotein(apo)B, apoAII, apo(a), apoE-CI-CII, lipoprotein lipase, and high-density lipoprotein-binding protein, no evidence for linkage was observed by sib-pair linkage analyses (P values ranged from .24 to .81). However, in addition, we did find tentative evidence for linkage with the apoAI-CIII-AIV locus (chromosome 11) (P = .06) and significant evidence for linkage of the cholesteryl ester transfer protein locus (chromosome 16) (P = .01) and the manganese superoxide dismutase locus (chromosome 6) (P = .001), thus indicating multilocus determination of this atherogenic trait. 73 refs., 3 figs., 4 tabs.

  13. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD

    PubMed Central

    Watt, Jonathan; Kennedy, Simon; Ahmed, Nadeem; Hayhurst, James; McClure, John D; Berry, Colin; Wadsworth, Roger M; Oldroyd, Keith G

    2016-01-01

    Objective The balance between coronary endothelial dysfunction and repair is influenced by many protective and deleterious factors circulating in the blood. We studied the relationship between oxidised low-density lipoprotein (oxLDL), circulating endothelial progenitor cells (EPCs) and coronary endothelial function in patients with stable coronary heart disease (CHD). Methods 33 patients with stable CHD were studied. Plasma oxLDL was measured using ELISA, coronary endothelial function was assessed using intracoronary acetylcholine infusion and EPCs were quantified using flow cytometry for CD34+/KDR+ cells. Results Plasma oxLDL correlated positively with the number of EPCs in the blood (r=0.46, p=0.02). There was a positive correlation between the number of circulating EPCs and coronary endothelial function (r=0.42, p=0.04). There was no significant correlation between oxLDL and coronary endothelial function. Conclusions Plasma levels of oxLDL are associated with increased circulating EPCs in the blood of patients with CHD, which may reflect a host-repair response to endothelial injury. Patients with stable CHD had a high prevalence of coronary endothelial dysfunction, which was associated with lower numbers of circulating EPCs, suggesting a mechanistic link between endothelial dysfunction and the pathogenesis of atherosclerosis. PMID:26848395

  14. The Effect of Hypertension on the Transport of LDL Across the Deformable Arterial Wall

    NASA Astrophysics Data System (ADS)

    Dabagh, Mahsa; Jalali, Payman

    2010-05-01

    The influences of increased endothelial cell turnover and deformation of the intima on the transport of low-density lipoprotein (LDL) under hypertension are investigated by applying a multilayered model of aortic wall. The thickness and properties of the endothelium, intima, internal elastic lamina (IEL), and media are affected by the transmural pressure. Navier-Stokes and Brinkman equations are applied for the transport of the transmural flow and the convective-diffusion equation is solved for LDL transport. LDL macromolecules enter the intima through leaky junctions, and then pass through the media layer where they permeate over the surface of smooth muscle cells (SMC). Uptake of LDL by cells is modeled through a uniform reaction evenly distributed in the macroscopically homogeneous media layer. The results show that transmural pressure significantly affects the LDL fluxes across the leaky junction, the intima, fenestral pores in the IEL, and the media layer. Many realistic predictions including the proper magnitudes for the permeability of endothelium and intimal layers, and the hydraulic conductivity of all layers as well as their trends with pressure are predicted by the present model.

  15. Resolving Low-Density Lipoprotein (LDL) on the Human Aortic Surface Using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Karlsson, Matts

    2011-11-01

    The prediction and understanding of the genesis of vascular diseases is one of the grand challenges in biofluid engineering. The progression of atherosclerosis is correlated to the build- up of LDL on the arterial surface, which is affected by the blood flow. A multi-physics simulation of LDL mass transport in the blood and through the arterial wall of a subject specific human aorta was performed, employing a LES turbulence model to resolve the turbulent flow. Geometry and velocity measurements from magnetic resonance imaging (MRI) were incorporated to assure physiological relevance of the simulation. Due to the turbulent nature of the flow, consecutive cardiac cycles are not identical, neither in vivo nor in the simulations. A phase average based on a large number of cardiac cycles is therefore computed, which is the proper way to get reliable statistical results from a LES simulation. In total, 50 cardiac cycles were simulated, yielding over 2.5 Billion data points to be post-processed. An inverse relation between LDL and WSS was found; LDL accumulated on locations where WSS was low and vice-versa. Large temporal differences were present, with the concentration level decreasing during systolic acceleration and increasing during the deceleration phase. This method makes it possible to resolve the localization of LDL accumulation in the normal human aorta with its complex transitional flow.

  16. Unmet Needs in LDL-C Lowering: When Statins Won't Do!

    PubMed

    Krähenbühl, Stephan; Pavik-Mezzour, Ivana; von Eckardstein, Arnold

    2016-08-01

    The use of low-density lipoprotein cholesterol (LDL-C)-lowering medications has led to a significant reduction of cardiovascular risk in both primary and secondary prevention. Statin therapy, one of the cornerstones for the prevention and treatment of cardiovascular disease (CVD), has been demonstrated to be effective in lowering LDL-C levels and in reducing the risk for CVD and is generally well-tolerated. However, compliance with statins remains suboptimal. One of the main reasons is limitations by adverse events, notably myopathies, which can lead to non-compliance with the prescribed statin regimen. Reducing the burden of elevated LDL-C levels is critical in patients with CVD as well as in patients with very high baseline levels of LDL-C (e.g. patients with familial hypercholesterolaemia), as statin therapy is insufficient for optimally reducing LDL-C below target values. In this review, we discuss alternative treatment options after maximally tolerated doses of statin therapy, including ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and cholesteryl ester transfer protein (CETP) inhibitors. Difficult-to-treat patients may benefit from combination therapy with ezetimibe or a PCSK9 inhibitor (evolocumab or alirocumab, which are now available). Updates of treatment guidelines are needed to guide the management of patients who will best benefit from these new treatments. PMID:27456066

  17. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages.

    PubMed

    Llaverias, Gemma; Noé, Véronique; Peñuelas, Silvia; Vázquez-Carrera, Manuel; Sánchez, Rosa M; Laguna, Juan C; Ciudad, Carlos J; Alegret, Marta

    2004-05-21

    With the aim of identifying new target genes that could contribute to limit foam cell formation, we analyzed changes in the pattern of gene expression in human THP-1 macrophages treated with atorvastatin and oxidized-LDL (oxLDL). To this end, we used a human cDNA array containing 588 cardiovascular-related cDNAs. Exposure to oxLDL resulted in differential expression of 26 genes, while coincubation with atorvastatin modified the expression of 29 genes, compared to treatment with oxLDL alone. Changes in the expression of candidate genes, potentially connected to the atherosclerotic process, were confirmed by quantitative RT-PCR and Western blot. We show that atorvastatin prevents the increase in the expression of scavenger receptor CD68 and that of fatty acid binding protein 4 caused by oxLDL. In addition, atorvastatin reduces the expression of HDL-binding protein, apolipoprotein E, and matrix metalloproteinase 9. These findings are relevant to understand the direct antiatherogenic effects of statins on macrophages.

  18. Pectin isolated from prickly pear (Opuntia SSP) modifies LDL metabolism in cholesterol-fed guinea pigs

    SciTech Connect

    Fernandez, M.L.; McNamara, D.J. )

    1990-02-26

    The effects of dietary pectin on plasma and hepatic cholesterol (CH) levels, plasma lipoprotein profiles, hepatic 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase activity, and low density lipoprotein (LDL) binding to hepatic membranes were investigated by feeding 1% pectin to guinea pigs on a high CH diet. Animals were fed either chow + 0.25% CH (HC diet) or the CH diet + 1% prickly pear pectin (HC-P diet) for 25 days. Plasma CH levels were decreased 26% by the HC-P with 33% decreases in LDL and KDL. LDL peak density shifted from 1.040 to 1.055 g/ml with pectin. Hepatic total, free and esterified CH levels were reduced 60, 40 and 85% respectively by the HC-P diet. In contrast, HMG-CoA reductase activity was unaffected. {sup 125}I-LDL binding to hepatic membranes was increased by intake of the HC-P diet compared to the HC diet. The affinity of the apo B/E receptor for LDL was not affected by dietary pectin while the receptor number was increased 1.5-fold in animals on the HC-P diet. These data suggest that the parameters of HC metabolism affected by dietary pectin are consistent with an increased demand on the hepatic CH pools which possibly results from increased fecal excretion of bile acids.

  19. Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Wiesner, Philipp; Almazan, Felicidad; Kim, Jungsu; Miller, Yury I.

    2012-01-01

    Oxidative modification of low-density lipoprotein (LDL) turns it into an endogenous ligand recognized by pattern-recognition receptors. We have demonstrated that minimally oxidized LDL (mmLDL) binds to CD14 and mediates TLR4/MD-2-dependent responses in macrophages, many of which are MyD88-independent. We have also demonstrated that the mmLDL activation leads to recruitment of spleen tyrosine kinase (Syk) to TLR4 and TLR4 and Syk phosphorylation. In this study, we produced a macrophage-specific Syk knockout mouse and used primary Syk−/− macrophages in our studies. We demonstrated that Syk mediated phosphorylation of ERK1/2 and JNK, which in turn phosphorylated c-Fos and c-Jun, respectively, as assessed by an in vitro kinase assay. c-Jun phosphorylation was also mediated by IKKε. c-Jun and c-Fos bound to consensus DNA sites and thereby completed an AP-1 transcriptional complex and induced expression of CXCL2 and IL-6. These results suggest that Syk plays a key role in TLR4-mediated macrophage responses to host-generated ligands, like mmLDL, with subsequent activation of an AP-1 transcription program. PMID:22384232

  20. LDL-Cholesterol Increases the Transcytosis of Molecules through Endothelial Monolayers

    PubMed Central

    Magalhaes, Ana; Matias, Inês; Palmela, Inês; Brito, Maria Alexandra; Dias, Sérgio

    2016-01-01

    Cholesterol has been identified as a causative factor in numerous pathologies including atherosclerosis and cancer. One of the frequent effects of elevated cholesterol levels in humans is the compromise of endothelial function due to activation of pro-inflammatory signalling pathways. While the mechanisms involved in endothelial activation by cholesterol during an inflammatory response are well established, less is known about the mechanisms by which cholesterol may affect endothelial barrier function, which were the subject of the present study. Here we show that low density lipoprotein (LDL) increases the permeability of endothelial monolayers to high molecular weight dextrans in an LDL receptor and cholesterol-dependent manner. The increased permeability seen upon LDL treatment was not caused by disruption of cell-to-cell junctions as determined by a normal localization of VE-Cadherin and ZO-1 proteins, and no major alterations in transendothelial electrical resistance or permeability to fluorescein. We show instead that LDL increases the level of high molecular weight transcytosis and that this occurs in an LDL receptor, cholesterol and caveolae-dependent way. Our findings contribute to our understanding of the systemic pathological effects of elevated cholesterol and the transport of cargo through endothelial monolayers. PMID:27695052

  1. Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats.

