Sample records for electronic analog computer

  1. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  2. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  3. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  4. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  5. An improved data transfer and storage technique for hybrid computation

    NASA Technical Reports Server (NTRS)

    Hansing, A. M.

    1972-01-01

    Improved technique was developed for transferring and storing data at faster than real time speeds on hybrid computer. Predominant advantage is combined use of electronic relays, track and store units, and analog-to-digital and digital-to-analog conversion units of hybrid computer.

  6. Response Matrix Monte Carlo for electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.

    1990-11-01

    A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less

  7. Analog computation of auto and cross-correlation functions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    For analysis of the data obtained from the cross beam systems it was deemed desirable to compute the auto- and cross-correlation functions by both digital and analog methods to provide a cross-check of the analysis methods and an indication as to which of the two methods would be most suitable for routine use in the analysis of such data. It is the purpose of this appendix to provide a concise description of the equipment and procedures used for the electronic analog analysis of the cross beam data. A block diagram showing the signal processing and computation set-up used for most of the analog data analysis is provided. The data obtained at the field test sites were recorded on magnetic tape using wide-band FM recording techniques. The data as recorded were band-pass filtered by electronic signal processing in the data acquisition systems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  9. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  10. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  11. A Short History of the Computer.

    ERIC Educational Resources Information Center

    Leon, George

    1984-01-01

    Briefly traces the development of computers from the abacus, John Napier's logarithms, the first computer/calculator (known as the Differential Engine), the first computer programming via steel punched cards, the electrical analog computer, electronic digital computer, and the transistor to the microchip of today's computers. (MBR)

  12. Optical information processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly

    1993-01-01

    The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.

  13. Analog optical computing primitives in silicon photonics

    DOE PAGES

    Jiang, Yunshan; DeVore, Peter T. S.; Jalali, Bahram

    2016-03-15

    Optical computing accelerators help alleviate bandwidth and power consumption bottlenecks in electronics. In this paper, we show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation and the recovery of a signal in the presence of multiplicative distortion. Finally, the function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  14. Matrix-vector multiplication using digital partitioning for more accurate optical computing

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.

  15. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  16. Computer Music

    NASA Astrophysics Data System (ADS)

    Cook, Perry

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.). Although most people would think that analog synthesizers and electronic music substantially predate the use of computers in music, many experiments and complete computer music systems were being constructed and used as early as the 1950s.

  17. The Analog Revolution and Its On-Going Role in Modern Analytical Measurements.

    PubMed

    Enke, Christie G

    2015-12-15

    The electronic revolution in analytical instrumentation began when we first exceeded the two-digit resolution of panel meters and chart recorders and then took the first steps into automated control. It started with the first uses of operational amplifiers (op amps) in the analog domain 20 years before the digital computer entered the analytical lab. Their application greatly increased both accuracy and precision in chemical measurement and they provided an elegant means for the electronic control of experimental quantities. Later, laboratory and personal computers provided an unlimited readout resolution and enabled programmable control of instrument parameters as well as storage and computation of acquired data. However, digital computers did not replace the op amp's critical role of converting the analog sensor's output to a robust and accurate voltage. Rather it added a new role: converting that voltage into a number. These analog operations are generally the limiting portions of our computerized instrumentation systems. Operational amplifier performance in gain, input current and resistance, offset voltage, and rise time have improved by a remarkable 3-4 orders of magnitude since their first implementations. Each 10-fold improvement has opened the doors for the development of new techniques in all areas of chemical analysis. Along with some interesting history, the multiple roles op amps play in modern instrumentation are described along with a number of examples of new areas of analysis that have been enabled by their improvements.

  18. Hybrid Computation at Louisiana State University.

    ERIC Educational Resources Information Center

    Corripio, Armando B.

    Hybrid computation facilities have been in operation at Louisiana State University since the spring of 1969. In part, they consist of an Electronics Associates, Inc. (EAI) Model 680 analog computer, an EAI Model 693 interface, and a Xerox Data Systems (XDS) Sigma 5 digital computer. The hybrid laboratory is used in a course on hybrid computation…

  19. Teaching Oscillations with a Small Computer.

    ERIC Educational Resources Information Center

    Calvo, J. L.; And Others

    1983-01-01

    Describes a simple, inexpensive electronic circuit used as a small analog computer in an experimental approach to the study of oscillations. Includes circuit diagram and an example of the method using steps followed by students studying underdamped oscillatory motion. (JN)

  20. Programs for Testing an SSME-Monitoring System

    NASA Technical Reports Server (NTRS)

    Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary; hide

    2007-01-01

    A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.

  1. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    PubMed

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  2. New size-expanded RNA nucleobase analogs: a detailed theoretical study.

    PubMed

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-05

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  4. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  5. Neuron Bifurcations in an Analog Electronic Burster

    NASA Astrophysics Data System (ADS)

    Savino, Guillermo V.; Formigli, Carlos M.

    2007-05-01

    Although bursting electrical activity is typical in some brain neurons and biological excitable systems, its functions and mechanisms of generation are yet unknown. In modeling such complex oscillations, analog electronic models are faster than mathematical ones, whether phenomenologically or theoretically based. We show experimentally that bursting oscillator circuits can be greatly simplified by using the nonlinear characteristics of two bipolar transistors. Since our circuit qualitatively mimics Hodgkin and Huxley model neurons bursting activity, and bifurcations originating neuro-computational properties, it is not only a caricature but a realistic model.

  6. ANALOG-TO-DIGITAL DATA CONVERTER

    DOEpatents

    Rodgers, G.W.; Althouse, J.E.; Anderson, D.P.; Bussey, G.R.; Minnear, L.H.

    1960-09-01

    Electrical apparatus is described, particularly useful in telemetry work, for converting analog signals into electrical pulses and recording them. An electronic editor commands the taking of signal readings at a frequency which varies according to linearity of the analog signal being converted. Readings of information signals are recorded, along with time base readings and serial numbering, if desired, on magnetic tape and the latter may be used to operate a computer or the like. Magnetic tape data may be transferred to punched cards.

  7. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Discusses the Rugby clock as a source of project material, use of ZX81 for experimental science, computer dice analog, oil recovery from reservoirs, and computer simulation of Thompson's experiment for determining e/m for an electron. Activities/procedures are provided when applicable. Also presents questions (and answers) related to time-coded…

  8. The Art of Electronics

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Hill, Winfield

    2015-04-01

    1. Foundations; 2. Bipolar transistors; 3. Field effect transistors; 4. Operational amplifiers; 5. Precision circuits; 6. Filters; 7. Oscillators and timers; 8. Low noise techniques and transimpedance; 9. Power regulation; 10. Digital electronics; 11. Programmable logic devices; 12. Logical interfacing; 13. Digital meets analog; 14. Computers, controllers, and data links; 15. Microcontrollers.

  9. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the

  10. USSR Report, Military Affairs Foreign Military Review No 6, June 1986

    DTIC Science & Technology

    1986-11-20

    computers used for an objective accounting of the difference in current firing conditions from standard hold an important place in integrated fire...control systems of modern tanks of capitalist countries. Mechanical ballistic computers gave way in the early 1970’s to electronic computers , initially...made with analog components. Then digital ballistic computers were created, installed in particular in the Ml Abrams and Leopard-2 tanks. The basic

  11. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1977

    1977-01-01

    Includes methods for demonstrating Schlieren effect, measuring refractive index, measuring acceleration, presenting concepts of optics, automatically recording weather, constructing apparaturs for sound experiments, using thermistor thermometers, using the 741 operational amplifier in analog computing, measuring inductance, electronically ringing…

  12. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  13. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  14. Defense Automation Resources Management Manual

    DTIC Science & Technology

    1988-09-01

    Electronic Command Signals Programmer, Plugboard Programmers Punch, Card Punch, Paper Tape Reader, Character Reader-Generator, Time Cards Reader...Multiplexor-Shift Register Group Multiplier Panel Control, Plugboard Panel, Interconnection, Digital Computer Panel, Meter-Attenuator, Tape Recorder PC Cards...Perforator, Tape Plug-In Unit Potentiometer, Coefficient, Analog Computer Programmer, Plugboard Punch, Paper Tape Racks Reader, Time Code Reader

  15. Creating a transducer electronic datasheet using I2C serial EEPROM memory and PIC32-based microcontroller development board

    NASA Astrophysics Data System (ADS)

    Croitoru, Bogdan; Tulbure, Adrian; Abrudean, Mihail; Secara, Mihai

    2015-02-01

    The present paper describes a software method for creating / managing one type of Transducer Electronic Datasheet (TEDS) according to IEEE 1451.4 standard in order to develop a prototype of smart multi-sensor platform (with up to ten different analog sensors simultaneously connected) with Plug and Play capabilities over ETHERNET and Wi-Fi. In the experiments were used: one analog temperature sensor, one analog light sensor, one PIC32-based microcontroller development board with analog and digital I/O ports and other computing resources, one 24LC256 I2C (Inter Integrated Circuit standard) serial Electrically Erasable Programmable Read Only Memory (EEPROM) memory with 32KB available space and 3 bytes internal buffer for page writes (1 byte for data and 2 bytes for address). It was developed a prototype algorithm for writing and reading TEDS information to / from I2C EEPROM memories using the standard C language (up to ten different TEDS blocks coexisting in the same EEPROM device at once). The algorithm is able to write and read one type of TEDS: transducer information with standard TEDS content. A second software application, written in VB.NET platform, was developed in order to access the EEPROM sensor information from a computer through a serial interface (USB).

  16. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  17. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  18. Acousto-optic time- and space-integrating spotlight-mode SAR processor

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.

    1993-09-01

    The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.

  19. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  20. Two Historians in Technology and War

    DTIC Science & Technology

    1994-07-20

    of cryptanalysis in the United States and Britain. The guidance mechanism on the later V-2s was the first reprogrammable electronic analog computer...reception; information storage and retrieval systems; aircraft avionics; truck and automobile ignition and fuel control units; and medical life

  1. Using quantum process tomography to characterize decoherence in an analog electronic device

    NASA Astrophysics Data System (ADS)

    Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville

    The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  2. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  3. ELECTRONIC MULTIPLIER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1961-01-31

    S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.

  4. A cryogenic DAC operating down to 4.2 K

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Lehmann, T.

    2016-04-01

    This paper presents a 10 bit CMOS current steering digital to analog converter (DAC) that operates from room temperature to as low as 4.2 K. It works as the core part of a cryogenic Silicon quantum computer controller circuit producing rapid control gate voltage pulses for quantum bits (qubits) initialization. An improved analog calibration method with a unique unit current cell design is included in the D/A converter structure to overcome the extended cryogenic nonlinear and mismatch effects. The DAC retains its 10 bit linear monotonic behavior over the wide temperature range and it drives a 50 Ω load to 516 mV with a full scale rise time of 10 ns. The differential non-linearity (DNL) of the converter is 0.35LSB while its average power consumption is 32.18 mW from a 3 V power supply. The complete converter is fabricated using a commercial 0.5 μm 1 poly 3 metal Silicon on Sapphire (SOS) CMOS process. He briefly worked as a Lecturer in the Stamford University Bangladesh prior to starting his Ph.D. in 2012 in the School of Electrical Engineering and Telecommunications, UNSW. His Ph.D. research is focused on cryogenic electronics for Quantum Computer Interface. His main research interests are in designing data converters for ultra-low temperature electronics and biomedical applications. He spent two years as a Research Fellow at the University of Edinburgh, U.K., where he worked with biologically inspired artificial neural systems. From 1997 to 2000, he was an Assistant Professor in electronics at the Technical University of Denmark, working with low-power low-noise low-voltage analog and mixed analog-digital integrated circuits. From 2001 to 2003 he was Principal Engineer with Cochlear Ltd., Australia, where he was involved in the design of the world's first fully implantable cochlear implant. Today he is Associate Professor in microelectronics at the University of New South Wales, Australia. He has authored over 100 journal papers, conference papers, book chapters and patents in microelectronic circuit design for a range of applications. His main research interests are in solid-state circuits and systems (analog and digital), biomedical microelectronics, ultra-low temperature electronics, nanometre CMOS, and green electronics.

  5. Emulation of complex open quantum systems using superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  6. A study of digital gyro compensation loops. [data conversion routines and breadboard models

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.

  7. Digital computer technique for setup and checkout of an analog computer

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1968-01-01

    Computer program technique, called Analog Computer Check-Out Routine Digitally /ACCORD/, generates complete setup and checkout data for an analog computer. In addition, the correctness of the analog program implementation is validated.

  8. Analog hardware implementation of neocognitron networks

    NASA Astrophysics Data System (ADS)

    Inigo, Rafael M.; Bonde, Allen, Jr.; Holcombe, Bradford

    1990-08-01

    This paper deals with the analog implementation of neocognitron based neural networks. All of Fukushima''s and related work on the neocognitron is based on digital computer simulations. To fully take advantage of the power of this network paradigm an analog electronic approach is proposed. We first implemented a 6-by-6 sensor network with discrete analog components and fixed weights. The network was given weight values to recognize the characters U L and F. These characters are recognized regardless of their location on the sensor and with various levels of distortion and noise. The network performance has also shown an excellent correlation with software simulation results. Next we implemented a variable weight network which can be trained to recognize simple patterns by means of self-organization. The adaptable weights were implemented with PETs configured as voltage-controlled resistors. To implement a variable weight there must be some type of " memory" to store the weight value and hold it while the value is reinforced or incremented. Two methods were evaluated: an analog sample-hold circuit and a digital storage scheme using binary counters. The latter is preferable for VLSI implementation because it uses standard components and does not require the use of capacitors. The analog design and implementation of these small-scale networks demonstrates the feasibility of implementing more complicated ANNs in electronic hardware. The circuits developed can also be designed for VLSI implementation. 1.

  9. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  10. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  11. Implementation and Assessment of Advanced Analog Vector-Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the processor is compared with that required for a range of typical problems. Calculations resolving alloy concentrations from spectral plume data of rocket engines are implemented on the optical processor, demonstrating its sufficiency for this problem. We also show how this technology can be easily extended to a 100 x 100 10 MHz (200 Cops) processor.