    PubMed

    Zelzer, Sieglinde; Mangge, Harald; Pailer, Sabine; Ainoedhofer, Herwig; Kieslinger, Petra; Stojakovic, Tatjana; Scharnagl, Hubert; Prüller, Florian; Weghuber, Daniel; Datz, Christian; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Trummer, Christian; Gostner, Johanna; Gruber, Hans-Jürgen

    2015-01-01

    Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats. PMID:26006242

  2. Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats

    PubMed Central

    Zelzer, Sieglinde; Mangge, Harald; Pailer, Sabine; Ainoedhofer, Herwig; Kieslinger, Petra; Stojakovic, Tatjana; Scharnagl, Hubert; Prüller, Florian; Weghuber, Daniel; Datz, Christian; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Trummer, Christian; Gostner, Johanna; Gruber, Hans-Jürgen

    2015-01-01

    Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats. PMID:26006242

  3. PCSK9 inhibition in patients with hypercholesterolemia.

    PubMed

    Desai, Nihar R; Sabatine, Marc S

    2015-10-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that plays an important role in modulating low-density lipoprotein cholesterol (LDL-C) levels by targeting LDL-C receptors for lysosomal degradation. Genetic association studies have demonstrated that loss-of-function mutations in PCSK9 are associated with low plasma LDL-C levels and a reduction in the incidence of adverse cardiovascular events. Monoclonal antibodies directed against PCSK9 have been developed and have been shown in phase 1, 2, and 3 trials to dramatically reduce LDL-C regardless of background lipid-lowering therapy, including in clinically challenging populations such as patients intolerant to statin therapy and those with familial hypercholesterolemia. To date, the clinical trials have not raised any significant safety concerns, with no appreciable excess of myalgias, elevation in aminotransferases, or other adverse events. Large, cardiovascular outcomes trials are underway to assess definitively the efficacy and safety of 3 monoclonal antibodies (evolocumab, alirocumab, and bococizumab), while additional non-monoclonal antibody approaches to inhibit PCSK9 continue in the early-phase development. PMID:25771732

  4. LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women.

    PubMed

    Dreon, D M; Fernstrom, H A; Williams, P T; Krauss, R M

    1997-04-01

    A predominance of small, dense LDL particles (subclass pattern B) characterizes a metabolic trait that is associated with higher levels of triglyceride-rich lipoproteins and lower levels of HDL compared with those of individuals with predominantly larger LDL (pattern A). This trait appears to be under the influence of one or more genes, with maximal expression in adult males and reduced expression in premenopausal females. In a previous study, men with LDL subclass pattern B had significantly greater reductions in LDL cholesterol (LDL-C) and apolipoprotein B than men with pattern A. We hypothesized that despite the low prevalence of pattern B in premenopausal women, genetic predisposition to this trait could affect dietary responsiveness. Specifically, we predicted that LDL-C reduction on a low-fat, high-carbohydrate diet would be greatest in daughters of two pattern B parents, intermediate in daughters with one pattern B parent, and least in daughters with no pattern B parents. When 72 premenopausal women were placed on a 20% fat diet for 8 weeks, the changes in LDL-C (mmol/L) compared with levels on basal diets were significantly related to the number of pattern B parents (two B parents: -0.92 +/- 0.61, one B parent: -0.23 +/- 0.10, no B parents: -0.05 +/- 0.06) and could not be explained by diet adherence or baseline characteristics including initial lipoprotein profile or body mass index. The number of pattern B parents was also related to reductions in plasma mass concentrations of IDL, total LDL, and large LDL and to increases in plasma triglycerides. There was a significant inverse correlation between changes in triglyceride and LDL-C induced by the low-fat, high-carbohydrate diet. Thus, genetic and metabolic factors underlying LDL subclass pattern B may result in enhanced LDL and triglyceride responsiveness to substitution of dietary carbohydrate for fat in premenopausal women.

  5. The Oxidative State of LDL is the Major Determinant of Anti/Prooxidant Effect of Coffee on Cu Catalysed Peroxidation.

    PubMed

    Carru, Ciriaco; Pasciu, Valeria; Sotgia, Salvatore; Zinellu, Angelo; Nicoli, Maria Cristina; Deiana, Luca; Tadolini, Bruna; Sanna, Bastiano; Masala, Bruno; Pintus, Gianfranco

    2011-01-01

    Antioxidants exert contrasting effect on low density lipoprotein (LDL) oxidation catalysed by metals, acting as pro-oxidants under select in vitro conditions. Through our study on the effect of coffee on LDL oxidation, we identified the parameters governing this phenomenon, contributing to the comprehension of its mechanism and discovering significant implications for correct alimentary recommendations. By measuring conjugated diene formation, we have analysed the quantitative and qualitative effects exerted by an extract of roasted coffee on LDL oxidation triggered by copper sulphate. When the relative effects of different coffee concentrations were plotted against the lag time (LT) of control LDL (C-LDL), the apparently random experimental data arranged in sensible patterns: by increasing the LT the antioxidant activity of coffee decreased progressively to become prooxidant. The critical LT, at which coffee switches from antioxidant to prooxidant, increased by increasing coffee concentration. Also the contrasting results obtained following a delayed addition of coffee to the assay, arranged in a simple pattern when referred to the LT of C-LDL: the prooxidant effect decreased to become antioxidant as the LT of C-LDL increased. The dependence of coffee effect on the LT of C-LDL was influenced by LDL but not by metal catalyst concentration. These novel findings point to the oxidative state of LDL as a major parameter controlling the anti/prooxidant effect of coffee and suggest the LT of C-LDL as a potent analytical tool to express experimental data when studying the action exerted by a compound on LDL oxidation. PMID:21633665

  6. [LDL cholesterol control in patients with very high cardiovascular risk. A simplified algorithm for achieving LDL cholesterol goals "in two steps"].

    PubMed

    Guijarro-Herraiz, Carlos; Masana-Marin, Luis; Galve, Enrique; Cordero-Fort, Alberto

    2014-01-01

    Reducing low density lipoprotein-cholesterol (LDL-c) is the main lipid goal of treatment for patients with very high cardiovascular risk. In these patients the therapeutic goal is to achieve a LDL-c lower than 70 mg/dL, as recommended by the guidelines for cardiovascular prevention commonly used in Spain and Europe. However, the degree of achieving these objectives in this group of patients is very low. This article describes the prevalence of the problem and the causes that motivate it. Recommendations and tools that can facilitate the design of an optimal treatment strategy for achieving the goals are also given. In addition, a new tool with a simple algorithm that can allow these very high risk patients to achieve the goals "in two-steps", i.e., with only two doctor check-ups, is presented. PMID:25048471

  7. [LDL cholesterol control in patients with very high cardiovascular risk. A simplified algorithm for achieving LDL cholesterol goals "in two steps"].

    PubMed

    Guijarro-Herraiz, Carlos; Masana-Marin, Luis; Galve, Enrique; Cordero-Fort, Alberto

    2014-01-01

    Reducing low density lipoprotein-cholesterol (LDL-c) is the main lipid goal of treatment for patients with very high cardiovascular risk. In these patients the therapeutic goal is to achieve a LDL-c lower than 70 mg/dL, as recommended by the guidelines for cardiovascular prevention commonly used in Spain and Europe. However, the degree of achieving these objectives in this group of patients is very low. This article describes the prevalence of the problem and the causes that motivate it. Recommendations and tools that can facilitate the design of an optimal treatment strategy for achieving the goals are also given. In addition, a new tool with a simple algorithm that can allow these very high risk patients to achieve the goals "in two-steps", i.e., with only two doctor check-ups, is presented.

  8. Lipase inhibitory and LDL anti-oxidative triterpenes from Abies sibirica.

    PubMed

    Handa, Mizuho; Murata, Toshihiro; Kobayashi, Kyoko; Selenge, Erdenechimeg; Miyase, Toshio; Batkhuu, Javzan; Yoshizaki, Fumihiko

    2013-02-01

    A methanol extract of Abies sibirica Ladeb, a Mongolian medicinal plant, had an inhibitory effect on both lipase activity in mouse plasma and LDL anti-oxidative activity, which are preventative factors for arteriosclerosis. The extract was fractionated by silica gel column chromatography and its active constituents were sought. From lipid soluble fractions, 20 terpenoids including seven hitherto unknown triterpenes were isolated. The latter triterpenes had either a γ-lactone ring with a lactol or a derivative thereof. Their chemical structures were determined by spectroscopic methods. The lipase inhibitory activity and LDL anti-oxidative activity of these compounds were evaluated. Some constituents (either lipase inhibitory or LDL anti-oxidative activities) had moderate inhibitory activities. PMID:23261031

  9. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  10. oxLDL-induced lipid accumulation in glomerular podocytes: role of IFN-γ, CXCL16, and ADAM10.

    PubMed

    Wang, Li; Sun, Shuzhen; Zhou, Aihua; Yao, Xiujun; Wang, Yulin

    2014-09-01

    Previous studies have shown that lipid accumulation plays an important role in the pathogenesis and development of glomerular sclerosis. oxLDL caused damage in renal mesangial cells, endothelial cells, and podocytes, and podocytes might be the major victim of oxLDL insult. However, the regulatory mechanism of how oxLDL induces the damage of podocytes remains to be elucidated. In this study, oil red staining was used to investigate the lipid accumulation in podocytes. Moreover, the effects of CXCL16 antibody, IFN-γ, and ADAM10 inhibitor on oxLDL intake and CXCL16 expression were also explored to elucidate the regulatory factors of lipid accumulation in podocytes.

  11. Differential partitioning of antioxidants, including hydroxytyrosol, in human plasma and LDL: implications for their antioxidant activity in vivo.

    PubMed

    Visioli, Francesco; Colombo, Claudio; Galli, Claudio

    2012-05-01

    In vivo studies of LDL oxidation following consumption of natural phenolic compounds have yielded mixed results. It is reported that the amphiphilic hydroxytyrosol, after addition to human plasma, does not accumulate in LDL but protects plasma lipids, which are extracted together with hydroxytyrosol, from chemically-induced oxidation. Thus, a novel methodology was proposed, which does not rely on LDL separation and subsequent oxidation but is based on the oxidation of total lipids - simultaneously extracted from plasma with antioxidants - to evaluate the effects of micronutrients that do not partition into LDL, after in vivo supplementation.

  12. [Update of planning tables of cholesterol-lowering therapy orientated to achieve LDL therapeutic targets].

    PubMed

    Masana, Luis; Plana, Núria

    2015-01-01

    This is the third update of a planning-table for use in cholesterol-lowering therapy, so as to obtain LDLc objectives. This is an easy to use laptop tool to help choose the best statin or combination therapy (statin plus ezetimibe) depending on the current LDL concentration of the patient, and the LDLc objective to achieve. It is based on a colour code that indicates the drugs that are efficient enough to help patients to achieve their LDL goal. Along with the table, recommendations are given for the best strategy in order to implement the optimal therapy in a maximum of two clinical encounters. PMID:25865752

  13. [Update of planning tables of cholesterol-lowering therapy orientated to achieve LDL therapeutic targets].

    PubMed

    Masana, Luis; Plana, Núria

    2015-01-01

    This is the third update of a planning-table for use in cholesterol-lowering therapy, so as to obtain LDLc objectives. This is an easy to use laptop tool to help choose the best statin or combination therapy (statin plus ezetimibe) depending on the current LDL concentration of the patient, and the LDLc objective to achieve. It is based on a colour code that indicates the drugs that are efficient enough to help patients to achieve their LDL goal. Along with the table, recommendations are given for the best strategy in order to implement the optimal therapy in a maximum of two clinical encounters.

  14. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-10-28

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

  15. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    PubMed

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  16. Seven Direct Methods for Measuring HDL and LDL Cholesterol Compared with Ultracentrifugation Reference Measurement Procedures

    PubMed Central

    Miller, W. Greg; Myers, Gary L.; Sakurabayashi, Ikunosuke; Bachmann, Lorin M.; Caudill, Samuel P.; Dziekonski, Andrzej; Edwards, Selvin; Kimberly, Mary M.; Korzun, William J.; Leary, Elizabeth T.; Nakajima, Katsuyuki; Nakamura, Masakazu; Nilsson, Göran; Shamburek, Robert D.; Vetrovec, George W.; Warnick, G. Russell; Remaley, Alan T.