  12. SPORT-SPEAR Mark III Electronics (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Drawing List DL 135-678-00-RO and the drawings listed thereon provide the specifications for construction of the SPORT-SPEAR Mark III Electronics. SPORT stands for Smark Port. This device is an adapter for the SLAC BADC (Brilliant Analog to Digital Converter) providing up to 5 ports whereas the BADC and SPORT takes signals from experimental equipment and directs them to other equipment and micro computers for processing and storing. These units are housed in standard Camac crates.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, Peter

    More than fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the electronic tennis game with separate controllers that connected to an analog computer and used an oscilloscope for a screen. The game's creator, William Higinbotham, was a physicist who lobbied for nuclear nonproliferation as the first chair of the Federation of American Scientists.

  14. Charging Ahead into the Next Millennium: Proceedings of the Systems and Technology Symposium (20th) Held in Denver, Colorado on 7-10 June 1999

    DTIC Science & Technology

    1999-06-01

    Tactical Radar Correlator EV Electric Vehicle EW Electronic Warfare F ^^m F Frequency FA False Alarm FAO Foreign Area Officer FBE Fleet Battle... Electric Vehicle High Frequency Horsepower High-Performance Computing High Performance Computing and Communications High Performance Knowledge...A/D Analog-to-Digital A/G Air-to-Ground AAN Army After Next AAV Advanced Air Vehicle ABCCC Airborne Battlefield Command, Control and

  15. Alpha Control - A new Concept in SPM Control

    NASA Astrophysics Data System (ADS)

    Spizig, P.; Sanchen, D.; Volswinkler, G.; Ibach, W.; Koenen, J.

    2006-03-01

    Controlling modern Scanning Probe Microscopes demands highly sophisticated electronics. While flexibility and powerful computing power is of great importance in facilitating the variety of measurement modes, extremely low noise is also a necessity. Accordingly, modern SPM Controller designs are based on digital electronics to overcome the drawbacks of analog designs. While todays SPM controllers are based on DSPs or Microprocessors and often still incorporate analog parts, we are now introducing a completely new approach: Using a Field Programmable Gate Array (FPGA) to implement the digital control tasks allows unrivalled data processing speed by computing all tasks in parallel within a single chip. Time consuming task switching between data acquisition, digital filtering, scanning and the computing of feedback signals can be completely avoided. Together with a star topology to avoid any bus limitations in accessing the variety of ADCs and DACs, this design guarantees for the first time an entirely deterministic timing capability in the nanosecond regime for all tasks. This becomes especially useful for any external experiments which must be synchronized with the scan or for high speed scans that require not only closed loop control of the scanner, but also dynamic correction of the scan movement. Delicate samples additionally benefit from extremely high sample rates, allowing highly resolved signals and low noise levels.

  16. Scalable hybrid computation with spikes.

    PubMed

    Sarpeshkar, Rahul; O'Halloran, Micah

    2002-09-01

    We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.

  17. System Measures Pressures Aboard A Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.

    1994-01-01

    Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.

  18. First Video Game

    ScienceCinema

    Takacs, Peter

    2018-06-21

    More than fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the electronic tennis game with separate controllers that connected to an analog computer and used an oscilloscope for a screen. The game's creator, William Higinbotham, was a physicist who lobbied for nuclear nonproliferation as the first chair of the Federation of American Scientists.

  19. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less

  20. Quantum field theory treatment of magnetic effects on a system of free electrons

    NASA Astrophysics Data System (ADS)

    Verzegnassi, C.; Germano, R.; Kurian, P.

    2018-03-01

    The effects of a magnetic field on the energy and on the spin of free electrons are computed in the theoretical framework of quantum field theory. In the case of a static moderate field and with relatively slow electrons, the derived formulae are particularly simple. A comparison with the approaches of classical physics and of quantum mechanics shows essential differences and important analogies. The relevance to the magnetic effects of the initial polarization components of the electron states and the possible existence of special values of these quantities are discussed in the final conclusions, which might be useful to explain recent experiments on quasi-free electrons in chiral systems in biology.

  1. Protracted Low-Dose Ionizing Radiation Effects upon Primate Performance

    DTIC Science & Technology

    1977-12-01

    61 G. Dosimetry ................................ ............. 74 NTiS Whife Sectle ) U A N O U C E D JUSTIFICATION...AECL facility. Standard dosimetry techniques were utilized during radiation expo- sur.. In addition, extensive preexposure calibration was conducted...During each of the epochs, the five basic variables were deter- mined. These calculations were accomplished on an analog computer, Electronics Associates

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yunshan; DeVore, Peter T. S.; Jalali, Bahram

    Optical computing accelerators help alleviate bandwidth and power consumption bottlenecks in electronics. In this paper, we show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation and the recovery of a signal in the presence of multiplicative distortion. Finally, the function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  3. Three degree-of-freedom force feedback control for robotic mating of umbilical lines

    NASA Technical Reports Server (NTRS)

    Fullmer, R. Rees

    1988-01-01

    The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.

  4. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  5. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well as unpublished notes of Courant describing machine studies performed in 1954-1955. This paper describes the practical application of the eteapot code and provides sample results, with emphasis on emulating lattice optics in the AGS analog ring for comparison with the historical machine studies and to predict the electron spin evolution they would have measured if they had polarized electrons and electron polarimetry. Of greater present day interest is the performance to be expected for a proton storage ring experiment. To exhibit the eteapot code performance and confirm its symplecticity, results are also given for 30 million turn proton spin tracking in an all-electric lattice that would be appropriate for a present day measurement of the proton EDM. The accompanying paper "Symplectic orbit and spin tracking code for all-electric storage rings" documents in detail the theoretical formulation implemented in eteapot, which is a new module in the Unified Accelerator Libraries (ual) environment.

  6. Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2014-09-01

    Using density functional theory we design a molecular analog of the four-dimensional hypercube or tesseract which we called hypercubane. The title hydrocarbon (C40H24) is Oh-symmetric like cubane and is characterized by a double-shell architecture. The perfluorinated analog of hypercubane also is stable with a positive value of the electron affinity. Removal of the C8 core from hypercubane yields a hollowed Oh-symmetric hydrocarbon with enough room to host a single atom/ion guest. The resonances of the NMR-active 13C and 1H nuclei have been computed so as to assist the spectroscopic identification of the predicted molecules.

  7. Reconfigurable Analog PDE computation for Baseband and RFComputation

    DTIC Science & Technology

    2017-03-01

    waveguiding PDEs. One-dimensional ladder topologies enable linear delays, linear-phase analog filters , as well as analog beamforming, potentially at RF...performance. This discussion focuses on ODE / PDE analog computation available in SoC FPAA structures. One such computation is a ladder filter (Fig...Implementation of a one-dimensional ladder filter for computing inductor (L) and capacitor (C) lines. These components can be implemented in CABs or as

  8. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  9. Joint Services Electronics Program

    DTIC Science & Technology

    1992-03-05

    Packaging Considerations M. T. Raghunath (Professor Abhiram Ranade) A central issue in massively parallel computation is the design of the interconnection...programs on promising network architectures. Publications: [1] M. T. Raghunath and A. G. Ranade, A Simulation-Based Compari- son of Interconnection Networks...more difficult analog function approximation task. Network Design Issues for Fast Global Communication Professor A. Ranade with M.T. Raghunath A

  10. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities

    PubMed Central

    Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.

    2012-01-01

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452

  11. Multilayered analog optical differentiating device: performance analysis on structural parameters.

    PubMed

    Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui

    2017-12-15

    Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.

  12. Enhancing programming logic thinking using analogy mapping

    NASA Astrophysics Data System (ADS)

    Sukamto, R. A.; Megasari, R.

    2018-05-01

    Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.

  13. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  14. The Discourse on Printed and Electronic Books: Analogies, Oppositions, and Perspectives

    ERIC Educational Resources Information Center

    Velagic, Zoran

    2014-01-01

    Introduction: The point of departure for this paper is the twofold analogy (analogy of content, analogy of medium) between printed and electronic books, the aim being to draw attention to the usual perception of their capacities and relationships, to provide a rather detailed analysis of the outcome and sustainability of such analogies and…

  15. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    PubMed

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-09

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.

  16. Nonvolatile Array Of Synapses For Neural Network

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Elements of array programmed with help of ultraviolet light. A 32 x 32 very-large-scale integrated-circuit array of electronic synapses serves as building-block chip for analog neural-network computer. Synaptic weights stored in nonvolatile manner. Makes information content of array invulnerable to loss of power, and, by eliminating need for circuitry to refresh volatile synaptic memory, makes architecture simpler and more compact.

  17. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described andmore » examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers.« less

  18. Medical Signal-Conditioning and Data-Interface System

    NASA Technical Reports Server (NTRS)

    Braun, Jeffrey; Jacobus, charles; Booth, Scott; Suarez, Michael; Smith, Derek; Hartnagle, Jeffrey; LePrell, Glenn

    2006-01-01

    A general-purpose portable, wearable electronic signal-conditioning and data-interface system is being developed for medical applications. The system can acquire multiple physiological signals (e.g., electrocardiographic, electroencephalographic, and electromyographic signals) from sensors on the wearer s body, digitize those signals that are received in analog form, preprocess the resulting data, and transmit the data to one or more remote location(s) via a radiocommunication link and/or the Internet. The system includes a computer running data-object-oriented software that can be programmed to configure the system to accept almost any analog or digital input signals from medical devices. The computing hardware and software implement a general-purpose data-routing-and-encapsulation architecture that supports tagging of input data and routing the data in a standardized way through the Internet and other modern packet-switching networks to one or more computer(s) for review by physicians. The architecture supports multiple-site buffering of data for redundancy and reliability, and supports both real-time and slower-than-real-time collection, routing, and viewing of signal data. Routing and viewing stations support insertion of automated analysis routines to aid in encoding, analysis, viewing, and diagnosis.

  19. Computer-based desktop system for surgical videotape editing.

    PubMed

    Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M

    1997-05-01

    The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.

  20. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device

    PubMed Central

    Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung

    2015-01-01

    A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems. PMID:25955658

  1. On the impact of approximate computation in an analog DeSTIN architecture.

    PubMed

    Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar

    2014-05-01

    Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.

  2. Photoionization of Benzene and Small Polycyclic Aromatic Hydrocarbons in Ultraviolet-Processed Astrophysical Ices: A Computational Study

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Park, J.-Y.

    2004-01-01

    We employed density functional theory (DFT) calculations to model the photoionization behavior of benzene and small polycyclic aromatic hydrocarbons when they are embedded in a matrix of water ice in order to investigate issues raised by recent experimental work by Gudipati and Allamandola. The ionization energies of benzene, naphthalene, anthracene, and pyrene were found to be lowered by 1.5-2.1 eV in water ice. Low-lying vertical electronic excitation energies were computed with time-dependent DFT for both neutral and ionized species and are found in both cases to be remarkably unaffected by the ice matrix. Chemical behavior in ultraviolet-photoprocessed ices is also discussed, with a focus on electron recombination and pathways leading to phenol and analogous products.

  3. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  4. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2018-06-20

    Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.

  5. A sub-1-volt analog metal oxide memristive-based synaptic device with large conductance change for energy-efficient spike-based computing systems

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-Chih; Roy, Anupam; Chang, Yao-Feng; Shahrjerdi, Davood; Banerjee, Sanjay K.

    2016-11-01

    Nanoscale metal oxide memristors have potential in the development of brain-inspired computing systems that are scalable and efficient. In such systems, memristors represent the native electronic analogues of the biological synapses. In this work, we show cerium oxide based bilayer memristors that are forming-free, low-voltage (˜|0.8 V|), energy-efficient (full on/off switching at ˜8 pJ with 20 ns pulses, intermediate states switching at ˜fJ), and reliable. Furthermore, pulse measurements reveal the analog nature of the memristive device; that is, it can directly be programmed to intermediate resistance states. Leveraging this finding, we demonstrate spike-timing-dependent plasticity, a spike-based Hebbian learning rule. In those experiments, the memristor exhibits a marked change in the normalized synaptic strength (>30 times), when the pre- and post-synaptic neural spikes overlap. This demonstration is an important step towards the physical construction of high density and high connectivity neural networks.

  6. Computer Analogies: Teaching Molecular Biology and Ecology.

    ERIC Educational Resources Information Center

    Rice, Stanley; McArthur, John

    2002-01-01

    Suggests that computer science analogies can aid the understanding of gene expression, including the storage of genetic information on chromosomes. Presents a matrix of biology and computer science concepts. (DDR)

  7. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications.

    PubMed

    Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong

    2016-03-14

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor's analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.

  8. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications

    NASA Astrophysics Data System (ADS)

    Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong

    2016-03-01

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor’s analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.

  9. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Wang, Zongwei; Yin, Minghui; Zhang, Teng; Cai, Yimao; Wang, Yangyuan; Yang, Yuchao; Huang, Ru

    2016-07-01

    Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution.Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00476h

  10. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-01

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  11. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses.

    PubMed

    Lin, Yu-Pu; Bennett, Christopher H; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-07

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  12. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    PubMed

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  13. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    PubMed Central

    Rajan, Krishna; Garofalo, Erik

    2018-01-01

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC. PMID:29382050

  14. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  15. Correlation energy extrapolation by many-body expansion

    DOE PAGES

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus; ...

    2017-01-09

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  16. Correlation energy extrapolation by many-body expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschen, Jeffery S.; Theis, Daniel; Ruedenberg, Klaus

    Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtualmore » orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. Finally, the method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within ~1 millihartree or less, while requiring significantly less computational resources.« less

  17. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  18. Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.

  19. Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.

  20. The Pennies-as-Electrons Analogy

    ERIC Educational Resources Information Center

    Ashmann, Scott

    2009-01-01

    Everyday experiences familiarize students with the ways in which electricity is used, but often the underlying concepts remain a mystery. Teachers often use analogies to help students relate the flow of electrons to other common systems, but many times these analogies are incomplete and lead to more student misconceptions. However, the "pass the…

  1. Compact time- and space-integrating SAR processor: design and development status

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.

    1994-06-01

    Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.