    2015-01-01

    BACKGROUND Methods from 7 manufacturers and 1 distributor for directly measuring HDL cholesterol (C) and LDL-C were evaluated for imprecision, trueness, total error, and specificity in nonfrozen serum samples. METHODS We performed each direct method according to the manufacturer’s instructions, using a Roche/Hitachi 917 analyzer, and compared the results with those obtained with reference measurement procedures for HDL-C and LDL-C. Imprecision was estimated for 35 runs performed with frozen pooled serum specimens and triplicate measurements on each individual sample. Sera from 37 individuals without disease and 138 with disease (primarily dyslipidemic and cardiovascular) were measured by each method. Trueness and total error were evaluated from the difference between the direct methods and reference measurement procedures. Specificity was evaluated from the dispersion in differences observed. RESULTS Imprecision data based on 4 frozen serum pools showed total CVs <3.7% for HDL-C and <4.4% for LDL-C. Bias for the nondiseased group ranged from −5.4% to 4.8% for HDL-C and from −6.8% to 1.1% for LDL-C, and for the diseased group from −8.6% to 8.8% for HDL-C and from −11.8% to 4.1% for LDL-C. Total error for the nondiseased group ranged from −13.4% to 13.6% for HDL-C and from −13.3% to 13.5% for LDL-C, and for the diseased group from −19.8% to 36.3% for HDL-C and from −26.6% to 31.9% for LDL-C. CONCLUSIONS Six of 8 HDL-C and 5 of 8 LDL-C direct methods met the National Cholesterol Education Program total error goals for nondiseased individuals. All the methods failed to meet these goals for diseased individuals, however, because of lack of specificity toward abnormal lipoproteins. PMID:20378768

  17. Dose-dependent LDL-cholesterol lowering effect by plant stanol ester consumption: clinical evidence.

    PubMed

    Laitinen, Kirsi; Gylling, Helena

    2012-10-22

    Elevated serum lipids are linked to cardiovascular diseases calling for effective therapeutic means to reduce particularly LDL-cholesterol (LDL-C) levels. Plant stanols reduce levels of LDL-C by partly blocking cholesterol absorption. Accordingly the consumption of foods with added plant stanols, typically esterified with vegetable oil fatty acids in commercial food products, are recommended for lowering serum cholesterol levels. A daily intake of 1.5 to 2.4 g of plant stanols has been scientifically evaluated to lower LDL-C by 7 to 10% in different populations, ages and with different diseases. Based on earlier studies, a general understanding is that no further reduction may be achieved in intakes in excess of approximately 2.5 g/day. Recent studies however suggest that plant stanols show a continuous dose-response effect in serum LDL-C lowering. This review discusses the evidence for a dose-effect relationship between plant stanol ester consumption and reduction of LDL-C concentrations with daily intakes of plant stanols of 4 g/day or more. We identified five such studies and the overall data demonstrate a linear dose-effect relationship with the most pertinent LDL-Cholesterol lowering outcome, 18%, achieved by a daily intake of 9 to 10 g of plant stanols. Along with reduction in LDL-C, the studies demonstrated a decrease in cholesterol absorption markers, the serum plant sterol to cholesterol ratios, by increasing the dose of plant stanol intake. None of the studies with daily intakes up to 10 g of plant stanols reported adverse clinical or biochemical effects from plant stanols. In a like manner, the magnitude of decrease in serum antioxidant vitamins was not related to the dose of plant stanols consumed and the differences between plant stanol ester consumers and controls were minor and insignificant or nonexisting. Consumption of plant stanols in high doses is feasible as a range of food products are commercially available for consumption including spreads

  18. Interleukin 28B polymorphisms are the only common genetic variants associated with low-density lipoprotein cholesterol (LDL-C) in genotype-1 chronic hepatitis C and determine the association between LDL-C and treatment response.

    PubMed

    Clark, P J; Thompson, A J; Zhu, M; Vock, D M; Zhu, Q; Ge, D; Patel, K; Harrison, S A; Urban, T J; Naggie, S; Fellay, J; Tillmann, H L; Shianna, K; Noviello, S; Pedicone, L D; Esteban, R; Kwo, P; Sulkowski, M S; Afdhal, N; Albrecht, J K; Goldstein, D B; McHutchison, J G; Muir, A J

    2012-05-01

    Low-density lipoprotein cholesterol (LDL-C) levels and interleukin 28B (IL28B) polymorphism are associated with sustained viral response (SVR) to peginterferon/ribavirin (pegIFN/RBV) for chronic hepatitis C (CHC) infection. IL28B has been linked with LDL-C levels using a candidate gene approach, but it is not known whether other genetic variants are associated with LDL-C, nor how these factors definitively affect SVR. We assessed genetic predictors of serum lipid and triglyceride levels in 1604 patients with genotype 1 (G1) chronic hepatitis C virus (HCV) infection by genome-wide association study and developed multivariable predictive models of SVR. IL28B polymorphisms were the only common genetic variants associated with pretreatment LDL-C level in Caucasians (rs12980275, P = 4.7 × 10(-17), poor response IL28B variants associated with lower LDL-C). The association was dependent on HCV infection, IL28B genotype was no longer associated with LDL-C in SVR patients after treatment, while the association remained significant in non-SVR patients (P < 0.001). LDL-C was significantly associated with SVR for heterozygous IL28B genotype patients (P < 0.001) but not for homozygous genotypes. SVR modelling suggested that IL28B heterozygotes with LDL-C > 130 mg/dL and HCV RNA ≤600 000 IU/mL may anticipate cure rates >80%, while the absence of these two criteria was associated with an SVR rate of <35%. IL28B polymorphisms are the only common genetic variants associated with pretreatment LDL-C in G1-HCV. LDL-C remains significantly associated with SVR for heterozygous IL28B genotype patients, where LDL-C and HCV RNA burden may identify those patients with high or low likelihood of cure with pegIFN/RBV therapy. PMID:22497812

  19. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    PubMed

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  20. Notoginsenoside R1 inhibits oxidized low-density lipoprotein induced inflammatory cytokines production in human endothelial EA.hy926 cells.

    PubMed

    Su, Ping; Du, Shijing; Li, Hang; Li, Zhi; Xin, Wenfeng; Zhang, Wensheng

    2016-01-01

    Notoginsenoside R1 (NG-R1), a unique and main active ingredient of Panax notoginseng, has been described to exhibit anti-inflammatory activity. However, its protective effects against oxidized low-density lipoprotein (oxLDL)-induced inflammatory injury in vascular endothelial cells have not been clarified. In the present study, we have evaluated the anti-inflammatory effects of NG-R1 on oxLDL-induced endothelial cells and its possible molecular mechanism of action. Our results showed that NG-R1 treatment significantly attenuated oxLDL-induced expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. These effects were accompanied with suppression of oxLDL-induced activation of NF-κB and Mitogen-activated protein kinases (MAPK). Moreover, NG-R1 also increased in Peroxisome proliferator-activated receptor γ (PPARγ) protein expression and transcription levels, and attenuated oxLDL-induced suppression of PPARγ expression. The inhibition of NG-R1 on oxLDL-induced TNF-α and IL-1β productions can be reversed by PPARγ antagonist GW9662. In conclusion, these data suggested that NG-R1 could suppress oxLDL-induced inflammatory cytokines production via activating PPARγ, which subsequently inhibiting oxLDL-induced NF-κB and MAPK activation.

  1. Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2

    PubMed Central

    Rabelo, Luíza A; Cortes, Steyner F; Alvarez-Leite, Jacqueline I; Lemos, Virgínia S

    2003-01-01

    In this study, the role of endogenous H2O2 as an endothelium-dependent relaxant factor was characterised in aortas from C57BL/6J and LDL receptor-deficient mice (LDLR−/−). Aortic rings from LDLR−/− mice showed impaired endothelium-dependent relaxation to acetylcholine (ACh; 0.001–100 μM) and to the Ca2+ ionophore A23187 (0.001–3 μM) compared with aortic rings from control mice. Endothelium-independent relaxation produced by the NO donor, 3-morpholino-sydnonimine (SIN-1) was not different between strains. Pretreatment of vessels with L-NNA (100 μM) or L-NNA (100 μM) plus L-NAME (300 μM) plus haemoglobin (10 μM) markedly decreased, but did not abolish the relaxation to ACh in control mice. In the aortas from LDLR−/− mice treated with L-NNA (100 μM), ACh induced a contractile effect. Catalase (800 and 2400 U ml−1) shifted to the right the endothelium-dependent relaxation to ACh in aortas from control but not from LDLR−/− mice. Aminotriazole (50 mM), which inhibits catalase, abolished its effect on control mice. Treatment of vessels with L-NNA and catalase abolished vasorelaxation induced by ACh. Indomethacin (10 μM) did not modify the concentration–response curve to ACh. Superoxide dismutase (300 U ml−1) did not change ACh-induced relaxation in both strains. Exogenous H2O2 produced a concentration-dependent relaxation in endothelium-denuded aortic rings, which was not different between strains. It is concluded that H2O2 greatly contributes to relaxation to ACh in aorta from control mice. Endothelial-dependent relaxation to ACh is impaired in LDLR−/− mice. Reduced biosynthesis or increased inactivation of H2O2 is the possible mechanism responsible for endothelial dysfunction in aortas of atherosclerosis-susceptible LDLR−/− mice. PMID:12711621

  2. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase

    PubMed Central

    Ganini, Douglas; Mason, Ronald P.

    2014-01-01

    LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900

  3. Low serum LDL cholesterol levels are associated with elevated mortality from liver cancer in Japan: the Ibaraki Prefectural health study.

    PubMed

    Saito, Nobue; Sairenchi, Toshimi; Irie, Fujiko; Iso, Hiroyasu; Iimura, Kyoko; Watanabe, Hiroshi; Muto, Takashi; Ota, Hitoshi

    2013-01-01

    Liver cancer a global public health concern and well known for poor prognosis. The association between low total cholesterol level and liver cancer has been reported. However, the association between low low-density lipoprotein (LDL) cholesterol levels and liver cancer is still unclear. The aim of this study was to examine the relationship between LDL cholesterol level and liver cancer mortality. A total of 16,217 persons (5,551 men and 10,666 women) aged 40-79 years in 1993 were followed until 2008. LDL cholesterol levels were divided into four categories (<80 mg/dl, 80-99 mg/dl, 100-119 mg/dl, and ≥120 mg/dl). Hazard ratio of LDL cholesterol level for liver cancer mortality was calculated using a multivariable Cox proportional hazards model. Covariates were age, sex, alanine transaminase, body mass index, alcohol intake and smoking status, all of which were correlated with LDL cholesterol levels. There were 51 deaths (32 men and 19 women) from liver cancer. Multivariable hazard ratios of liver cancer deaths for LDL cholesterol levels of <80 mg/dl was 4.33 (95% confident interval [CI]: 1.94, 9.68), for LDL cholesterol levels of 80-99 mg/dl was 1.03 (95% CI: 0.42, 2.53), and for LDL cholesterol levels of ≥120 mg/dl was 0.43 (95% CI: 0.20, 0.92) compared with LDL cholesterol levels of 100-199 mg/dl (p for trend<0.01). Therefore, low LDL cholesterol levels are associated with elevated risk of liver cancer mortality. Low LDL cholesterol may be a predictive marker for death due to liver cancer.

  4. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins.

    PubMed

    Allegra, Mario; Tesoriere, Luisa; Livrea, Maria A

    2007-03-01

    Production of nitrogen dioxide by the activity of myeloperoxidase (MPO) in the presence of nitrite is now considered a key step in the pathophysiology of low-density lipoprotein (LDL) oxidation. This study shows that betanin, a phytochemical of the betalain class, inhibits the production of lipid hydroperoxides in human LDL submitted to a MPO/nitrite-induced oxidation. Kinetic measurements including time-course of particle oxidation and betanin consumption, either in the presence or in the absence of nitrite, suggest that the antioxidant effect is possibly the result of various actions. Betanin scavenges the initiator radical nitrogen dioxide and can also act as a lipoperoxyl radical-scavenger. In addition, unidentified oxidation product(s) of betanin by MPO/nitrite inhibit(s) the MPO/nitrite-induced LDL oxidation as effectively as the parent compound. In the light of betanin bioavailability and post-absorbtion distribution in humans, present findings may suggest favourable in vivo activity of this phytochemical.