  2. COED Transactions, Vol. X, No. 9, September 1978. Use of the Analog/Hybrid Computer in Boundary Layer and Convection Studies.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…

  3. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  4. A novel multimedia tool to improve bedside teaching of cardiac auscultation

    PubMed Central

    Woywodt, A; Herrmann, A; Kielstein, J; Haller, H; Haubitz, M; Purnhagen, H

    2004-01-01

    Training in cardiac auscultation is a core element of undergraduate teaching but recent studies have documented a remarkable decline in auscultatory skills. Therefore there is an interest in new ways to teach cardiac auscultation. In analogy to phonocardiography, an electronic system for simultaneous auscultation and visualisation of murmurs was sought. For this purpose, an electronic stethoscope was linked to a laptop computer and software created to visualise auscultatory findings. In a preliminary trial in undergraduate students, this approach greatly facilitated teaching. Amalgamating traditional phonocardiography with a multimedia approach, this system represents a novel tool for bedside teaching of cardiac auscultation. PMID:15192171

  5. Stored program concept for analog computers

    NASA Technical Reports Server (NTRS)

    Hannauer, G., III; Patmore, J. R.

    1971-01-01

    Optimization of three-stage matrices, modularization, and black boxes design techniques provides for automatically interconnecting computing component inputs and outputs in general purpose analog computer. Design also produces relatively inexpensive and less complex automatic patching system.

  6. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  7. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  8. NASA researchers in gold control room during an F-15 HiDEC flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers monitor equipment in the mission control Gold room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  9. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  10. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  11. Recent Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Buchner, Stephen P.; Barth, Janet L.; Kniffen, Scott D.; Seidleck, Christina M.; Marshall, Cheryl J.; hide

    2001-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  12. Current Single Event Effects and Radiation Damage Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Kniffin, Scott D.; Poivey, Christian; Buchner, Stephen P.; Bings, John P.; Titus, Jeff L.

    2002-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects, total ionizing dose and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  13. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. In this classifier architecture, we combine simple "base" analog classifiers to form a strong one. We also designed the circuits to implement the AdaBoost-based analog classifier.

  14. Normal modes and mode transformation of pure electron vortex beams

    PubMed Central

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.

    2017-01-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre–Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite–Gaussian beams. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069769

  15. Normal modes and mode transformation of pure electron vortex beams.

    PubMed

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  16. A Computational Account of Children's Analogical Reasoning: Balancing Inhibitory Control in Working Memory and Relational Representation

    ERIC Educational Resources Information Center

    Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.

    2011-01-01

    Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…

  17. Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2007-01-01

    We describe three droplet sensing techniques: a digital electrode, an analog electrode, and a thermal method. All three techniques use a single layer of metal lines that is easy to microfabricate and an electronic signal can be produced using low DC voltages. While the electrode methods utilize changes in electrical conductivity when the air/liquid interface of the droplet passes over a pair of electrodes, the thermal method is based on convective heat loss from a locally heated region. For the electrode method, the analog technique is able to detect 25 nL droplets while the digital technique is capable of detecting droplets as small as 100 pL. For thermal sensing, temperature profiles in the range of 36 °C and higher were used. Finally, we have used the digital electrode method and an array of electrodes located at preset distances to automate the operation of a previously described microfluidic viscometer. The viscometer is completely controlled by a laptop computer, and the total time for operation including setup, calibration, sample addition and viscosity calculation is approximately 4 minutes. PMID:16738725

  18. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  19. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  20. Analog Computer Laboratory with Biological Examples.

    ERIC Educational Resources Information Center

    Strebel, Donald E.

    1979-01-01

    The use of biological examples in teaching applications of the analog computer is discussed and several examples from mathematical ecology, enzyme kinetics, and tracer dynamics are described. (Author/GA)

  1. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  2. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?

    NASA Astrophysics Data System (ADS)

    Dimova, Dilyana; Bajorath, Jürgen

    2017-07-01

    Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.

  3. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  4. Semirelativity in semiconductors: a review.

    PubMed

    Zawadzki, Wlodek

    2017-09-20

    An analogy between behavior of electrons in narrow-gap semiconductors (NGS) and relativistic electrons in vacuum is reviewed. Energy band structures [Formula: see text] are considered for various NGS materials and their correspondence to the energy-momentum relation in special relativity is emphasized. It is indicated that special relativity for vacuum is analogous to a two-band [Formula: see text] description for NGS. The maximum electron velocity in NGS is [Formula: see text], which corresponds to the light velocity in vacuum. An effective mass of charge carriers in semiconductors is introduced, relating their velocity to quasimomentum and it is shown that this mass depends on electron energy (or velocity) in a way similar to the mass of free relativistic electrons. In [Formula: see text] alloys one can reach vanishing energy gap at which electrons and light holes become three-dimensional massless Dirac fermions. A wavelength [Formula: see text] is defined for NGS, in analogy to the Compton wavelength in relativistic quantum mechanics. It is estimated that [Formula: see text] is on the order of tens of Angstroms in typical semiconducting materials which is experimentally confirmed in tunneling experiments on energy dispersion in the forbidden gap. Statistical properties of the electron gas in NGS are calculated and their similarity is demonstrated to those of the Juttner gas of relativistic particles. Interband electron tunneling in NGS is described and shown to be in close analogy to the predicted but unobserved tunneling between negative and positive energies resulting from the Dirac equation for free electrons. It is demonstrated that the relativistic analogy holds for orbital and spin properties of electrons in the presence of an external magnetic field. In particular, it is shown that the spin magnetic moment of both NGS electrons and relativistic electrons approaches zero with increasing energy. This conclusion is confirmed experimentally for NGS. Electrons in crossed electric and magnetic fields are described theoretically and experimentally. It is only the two-band description for NGS, equivalent to the Dirac or Klein-Gordon equations for free particles, that gives a correct account of experimental results in this situation. A transverse Doppler shift in the cyclotron resonance observed in crossed fields in InSb indicates that there exists a time dilatation between an oscillating electron and an observer. The phenomenon of Zitterbewegung (ZB, trembling motion) for electrons in NGS is considered theoretically, following the original proposition of Schrödinger for free relativistic electrons in vacuum. The two descriptions are in close analogy, but the frequency of ZB for electrons in NGS is orders of magnitude lower and its amplitude orders of magnitude higher making possible experimental observations in semiconductors considerably more favorable. Finally, graphene and carbon nanotubes, as well as topological insulators are considered in the framework of relativistic analogy. These systems, with their linear energy-quasimomentum dispersions, illustrate the extreme semirelativistic regime. Experimental results for the energy dispersions and the Landau quantizations in the presence of a magnetic field are quoted and their analogy to the behavior of free relativistic electrons is discussed. Approximations and restrictions of the relativistic analogy are emphasized. On the other hand, it is indicated that in various situations it is considerably easier to observe semirelativistic effects in semiconductors than the relativistic effects in vacuum.

  5. Semirelativity in semiconductors: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek

    2017-09-01

    An analogy between behavior of electrons in narrow-gap semiconductors (NGS) and relativistic electrons in vacuum is reviewed. Energy band structures \\varepsilon ≤ft(\\mathbf{k}\\right) are considered for various NGS materials and their correspondence to the energy-momentum relation in special relativity is emphasized. It is indicated that special relativity for vacuum is analogous to a two-band \\mathbf{k}\\centerdot \\mathbf{p} description for NGS. The maximum electron velocity in NGS is u≃ 1× {{10}8}~\\text{cm}~{{\\text{s}}-1} , which corresponds to the light velocity in vacuum. An effective mass of charge carriers in semiconductors is introduced, relating their velocity to quasimomentum and it is shown that this mass depends on electron energy (or velocity) in a way similar to the mass of free relativistic electrons. In \\text{H}{{\\text{g}}1-x}\\text{C}{{\\text{d}}x}\\text{Te} alloys one can reach vanishing energy gap at which electrons and light holes become three-dimensional massless Dirac fermions. A wavelength {λz} is defined for NGS, in analogy to the Compton wavelength in relativistic quantum mechanics. It is estimated that {λz} is on the order of tens of Angstroms in typical semiconducting materials which is experimentally confirmed in tunneling experiments on energy dispersion in the forbidden gap. Statistical properties of the electron gas in NGS are calculated and their similarity is demonstrated to those of the Juttner gas of relativistic particles. Interband electron tunneling in NGS is described and shown to be in close analogy to the predicted but unobserved tunneling between negative and positive energies resulting from the Dirac equation for free electrons. It is demonstrated that the relativistic analogy holds for orbital and spin properties of electrons in the presence of an external magnetic field. In particular, it is shown that the spin magnetic moment of both NGS electrons and relativistic electrons approaches zero with increasing energy. This conclusion is confirmed experimentally for NGS. Electrons in crossed electric and magnetic fields are described theoretically and experimentally. It is only the two-band description for NGS, equivalent to the Dirac or Klein-Gordon equations for free particles, that gives a correct account of experimental results in this situation. A transverse Doppler shift in the cyclotron resonance observed in crossed fields in InSb indicates that there exists a time dilatation between an oscillating electron and an observer. The phenomenon of Zitterbewegung (ZB, trembling motion) for electrons in NGS is considered theoretically, following the original proposition of Schrödinger for free relativistic electrons in vacuum. The two descriptions are in close analogy, but the frequency of ZB for electrons in NGS is orders of magnitude lower and its amplitude orders of magnitude higher making possible experimental observations in semiconductors considerably more favorable. Finally, graphene and carbon nanotubes, as well as topological insulators are considered in the framework of relativistic analogy. These systems, with their linear energy-quasimomentum dispersions, illustrate the extreme semirelativistic regime. Experimental results for the energy dispersions and the Landau quantizations in the presence of a magnetic field are quoted and their analogy to the behavior of free relativistic electrons is discussed. Approximations and restrictions of the relativistic analogy are emphasized. On the other hand, it is indicated that in various situations it is considerably easier to observe semirelativistic effects in semiconductors than the relativistic effects in vacuum.

  6. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  7. Computer considerations for real time simulation of a generalized rotor model

    NASA Technical Reports Server (NTRS)

    Howe, R. M.; Fogarty, L. E.

    1977-01-01

    Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.

  8. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    ERIC Educational Resources Information Center

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  9. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  10. ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION

    DOEpatents

    Robinson, H.P.

    1959-07-14

    A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

  11. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  12. Quantum Analog Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  13. Use of small stand-alone Internet nodes as a distributed control system

    NASA Astrophysics Data System (ADS)

    Goodwin, Robert W.; Kucera, Michael J.; Shea, Michael F.

    1994-12-01

    For several years, the standard model for accelerator control systems has been workstation consoles connected to VME local stations by a Local Area Network with analog and digital data being accessed via a field bus to custom I/O interface electronics. Commercially available hardware has now made it possible to implement a small stand-alone data acquisition station that combines the LAN connection, the computer, and the analog and digital I/O interface on a single board. This eliminates the complexity of a field bus and the associated proprietary I/O hardware. A minimum control system is one data acquisition station and a Macintosh or workstation console, both connected to the network; larger systems have more consoles and nodes. An implementation of this architecture is described along with performance and operational experience.

  14. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  15. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  16. On Emulation of Flueric Devices in Excitable Chemical Medium.

    PubMed

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  17. OpenPET Hardware, Firmware, Software, and Board Design Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Nimeh, Faisal; Choong, Woon-Sengq; Moses, William W.

    OpenPET is an open source, flexible, high-performance, and modular data acquisition system for a variety of applications. The OpenPET electronics are capable of reading analog voltage or current signals from a wide variety of sensors. The electronics boards make extensive use of field programmable gate arrays (FPGAs) to provide flexibility and scalability. Firmware and software for the FPGAs and computer are used to control and acquire data from the system. The command and control flow is similar to the data flow, however, the commands are initiated from the computer similar to a tree topology (i.e., from top-to-bottom). Each node inmore » the tree discovers its parent and children, and all addresses are configured accordingly. A user (or a script) initiates a command from the computer. This command will be translated and encoded to the corresponding child (e.g., SB, MB, DB, etc.). Consecutively, each node will pass the command to its corresponding child(ren) by looking at the destination address. Finally, once the command reaches its desired destination(s) the corresponding node(s) execute(s) the command and send(s) a reply, if required. All the firmware, software, and the electronics board design files are distributed through the OpenPET website (http://openpet.lbl.gov).« less

  18. Analog Building Blocks for Communications Modems.

    DTIC Science & Technology

    1977-01-01

    x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT

  19. Computational Study of Electron-Molecule Collisions Related to Low-Temperature Plasmas.

    NASA Astrophysics Data System (ADS)

    Huo, Winifred M.

    1997-10-01

    Computational study of electron-molecule collisions not only complements experimental measurements, but can also be used to investigate processes not readily accessible experimentally. A number of ab initio computational methods are available for this type of calculations. Here we describe a recently developed technique, the finite element Z-matrix method. Analogous to the R-matrix method, it partitions the space into regions and employs real matrix elements. However, unlike the implementation of the R-matrix method commonly used in atomic and molecular physics,(C. J. Gillan, J. Tennyson, and P. G. Burke, Chapter 10 in Computational Methods for Electron-Molecule Collisions), W. M. Huo and F. A. Gianturco, Editors, Plenum, New York (1995), p. 239. the Z-matrix method is fully variational.(D. Brown and J. C. Light, J. Chem. Phys. 101), 3723 (1994). In the present implementation, a mixed basis of finite elements and Gaussians is used to represent the continuum electron, thus offering full flexibility without imposing fixed boundary conditions. Numerical examples include the electron-impact dissociation of N2 via the metastable A^3Σ_u^+ state, a process which may be important in the lower thermosphere, and the dissociation of the CF radical, a process of interest to plasma etching. To understand the dissociation pathways, large scale quantum chemical calculations have been carried out for all target states which dissociate to the lowest five limits in the case of N_2, and to the lowest two limits in the case of CF. For N_2, the structural calculations clearly show the preference for predissociation if the initial state is the ground X^1Σ_g^+ state, but direct dissociation appears to be preferable if the initial state is the A^3Σ_u^+ state. Multi-configuration SCF target functions are used in the collisional calculation,

  20. The Analog (Computer) As a Physiology Adjunct.

    ERIC Educational Resources Information Center

    Stewart, Peter A.