  5. Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells.

    PubMed

    Vinci, Maria Cristina; Piacentini, Luca; Chiesa, Mattia; Saporiti, Federica; Colombo, Gualtiero I; Pesce, Maurizio

    2015-09-01

    The function of human circulating PACs has been described extensively. However, little focus has been placed on understanding how these cells differ in their functions in the presence of microenvironments mimicking vascular inflammation. We hypothesized that exposure to proinflammatory cytokines or the oxLDL, an autoantigen abundant in advanced atherosclerotic plaques, converts PACs into immune-modulating/proinflammatory cells. Hence, we examined the effect of oxLDL and inflammatory stimuli on their phenotype by use of a functional genomics model based on secretome and whole genome transcriptome profiling. PACs obtained from culturing a PBMC fraction in angiogenic medium were primed with DC differentiation cytokines and then exposed to proinflammatory cytokines or oxLDL. Under these conditions, PACs converted into APCs, expressed maturation markers CD80 and CD83, and showed an increased up-regulation of CD86. APCcy and APCox induced a robust T cell BrdU incorporation. Despite a similar ability to induce lymphocyte proliferation, APCcy and APCox differed for the secretory pathway and mRNA expression. Analysis of the differentially expressed genes identified 4 gene "clusters," showing reciprocal modulation in APCcy vs. APCox, justifying, according to functional genomics analyses, a different putative function of the cells in antigen processing. Together, these data show that treatment with inflammatory cytokines or oxLDL converts human PAC phenotypes and functions into that of APCs with similar lymphocyte-activating ability but distinct maturation degree and paracrine functions.

  6. An unbiased chemical biology screen identifies agents that modulate uptake of oxidized LDL by macrophages.

    PubMed

    Etzion, Yoram; Hackett, Alice; Proctor, Brandon M; Ren, Jie; Nolan, Bill; Ellenberger, Thomas; Muslin, Anthony J

    2009-07-17

    Macrophage-derived foam cells are thought to play a major role in atherosclerotic lesion formation and progression. An automated assay was established to evaluate the uptake of fluorescently labeled oxidized low-density lipoprotein (oxLDL) by a monocyte/macrophage cell line. The assay was used to screen 480 known bioactive compounds. Twenty-two active compounds were identified. Efficacy studies in peritoneal macrophages demonstrated a high rate of concordance with the initial screening results. Inhibitory compounds confirmed important previous findings and identified new drugs of interest including: 3 blockers of nuclear factor kappab activation, 2 protein kinase C inhibitors, a phospholipase C inhibitor, and 2 antipsychotic drugs. In addition, an opioid receptor agonist was found to increase the oxLDL uptake of macrophages. The involvement of nuclear factor kappaB in oxLDL uptake was validated in peritoneal macrophages in vivo. The results support a model in which oxLDL uptake is dependent on the activation of multiple intracellular signaling pathways that culminate in actin-mediated lipoprotein internalization.

  7. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.

    PubMed

    Pietiäinen, Vilja; Vassilev, Boris; Blom, Tomas; Wang, Wei; Nelson, Jessica; Bittman, Robert; Bäck, Nils; Zelcer, Noam; Ikonen, Elina

    2013-09-01

    N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.

  8. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    MedlinePlus

    ... of Adults with High Cholesterol Whose LDL Cholesterol Levels are Adequately Controlled High cholesterol can double a ... with High Cholesterol that is Controlled by Education Level 8k4c-k22f Download these data » Click on legends ...

  9. Effect of Endomorphins on HUVECs Treated by ox-LDL and Its Related Mechanisms

    PubMed Central

    Zhao, Juan; Zhang, Qi; Tian, Liming; Huang, Wenhui; Quan, Jinxing; Wang, Jinyang; Xu, Yanjia; Wang, Yunfang; Niu, Ruilan

    2016-01-01

    We found in the present study that treatment with ox-LDL decreased the cell viability and the content of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) as well as eNOS mRNA expression, while increasing the mRNA expression and content of endothelin-1 (ET-1) in human umbilical vein endothelial cells (HUVECs). However, endomorphins EM1/EM2 increased the cell viability and the content of NO and the activity of NOS as well as eNOS mRNA expression, while decreasing the mRNA expression and content of ET-1 compared with ox-LDL alone. Meanwhile, the expressions of JNK and p-JNK were enhanced by ox-LDL while being suppressed by EM1/EM2. The results suggested that EM1 and EM2 can correct the endothelial cell dysfunction induced by ox-LDL and the protective effect may be achieved by affecting the JNK pathway. PMID:27579327

  10. [A YOUNG MAN WHOSE LDL-CHOLESTEROL IS GREATER THAN 1.9 G/L].

    PubMed

    Cariou, Bertrand

    2015-10-01

    Familial hypercholosterolemia (FH) is both a frequent (estimated prevalence of heterozygous FH: 1/200 to 1/500) and underdiagnosed (< 5 V of diagnosed FH in most countries) genetic disease. Non-treated FH is associated with an increased risk of coronary heart disease (CHD) linked to premature atherosclerosis. The diagnosis of FH should be considered when a subject presents with plasma LDL-cholesterol (LDL-C) level > 190 mg/dl (4.9 mmol/l), premature CHO, tendon xanthomas, familial history of hyperGholesterolemia, premature CHD or cardiac death. Cascade screening and genetic analysis help to identify affected relatives. The therapeutic objective is to obtain LDL-C target < 130 mg/dL in young adults without additional cardiovascular risk factors, < 100 mg/dL in the majority of FH patients and < 70 mg/dL in adults with known CHD. Therapeutic management is based on the combination on lifestyle and dietary counselling and pharmacological approaches with maximal potent statin dose, ezetimibe and bile acid sequestrants. In a near future, PCSK9 inhibitors should be a valuable option in FH patients not at LDL-C goal.

  11. In vivo regulation of hepatic LDL receptor mRNA in the baboon. Differential effects of saturated and unsaturated fat.

    PubMed

    Fox, J C; McGill, H C; Carey, K D; Getz, G S

    1987-05-25

    The effects of diets enriched with cholesterol and different fats upon plasma lipoproteins and hepatic low density lipoprotein (LDL) receptor mRNA levels were studied in a group of 18 normal baboons. Animals were fed diets containing 1% cholesterol and 25% fat as either coconut oil, peanut oil, or olive oil for a period of 20 weeks. Plasma total cholesterol, high density lipoprotein (HDL) cholesterol, beta-lipoprotein (LDL + very low density lipoprotein) cholesterol, apolipoprotein B and apolipoprotein A-I were measured in samples obtained at 4-week intervals. All three diet groups demonstrated a statistically significant increase in plasma cholesterol as compared to base line throughout the experiment. Hepatic LDL receptor (LDL-R) mRNA levels were quantified by dot blot hybridization in serial liver biopsies. Animals fed saturated fat sustained a significant reduction in hepatic LDL-R mRNA as compared to those fed either monounsaturated or polyunsaturated fat. A strong negative correlation between LDL-R mRNA and plasma total cholesterol (r = -0.71), HDL cholesterol (r = -0.76), and plasma apo A-I (r = -0.77) was observed only in those animals fed coconut oil. Weak negative correlations between LDL-R mRNA and other plasma parameters did not achieve statistical significance. We conclude that saturated and unsaturated oils may influence plasma cholesterol levels in part through differential effects on LDL receptor biosynthesis in baboons.

  12. LDL particle heterogeneity, and its association with other established cardiovascular risk factors in a young Indian industrial population

    PubMed Central

    Lakshmy, Ramakrishnan; Dorairaj, Prabhakaran; Tarik, Mohamad; Gupta, Ruby; Reddy, Kolli Srinath

    2012-01-01

    Objective Low density lipoprotein (LDL) particles are heterogeneous in terms of size, density, chemical composition and electric charge with certain particle of LDL being more atherogenic than the others. The present study aimed to look at the LDL particle heterogeneity, particle size and association with other cardiovascular disease (CVD) risk factors in young Indian industrial population. Methodology 600 employees of an industry of Delhi, aged 20-39 years were selected for the study. Data on demographics, individual characteristics associated with major risk factors of CVD, past medical history, clinical and anthropometric profile was collected. Fasting glucose, lipid profile, apolipoprotein (A1, B, and E), lipoprotein (a), high sensitive C-reactive protein (hsCRP) and insulin were estimated. LDL particle size was determined in ethylenediamminetetraacetate (EDTA) plasma by 3% polyacrylamide gel electrophoresis. Result We found a prevalence of small dense LDL phenotype (LDL size ≤ 26.3) in 27.4% of males and 24.0% of females. The mean waist circumference, blood pressure, triglycerides (TAG), cholesterol, hsCRP, apolipoprotein (A1, B and E) and insulin were higher in males whereas mean high density lipoprotein was higher in females. Females also had a significantly higher mean LDL particle diameter as compared to males. Conclusion TAG, physical activity and lipoprotein (a) correlated with small dense LDL in this young Indian population. PMID:27326051

  13. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

    PubMed Central

    Ledvina, P. S.; Tsai, A. L.; Wang, Z.; Koehl, E.; Quiocho, F. A.

    1998-01-01

    Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition. PMID:9865949

  14. Differential effects of nicotinic acid in subjects with different LDL subclass patterns.

    PubMed

    Superko, H R; Krauss, R M

    1992-07-01

    Twenty-six subjects (20 male, 6 female) at high risk for CAD events were treated with moderate doses of nicotinic acid to investigate whether there was a differential lipoprotein response in patients with different LDL subclass patterns. Subjects were selected to have either pattern A (predominance of large LDL, peak particle diameter greater than 262 A, n = 9) or pattern B (predominance of small LDL, peak particle diameter less than 255 A, n = 17) as assessed by 2-16% gradient gel electrophoresis of plasma. Nicotinic acid dose was similar in pattern A (2111 +/- 651 mg/day) and pattern B subjects (1875 +/- 698 mg/day). Total cholesterol and LDL cholesterol decreased by similar amounts in pattern A (-41 +/- 26 mg/dl and -37 +/- 18 mg/dl) and pattern B (-51 +/- 44 mg/dl and -44 +/- 45 mg/dl) subjects. Triglycerides tended to be reduced more in pattern B subjects (-100 +/- 175 mg/dl) compared to pattern A subjects (-23 +/- 34 mg/dl) although this difference was not statistically significant (P = 0.08 for triglycerides log transformed). HDL cholesterol increased significantly more in the pattern B group (11.9 +/- 14.2 mg/dl) compared to pattern A subjects (0.7 +/- 8.5 mg/dl), (P less than 0.04). Similarly, LDL particle diameter increased significantly more in the pattern B subjects (9.8 +/- 6.9 A) compared to the pattern A subjects (3.6 +/- 3.0 A), (P less than 0.02). All pattern B subjects who achieved a plasma triglyceride less than 140 mg/dl converted to pattern A.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population.