    1979-01-01

    Defines and discusses the analog computer and its use in a physiology laboratory. Includes two examples: (1) The Respiratory Control Function and (2) CO-Two Control in the Respiratory System. Presents diagrams and mathematical models. (MA)

  1. Remineralization of artificial dentinal caries lesions by biomimetically modified Mineral Trioxide Aggregate

    PubMed Central

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, dentin remineralization is more difficult than enamel remineralization due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6-week period using MTA or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with micro-computed tomography. Ultrastructure of baseline and remineralized lesions were examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the MTA version employed in the study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. PMID:22085925

  2. How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies

    ERIC Educational Resources Information Center

    Trey, L.; Khan, S.

    2008-01-01

    A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…

  3. TVC actuator model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Baslock, R. W.

    1977-01-01

    A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

  4. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  5. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  6. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  7. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  8. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  9. A system for the automated data-acquisition of fast transient signals in excitable membranes.

    PubMed

    Bustamante, J O

    1988-01-01

    This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.

  10. Optical Eigenvector.

    DTIC Science & Technology

    1984-10-01

    it necessary and identify by blckci -. mbrr, ’At tile bneginninp, of this contract , bot], -,-j- .lc the rest of the optical community imagined * that...simple analog optical computer,, could produce satisfactory solutions to elgenproblems. Earl’ - in this contract we improved optical computing... contract both we and the rest of the optical community imagined that simple analog optical computers could produce . satisfactory solutions to

  11. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  12. Great Computational Intelligence in the Formal Sciences via Analogical Reasoning

    DTIC Science & Technology

    2017-05-08

    computational harnessing of traditional mathematical statistics (as e.g. covered in Hogg, Craig & McKean 2005) is used to power statistical learning techniques...AFRL-AFOSR-VA-TR-2017-0099 Great Computational Intelligence in the Formal Sciences via Analogical Reasoning Selmer Bringsjord RENSSELAER POLYTECHNIC...08-05-2017 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Oct 2011 to 31 Dec 2016 4. TITLE AND SUBTITLE Great Computational

  13. Conversion of cardiac performance data in analog form for digital computer entry

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1972-01-01

    A system is presented which will reduce analog cardiac performance data and convert the results to digital form for direct entry into a commercial time-shared computer. Circuits are discussed which perform the measurement and digital conversion of instantaneous systolic and diastolic parameters from the analog blood pressure waveform. Digital averaging over a selected number of heart cycles is performed on these measurements, as well as those of flow and heart rate. The determination of average cardiac output and peripheral resistance, including trends, is the end result after processing by digital computer.

  14. 47 CFR 36.125 - Local switching equipment-Category 3.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electronic analog or digital remote line locations. Equipment used for the identification, recording and... which has a common intermediate distributing frame, market group or other separately identifiable... composed of an electronic analog or digital host office and all of its remote locations. A host/remote...

  15. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  16. The Lenz Vector and Orbital Analog Computers

    ERIC Educational Resources Information Center

    Harter, W. G.

    1976-01-01

    Describes a single geometrical diagram based on the Lenz vector which shows the qualitative and quantitative features of all three types of Coulomb orbits. Explains the use of a simple analog computer with an overhead projector to demonstrate many of these effects. (Author/CP)

  17. Further Uses of the Analog Computer as a Teaching Tool

    ERIC Educational Resources Information Center

    Shonle, John I.

    1976-01-01

    Discusses the use of an analog computer oscilloscope to illustrate the transition from underdamped to overdamped for the simple harmonic oscillator, the maximum range for a projectile, and the behavior of charged particles in crossed electric and magnetic fields. (MLH)

  18. Ultra-low-energy analog straintronics using multiferroic composites

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2014-03-01

    Multiferroic devices, i.e., a magnetostrictive nanomagnet strain-coupled with a piezoelectric layer, are promising as binary switches for ultra-low-energy digital computing in beyond Moore's law era [Roy, K. Appl. Phys. Lett. 103, 173110 (2013), Roy, K. et al. Appl. Phys. Lett. 99, 063108 (2011), Phys. Rev. B 83, 224412 (2011), Scientific Reports (Nature Publishing Group) 3, 3038 (2013), J. Appl. Phys. 112, 023914 (2012)]. We show here that such multiferroic devices, apart from performing digital computation, can be also utilized for analog computing purposes, e.g., voltage amplification, filter etc. The analog computing capability is conceived by considering that magnetization's mean orientation shifts gradually although nanomagnet's potential minima changes abruptly. Using tunneling magnetoresistance (TMR) measurement, a continuous output voltage while varying the input voltage can be produced. Stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of room-temperature (300 K) thermal fluctuations is solved to demonstrate the analog computing capability of such multiferroic devices. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  19. Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Howard, James W., Jr.; Ladbury, Ray L.; Barth, Janet L.; Kniffin, Scott D.; Seidleck, Christina M.; Marshall, Paul W.; Marshall, Cheryl J.; hide

    2000-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. We also present data on the susceptibility of parts to functional degradation resulting from total ionizing dose at low dose rates (0.003-0.33 Rads(Si)/s). Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs), and DC-DC converters, among others.

  20. Developing a 300C Analog Tool for EGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy

    2015-03-23

    This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.

  1. Light-effect transistor (LET) with multiple independent gating controls for optical logic gates and optical amplification

    NASA Astrophysics Data System (ADS)

    Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong

    2016-03-01

    Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs), remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET) offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses). Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.

  2. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  3. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  4. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1.3-octave spectrograms.

  5. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1/3-octave spectrograms.

  6. Binary counting with chemical reactions.

    PubMed

    Kharam, Aleksandra; Jiang, Hua; Riedel, Marc; Parhi, Keshab

    2011-01-01

    This paper describes a scheme for implementing a binary counter with chemical reactions. The value of the counter is encoded by logical values of "0" and "1" that correspond to the absence and presence of specific molecular types, respectively. It is incremented when molecules of a trigger type are injected. Synchronization is achieved with reactions that produce a sustained three-phase oscillation. This oscillation plays a role analogous to a clock signal in digital electronics. Quantities are transferred between molecular types in different phases of the oscillation. Unlike all previous schemes for chemical computation, this scheme is dependent only on coarse rate categories for the reactions ("fast" and "slow"). Given such categories, the computation is exact and independent of the specific reaction rates. Although conceptual for the time being, the methodology has potential applications in domains of synthetic biology such as biochemical sensing and drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental chassis.

  7. Harnessing redox activity for the formation of uranium tris(imido) compounds

    NASA Astrophysics Data System (ADS)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  8. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  9. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  10. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  11. Reasoning by analogy as an aid to heuristic theorem proving.

    NASA Technical Reports Server (NTRS)

    Kling, R. E.

    1972-01-01

    When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes. This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.

  12. Graphene-on-semiconductor substrates for analog electronics

    DOEpatents

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  13. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  14. ROC Analysis of Chest Radiographs Using Computed Radiography and Conventional Analog Films

    NASA Astrophysics Data System (ADS)

    Morioka, Craig A.; Brown, Kathy; Hayrapetian, Alek S.; Kangarloo, Hooshang; Balter, Stephen; Huang, H. K.

    1989-05-01

    Receiver operating characteristic is used to compare the image quality of films obtained digitally using computed radiography (CR) and conventionally using analog film following fluoroscopic examination. Similar radiological views were obtained by both modalities. Twenty-four cases, some with a solitary noncalcified nodule and/or pneumothorax, were collected. Ten radiologists have been tested viewing analog and CR digital films separately. Final results indicate that there is no statistically significant difference in the ability to detect either a pneumothorax or a solitary noncalcified nodule when comparing CR digital film with conventional analog film. However, there is a trend that indicated the area under the ROC curves for detection of either a pneumothorax or solitary noncalcified nodule were greater for the analog film than for the digital film.

  15. Bistable metamaterial for switching and cascading elastic vibrations

    PubMed Central

    Foehr, André; Daraio, Chiara

    2017-01-01

    The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663

  16. Peroxo and Oxo Intermediates in Mononuclear Non-heme Iron Enzymes and Related Active Sites

    PubMed Central

    Wong, Shaun D.; Liu, Lei V.; Decker, Andrea; Chow, Marina S.

    2009-01-01

    Summary FeIII–OOH and FeIV=O intermediates have now been documented in a number of non-heme iron active sites. In this Opinion we use spectroscopy combined with electronic structure calculations to define the frontier molecular orbitals (FMOs) of these species and their contributions to reactivity. For the low-spin FeIII–OOH species in activated bleomycin we show that the reactivity of this non-heme iron intermediate is very different from that of the analogous Compound 0 of cytochrome P450. For FeIV=O S = 1 model species we experimentally define the electronic structure and its contribution to reactivity, and computationally evaluate how this would change for the FeIV=O S = 2 intermediates found in non-heme iron enzymes. PMID:19278895

  17. Remediating Physics Misconceptions Using an Analogy-Based Computer Tutor. Draft.

    ERIC Educational Resources Information Center

    Murray, Tom; And Others

    Described is a computer tutor designed to help students gain a qualitative understanding of important physics concepts. The tutor simulates a teaching strategy called "bridging analogies" that previous research has demonstrated to be successful in one-on-one tutoring and written explanation studies. The strategy is designed to remedy…

  18. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  19. Analog Computation by DNA Strand Displacement Circuits.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2016-08-19

    DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture.

  20. Bypassing the malfunction junction in warm dense matter simulations

    NASA Astrophysics Data System (ADS)

    Cangi, Attila; Pribram-Jones, Aurora

    2015-03-01

    Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.

  1. Synthetic analog computation in living cells.

    PubMed

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  2. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  3. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  4. Observation of Dihalide Elimination Upon Electron Attachment to Oxalyl Chloride and Oxalyl Bromide, 300-550 K

    DTIC Science & Technology

    2006-05-10

    fragment CC120 and bromine The positive ion chemistry of oxalyl chloride has been analog CBrO. Total energies, enthalpies, and zero-point energy ( ZPE ...that Ar+ reacting with oxalyl bromide produced System G3a G2 b 70% CBrO+ and 30% Br+. trants-C2C1202(C2h, Ag) ZPE 0.019 93 0.019 93 COMPUTATIONAL...secondary ZPE 0.01708 0.01708 ions were carried out using the G3 compound method, pri- Total energy (0 K) -1146.717 00 -1145.904 66 marily in order to

  5. Mixing Problem Based Learning and Conventional Teaching Methods in an Analog Electronics Course

    ERIC Educational Resources Information Center

    Podges, J. M.; Kommers, P. A. M.; Winnips, K.; van Joolingen, W. R.

    2014-01-01

    This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year 'analog electronics course', when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data between the experimental group and the control group that…

  6. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  7. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  8. Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Draxl, Caroline; Hopson, Thomas

    Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less

  9. An Analogy-Based Computer Tutor for Remediating Physics Misconceptions. Draft.

    ERIC Educational Resources Information Center

    Murray, Tom; And Others

    This paper evaluates the strengths and limitations of a computer tutor designed to help students understand physics concepts. The tutor uses a teaching strategy called "bridging analogies" that previous research has demonstrated to be successful in one-to-one tutoring. The strategy is designed to remedy misconceptions by appealing to existing…

  10. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  11. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  12. Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.

    PubMed

    Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M

    2017-02-01

    In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.

  13. Electrical resistivity of liquid iron with high concentration of light element impurities

    NASA Astrophysics Data System (ADS)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  14. High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke

    2018-04-01

    To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.

  15. Automatic Generation of Analogy Questions for Student Assessment: An Ontology-Based Approach

    ERIC Educational Resources Information Center

    Alsubait, Tahani; Parsia, Bijan; Sattler, Uli

    2012-01-01

    Different computational models for generating analogies of the form "A is to B as C is to D" have been proposed over the past 35 years. However, analogy generation is a challenging problem that requires further research. In this article, we present a new approach for generating analogies in Multiple Choice Question (MCQ) format that can be used…

  16. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  17. Fast transient digitizer

    DOEpatents

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  18. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  19. The importance of explicitly mapping instructional analogies in science education

    NASA Astrophysics Data System (ADS)

    Asay, Loretta Johnson

    Analogies are ubiquitous during instruction in science classrooms, yet research about the effectiveness of using analogies has produced mixed results. An aspect seldom studied is a model of instruction when using analogies. The few existing models for instruction with analogies have not often been examined quantitatively. The Teaching With Analogies (TWA) model (Glynn, 1991) is one of the models frequently cited in the variety of research about analogies. The TWA model outlines steps for instruction, including the step of explicitly mapping the features of the source to the target. An experimental study was conducted to examine the effects of explicitly mapping the features of the source and target in an analogy during computer-based instruction about electrical circuits. Explicit mapping was compared to no mapping and to a control with no analogy. Participants were ninth- and tenth-grade biology students who were each randomly assigned to one of three conditions (no analogy module, analogy module, or explicitly mapped analogy module) for computer-based instruction. Subjects took a pre-test before the instruction, which was used to assign them to a level of previous knowledge about electrical circuits for analysis of any differential effects. After the instruction modules, students took a post-test about electrical circuits. Two weeks later, they took a delayed post-test. No advantage was found for explicitly mapping the analogy. Learning patterns were the same, regardless of the type of instruction. Those who knew the least about electrical circuits, based on the pre-test, made the most gains. After the two-week delay, this group maintained the largest amount of their gain. Implications exist for science education classrooms, as analogy use should be based on research about effective practices. Further studies are suggested to foster the building of research-based models for classroom instruction with analogies.

  20. Three-dimensional modeling of n+-nu-n+ and p+-pi-p+ semiconducting devices for analog ULSI microelectronics

    NASA Astrophysics Data System (ADS)

    Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel

    2004-03-01

    Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.

  1. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  2. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge

    2016-03-01

    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  3. The Computation of Orthogonal Independent Cluster Solutions and Their Oblique Analogs in Factor Analysis.

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…

  4. Towards a computational- and algorithmic-level account of concept blending using analogies and amalgams

    NASA Astrophysics Data System (ADS)

    Besold, Tarek R.; Kühnberger, Kai-Uwe; Plaza, Enric

    2017-10-01

    Concept blending - a cognitive process which allows for the combination of certain elements (and their relations) from originally distinct conceptual spaces into a new unified space combining these previously separate elements, and enables reasoning and inference over the combination - is taken as a key element of creative thought and combinatorial creativity. In this article, we summarise our work towards the development of a computational-level and algorithmic-level account of concept blending, combining approaches from computational analogy-making and case-based reasoning (CBR). We present the theoretical background, as well as an algorithmic proposal integrating higher-order anti-unification matching and generalisation from analogy with amalgams from CBR. The feasibility of the approach is then exemplified in two case studies.

  5. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude

    NASA Astrophysics Data System (ADS)

    Zuo, Shu-Yu; Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiao-Jun

    2018-03-01

    The use of metasurfaces has allowed the provision of a variety of functionalities by ultrathin structures, paving the way toward novel highly compact analog computing devices. Here, we conceptually realize analog computing using an acoustic reflective computational metasurface (RCM) that can independently manipulate the reflection phase and amplitude of an incident acoustic signal. This RCM is composed of coating unit cells and perforated panels, where the first can tune the transmission phase within the full range of 2π and the second can adjust the reflection amplitude in the range of 0-1. We show that this RCM can achieve arbitrary reflection phase and amplitude and can be used to realize a unique linear spatially invariant transfer function. Using the spatial Fourier transform (FT), an acoustic analog computing (AAC) system is proposed based on the RCM together with a focusing lens. Based on numerical simulations, we demonstrate that this AAC system can perform mathematical operations such as spatial differentiation, integration, and convolution on an incident acoustic signal. The proposed system has low complexity and reduced size because the RCM is able to individually adjust the reflection phase and amplitude and because only one block is involved in performing the spatial FT. Our work may offer a practical, efficient, and flexible approach to the design of compact devices for acoustic computing applications, signal processing, equation solving, and acoustic wave manipulations.

  6. Aircraft Electronics Maintenance Training Simulator. Curriculum Outlines.

    ERIC Educational Resources Information Center

    Blackhawk Technical Coll., Janesville, WI.

    Instructional materials are provided for nine courses in an aircraft electronics maintenance training program. Courses are as follows: aviation basic electricity, direct current and alternating current electronics, basic avionic installations, analog electronics, digital electronics, microcomputer electronics, radio communications, aircraft…

  7. Investigation of diocotron modes in toroidally trapped electron plasmas using non-destructive method

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Sengupta, Sudip; Yeole, Yogesh G.; Bajpai, Manu; Chattopadhyay, P. K.

    2017-10-01

    Experiments with trapped electron plasmas in a SMall Aspect Ratio Toroidal device (SMARTEX-C) have demonstrated a flute-like mode represented by oscillations on capacitive (wall) probes. Although analogous to diocotron mode observed in linear electron traps, the mode evolution in toroids can have interesting consequences due to the presence of in-homogeneous magnetic field. In SMARTEX-C, the probe signals are observed to undergo transition from small, near-sinusoidal oscillations to large amplitude, non-linear "double-peaked" oscillations. To interpret the wall probe signal and bring forth the dynamics, an expression for the induced current on the probe for an oscillating charge is derived, utilizing Green's Reciprocation Theorem. Equilibrium position, poloidal velocity of the charge cloud, and charge content of the cloud, required to compute the induced current, are estimated from the experiments. Signal through capacitive probes is thereby computed numerically for possible charge cloud trajectories. In order to correlate with experiments, starting with an intuitive guess of the trajectory, the model is evolved and tweaked to arrive at a signal consistent with experimentally observed probe signals. A possible vortex like dynamics is predicted, hitherto unexplored in toroidal geometries, for a limited set of experimental observations from SMARTEX-C. Though heuristic, a useful interpretation of capacitive probe data in terms of charge cloud dynamics is obtained.

  8. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  9. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  10. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  11. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  12. Vertical marginal gap evaluation of conventional cast and computer numeric controlled-milled titanium full-arch implant-supported frameworks.

    PubMed

    Alfadda, Sara A

    2014-01-01

    To use a novel approach to measure the amount of vertical marginal gap in computer numeric controlled (CNC)-milled titanium frameworks and conventional cast frameworks. Ten cast frameworks were fabricated on the mandibular master casts of 10 patients. Then, 10 CNC-milled titanium frameworks were fabricated by laser scanning the cast frameworks. The vertical marginal gap was measured and analyzed using the Contura-G2 coordinate measuring machine and special computer software. The CNC-milled titanium frameworks showed an overall reduced mean vertical gap compared with the cast frameworks in all five analogs. This difference was highly statistically significant in the distal analogs. The largest mean gap in the cast framework was recorded in the most distal analogs, and the least amount was in the middle analog. Neither of the two types of frameworks provided a completely gap-free superstructure. The CNCmilled titanium frameworks showed a significantly smaller vertical marginal gap than the cast frameworks.

  13. The emergence of understanding in a computer model of concepts and analogy-making

    NASA Astrophysics Data System (ADS)

    Mitchell, Melanie; Hofstadter, Douglas R.

    1990-06-01

    This paper describes Copycat, a computer model of the mental mechanisms underlying the fluidity and adaptability of the human conceptual system in the context of analogy-making. Copycat creates analogies between idealized situations in a microworld that has been designed to capture and isolate many of the central issues of analogy-making. In Copycat, an understanding of the essence of a situation and the recognition of deep similarity between two superficially different situations emerge from the interaction of a large number of perceptual agents with an associative, overlapping, and context-sensitive network of concepts. Central features of the model are: a high degree of parallelism; competition and cooperation among a large number of small, locally acting agents that together create a global understanding of the situation at hand; and a computational temperature that measures the amount of perceptual organization as processing proceeds and that in turn controls the degree of randomness with which decisions are made in the system.

  14. State-Estimation Algorithm Based on Computer Vision

    NASA Technical Reports Server (NTRS)

    Bayard, David; Brugarolas, Paul

    2007-01-01

    An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications -- for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines. It is assumed that the robot would be equipped with a vision system that would include one or more electronic cameras, image-digitizing circuitry, and an imagedata- processing computer that would generate feature-recognition data products.

  15. (Computational Toxicology) A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols

    EPA Science Inventory

    Read-across is an important data gap filling technique used within category and analog approaches for regulatory hazard identification and risk assessment. Although much technical guidance is available that describes how to develop category/analog approaches, practical principles...

  16. Synthetic Analog and Digital Circuits for Cellular Computation and Memory

    PubMed Central

    Purcell, Oliver; Lu, Timothy K.

    2014-01-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene circuits that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. PMID:24794536

  17. Design of a specialized computer for on-line monitoring of cardiac stroke volume

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1972-01-01

    The design of a specialized analog computer for on-line determination of cardiac stroke volume by means of a modified version of the pressure pulse contour method is presented. The design consists of an analog circuit for computation and a timing circuit for detecting necessary events on the pressure waveform. Readouts of arterial pressures, systolic duration, heart rate, percent change in stroke volume, and percent change in cardiac output are provided for monitoring cardiac patients. Laboratory results showed that computational accuracy was within 3 percent, while animal experiments verified the operational capability of the computer. Patient safety considerations are also discussed.

  18. The origin of the ligand-controlled regioselectivity in Rh-catalyzed [(2 + 2) + 2] carbocyclizations: steric vs. stereoelectronic effects† †Electronic supplementary information (ESI) available: Computational details, Cartesian coordinates and vibrational frequencies of all optimized structures. See DOI: 10.1039/c5sc02307f Click here for additional data file.

    PubMed Central

    Crandell, Douglas W.; Mazumder, Shivnath

    2015-01-01

    Density functional theory calculations demonstrate that the reversal of regiochemical outcome of the addition for substituted methyl propiolates in the rhodium-catalyzed [(2 + 2) + 2] carbocyclization with PPh3 and (S)-xyl-binap as ligands is both electronically and sterically controlled. For example, the ester functionality polarizes the alkyne π* orbital to favor overlap of the methyl-substituted terminus of the alkyne with the pπ-orbital of the alkenyl fragment of the rhodacycle during alkyne insertion with PPh3 as the ligand. In contrast, the sterically demanding xyl-binap ligand cannot accommodate the analogous alkyne orientation, thereby forcing insertion to occur at the sterically preferred ester terminus, overriding the electronically preferred orientation for alkyne insertion. PMID:28757978

  19. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  20. Analogy Mapping Development for Learning Programming

    NASA Astrophysics Data System (ADS)

    Sukamto, R. A.; Prabawa, H. W.; Kurniawati, S.

    2017-02-01

    Programming skill is an important skill for computer science students, whereas nowadays, there many computer science students are lack of skills and information technology knowledges in Indonesia. This is contrary with the implementation of the ASEAN Economic Community (AEC) since the end of 2015 which is the qualified worker needed. This study provided an effort for nailing programming skills by mapping program code to visual analogies as learning media. The developed media was based on state machine and compiler principle and was implemented in C programming language. The state of every basic condition in programming were successful determined as analogy visualization.

  1. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1963-10-31

    Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)

  2. GIM code user's manual for the STAR-100 computer. [for generating numerical analogs of the conversion laws

    NASA Technical Reports Server (NTRS)

    Spradley, L.; Pearson, M.

    1979-01-01

    The General Interpolants Method (GIM), a three dimensional, time dependent, hybrid procedure for generating numerical analogs of the conversion laws, is described. The Navier-Stokes equations written for an Eulerian system are considered. The conversion of the GIM code to the STAR-100 computer, and the implementation of 'GIM-ON-STAR' is discussed.

  3. VLSI neuroprocessors

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.

    1994-01-01

    Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.

  4. Analog Computer-Aided Detection (CAD) information can be more effective than binary marks

    PubMed Central

    Cunningham, Corbin A.; Drew, Trafton; Wolfe, Jeremy M.

    2017-01-01

    In socially important visual search tasks such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer Aided Detection (CAD) programs have been developed specifically to help improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be “Binary”, giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system present an Analog signal that reflected strength of the signal at a location. In the experiments reported here, we compare analog and binary CAD presentations using non-expert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher. PMID:27928658

  5. Transistor analogs of emergent iono-neuronal dynamics.

    PubMed

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  6. In situ measurements of thunderstorm electrical properties

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.

    1982-01-01

    An airplane sensor to measure the charge, size and two dimensional shape of precipitation particles and large cloud particles was developed. The basic design of the instrument includes: the transducers and analog electronics, the analog to digital conversion electronics and a microprocessor based system to run the electronics and load the digital data onto magnetic tape. Prototype instrumentation for the proposed lightning mapper satellite was tested by flying it in a U-2 aircraft over severe storms in Oklahoma. Flight data are compared to data from ground based instruments.

  7. Far-infrared-induced magnetoresistance oscillations in GaAs/AlxGa1-xAs -based two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming

    2007-11-01

    We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.

  8. High-frequency ultrasound Doppler system for biomedical applications with a 30-MHz linear array.

    PubMed

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2008-04-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30-MHz linear array transducer to assess the cardiovascular functions in small animals. This array-based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers and analog front ends. The beamformed echoes acquired by the 16-channel analog beamformer were fed directly to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a personal computer. The Doppler spectrogram was displayed on a personal computer in real time. The two-way beamwidths were determined to be 160 microm to 320 microm when the array was electronically focused at different focal points at depths from 5 to 10 mm. A micro-flow phantom, consisting of a polyimide tube with an inner diameter of 127 microm and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127-microm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels, with diameters of approximately 200 microm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array-based imaging systems for small animal studies.

  9. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    PubMed

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  10. Conformational analysis and circular dichroism of bilirubin, the yellow pigment of jaundice

    NASA Astrophysics Data System (ADS)

    Lightner, David A.; Person, Richard; Peterson, Blake; Puzicha, Gisbert; Pu, Yu-Ming; Bojadziev, Stefan

    1991-06-01

    Conformational analysis of (4Z, 15Z)-bilirubin-IX(alpha) by molecular mechanics computations reveals a global energy minimum folded conformation. Powerful added stabilization is achieved through intramolecular hydrogen bonding. Theoretical treatment of bilirubin as a molecular exciton predicts an intense bisignate circular dichroism spectrum for the folded conformation: (Delta) (epsilon) is congruent to 270 L (DOT) mole-1 (DOT) cm-1 for the $OM450 nm electronic transition(s). Synthesis of bilirubin analogs with propionic acid groups methylated at the (alpha) or (beta) position introduces an allosteric effect that allows for an optical resolution of the pigments, with enantiomers exhibiting the theoretically predicted circular dichroism.

  11. Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.

    2018-03-01

    The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.

  12. DC isolation and protection system and circuit

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A. (Inventor); Kellogg, Gary V. (Inventor)

    1991-01-01

    A precision analog electronic circuit that is capable of sending accurate signals to an external device that has hostile electric characteristics, including the presence of very large common mode voltages. The circuit is also capable of surviving applications of normal mode overvoltages of up to 120 VAC/VDC for unlimited periods of time without damage or degradation. First, the circuit isolates the DC signal output from the computer. Means are then provided for amplifying the isolated DC signal. Further means are provided for stabilizing and protecting the isolating and amplifying means, and the isolated and amplified DC signal which is output to the external device, against overvoltages and overcurrents.

  13. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  14. Analysis of turbojet-engine controls for afterburning starting

    NASA Technical Reports Server (NTRS)

    Phillips, W E , Jr

    1956-01-01

    A simulation procedure is developed for studying the effects of an afterburner start on a controlled turbojet engine. The afterburner start is represented by introducing a step decrease in the effective exhaust-nozzle area, after which the control returns the controlled engine variables to their initial values. The degree and speed with which the control acts are a measure of the effectiveness of the particular control system. Data are presented from five systems investigated using an electronic analog computer and the developed simulation procedure. These systems are compared with respect to steady-state errors, speed of response, and transient deviations of the system variables.

  15. 1989 IEEE Aerospace Applications Conference, Breckenridge, CO, Feb. 12-17, 1989, Conference Digest

    NASA Astrophysics Data System (ADS)

    Recent advances in electronic devices for aerospace applications are discussed in reviews and reports. Topics addressed include large-aperture mm-wave antennas, a cross-array radiometer for spacecraft applications, a technique for computing the propagation characteristics of optical fibers, an analog light-wave system for improving microwave-telemetry data communication, and a ground demonstration of an orbital-debris radar. Consideration is given to a verifiable autonomous satellite control system, Inmarsat second-generation satellites for mobile communication, automated tools for data-base design and criteria for their selection, and a desk-top simulation work station based on the DSP96002 microprocessor chip.