    PubMed

    Harmon, Molly E; Campen, Matthew J; Miller, Curtis; Shuey, Chris; Cajero, Miranda; Lucas, Selita; Pacheco, Bernadette; Erdei, Esther; Ramone, Sandy; Nez, Teddy; Lewis, Johnnye

    2016-01-01

    The prevalences of cardiovascular disease (CVD) and type 2 diabetes (T2D) have increased among the Navajo Native American community in recent decades. Oxidized low-density lipoprotein (oxLDL) is a novel CVD biomarker that has never been assessed in the Navajo population. We examined the relationship of oxLDL to conventional CVD and T2D risk factors and biomarkers in a cross-sectional population of Navajo participants. This cross-sectional study included 252 participants from 20 Navajo communities from the Diné Network for Environmental Health Project. Plasma samples were tested for oxLDL levels by a sandwich enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine the relationship of oxLDL and oxidized- to non-oxidized lipoprotein ratios to glycated hemoglobin (HbA1c), C-reactive protein (CRP), interleukin 6 (IL6) and demographic and health variables. Type 2 diabetes, hypertension and obesity are very prevalent in this Navajo population. HbA1c, CRP, body mass index (BMI), high-density lipoprotein, and triglycerides were at levels that may increase risk for CVD and T2D. Median oxLDL level was 47 (36.8-57) U/L. Correlational analysis showed that although oxLDL alone was not associated with HbA1c, oxLDL/HDL, oxLDL/LDL and CRP were significantly associated with HbA1c and glucose. OxLDL, oxLDL/HDL and oxLDL/LDL were significantly associated with CRP. Multivariate analysis showed that triglycerides were a common and strong predictor of oxLDL, oxLDL/HDL and oxLDL/LDL. OxLDL was trended with HbA1c and glucose but did not reach significance, however, HbA1c was an independent predictor of OxLDL/HDL. CRP trended with oxLDL/HDL and was a weak predictor of oxLDL/LDL. This Navajo subset appears to have oxLDL levels comparable to subjects without evidence of CVD reported in other studies. The high prevalence of T2D, hypertension and obesity along with abnormal levels of other biomarkers including HbA1c indicate that the Navajo population has

  16. Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population

    PubMed Central

    Harmon, Molly E.; Campen, Matthew J.; Miller, Curtis; Shuey, Chris; Cajero, Miranda; Lucas, Selita; Pacheco, Bernadette; Erdei, Esther; Ramone, Sandy; Nez, Teddy; Lewis, Johnnye

    2016-01-01

    The prevalences of cardiovascular disease (CVD) and type 2 diabetes (T2D) have increased among the Navajo Native American community in recent decades. Oxidized low-density lipoprotein (oxLDL) is a novel CVD biomarker that has never been assessed in the Navajo population. We examined the relationship of oxLDL to conventional CVD and T2D risk factors and biomarkers in a cross-sectional population of Navajo participants. This cross-sectional study included 252 participants from 20 Navajo communities from the Diné Network for Environmental Health Project. Plasma samples were tested for oxLDL levels by a sandwich enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine the relationship of oxLDL and oxidized- to non-oxidized lipoprotein ratios to glycated hemoglobin (HbA1c), C-reactive protein (CRP), interleukin 6 (IL6) and demographic and health variables. Type 2 diabetes, hypertension and obesity are very prevalent in this Navajo population. HbA1c, CRP, body mass index (BMI), high-density lipoprotein, and triglycerides were at levels that may increase risk for CVD and T2D. Median oxLDL level was 47 (36.8–57) U/L. Correlational analysis showed that although oxLDL alone was not associated with HbA1c, oxLDL/HDL, oxLDL/LDL and CRP were significantly associated with HbA1c and glucose. OxLDL, oxLDL/HDL and oxLDL/LDL were significantly associated with CRP. Multivariate analysis showed that triglycerides were a common and strong predictor of oxLDL, oxLDL/HDL and oxLDL/LDL. OxLDL was trended with HbA1c and glucose but did not reach significance, however, HbA1c was an independent predictor of OxLDL/HDL. CRP trended with oxLDL/HDL and was a weak predictor of oxLDL/LDL. This Navajo subset appears to have oxLDL levels comparable to subjects without evidence of CVD reported in other studies. The high prevalence of T2D, hypertension and obesity along with abnormal levels of other biomarkers including HbA1c indicate that the Navajo population

  17. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice.

    PubMed

    Reardon, Catherine A; Blachowicz, Lydia; Gupta, Gaorav; Lukens, John; Nissenbaum, Michael; Getz, Godfrey S

    2006-08-01

    Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms.

  18. Natural phenylpropanoids inhibit lipoprotein-induced endothelin-1 secretion by endothelial cells.

    PubMed

    Martin-Nizard, Françoise; Sahpaz, Sevser; Kandoussi, Abdelmejid; Carpentier, Marie; Fruchart, Jean-Charles; Duriez, Patrick; Bailleul, François

    2004-12-01

    There is increasing evidence that oxidized low-density lipoproteins (Ox-LDL) might be involved in the pathogenesis of atherosclerosis and it has been reported that polyphenols inhibit LDL peroxidation and atherosclerosis. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from endothelial cells and it induces smooth muscle cell proliferation. ET-1 secretion is increased in atheroma and induces deleterious effects such as vasospasm and atherosclerosis. The goal of this study was to test the effect of four natural phenolic compounds against copper-oxidized LDL (Cu-LDL)-induced ET-1 liberation by bovine aortic endothelial cells (BAEC). The tested compounds were phenylpropanoid glycosides previously isolated from the aerial parts of Marrubium vulgare L. (acteoside 1, forsythoside B 2, arenarioside 3 and ballotetroside 4). ET-1 secretion increased when cells were incubated with Cu-LDL but the compounds 1-4 inhibited this increase. These results were confirmed by quantitative-polymerase chain reaction (QPCR) analysis. Since ET-1 plays an important role in atherosclerosis development, our work suggests that the tested phenylpropanoids could have a beneficial effect in inhibiting atherosclerosis development. PMID:15563769

  19. K Domain CR9 of Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1) Is Critical for Aggregated LDL-induced Foam Cell Formation from Human Vascular Smooth Muscle Cells*

    PubMed Central

    Costales, Paula; Fuentes-Prior, Pablo; Castellano, Jose; Revuelta-Lopez, Elena; Corral-Rodríguez, Maria Ángeles; Nasarre, Laura; Badimon, Lina; Llorente-Cortes, Vicenta

    2015-01-01

    Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 “minireceptors” (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7–CR9 domains of this cluster (termed P1 (Cys1051–Glu1066), P2 (Asp1090–Cys1104), and P3 (Gly1127–Cys1140)). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis. PMID:25918169

  20. Molecular Etiology of Atherogenesis – In Vitro Induction of Lipidosis in Macrophages with a New LDL Model

    PubMed Central

    Estronca, Luis M. B. B.; Silva, Joao C. P.; Sampaio, Julio L.; Shevchenko, Andrej; Verkade, Paul; Vaz, Alfin D. N.; Vaz, Winchil L. C.; Vieira, Otilia V.

    2012-01-01

    Background Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. Methodology/Principal Findings Lipid “core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in “frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. Conclusions/Significance The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents. PMID:22514671

  1. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    SciTech Connect

    Kanata, Sohya; Akagi, Masao . E-mail: makagi@med.kindai.ac.jp; Nishimura, Shunji; Hayakawa, Sumio; Yoshida, Kohji; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-09-29

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662 suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.

  2. [Ox-LDL down-regulates expression of pigment epithelium-derived factor in human umbilical vein endothelial cells].

    PubMed

    Liu, Jie; Yao, Shu-Tong; Zhai, Lei; Feng, Yue-Long; Song, Guo-Hua; Yu, Yang; Zhu, Ping; Qin, Shu-Cun

    2014-08-25

    Pigment epithelium-derived factor (PEDF) is a multifunctional protein with anti-inflammatory, antioxidant and antithrombotic properties and plays a protective role against atherosclerosis (AS). The purpose of the present study is to explore the effects of oxidized low density lipoprotein (ox-LDL) on the expression of PEDF in cultured human umbilical vein endothelial cells (HUVECs). HUVECs were cultured and incubated with ox-LDL at different concentrations (6.25, 12.5, 25, 50, 100 and 150 mg/L) for 24 h. Apoptosis of endothelial cells were assayed by morphological staining and flow cytometry. The intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Cell viability was assayed by MTT assay. PEDF protein and mRNA expressions in HUVECs were analyzed by Western blot and quantitative real-time PCR, respectively. The results showed that ox-LDL significantly induced apoptosis, reduced cell viability, increased intracellular ROS levels and decreased the PEDF expression in HUVECs in a concentration-dependent manner. Ox-LDL at 50 mg/L obviously decreased the PEDF protein expression compared with control group (P < 0.05), whereas 25 mg/L ox-LDL already markedly reduced the PEDF mRNA expression (P < 0.05). In conclusion, the results suggest that ox-LDL down-regulates the PEDF expression through an increased ox-LDL-induced intracellular production of ROS. PMID:25131792

  3. Differential effects of the changes of LDL cholesterol and systolic blood pressure on the risk of carotid artery atherosclerosis

    PubMed Central

    2012-01-01

    Background The effects of baseline and changes in blood pressure and low density lipoprotein (LDL) cholesterol on the carotid intima media thickness (IMT) have not been well documented. Methods A total of 2572 adults (mean age 53.8 years, 54.6% women) in a Taiwanese community undertook three blood pressure and LDL cholesterol examinations over 6 years. Latent growth curve modeling was used to investigate the effects of baseline and change in blood pressure and LDL cholesterol on IMT. Results Greater baseline LDL and blood pressure were associated with an increase in IMT (0.005 ± 0.002 mm per 1 mg/dL [p = 0.006] and 0.041 ± 0.004 mm mmHg [p <0.0001], respectively. Change in blood pressure was associated with a significant increase in IMT (0.047±0.016, P = 0.004), whilst the association between change in LDL and change in IMT was not statistically significant (0.008±0.006, P = 0.20). Conclusions Carotid IMT was associated with baseline blood pressure and LDL cholesterol, yet only changes of blood pressure, not LDL cholesterol, were related to carotid IMT during the 6-year observation. PMID:22900906

  4. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition.

    PubMed

    Pincemail, J; Lecomte, J; Castiau, J; Collard, E; Vasankari, T; Cheramy-Bien, J; Limet, R; Defraigne, J

    2000-02-15

    Antioxidant status and titers of autoantibodies against oxidized low-density lipoproteins (ox-LDL-Ab) were investigated in top soccer (S; n = 21, age 24.6 +/- 4.3 years) and basketball (B; n 3,000 mIU/ml) in ox-LDL-Ab were found in half the players (12S and 4B) with a maximum reaching 6000 mIU/ml (normal range: 200-600 mIU/ml), showing an in vivo LDL oxidation. There was no correlation between ox-LDL-Ab titers and chlolesterol, LDL cholesterol, or antioxidant levels. Nevertheless, plasma vitamin C concentration was lower in athletes having high levels of ox-LDL-Ab when compared with those with normal levels (8.49 +/- 3.14 mirogram/ml vs. 10.39 +/- 2.55 microgram/ml), but this difference was not statistically significant. In conclusion, our data suggest that potential atherogenic and cardiovascular risks as reflected by high titers in ox-LDL-Ab may exist in some top athletes despite a nonaltered antioxidant status.