  16. Noncontact Measurement Of Shaft Speed, Torque, And Power

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1993-01-01

    Noncontact fiber-optic sensor and associated electronic equipment measure twist and speed of rotation of shaft. Measurements determine torque and power. Response of sensor remains linear even at cryogenic temperatures. Reflective strips on rotating shaft reflect two series of light pulses back into optical system. Bidirectional coupler in each of two optical fiber paths separates reflected light from incident light, sending it to photodiode for output to analog-to-digital converter and computer. Sensor requires no slip rings or telemetry to transfer signals from shaft. Well suited for providing data on performances of turbopumps for such cryogenic fluids as liquid oxygen and liquid hydrogen.

  17. An integrated analog O/E/O link for multi-channel laser neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas

    2016-04-11

    We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.

  18. Analogs of methyllycaconitine as novel noncompetitive inhibitors of nicotinic receptors: pharmacological characterization, computational modeling, and pharmacophore development.

    PubMed

    McKay, Dennis B; Chang, Cheng; González-Cestari, Tatiana F; McKay, Susan B; El-Hajj, Raed A; Bryant, Darrell L; Zhu, Michael X; Swaan, Peter W; Arason, Kristjan M; Pulipaka, Aravinda B; Orac, Crina M; Bergmeier, Stephen C

    2007-05-01

    As a novel approach to drug discovery involving neuronal nicotinic acetylcholine receptors (nAChRs), our laboratory targeted nonagonist binding sites (i.e., noncompetitive binding sites, negative allosteric binding sites) located on nAChRs. Cultured bovine adrenal cells were used as neuronal models to investigate interactions of 67 analogs of methyllycaconitine (MLA) on native alpha3beta4* nAChRs. The availability of large numbers of structurally related molecules presents a unique opportunity for the development of pharmacophore models for noncompetitive binding sites. Our MLA analogs inhibited nicotine-mediated functional activation of both native and recombinant alpha3beta4* nAChRs with a wide range of IC(50) values (0.9-115 microM). These analogs had little or no inhibitory effects on agonist binding to native or recombinant nAChRs, supporting noncompetitive inhibitory activity. Based on these data, two highly predictive 3D quantitative structure-activity relationship (comparative molecular field analysis and comparative molecular similarity index analysis) models were generated. These computational models were successfully validated and provided insights into the molecular interactions of MLA analogs with nAChRs. In addition, a pharmacophore model was constructed to analyze and visualize the binding requirements to the analog binding site. The pharmacophore model was subsequently applied to search structurally diverse molecular databases to prospectively identify novel inhibitors. The rapid identification of eight molecules from database mining and our successful demonstration of in vitro inhibitory activity support the utility of these computational models as novel tools for the efficient retrieval of inhibitors. These results demonstrate the effectiveness of computational modeling and pharmacophore development, which may lead to the identification of new therapeutic drugs that target novel sites on nAChRs.

  19. COED Transactions, Vol. IX, No. 3, March 1977. Evaluation of a Complex Variable Using Analog/Hybrid Computation Techniques.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    Described is the use of an analog/hybrid computer installation to study those physical phenomena that can be described through the evaluation of an algebraic function of a complex variable. This is an alternative way to study such phenomena on an interactive graphics terminal. The typical problem used, involving complex variables, is that of…

  20. Digital video technology, today and tomorrow

    NASA Astrophysics Data System (ADS)

    Liberman, J.

    1994-10-01

    Digital video is probably computing's fastest moving technology today. Just three years ago, the zenith of digital video technology on the PC was the successful marriage of digital text and graphics with analog audio and video by means of expensive analog laser disc players and video overlay boards. The state of the art involves two different approaches to fully digital video on computers: hardware-assisted and software-only solutions.

  1. Synthetic analog and digital circuits for cellular computation and memory.

    PubMed

    Purcell, Oliver; Lu, Timothy K

    2014-10-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene networks that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  3. The synthesis of 5-substituted ring E analogs of methyllycaconitine via the Suzuki-Miyaura cross-coupling reaction.

    PubMed

    Huang, Junfeng; Orac, Crina M; McKay, Susan; McKay, Dennis B; Bergmeier, Stephen C

    2008-04-01

    Novel 3,5-disubstituted ring E analogs of methyllycaconitine were prepared and evaluated in nicotinic acetylcholine receptor binding assays. The desired analogs were prepared through the Suzuki-Miyaura cross-coupling reaction of methyl 5-bromo-nicotinate. The Suzuki-Miyaura cross-coupling reactions of pyridines with electron withdrawing substituents have not been extensively described previously.

  4. Identifying Potential Solutions to Increase Discoverability and Reuse of Analog Datasets in Various Campus Locations

    ERIC Educational Resources Information Center

    Farrell, Shannon L.; Kelly, Julia Ann

    2018-01-01

    Describing, preserving, and providing access to data is now the purview of many science librarians, although the emphasis has been on data in electronic format. Data in paper or analog format might be found in many places around our campuses. At the University of Minnesota we conducted a preliminary investigation of analog data through discussions…

  5. Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine.

    PubMed

    Hu, Miao; Graves, Catherine E; Li, Can; Li, Yunning; Ge, Ning; Montgomery, Eric; Davila, Noraica; Jiang, Hao; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei; Strachan, John Paul

    2018-03-01

    Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  7. Investigation of application of two-degree-of-freedom dry tuned-gimbal gyroscopes to strapdown navigation systems. [for use in VTOL aircraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work is described which was accomplished during the investigation of the application of dry-tuned gimbal gyroscopes to strapdown navigation systems. A conventional strapdown configuration, employing analog electronics in conjunction with digital attitude and navigation computation, was examined using various levels of redundancy and both orthogonal and nonorthogonal sensor orientations. It is concluded that the cost and reliability performance constraints which had been established could not be met simultaneously with such a system. This conclusion led to the examination of an alternative system configuration which utilizes an essentially new strapdown system concept. This system employs all-digital signal processing in conjunction with the newly-developed large scale integration (LSI) electronic packaging techniques and a new two-degree-of-freedom dry tuned-gimbal instrument which is capable of providing both angular rate and acceleration information. Such a system is capable of exceeding the established performance goals.

  8. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    NASA Astrophysics Data System (ADS)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  9. Digital phonocardiographic experiments and signal processing in multidisciplinary fields of university education

    NASA Astrophysics Data System (ADS)

    Nagy, Tamás; Vadai, Gergely; Gingl, Zoltán

    2017-09-01

    Modern measurement of physical signals is based on the use of sensors, electronic signal conditioning, analog-to-digital conversion and digital signal processing carried out by dedicated software. The same signal chain is used in many devices such as home appliances, automotive electronics, medical instruments, and smartphones. Teaching the theoretical, experimental, and signal processing background must be an essential part of improving the standard of higher education, and it fits well to the increasingly multidisciplinary nature of physics and engineering too. In this paper, we show how digital phonocardiography can be used in university education as a universal, highly scalable, exciting, and inspiring laboratory practice and as a demonstration at various levels and complexity. We have developed open-source software templates in modern programming languages to support immediate use and to serve as a basis of further modifications using personal computers, tablets, and smartphones.

  10. A new method for the measurement of tremor at rest.

    PubMed

    Comby, B; Chevalier, G; Bouchoucha, M

    1992-01-01

    This paper establishes a standard method for measuring human tremor. The electronic instrument described is an application of this method. It solves the need for an effective and simple tremor-measuring instrument fit for wide distribution. This instrument consists of a piezoelectric accelerometer connected to an electronic circuit and to an LCD display. The signal is also analysed by a computer after accelerometer analogic/digital conversion in order to test the method. The tremor of 1079 healthy subjects was studied. Spectral analysis showed frequency peaks between 5.85 and 8.80 Hz. Chronic cigarette-smoking and coffee drinking did not modify the tremor as compared with controls. Relaxation session decreased tremor significantly in healthy subjects (P less than 0.01). This new tremor-measuring method opens new horizons in the understanding of physiological and pathological tremor, stress, anxiety and in the means to avoid or compensate them.

  11. Neural Computation and the Computational Theory of Cognition

    ERIC Educational Resources Information Center

    Piccinini, Gualtiero; Bahar, Sonya

    2013-01-01

    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism--neural processes are computations in the…

  12. Analog "neuronal" networks in early vision.

    PubMed Central

    Koch, C; Marroquin, J; Yuille, A

    1986-01-01

    Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172

  13. Programmable Analog Memory Resistors For Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Thakoor, Sarita; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Electrical resistance of new solid-state device altered repeatedly by suitable control signals, yet remains at steady value when control signal removed. Resistance set at low value ("on" state), high value ("off" state), or at any convenient intermediate value and left there until new value desired. Circuits of this type particularly useful in nonvolatile, associative electronic memories based on models of neural networks. Such programmable analog memory resistors ideally suited as synaptic interconnects in "self-learning" neural nets. Operation of device depends on electrochromic property of WO3, which when pure is insulator. Potential uses include nonvolatile, erasable, electronically programmable read-only memories.

  14. Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mckillip, R. M., Jr.

    1984-01-01

    Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.

  15. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  16. Li-ion synaptic transistor for low power analog computing

    DOE PAGES

    Fuller, Elliot J.; Gabaly, Farid El; Leonard, Francois; ...

    2016-11-22

    Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, “write” linearity, low-voltage switching, and low power dissipation. Simulations of back propagation using the device properties reach ideal classification accuracy. Finally, physics-based simulations predict energy costs per “write” operation of <10 aJ when scaled to 200 nm × 200 nm.

  17. Instrumentation for Verification of Bomb Damage Repair Computer Code.

    DTIC Science & Technology

    1981-09-01

    record the data, a conventional 14-track FM analog tape recorder was retained. The unknown factors of signal duration, test duration, and signal ...Kirtland Air Force Base computer centers for more detailed analyses. In addition to the analog recorder, signal conditioning equipment and amplifiers were...necessary to allow high quality data to be recorded. An Interrange Instrumentation Group (IRIG) code generator/reader placed a coded signal on the tape

  18. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1961-02-01

    Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)

  19. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  20. A systematic way for the cost reduction of density fitting methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kállay, Mihály, E-mail: kallay@mail.bme.hu

    2014-12-28

    We present a simple approach for the reduction of the size of auxiliary basis sets used in methods exploiting the density fitting (resolution of identity) approximation for electron repulsion integrals. Starting out of the singular value decomposition of three-center two-electron integrals, new auxiliary functions are constructed as linear combinations of the original fitting functions. The new functions, which we term natural auxiliary functions (NAFs), are analogous to the natural orbitals widely used for the cost reduction of correlation methods. The use of the NAF basis enables the systematic truncation of the fitting basis, and thereby potentially the reduction of themore » computational expenses of the methods, though the scaling with the system size is not altered. The performance of the new approach has been tested for several quantum chemical methods. It is demonstrated that the most pronounced gain in computational efficiency can be expected for iterative models which scale quadratically with the size of the fitting basis set, such as the direct random phase approximation. The approach also has the promise of accelerating local correlation methods, for which the processing of three-center Coulomb integrals is a bottleneck.« less

  1. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  2. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  3. Single-molecule comparison of DNA Pol I activity with native and analog nucleotides

    NASA Astrophysics Data System (ADS)

    Gul, Osman; Olsen, Tivoli; Choi, Yongki; Corso, Brad; Weiss, Gregory; Collins, Philip

    2014-03-01

    DNA polymerases are critical enzymes for DNA replication, and because of their complex catalytic cycle they are excellent targets for investigation by single-molecule experimental techniques. Recently, we studied the Klenow fragment (KF) of DNA polymerase I using a label-free, electronic technique involving single KF molecules attached to carbon nanotube transistors. The electronic technique allowed long-duration monitoring of a single KF molecule while processing thousands of template strands. Processivity of up to 42 nucleotide bases was directly observed, and statistical analysis of the recordings determined key kinetic parameters for the enzyme's open and closed conformations. Subsequently, we have used the same technique to compare the incorporation of canonical nucleotides like dATP to analogs like 1-thio-2'-dATP. The analog had almost no affect on duration of the closed conformation, during which the nucleotide is incorporated. On the other hand, the analog increased the rate-limiting duration of the open conformation by almost 40%. We propose that the thiolated analog interferes with KF's recognition and binding, two key steps that determine its ensemble turnover rate.

  4. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled and ions were ejected at very high scan rates. Pile-up of ions was not significant for the ion trap under investigation even though the ions are ejected in so-called 'ion-micro packets'. It was found that pulse counting mode had higher dynamic range than analog mode, and that the first amplification stage in analog mode can distort mass peaks. The inherent speed of the pulse counting method also proved to be beneficial to ion trap operation and ion ejection characterization. Very high scan rates were possible with pulse counting since the digital circuitry response time is so much smaller than with the analog method. Careful investigation of the pulse-counting data also allowed observation of the applied resonant ejection frequency during mass analysis. Ejection of ion micro packets could be clearly observed in the binned data. A second oscillation frequency, much lower than the secular frequency, was also observed. Such an effect was earlier attributed to the oscillation of the total plasma cloud in the ion trap. While the components used to implement pulse counting are quite advanced, due to their prevalence in consumer electronics, the cost of this detection system is no more than that of an analog mode system. Total pulse-counting detection system electronics cost is under $250

  5. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2013-02-01

    Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

  6. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  7. Design of an integrated sensor system for the detection of traces of different molecules in the air

    NASA Astrophysics Data System (ADS)

    Strle, D.; Muševič, I.

    2015-04-01

    This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.

  8. Flight Qualified Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted on a single two-sided board following chip-on-board design practices

  9. An easy-to-operate portable pulse-height analysis system for area monitoring with TEPC in radiation protection

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Pihet, P.; Arend, E.; Menzel, H. G.

    1990-12-01

    A portable area monitor for the measurement of dose-equivalent quantities in practical radiation-protection work has been developed. The detector applied is a low-pressure proportional counter (TEPC) used in microdosimetry. The complex analysis system required has been optimized with regard to low power consumption and small size to achieve a real operational survey meter. The newly designed electronic includes complete analog, digital and microprocessor boards. It presents the characteristic of fast pulse-height processing over a large (5 decades) dynamic range. Three original circuits have been specifically developed, consisting of: (1) a miniaturized adjustable high-voltage power supply with low ripple and high stability; (2) a double spectroscopy amplifier with constant gain ratio and common pole-zero stage; and (3) an analog-to-digital converter with quasi-logarithmic characteristics based on a flash converter using fast comparators associated in parallel. With the incorporated single-board computer, the maximal total power consumption is 5 W, enabling 40 hours operation time with batteries. With minor adaptations the equipment is proposed as a low-cost solution for various measuring problems in environmental studies.

  10. Heuristic thinking makes a chemist smart.

    PubMed

    Graulich, Nicole; Hopf, Henning; Schreiner, Peter R

    2010-05-01

    We focus on the virtually neglected use of heuristic principles in understanding and teaching of organic chemistry. As human thinking is not comparable to computer systems employing factual knowledge and algorithms--people rarely make decisions through careful considerations of every possible event and its probability, risks or usefulness--research in science and teaching must include psychological aspects of the human decision making processes. Intuitive analogical and associative reasoning and the ability to categorize unexpected findings typically demonstrated by experienced chemists should be made accessible to young learners through heuristic concepts. The psychology of cognition defines heuristics as strategies that guide human problem-solving and deciding procedures, for example with patterns, analogies, or prototypes. Since research in the field of artificial intelligence and current studies in the psychology of cognition have provided evidence for the usefulness of heuristics in discovery, the status of heuristics has grown into something useful and teachable. In this tutorial review, we present a heuristic analysis of a familiar fundamental process in organic chemistry--the cyclic six-electron case, and we show that this approach leads to a more conceptual insight in understanding, as well as in teaching and learning.

  11. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    NASA Astrophysics Data System (ADS)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  12. Hybrid computer technique yields random signal probability distributions

    NASA Technical Reports Server (NTRS)

    Cameron, W. D.

    1965-01-01

    Hybrid computer determines the probability distributions of instantaneous and peak amplitudes of random signals. This combined digital and analog computer system reduces the errors and delays of manual data analysis.

  13. Analysis of Experimental Sea-level Transient Data and Analog Method of Obtaining Altitude Response for Turbine-propeller Engine with Relay-type Speed Control

    NASA Technical Reports Server (NTRS)

    Vasu, George; Pack, George J

    1951-01-01

    Correlation has been established between transient engine and control data obtained experimentally and data obtained by simulating the engine and control with an analog computer. This correlation was established at sea-level conditions for a turbine-propeller engine with a relay-type speed control. The behavior of the controlled engine at altitudes of 20,000 and 35,000 feet was determined with an analog computer using the altitude pressure and temperature generalization factors to calculate the new engine constants for these altitudes. Because the engine response varies considerably at altitude some type of compensation appears desirable and four methods of compensation are discussed.

  14. Computers in Undergraduate Science Education. Conference Proceedings.

    ERIC Educational Resources Information Center

    Blum, Ronald, Ed.

    Six areas of computer use in undergraduate education, particularly in the fields of mathematics and physics, are discussed in these proceedings. The areas included are: the computational mode; computer graphics; the simulation mode; analog computing; computer-assisted instruction; and the current politics and management of college level computer…

  15. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  16. System on a Chip (SoC) Overview

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2010-01-01

    System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.

  17. Rapid cycloaddition of a diazo group with an unstrained dipolarophile.

    PubMed

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-06-01

    The cycloaddition of a diazoacetamide with ethyl 4,4,4-trifluorocrotonate proceeds with k = 0.1 M -1 s -1 . This second-order rate constant rivals those of optimized strain-promoted azide- alkyne cycloadditions, even though the reaction does not release strain. The regioselectivity and a computational distortion/interaction analysis of the reaction energetics are consistent with the formation of an N-H…F-C hydrogen bond in the transition state and the electronic character of the trifluorocrotonate. Analogous reactions with an azidoacetamide dipole or with an acrylate or crotonate dipolarophile were much slower. These findings suggest a new strategy for the design of diazo-selective reagents for chemical biology.

  18. Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications

    DTIC Science & Technology

    2012-02-07

    circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic

  19. Computers in Electrical Engineering Education at Virginia Polytechnic Institute.

    ERIC Educational Resources Information Center

    Bennett, A. Wayne

    1982-01-01

    Discusses use of computers in Electrical Engineering (EE) at Virginia Polytechnic Institute. Topics include: departmental background, level of computing power using large scale systems, mini and microcomputers, use of digital logic trainers and analog/hybrid computers, comments on integrating computers into EE curricula, and computer use in…

  20. Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides

    DOE PAGES

    Klet, Rachel C.; Kaphan, David M.; Liu, Cong; ...

    2018-04-09

    The chemical and electronic interactions of organometallic species with metal oxide support materials are of fundamental importance for the development of new classes of catalytic materials. Chemisorption of Cp*(PMe 3)IrMe 2 on sulfated alumina (SA) and sulfated zirconia (SZ) led to an unexpected redox mechanism for deuteration of the ancillary Cp* ligand. Evidence for this oxidative mechanism was provided by studying the analogous homogeneous reactivity of the organometallic precursors toward trityl cation ([Ph 3C] +), a Lewis acid known to effect formal hydride abstraction by one-electron oxidation followed by hydrogen abstraction. Organometallic deuterium incorporation was found to be correlated withmore » surface sulfate concentration as well as the extent of dehydration under thermal activation conditions of SA and SZ supports. Surface sulfate concentration dependence, in conjunction with a computational study of surface electron affinity, indicates an electron-deficient pyrosulfate species as the redox-active moiety. Furthermore, these results provide further evidence for the ability of sulfated metal oxides to participate in redox chemistry not only toward organometallic complexes but also in the larger context of their application as catalysts for the transformation of light alkanes.« less

  1. Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klet, Rachel C.; Kaphan, David M.; Liu, Cong

    The chemical and electronic interactions of organometallic species with metal oxide support materials are of fundamental importance for the development of new classes of catalytic materials. Chemisorption of Cp*(PMe 3)IrMe 2 on sulfated alumina (SA) and sulfated zirconia (SZ) led to an unexpected redox mechanism for deuteration of the ancillary Cp* ligand. Evidence for this oxidative mechanism was provided by studying the analogous homogeneous reactivity of the organometallic precursors toward trityl cation ([Ph 3C] +), a Lewis acid known to effect formal hydride abstraction by one-electron oxidation followed by hydrogen abstraction. Organometallic deuterium incorporation was found to be correlated withmore » surface sulfate concentration as well as the extent of dehydration under thermal activation conditions of SA and SZ supports. Surface sulfate concentration dependence, in conjunction with a computational study of surface electron affinity, indicates an electron-deficient pyrosulfate species as the redox-active moiety. Furthermore, these results provide further evidence for the ability of sulfated metal oxides to participate in redox chemistry not only toward organometallic complexes but also in the larger context of their application as catalysts for the transformation of light alkanes.« less

  2. Analog track angle error displays improve simulated GPS approach performance

    DOT National Transportation Integrated Search

    1996-01-01

    Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. THe new generation of GPS based area navigation (RNAV) receivers can also compute accura...

  3. Scalable Multiprocessor for High-Speed Computing in Space

    NASA Technical Reports Server (NTRS)

    Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard

    2004-01-01

    A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.

  4. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  5. Harry Mergler with His Modified Differential Analyzer

    NASA Image and Video Library

    1951-06-21

    Harry Mergler stands at the control board of a differential analyzer in the new Instrument Research Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The differential analyzer was a multi-variable analog computation machine devised in 1931 by Massachusetts Institute of Technology researcher and future NACA Committee member Vannevar Bush. The mechanical device could solve computations up to the sixth order, but had to be rewired before each new computation. Mergler modified Bush’s differential analyzer in the late 1940s to calculate droplet trajectories for Lewis’ icing research program. In four days Mergler’s machine could calculate what previously required weeks. NACA Lewis built the Instrument Research Laboratory in 1950 and 1951 to house the large analog computer equipment. The two-story structure also provided offices for the Mechanical Computational Analysis, and Flow Physics sections of the Physics Division. The division had previously operated from the lab’s hangar because of its icing research and flight operations activities. Mergler joined the Instrument Research Section of the Physics Division in 1948 after earning an undergraduate degree in Physics from the Case Institute of Technology. Mergler’s focus was on the synthesis of analog computers with the machine tools used to create compressor and turbine blades for jet engines.

  6. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  7. Zombie states for description of structure and dynamics of multi-electron systems

    NASA Astrophysics Data System (ADS)

    Shalashilin, Dmitrii V.

    2018-05-01

    Canonical Coherent States (CSs) of Harmonic Oscillator have been extensively used as a basis in a number of computational methods of quantum dynamics. However, generalising such techniques for fermionic systems is difficult because Fermionic Coherent States (FCSs) require complicated algebra of Grassmann numbers not well suited for numerical calculations. This paper introduces a coherent antisymmetrised superposition of "dead" and "alive" electronic states called here Zombie State (ZS), which can be used in a manner of FCSs but without Grassmann algebra. Instead, for Zombie States, a very simple sign-changing rule is used in the definition of creation and annihilation operators. Then, calculation of electronic structure Hamiltonian matrix elements between two ZSs becomes very simple and a straightforward technique for time propagation of fermionic wave functions can be developed. By analogy with the existing methods based on Canonical Coherent States of Harmonic Oscillator, fermionic wave functions can be propagated using a set of randomly selected Zombie States as a basis. As a proof of principles, the proposed Coupled Zombie States approach is tested on a simple example showing that the technique is exact.

  8. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: Vigabatrin

    NASA Astrophysics Data System (ADS)

    Edwin, Bismi; Joe, I. Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.

  9. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  10. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  11. Light scattering by planetary-regolith analog samples: computational results

    NASA Astrophysics Data System (ADS)

    Väisänen, Timo; Markkanen, Johannes; Hadamcik, Edith; Levasseur-Regourd, Anny-Chantal; Lasue, Jeremie; Blum, Jürgen; Penttilä, Antti; Muinonen, Karri

    2017-04-01

    We compute light scattering by a planetary-regolith analog surface. The corresponding experimental work is from Hadamcik et al. [1] with the PROGRA2-surf [2] device measuring the polarization of dust particles. The analog samples are low density (volume fraction 0.15 ± 0.03) agglomerates produced by random ballistic deposition of almost equisized silica spheres (refractive index n=1.5 and diameter 1.45 ± 0.06 µm). Computations are carried out with the recently developed codes entitled Radiative Transfer with Reciprocal Transactions (R2T2) and Radiative Transfer Coherent Backscattering with incoherent interactions (RT-CB-ic). Both codes incorporate the so-called incoherent treatment which enhances the applicability of the radiative transfer as shown by Muinonen et al. [3]. As a preliminary result, we have computed scattering from a large spherical medium with the RT-CB-ic using equal-sized particles with diameters of 1.45 microns. The preliminary results have shown that the qualitative characteristics are similar for the computed and measured intensity and polarization curves but that there are still deviations between the characteristics. We plan to remove the deviations by incorporating a size distribution of particles (1.45 ± 0.02 microns) and detailed information about the volume density profile within the analog surface. Acknowledgments: We acknowledge the ERC Advanced Grant no. 320773 entitled Scattering and Absorption of Electromagnetic Waves in Particulate Media (SAEMPL). Computational resources were provided by CSC - IT Centre for Science Ltd, Finland. References: [1] Hadamcik E. et al. (2007), JQSRT, 106, 74-89 [2] Levasseur-Regourd A.C. et al. (2015), Polarimetry of stars and planetary systems, CUP, 61-80 [3] Muinonen K. et al. (2016), extended abstract for EMTS.

  12. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    PubMed

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Analog Computer Solution of the Electrodiffusion Equation for a Simple Membrane

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1972-01-01

    An analog solution was obtained for the Nenst-Planck and Poisson equations which describe the ion concentration across a simple membrane held at a potential difference. The electric field variation within the membrane was also determined. (Author/TS)

  14. Synthesis and Combined Experimental and Theoretical Characterization of Dihydro-tetraaza-acenes

    PubMed Central

    2018-01-01

    We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-phase electronic structures by means of ab initio density functional calculations employing an optimally tuned range-separated hybrid functional. By comparing with the parent linear oligoacenes (nA) and based on computed ionization potentials and electron affinities, we predict DHTAn molecules to be more stable than acenes of the same length, where we expect DHTAn molecules to be persistent at least up to n = 7 rings. We further exploit the analogy with nA by analyzing the entire intramolecular π-band structure of the DHTAn molecules. This clearly reveals that the additional two electrons donated by the dihydropyrazine group are delocalized over the entire molecule and contribute to its π-electron system. As a consequence, the symmetry of the frontier orbitals of DHTAn differs from that of the parent nA molecule. This also affects the UV–vis absorption spectra which have been measured for DHTA5, 6, and 7 dissolved in dimethyl sulfoxide and analyzed by means of excited state calculations within a time-dependent density functional theory framework. PMID:29623149

  15. Analog voicing detector responds to pitch

    NASA Technical Reports Server (NTRS)

    Abel, R. S.; Watkins, H. E.

    1967-01-01

    Modified electronic voice encoder /Vocoder/ includes an independent analog mode of operation in addition to the conventional digital mode. The Vocoder is a bandwidth compression equipment that permits voice transmission over channels, having only a fraction of the bandwidth required for conventional telephone-quality speech transmission.

  16. Flocking from a quantum analogy: spin-orbit coupling in an active fluid

    NASA Astrophysics Data System (ADS)

    Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.

    2018-01-01

    Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.

  17. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  18. Computers and Play.