  5. A Prospective Observational Survey on the Long-Term Effect of LDL Apheresis on Drug-Resistant Nephrotic Syndrome

    PubMed Central

    Muso, Eri; Mune, Masatoshi; Hirano, Tsutomu; Hattori, Motoshi; Kimura, Kenjiro; Watanabe, Tsuyoshi; Yokoyama, Hitoshi; Sato, Hiroshi; Uchida, Shunya; Wada, Takashi; Shoji, Tetsuo; Takemura, Tsukasa; Yuzawa, Yukio; Ogahara, Satoru; Sugiyama, Satoshi; Iino, Yasuhiko; Sakai, Soichi; Ogura, Yousuke; Yukawa, Susumu; Nishizawa, Yoshiki; Yorioka, Noriaki; Imai, Enyu; Matsuo, Seiichi; Saito, Takao

    2015-01-01

    Background/Aims LDL apheresis (LDL-A) is used for drug-resistant nephrotic syndrome (NS) as an alternative therapy to induce remission by improvement of hyperlipidemia. Several clinical studies have suggested the efficacy of LDL-A for refractory NS, but the level of evidence remains insufficient. A multicenter prospective study, POLARIS (Prospective Observational Survey on the Long-Term Effects of LDL Apheresis on Drug-Resistant Nephrotic Syndrome), was conducted to evaluate its clinical efficacy with high-level evidence. Methods Patients with NS who showed resistance to primary medication for at least 4 weeks were prospectively recruited to the study and treated with LDL-A. The long-term outcome was evaluated based on the rate of remission of NS 2 years after treatment. Factors affecting the outcome were also examined. Results A total of 58 refractory NS patients from 40 facilities were recruited and enrolled as subjects of the POLARIS study. Of the 44 subjects followed for 2 years, 21 (47.7%) showed remission of NS based on a urinary protein (UP) level <1.0 g/day. The UP level immediately after LDL-A and the rates of improvement of UP, serum albumin, serum creatinine, eGFR, and total and LDL cholesterol after the treatment session significantly affected the outcome. Conclusions Almost half of the cases of drug-resistant NS showed remission 2 years after LDL-A. Improvement of nephrotic parameters at termination of the LDL-A treatment was a predictor of a favorable outcome. PMID:26557843

  6. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults

    PubMed Central

    2011-01-01

    Background Obesity is associated with an atherogenic lipid profile characterized by a predominance of small LDL and HDL particles. Weight loss, by dietary restriction or exercise, increases LDL particle size. Whether these interventions can augment HDL size in conjunction with LDL size remains unknown. Objective This study compared the effects of alternate day fasting (ADF), calorie restriction (CR), and endurance exercise on LDL and HDL particle size in overweight and obese subjects. Methods In a 12-week parallel-arm trial, adult subjects (n = 60) were randomized to 1 of 4 groups: 1) ADF (75% energy restriction for 24-h alternated with ad libitum feeding for 24-h), 2) CR (25% energy restriction every day), 3) exercise (moderate intensity training 3 x/week), or 4) control. Results Body weight was reduced (P < 0.001) by ADF, CR, and exercise (5.2 ± 1.1%, 5.0 ± 1.4%, 5.1 ± 0.9%, respectively). Plasma LDL cholesterol decreased (P < 0.05) with ADF (10 ± 4%) and CR (8 ± 4%), whereas HDL cholesterol increased (P < 0.05) with exercise (16 ± 5%). Integrated LDL particle size was augmented (P = 0.01) by ADF and CR. The proportion of small LDL particles decreased (P = 0.04) with ADF only, and the proportion of large HDL particles increased (P = 0.03) with exercise only. Conclusion These results indicate that dietary restriction increases LDL particle size, while endurance training augments HDL particle size, with minimal weight loss. None of these interventions concomitantly increased both LDL and HDL particle size, however. PMID:21767400

  7. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  8. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio.

    PubMed Central

    Navab, M; Hama-Levy, S; Van Lenten, B J; Fonarow, G C; Cardinez, C J; Castellani, L W; Brennan, M L; Lusis, A J; Fogelman, A M; La Du, B N

    1997-01-01

    We have examined the effects of mildly oxidized LDL and atherosclerosis on the levels of two proteins associated with HDL; apolipoprotein J (apoJ), and paraoxonase (PON). On an atherogenic diet, PON activity decreased by 52%, and apoJ levels increased 2.8-fold in fatty streak susceptible mice, C57BL/6J (BL/6), but not in fatty streak resistant mice, C3H/HeJ (C3H). Plasma PON activity was also significantly decreased, and apoJ levels were markedly increased in apolipoprotein E knockout mice on the chow diet, resulting in a 9.2-fold increase in the apoJ/PON ratio as compared to controls. Furthermore, a dramatic increase in the apoJ/PON ratio (over 100-fold) was observed in LDL receptor knockout mice when they were fed a 0.15%-cholesterol-enriched diet. Injection of mildly oxidized LDL (but not native LDL) into BL/6 mice (but not in C3H mice) on a chow diet resulted in a 59% decrease in PON activity (P < 0.01) and a 3.6-fold increase in apoJ levels (P < 0.01). When an acute phase reaction was induced in rabbits, or the rabbits were placed on an atherogenic diet, hepatic mRNA for apoJ was increased by 2.7-fold and 2.8-fold, respectively. Treatment of HepG2 cells in culture with mildly oxidized LDL (but not native LDL) resulted in reduced mRNA levels for PON (3.0-fold decrease) and increased mRNA levels for apoJ (2.0-fold increase). In normolipidemic patients with angiographically documented coronary artery disease who did not have diabetes and were not on lipid-lowering medication (n = 14), the total cholesterol/HDL cholesterol ratio was 3.1+/-0.9 as compared to 2.9+/-0.4 in the controls (n = 19). This difference was not statistically significant. In contrast, the apoJ/PON ratio was 3.0+/-0.4 in the patients compared to 0.72+/-0.2 in the controls (P < 0.009). In a subset of these normolipidemic patients (n = 5), the PON activity was low (48+/-6.6 versus 98+/-17 U/ml for controls; P < 0.009), despite similar normal HDL levels, and the HDL from these patients failed to

  9. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    NASA Astrophysics Data System (ADS)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  10. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    PubMed Central

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A.; Barnes, Michael R.; Li, Xiaohui; Warren, Helen R.; Chasman, Daniel I.; Zhou, Kaixin; Arsenault, Benoit J.; Donnelly, Louise A.; Wiggins, Kerri L.; Avery, Christy L.; Griffin, Paula; Feng, QiPing; Taylor, Kent D.; Li, Guo; Evans, Daniel S.; Smith, Albert V.; de Keyser, Catherine E.; Johnson, Andrew D.; de Craen, Anton J. M.; Stott, David J.; Buckley, Brendan M.; Ford, Ian; Westendorp, Rudi G. J.; Eline Slagboom, P.; Sattar, Naveed; Munroe, Patricia B.; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C.; O’Brien, Eoin; Shaw-Hawkins, Sue; Ida Chen, Y.-D.; Nickerson, Deborah A.; Smith, Joshua D.; Pierre Dubé, Marie; Matthijs Boekholdt, S.; Kees Hovingh, G.; Kastelein, John J. P.; McKeigue, Paul M.; Betteridge, John; Neil, Andrew; Durrington, Paul N.; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I.; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C.; Rice, Kenneth; Smith, Nicholas L.; Lumley, Thomas; Whitsel, Eric A.; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S.; O’Donnell, Christopher J.; Vasan, Ramachandran S.; Wei, Wei-Qi; Wilke, Russell A.; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M.; Stafford, Jeanette M.; Ding, Jingzhong; Herrington, David M.; Kritchevsky, Stephen B.; Eiriksdottir, Gudny; Launer, Leonore J.; Harris, Tamara B.; Chu, Audrey Y.; Giulianini, Franco; MacFadyen, Jean G.; Barratt, Bryan J.; Nyberg, Fredrik; Stricker, Bruno H.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H.; Ridker, Paul M.; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C.; Ballantyne, Christie M.; Rotter, Jerome I.; Adrienne Cupples, L.; Psaty, Bruce M.; Palmer, Colin N. A.; Tardif, Jean-Claude; Colhoun, Helen M.; Hitman, Graham; Krauss, Ronald M.; Wouter Jukema, J; Caulfield, Mark J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; McCarthy, Mark I.; Spencer, Chris C. A.

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  11. Antioxidant supplementation and serum lipids in patients with Graves' disease: effect on LDL-cholesterol.

    PubMed

    Vrca, Vesna Bačić; Mayer, Ljiljana; Skreb, Franjo; Rahelić, Dario; Marušić, Srećko

    2012-03-01

    The effect of supplementation with a fixed combination of antioxidants (beta-carotene, selenium, vitamins C and E) on serum lipids was monitored in patients with newly detected Graves' disease. Measurements were made prior to the commencement of therapy and after 30 and 60 days. Patients were randomized into two groups. Test group comprised patients who received antioxidant supplementation in addition to methimazole, while patients treated with methimazole only were in the control group. The concentration of total and HDL-cholesterol increased significantly in test and control groups (p < 0.05) but these groups did not differ significantly. Concentration of LDL-cholesterol increased significantly in the test group only (p < 0.005) and was significantly different from the control group 60 days after the commencement of therapy (p < 0.005). Significant increase in the LDL-cholesterol concentration in the test group requires further investigations.

  12. LDL-lipids from patients with hypercholesterolaemia and Alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention.

    PubMed

    Dias, H K Irundika; Brown, Caroline L R; Polidori, M Cristina; Lip, Gregory Y H; Griffiths, Helen R

    2015-12-01

    Elevated low-density lipoprotein (LDL) concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidized LDL (oxLDL) modification and nitration is observed during dementia and hypercholesterolaemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVECs) were maintained in transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naive, normo- and hyper-lipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40 mg of simvastatin intervention/day for 3 months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after 3 months. LDL isolated from statin-naive hyperlipidaemic, AD and AD-plus subjects was more oxidized (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared with control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 compared with 3.95±0.2 nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml compared with 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids (LDL-L) from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7 nmol/mg of protein) compared with untreated cells (23.8±1.2 compared with nmol/mg of protein). Basolateral interleukin (IL)-6 secretion was increased by LDL-L from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared with healthy subject lipids (18.6±3.6 pg/ml). LDL-L isolated after statin intervention did not affect endothelial function. In summary, LDL-L from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVECs. In vivo

  13. LDL-lipids from patients with hypercholesterolaemia and Alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention.

    PubMed

    Dias, H K Irundika; Brown, Caroline L R; Polidori, M Cristina; Lip, Gregory Y H; Griffiths, Helen R

    2015-12-01

    Elevated low-density lipoprotein (LDL) concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidized LDL (oxLDL) modification and nitration is observed during dementia and hypercholesterolaemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVECs) were maintained in transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naive, normo- and hyper-lipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40 mg of simvastatin intervention/day for 3 months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after 3 months. LDL isolated from statin-naive hyperlipidaemic, AD and AD-plus subjects was more oxidized (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared with control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 compared with 3.95±0.2 nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml compared with 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids (LDL-L) from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7 nmol/mg of protein) compared with untreated cells (23.8±1.2 compared with nmol/mg of protein). Basolateral interleukin (IL)-6 secretion was increased by LDL-L from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared with healthy subject lipids (18.6±3.6 pg/ml). LDL-L isolated after statin intervention did not affect endothelial function. In summary, LDL-L from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVECs. In vivo

  14. Observational study of lipid profile and LDL particle size in patients with metabolic syndrome

    PubMed Central

    2011-01-01

    Background The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein cholesterol (HDLc), and the prevalence of small, dense-low density lipoprotein cholesterol (LDLc) particles. The aim of this study was to establish the importance of LDL particle size measurement by gender in a group of patients with Metabolic Syndrome (MS) attending at a Cardiovascular Risk Unit in Primary Care and their classification into phenotypes. Subjects and methods One hundred eighty-five patients (93 men and 92 women) from several areas in the South of Spain, for a period of one year in a health centre were studied. Laboratory parameters included plasma lipids, lipoproteins, low-density lipoprotein size and several atherogenic rates were determinated. Results We found differences by gender between anthropometric parameters, blood pressure and glucose measures by MS status. Lipid profile was different in our two study groups, and gender differences in these parameters within each group were also remarkable, in HDLc and Apo A-I values. According to LDL particle size, we found males had smaller size than females, and patients with MS had also smaller than those without MS. We observed inverse relationship between LDL particle size and triglycerides in patients with and without MS, and the same relationship between all atherogenic rates in non-MS patients. When we considered our population in two classes of phenotypes, lipid profile was worse in phenotype B. Conclusion In conclusion, we consider worthy the measurement of LDL particle size due to its relationship with lipid profile and cardiovascular risk. PMID:21936888

  15. Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects.

    PubMed

    Ruiz-Roso, Baltasar; Quintela, José C; de la Fuente, Ester; Haya, Javier; Pérez-Olleros, Lourdes

    2010-03-01

    Recently, polyphenols have been found to affect blood lipids in animals in a similar manner as soluble dietary fibre. The aim was to assess whether an insoluble dietary fiber very rich in polyphenols has a beneficial effect on serum lipids in humans. In a double-blind randomized placebo-controlled clinical study with parallel arms, 88 volunteers with hypercholesterolemia were randomly assigned to consume daily either, fiber with insoluble 84% polyphenols 4 g twice a day (n = 43) or placebo (n = 45). Serum total, LDL and HDL cholesterol and triglycerides were assessed at baseline and after 4 weeks. The insoluble polyphenols consumption reduced the total cholesterol by 17.8 +/- 6.1% (p < 0.05), LDL cholesterol by 22.5 +/- 8.9% (p < 0.001), LDL: HDL cholesterol ratio by 26.2 +/- 14.3% (p < 0.001) and triglycerides by 16.3 +/- 23.4% (p < 0.05) at the end of the study compared with baseline. No significant differences were found during the study time in the placebo group for the lipid profile. The consumption of fiber very rich in insoluble polyphenols shows beneficial effects on human blood lipid profile and may be effective in prevention and treatment of hyperlipemia.

  16. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    SciTech Connect

    Sharpe, Laura J.; Brown, Andrew J.

    2008-09-05

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2.

  17. Near Infrared Fluorescence (NIRF) Molecular Imaging of Oxidized LDL with an Autoantibody in Experimental Atherosclerosis

    PubMed Central

    Khamis, Ramzi Y; Woollard, Kevin J.; Hyde, Gareth D.; Boyle, Joseph J; Bicknell, Colin; Chang, Shang-Hung; Malik, Talat H; Hara, Tetsuya; Mauskapf, Adam; Granger, David W; Johnson, Jason L.; Ntziachristos, Vasilis; Matthews, Paul M; Jaffer, Farouc A; Haskard, Dorian O

    2016-01-01

    We aimed to develop a quantitative antibody-based near infrared fluorescence (NIRF) approach for the imaging of oxidized LDL in atherosclerosis. LO1, a well- characterized monoclonal autoantibody that reacts with malondialdehyde-conjugated LDL, was labeled with a NIRF dye to yield LO1-750. LO1-750 specifically identified necrotic core in ex vivo human coronary lesions. Injection of LO1-750 into high fat (HF) fed atherosclerotic Ldlr−/− mice led to specific focal localization within the aortic arch and its branches, as detected by fluorescence molecular tomography (FMT) combined with micro-computed tomography (CT). Ex vivo confocal microscopy confirmed LO1-750 subendothelial localization of LO1-750 at sites of atherosclerosis, in the vicinity of macrophages. When compared with a NIRF reporter of MMP activity (MMPSense-645-FAST), both probes produced statistically significant increases in NIRF signal in the Ldlr−/− model in relation to duration of HF diet. Upon withdrawing the HF diet, the reduction in oxLDL accumulation, as demonstrated with LO1-750, was less marked than the effect seen on MMP activity. In the rabbit, in vivo injected LO1-750 localization was successfully imaged ex vivo in aortic lesions with a customised intra-arterial NIRF detection catheter. A partially humanized chimeric LO1-Fab-Cys localized similarly to the parent antibody in murine atheroma showing promise for future translation. PMID:26911995

  18. Lipid fluidity at different regions in LDL and HDL of {beta}-thalassemia/Hb E patients

    SciTech Connect

    Morales, Noppawan Phumala . E-mail: scnpm@mahidol.ac.th; Charlermchoung, Chalermkhwan; Luechapudiporn, Rataya; Yamanont, Paveena; Fucharoen, Suthat; Chantharaksri, Udom

    2006-11-24

    Atherosclerosis-related vascular complications in {beta}-thalassemia/hemoglobin E ({beta}-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of {alpha}-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage.

  19. Colesevelam hydrochloride: usefulness of a specifically engineered bile acid sequestrant for lowering LDL-cholesterol.

    PubMed

    Corsini, Alberto; Windler, Eberhard; Farnier, Michel

    2009-02-01

    Several recent meta-analyses of numerous lipid-lowering outcome trials confirm the direct relationship between low-density lipoprotein-cholesterol (LDL-C) lowering and cardiovascular risk reduction. As a consequence, LDL-C goals are continuously being set lower. To achieve lipid lowering, several efficient drugs are available, however, the current pharmacopoeia remains limited for some critical patient situations. Colesevelam hydrochloride is a specifically engineered bile acid sequestrant that features a more favourable tolerability and drug interaction profile than traditional bile acid sequestrants, because of a better affinity and binding capacity to bile acids. In addition, colesevelam retains the nonsystemic mode of action of bile acid sequestrants. Moreover, colesevelam lowers LDL-C by 15-19% and 10-16%, respectively, in monotherapy and in combination to various lipid-lowering drugs, such as statins, ezetimibe and fenofibrates. Along with an efficient and sustainable effect on lipid profiles, colesevelam - as other bile acid sequestrants - has been shown to lower the glycosylated haemoglobin HbA1c by 0.5% on average in patients with type 2 diabetes. Overall, colesevelam represents an interesting add-on treatment to be used in high-risk patients with hypercholesterolaemia for whom standard lipid-lowering therapies are not enough or not well tolerated.

  20. LDL cholesterol in CKD--to treat or not to treat?

    PubMed

    Massy, Ziad A; de Zeeuw, Dick

    2013-09-01

    In the majority of patients with chronic kidney disease (CKD) the total and low-density lipoprotein (LDL) cholesterol are usually normal, with the exception of patients with nephrotic-range proteinuria and in peritoneal dialysis patients. Moreover, epidemiological evidence shows that the link between serum total cholesterol or LDL cholesterol and cardiovascular disease (CVD) in CKD is not as straightforward as in the general population. In addition, atherosclerosis-related events are responsible for only ∼30% of CVD in these patients. Nevertheless, intervention trials, particularly the Study of Heart and Renal Protection, and meta-analyses showed a proportional reduction of cardiovascular risk associated with the absolute reduction in LDL cholesterol in patients with CKD similar to the general population, with apparent attenuation of this relationship in end-stage kidney disease. Therefore, the use of cholesterol-lowering agents appears to be indicated in early CKD stages to prevent atherosclerosis-related risk. However, uncertainty persists as to the optimal management of this risk in end-stage kidney disease patients. In the present review, we discuss these issues and end up with a practical plan aimed to help the nephrologist in managing atherosclerosis-related risk using cholesterol-lowering therapies in CKD patients. PMID:23698234

  1. Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse.

    PubMed

    Singh, Rajesh K; Barbosa-Lorenzi, Valéria C; Lund, Frederik W; Grosheva, Inna; Maxfield, Frederick R; Haka, Abigail S

    2016-03-01

    Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane. PMID:26801085

  2. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9.

    PubMed

    Cohen, Jonathan; Pertsemlidis, Alexander; Kotowski, Ingrid K; Graham, Randall; Garcia, Christine Kim; Hobbs, Helen H

    2005-02-01

    The low-density lipoprotein receptor (LDLR) prevents hypercholesterolemia and atherosclerosis by removing low-density lipoprotein (LDL) from circulation. Mutations in the genes encoding either LDLR or its ligand (APOB) cause severe hypercholesterolemia. Missense mutations in PCSK9, encoding a serine protease in the secretory pathway, also cause hypercholesterolemia. These mutations are probably gain-of-function mutations, as overexpression of PCSK9 in the liver of mice produces hypercholesterolemia by reducing LDLR number. To test whether loss-of-function mutations in PCSK9 have the opposite effect, we sequenced the coding region of PCSK9 in 128 subjects (50% African American) with low plasma levels of LDL and found two nonsense mutations (Y142X and C679X). These mutations were common in African Americans (combined frequency, 2%) but rare in European Americans (<0.1%) and were associated with a 40% reduction in plasma levels of LDL cholesterol. These data indicate that common sequence variations have large effects on plasma cholesterol levels in selected populations. PMID:15654334

  3. Improvement of HDL- and LDL-cholesterol levels in diabetic subjects by feeding bread containing chitosan.

    PubMed

    Ausar, S F; Morcillo, M; León, A E; Ribotta, P D; Masih, R; Vilaro Mainero, M; Amigone, J L; Rubin, G; Lescano, C; Castagna, L F; Beltramo, D M; Diaz, G; Bianco, I D

    2003-01-01

    In this work we evaluated the efficacy and safety of a bread formulation containing chitosan in dyslipidemic type 2 diabetic subjects. For this purpose a total of 18 patients were allowed to incorporate to their habitual diets 120 g/day of bread containing 2% (wt/wt) chitosan (chitosan group, n= 9) or standard bread (control group, n= 9). Before the study and after 12 weeks on the modified diet, the following parameters were evaluated: body weight, plasma cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglyceride, and hemoglobin A(1c) (HbA(1c)). Compared with the control group, the patients receiving chitosan-containing bread decreased their mean levels of LDL-cholesterol and significantly increased their mean levels of HDL-cholesterol at the end of the study. There were no significant differences in the body weight, serum triglyceride, and HbA(1c). These results suggest that chitosan incorporated into bread formulations could improve the lipoprotein balance similar to typical biliary salts trappers, increasing the HDL- and lowering the LDL-cholesterol, without changing the triglyceride levels. These results warrant further studies over a longer period of time to evaluate if a persistent improvement in levels of lipoproteins can be attained with this strategy.

  4. Isolation of lipoprotein (a) using the regenerate of a dextran sulfate cellulose LDL apheresis system.

    PubMed

    Gross, E; März, W; Siekmeier, R; Scharrer, I; Gross, W

    1994-04-01

    A simple method for the preparation of lipoprotein (a) is presented. The procedure uses the eluate of an LDL apheresis system operating on the basis of LDL adsorbing dextran sulfate cellulose. The eluate is concentrated by tangential flow membrane filtration and subjected to ultracentrifugation, first at a density of 1.125 kg/liter and then at 1.050 kg/liter. The crude lipoprotein (a)-containing fraction is chromatographed on agarose (Bio-Gel A-15m) to remove contaminating low-density and high-density lipoproteins. As demonstrated by immunoelectrophoresis with intermediate gel, the method provides lipoprotein (a) completely free of LDL. SDS-polyacrylamide gel electrophoresis showed that apolipoprotein E was associated with purified lipoprotein (a). On agarose gel electrophoresis and two-dimensional immunoelectrophoresis, lipoprotein (a) prepared by the proposed method cannot be distinguished from native lipoprotein (a). The major advantage of the procedure is that it allows the isolation of large amounts of lipoprotein (a) from a single donor.

  5. Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse

    PubMed Central

    Singh, Rajesh K.; Barbosa-Lorenzi, Valéria C.; Lund, Frederik W.; Grosheva, Inna; Maxfield, Frederick R.; Haka, Abigail S.

    2016-01-01

    ABSTRACT Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane. PMID:26801085

  6. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  7. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9.

    PubMed

    Stein, Evan A; Raal, Frederick

    2014-01-01

    Published phase I and II trials with two fully human monoclonal antibodies to PCSK9 have provided comprehensive evidence that inhibiting PCSK9 is a very effective method to reduce low-density lipoprotein cholesterol (LDL-C). In all populations studied so far, whether on statins or LDL-C-reducing diet alone, with or without a genetic defect in the LDL receptor, and in subjects intolerant to statins, the LDL-C reductions have been large and consistent. Even the most efficacious statin, rosuvastatin, at its highest dose has not achieved such reductions. The clinical trials have established that monoclonal antibody therapy targeted to PCSK9 may be administered subcutaneously every two or four weeks. Current data suggest these drugs will provide an effective therapeutic option for LDL-C reduction and that, if proven safe in phase III trials, they will be as important to LDL-C control, and likely to cardiovascular disease risk reduction, as statins have been over the past three decades. PMID:24422577

  8. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[S

    PubMed Central

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-01-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight. PMID:26351364

  9. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss.

    PubMed

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-11-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1-14 or 8-14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10(-7)∼10(-5) M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3',5'-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit (14)C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.

  10. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss.

    PubMed

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-11-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1-14 or 8-14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10(-7)∼10(-5) M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3',5'-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit (14)C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight. PMID:26351364

  11. Ox-LDL induces monocyte-to-macrophage differentiation in vivo: Possible role for the macrophage colony stimulating factor receptor (M-CSF-R).

    PubMed

    Fuhrman, Bianca; Partoush, Ayelet; Volkova, Nina; Aviram, Michael

    2008-02-01

    Monocyte-to-macrophage differentiation and LDL oxidation play a pivotal role in early atherogenesis. We thus questioned possible mechanisms for oxidized LDL (Ox-LDL)-induced monocyte-to-macrophage differentiation in vivo. Mouse peritoneal mononuclear cells, that were isolated 1, 2, or 3 days after Ox-LDL intraperitoneal injection, gradually exhibited the characteristic macrophage morphology, along with the expression of the cell-surface antigen CD11b. Molecular mechanisms involved in Ox-LDL-induced differentiation were further investigated in vitro using the THP-1 monocytic cell line. THP-1 cells incubated with Ox-LDL in the presence of as low as 1 ng/ml of PMA differentiated into macrophages, as evidenced by morphologic, phenotypic, and functional properties. Stimulation of monocyte-to-macrophage differentiation was selective to Ox-LDL (and not native LDL), was dependent on the extent of LDL oxidation, and required Ox-LDL internalization by the cells. These effects of Ox-LDL could be attributed to its major oxysterols, 7-ketocholesterol and 7beta-hydroxycholesterol. Finally, the stimulation of monocyte differentiation to macrophages by Ox-LDL was shown to require the M-CSF-receptor, since blocking the binding to the receptor abolished Ox-LDL/7beta-hydroxycholesterol-induced differentiation. Furthermore, Ox-LDL/7beta-hydroxycholesterol elicited tyrosine phosphorylation and activation of the M-CSF-R. We thus conclude that Ox-LDL induces monocyte differentiation to macrophages in vivo and this phenomenon involves activation of the M-CSF-receptor.

  12. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results

  13. EFFECT OF LOWER TARGETS FOR BLOOD PRESSURE AND LDL CHOLESTEROL ON ATHEROSCLEROSIS IN DIABETES

    PubMed Central

    Howard, Barbara V.; Roman, Mary J.; Fleg, Jerome L.; Galloway, James M.; Henderson, Jeffrey A.; Howard, Wm. James; Lee, Elisa T.; Mete, Mihriye; Poolaw, Bryce; Devereux, Richard B.; Russell, Marie; Silverman, Angela; Stylianou, Mario; Umans, Jason; Wang, Wenyu; Weissman, Neil; Weir, Matthew R.; Wilson, Charlton; Yeh, Fawn; Zhu, Jianhui; Ratner, Robert E.

    2008-01-01

    Context Individuals with diabetes are at greatly increased risk for developing cardiovascular disease (CVD), but more aggressive targets for risk factor control have not been tested. Objective To compare the progression of subclinical atherosclerotic disease in diabetic adults treated to aggressive targets of low-density lipoprotein cholesterol (LDL-C) ≤ 70 mg/dL and blood pressure (BP) ≤ 115/75 mm Hg (aggressive) versus treatment to standard targets of LDL-C ≤ 100 mg/dL and BP ≤ 130/85 mm Hg (standard). Design Randomized, open label, blinded-to-endpoint 3-year trial in individuals with diabetes conducted April 2003-July 2004. Setting Four clinical centers in southwestern Oklahoma; Phoenix, AZ; northeastern Arizona; and South Dakota. Participants 499 American Indian men and women ≥ age 40 with type 2 diabetes and no prior CVD events. Interventions Participants were randomized to aggressive vs. standard treatment. The same treatment algorithms were followed for both groups. Main Outcome Measures Primary endpoint was a composite of progression of atherosclerosis as measured by common carotid artery intimal medial thickness (IMT) and clinical events. Secondary endpoints included other carotid and cardiac ultrasonographic measures. Results LDL-C and systolic BP (SBP) goals for both groups were reached within 12 months and maintained to 36 months. LDL-C and SBP in the last 12 months averaged 72 and 104 mg/dL and 116 and 129 mm Hg in the aggressive and standard groups, respectively. Regression of IMT (-0.017 vs. 0.041 mm, p < .0001) and arterial mass (-0.14 vs. 1.14 mm2, p < .0001) and greater decrease in left ventricular mass (-2.4 vs. -1.3 g/m2.7, p = .05) were observed in the aggressive group. Clinical CVD events were lower than expected and did not differ between groups Conclusions Reducing LDL-C and SBP to lower targets resulted in regression of carotid IMT and greater decrease in left ventricular mass in individuals with type 2 diabetes. Clinical events

  14. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL.

    PubMed

    Yassin, Lina M; Londoño, Julián; Montoya, Guillermo; De Sanctis, Juan B; Rojas, Mauricio; Ramírez, Luis A; García, Luis F; Vásquez, Gloria

    2011-05-01

    Patients with systemic lupus erythematosus (SLE) have a high risk of developing cardiovascular disease; however, the mechanisms involved in the early onset of atherosclerosis in these patients are not clear. Scavenger receptors, CD36 and CD163 are expressed by mononuclear phagocytes and participate in the binding and uptake of oxidized low-density lipoproteins (Ox-LDL), contributing to foam-cells formation and atherosclerosis development. The aim of the present study was to evaluate CD36(+) and CD163(+) expression and Ox-LDL removal by monocytes from SLE and atherosclerotic patients, compared to similar age-range healthy controls. Healthy controls, SLE, and atherosclerotic patients were evaluated for carotid intima media thickness (CIMT), lipid profile, and native LDL (N-LDL) and Ox-LDL binding/endocytosis. SLE patients presented decreased high-density lipoproteins (HDL) and increased Triglyceride levels, and half of the SLE patients had increased CIMT, compared to their healthy controls (HC(SLE)). The number of CD14(+)CD163(+) cells was increased in atherosclerosis healthy controls (HC(Atheros)) compared to HC(SLE), but there were no differences between SLE or atherosclerotic patients and their respective healthy controls. Clearance assays revealed a similar capacity to bind/endocytose Ox-LDL by monocytes from SLE patients and HC(SLE), and an increased binding and endocytosis of Ox-LDL by monocytes from atherosclerotic patients, compared to HC(Atheros). The decreased CD36 and CD163 expression observed in atherosclerotic and SLE patients, respectively, suggest that these inflammatory conditions modulate these receptors differentially. The increased CIMT observed in SLE patients cannot be explained by Ox-LDL binding/endocytosis, which was comparable to their controls.

  15. Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: an in vitro and in vivo study

    PubMed Central

    2013-01-01

    Background Previous experimental investigations have suggested that guaraná (Paullinia cupana Kunth, supplied by EMBRAPA Oriental) consumption is associated with a lower prevalence of cardiovascular metabolic diseases and has positive effects on lipid metabolism, mainly related to low density lipoprotein (LDL) levels. As LDL oxidation is an important initial event in the development of atherosclerosis, we performed in vitro and in vivo studies to observe the potential effects of guaraná on LDL and serum oxidation. Methods The in vivo protocol was performed using blood samples from 42 healthy elderly subjects who habitually ingested guaraná (GI) or never ingested guaraná (NG). The formation of conjugated dienes (CDs) was analyzed from serum samples. The in vitro protocols were performed using LDL obtained from 3 healthy, non-fasted, normolipidemic voluntary donors who did not habitually ingest guaraná in their diets. The LDL samples were exposed to 5 different guaraná concentrations (0.05, 0.1, 0.5, 1, and 5 μg/mL). Results GI subjects demonstrated lower LDL oxidation than did NG subjects (reduction of 27%, p < 0.0014), independent of other variables. In the GI group the total polyphenols was positively associated with LDL levels. Also, guaraná demonstrated a high antioxidant activity in vitro, mainly at concentrations of 1 and 5 μg/mL, demonstrated by suppression of CDs and TBARS productions, tryptophan destruction and high TRAP activity. Conclusions Guaraná, similar to other foods rich in caffeine and catechins such as green tea, has some effect on LDL oxidation that could partially explain the protective effects of this food in cardiometabolic diseases. PMID:23391102

  16. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage.

    PubMed

    Wang, Xian-Hui; Wang, Fen; You, Shou-Jiang; Cao, Yong-Jun; Cao, Li-Dan; Han, Qiao; Liu, Chun-Feng; Hu, Li-Fang

    2013-11-01

    Hydrogen sulfide (H2S), mainly produced by cystathionine γ-lyase (CSE) in vascular system, emerges as a novel gasotransmitter exerting anti-inflammatory and anti-atherosclerotic effects. Alterations of CSE/H2S pathway may thus be involved in atherosclerosis pathogenesis. However, the underlying mechanisms are poorly understood. The present study showed that the levels of CSE mRNA and protein expression, as well as H2S production were decreased in ox-LDL-treated macrophage. CSE overexpression reduced the ox-LDL-stimulated tumor necrosis factor-α (TNF-α) generation in Raw264.7 and primary macrophage while CSE knockdown enhanced it. Exogenous supplementation of H2S with NaHS and Na2S also decreased the production of TNF-α and intercellular adhesion molecule-1 (ICAM-1) in ox-LDL-stimulated macrophage, and alleviated the adhesion of macrophage to endothelial monolayer. Cysteine, a CSE preferential substrate for H2S biosynthesis, produced similar effects on the pro-inflammatory cytokine generation, which were reversed by CSE inhibitors PAG and BCA, respectively. Moreover, NaHS and Na2S attenuated the phosphorylation and degradation of IκBα and p65 nuclear translocation, as well as JNK activation caused by ox-LDL. The JNK inhibitor suppressed the NF-κB transcription activity in ox-LDL-treated cells. Furthermore, inhibitors of NF-κB (PDTC), ERK (U0126 and PD98059) and JNK (SP600125) partially blocked the suppression by ox-LDL on the CSE mRNA levels. Taken together, the findings demonstrate that ox-LDL may down-regulate the CSE/H2S pathway, which plays an anti-inflammatory role in ox-LDL-stimulated macrophage by suppressing JNK/NF-κB signaling. The study reveals new therapeutic strategies for atherosclerosis, based on modulating CSE/H2S pathway.

  17. Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors.

    PubMed

    Sakellarios, Antonis I; Papafaklis, Michail I; Siogkas, Panagiotis; Athanasiou, Lambros S; Exarchos, Themistoklis P; Stefanou, Konstantinos; Bourantas, Christos V; Naka, Katerina K; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I

    2013-06-01

    Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation. Furthermore, we implemented a new model for LDL penetration across the endothelial membrane, assuming that endothelial permeability depends on the local lumen LDL concentration. The results showed that the presence of the stenosis had a dramatic effect on the local ESS distribution and LDL accumulation along the artery, and areas of increased LDL accumulation were observed in the downstream region where flow recirculation and low ESS were present. Of the studied factors influencing LDL accumulation, 1) hypertension, 2) increased endothelial permeability (a surrogate of endothelial dysfunction), and 3) increased serum LDL levels, especially when the new model of variable endothelial permeability was applied, had the largest effects, thereby supporting their role as major cardiovascular risk factors.