    ERIC Educational Resources Information Center

    Colker, Larry

    Viewing computers in various forms as developmentally appropriate objects for children, this discussion provides a framework for integrating conceptions of computers and conceptions of play. Several instances are cited from the literature in which explicit analogies have been made between computers and playthings or play environments.…

  19. Hierarchical CAD Tools for Radiation Hardened Mixed Signal Electronic Circuits

    DTIC Science & Technology

    2005-01-28

    11 Figure 3: Schematic of Analog and Digital Components 12 Figure 4: Dose Rate Syntax 14 Figure 5: Single Event Effects (SEE) Syntax 15 Figure 6...Harmony-AMS simulation of a Digital Phase Locked Loop 19 Figure 10: SEE results from DPLL Simulation 20 Figure 11: Published results used for validation...analog and digital circuitry. Combining the analog and digital elements onto a single chip has several advantages, but also creates unique challenges

  20. Infrared Laser Stark Spectroscopy and AB Initio Computations of the OH\\cdotsCO Complex

    NASA Astrophysics Data System (ADS)

    Liang, Tao; Raston, Paul; Douberly, Gary

    2014-06-01

    Following the sequential pick-up of OH and CO by helium nanodroplets, the infrared depletion spectrum is measured in the fundamental OH stretching region. Although several potentially accessible minima exist on the associated OH + CO reactive potential energy surface [e.g. J. Ma, J. Li, and H. Guo, J. Phys. Chem. Lett. 3 (2012) 2482], such as the weakly bound OH-OC dimer and the chemically bound HOCO molecule, we only observe the weakly bound OH-CO dimer. The rovibrational spectrum of this complex displays narrow (0.02 cm-1) Lorentzian shaped peaks with spacings that are characteristic of a linear complex with unquenched electronic angular momentum, similar to what was previously observed in the gas phase [M.I. Lester, B.V. Pond, D.T. Anderson, L.B. Harding, and A.F. Wagner, J. Chem. Phys. 113 (2000) 9889]. Analogous spectra involving OD were collected, for which we also only observe the OD-CO isomer. From the Stark spectra, the dipole moments for OH-CO are determined to be 1.85(3) and 1.89(3) D for v=0 and v=1, respectively, while the analogous dipole moments for OD-CO are determined to be 1.88(8) and 1.94(5) D. The computed equilibrium ground state dipole moment at the CCSD(T)/Def2-TZVPD level of theory is 2.185 D, in disagreement with experiment. The role of vibrational averaging is investigated via the solution of a three-dimensional vibrational Schrödinger equation, which is constructed in internal bond-angle coordinates. The computed expectation value of the ground state dipole moment is in excellent agreement with experiment, indicating a floppy molecular complex.

  1. Anatomic Customization of Root-Analog Dental Implants With Cone-Beam CT and CAD/CAM Fabrication: A Cadaver-Based Pilot Evaluation.

    PubMed

    Evans, Zachary P; Renne, Walter G; Bacro, Thierry R; Mennito, Anthony S; Ludlow, Mark E; Lecholop, Michael K

    2018-02-01

    Existing root-analog dental implant systems have no standardized protocols regarding retentive design, surface manipulation, or prosthetic attachment design relative to the site's unique anatomy. Historically, existing systems made those design choices arbitrarily. For this report, strategies were developed that deliberately reference the adjacent anatomy, implant and restorable path of draw, and bone density for implant and retentive design. For proof of concept, dentate arches from human cadavers were scanned using cone-beam computed tomography and then digitally modeled. Teeth of interest were virtually extracted and manipulated via computer-aided design to generate root-analog implants from zirconium. We created a stepwise protocol for analyzing and developing the implant sites, implant design and retention, and prosthetic emergence and connection all from the pre-op cone-beam data. Root-analog implants were placed at the time of extraction and examined radiographically and mechanically concerning ideal fit and stability. This study provides proof of concept that retentive root-analog implants can be produced from cone-beam data while improving fit, retention, safety, esthetics, and restorability when compared to the existing protocols. These advancements may provide the critical steps necessary for clinical relevance and success of immediately placed root-analog implants. Additional studies are necessary to validate the model prior to clinical trial.

  2. Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Bruton, W. M.

    1974-01-01

    A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.

  3. VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.

  4. An Analogy-Based Computer Tutor for Remediating Physics Misconceptions.

    ERIC Educational Resources Information Center

    Murray, Tom; And Others

    1990-01-01

    Describes an intelligent tutoring system designed to help students remedy misconceptions of physics concepts based on a teaching strategy called bridging analogies. Highlights include tutoring strategies; misconceptions in science education; the example situation network; confidence checking; formative evaluation with college students, including…

  5. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  6. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    van Duijn, Esther; Barbu, Ioana M; Barendregt, Arjan; Jore, Matthijs M; Wiedenheft, Blake; Lundgren, Magnus; Westra, Edze R; Brouns, Stan J J; Doudna, Jennifer A; van der Oost, John; Heck, Albert J R

    2012-11-01

    The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy, and small angle x-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA. Recently, a cryo-electron microscopy structure of Cascade revealed that the CRISPR RNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes.

  7. Advanced information society(5)

    NASA Astrophysics Data System (ADS)

    Tanizawa, Ippei

    Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).

  8. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  9. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  10. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  11. Using thermodynamic integration MD simulation to compute relative protein-ligand binding free energy of a GSK3β kinase inhibitor and its analogs.

    PubMed

    Lee, Hsing-Chou; Hsu, Wen-Chi; Liu, An-Lun; Hsu, Chia-Jen; Sun, Ying-Chieh

    2014-06-01

    Thermodynamic integration molecular dynamics simulation was used to investigate how TI-MD simulation preforms in reproducing relative protein-ligand binding free energy of a pair of analogous GSK3β kinase inhibitors of available experimental data (see Fig. 1), and to predict the affinity for other analogs. The computation for the pair gave a ΔΔG of 1.0 kcal/mol, which was in reasonably good agreement with the experimental value of -0.1 kcal/mol. The error bar was estimated at 0.5 kcal/mol. Subsequently, we employed the same protocol to proceed with simulations to find analogous inhibitors with a stronger affinity. Four analogs with a substitution at one site inside the binding pocket were the first to be tried, but no significant enhancement in affinity was found. Subsequent simulations for another 7 analogs was focused on substitutions at the benzene ring of another site, which gave two analogs (analogs 9 and 10) with ΔΔG values of -0.6 and -0.8 kcal/mol, respectively. Both analogs had a OH group at the meta position and another OH group at the ortho position at the other side of the benzene ring, as shown in Table 3. To explore further, another 4 analogs with this characteristic were investigated. Three analogs with ΔΔG values of -2.2, -1.7 and -1.2 kcal/mol, respectively, were found. Hydrogen bond analysis suggested that the additional hydrogen bonds of the added OH groups with Gln185 and/or Asn64, which did not appear in the reference inhibitor or as an analog with one substitution only in the examined cases, were the main contributors to an enhanced affinity. A prediction for better inhibitors should interest experimentalists of enzyme and/or cell assays. Analysis of the interactions between GSK3β kinase and the investigated analogs will be useful in the design of GSK3β kinase inhibitors for compounds of this class. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. New quantum number for the many-electron Dirac-Coulomb Hamiltonian

    NASA Astrophysics Data System (ADS)

    Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš

    2016-11-01

    By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.

  13. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  14. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  15. Polymorphic Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Polymorphic electronics is a nascent technological discipline that involves, among other things, designing the same circuit to perform different analog and/or digital functions under different conditions. For example, a circuit can be designed to function as an OR gate or an AND gate, depending on the temperature (see figure). Polymorphic electronics can also be considered a subset of polytronics, which is a broader technological discipline in which optical and possibly other information- processing systems could also be designed to perform multiple functions. Polytronics is an outgrowth of evolvable hardware (EHW). The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles. To recapitulate: The essence of EHW is to design, construct, and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The evolution is guided by a search-and-optimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by computational simulation (in which case the evolution is said to be extrinsic), tested in real hardware (in which case the evolution is said to be intrinsic), or tested in random sequences of computational simulation and real hardware (in which case the evolution is said to be mixtrinsic).

  16. Discovering the Puzzling Behaviour of Electrons with the Grimaldi-Young Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio; Castaneda, Roman; Serna, Samuel; Medina, Francisco; Garcia-Sucerquia, Jorge

    2010-01-01

    An experiment analogous to that devised by Grimaldi and subsequently repeated by Young to study the nature of light has been realized with electrons. Following the Grimaldi and Young line of thought, an original approach is presented to introduce undergraduate physics students to the wave behaviour of electrons. An electron microscope equipped…

  17. Analogies between Vanadoborates and Planar Aromatic Hydrocarbons: A High-Spin Analogue of Aromaticity.

    PubMed

    King, R Bruce

    2017-12-23

    The vanadium-vanadium interactions in the polygonal aggregates of d¹ vanadium(IV) atoms, with a total of 4 k + 2 vanadium electrons ( k an integer) imbedded in an electronically inactive borate matrix in certain vanadoborate structures are analogous to the ring carbon-carbon interactions in diamagnetic planar cyclic hydrocarbons. They thus represent a high-spin analogue of aromaticity. Thus, the vanadoborate anion [V₆B 20 O 50 H₈] 8- with six V(IV) electrons (i.e., 4 k + 2 for k = 1) contains a macrohexagon of d¹ V(IV) atoms with four unpaired electrons. This high-spin system is related to the low-spin aromaticity in the diamagnetic benzene having six π electrons. Similarly, the vanadoborate anion [V 10 B 28 O 74 H₈] 16- with ten V(IV) electrons (i.e., 4 k + 2 for k = 2) contains a macrodecagon of d¹ V(IV) atoms with eight unpaired electrons. Again, this high-spin system is related to the aromaticity in the diamagnetic 1,6-methanol[10]annulene, having ten π electrons.

  18. Photonic band gap materials: towards an all-optical transistor

    NASA Astrophysics Data System (ADS)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  19. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  20. Computer Technology-Integrated Projects Should not Supplant Craft Projects in Science Education

    NASA Astrophysics Data System (ADS)

    Klopp, Tabatha J.; Rule, Audrey C.; Suchsland Schneider, Jean; Boody, Robert M.

    2014-03-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy use is also helpful in understanding unfamiliar, complex science concepts. This study of 28 academically advanced elementary to middle-school students examined student work and perceptions during a science unit focused on four fossil organisms: crinoid, brachiopod, horn coral and trilobite. The study compared: (1) analogy-focused instruction to independent Internet research and (2) computer technology-rich products to crafts-based products. Findings indicate student products were more creative after analogy-based instruction and when made using technology. However, students expressed a strong desire to engage in additional craft work after making craft products and enjoyed making crafts more after analogy-focused instruction. Additionally, more science content was found in the craft products than the technology-rich products. Students expressed a particular liking for two of the fossil organisms because they had been modeled with crafts. The authors recommend that room should be retained for crafts in the science curriculum to model science concepts.

  1. Large quantum rings in the ν > 1 quantum Hall regime.

    PubMed

    Räsänen, E; Aichinger, M

    2009-01-14

    We study computationally the ground-state properties of large quantum rings in the filling-factor ν>1 quantum Hall regime. We show that the arrangement of electrons into different Landau levels leads to clear signatures in the total energies as a function of the magnetic field. In this context, we discuss possible approximations for the filling factor ν in the system. We are able to characterize integer-ν states in quantum rings in an analogy with conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2 and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the recently found ν = 5/2 state in a quantum dot.

  2. Electric currents induced by twisted light in Quantum Rings.

    PubMed

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  3. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  4. Digital television: a new way to deliver information

    NASA Astrophysics Data System (ADS)

    Huang, Samson

    1998-12-01

    Digital television (DTV) is a new way to deliver video, audio, and other data. Why should TV be converted to digital? How does DTV work? What can we do with it? This paper provides some introduction about DTV, its history, and its roll-out plan. It then compares DTV with analog TV, and describes how DTV works. It also describes why the computer industry, as well as the consumer electronics industry, are both very interested I the DTV market. Next, it describes what Intel has done on DTV, including how we build a PC- based DTV, its test evaluation results, its new applications, and Intel's DTV station DMRL. This paper also describes remaining issues, our roadmap, vision, and future directions.

  5. Coupled-cluster based R-matrix codes (CCRM): Recent developments

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Pradhan, Anil K.

    2008-05-01

    We report the ongoing development of the new coupled-cluster R-matrix codes (CCRM) for treating electron-ion scattering and radiative processes within the framework of the relativistic coupled-cluster method (RCC), interfaced with the standard R-matrix methodology. The RCC method is size consistent and in principle equivalent to an all-order many-body perturbation theory. The RCC method is one of the most accurate many-body theories, and has been applied for several systems. This project should enable the study of electron-interactions with heavy atoms/ions, utilizing not only high speed computing platforms but also improved theoretical description of the relativistic and correlation effects for the target atoms/ions as treated extensively within the RCC method. Here we present a comprehensive outline of the newly developed theoretical method and a schematic representation of the new suite of CCRM codes. We begin with the flowchart and description of various stages involved in this development. We retain the notations and nomenclature of different stages as analogous to the standard R-matrix codes.

  6. Compact time- and space-integrating SAR processor: performance analysis

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.

    1995-06-01

    Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.

  7. On Processing Hexagonally Sampled Images

    DTIC Science & Technology

    2011-07-01

    Mersereau’s HDFT: Mersereau encountered an “insurmountable difficulty” when attempting to develop a fast algorithm to compute the hexagonal DFT...WNR GND 1-bit output CS1 . ------. (input for analog) j(-- -: I (analog out) ADC ,. __ I I I I l ______ l Power to Firefly C1 ~2 TT

  8. Analog Spectrophotometers in the Digital Age: Data Acquisition on a Budget

    ERIC Educational Resources Information Center

    Nazarenko, Alexander Y.; Nazarenko, Natalie A.

    2005-01-01

    The interfacing of various spectrometers with analog output to a personal computer running Microsoft Excel in the Windows environment is described. This low cost data acquisition solution is a useful replacement of a chart recorder for various UV-visible and infrared scanning spectrophotometers.

  9. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  10. A Front-End electronics board for single photo-electron timing and charge from MaPMT

    NASA Astrophysics Data System (ADS)

    Giordano, F.; Breton, D.; Beigbeder, C.; De Robertis, G.; Fusco, P.; Gargano, F.; Liuzzi, R.; Loparco, F.; Mazziotta, M. N.; Rizzi, V.; Tocut, V.

    2013-08-01

    A Front-End (FE) design based on commercial operational amplifiers has been developed to read-out signals from a Multianode PhotoMultiplier Tube (MaPMT). The overall design has been optimised for single photo-electron signal from the Hamamatsu H8500. The signal is collected by a current sensitive preamplifier and then it is fed into both a ECL fast discriminator and a shaper for analog output readout in differential mode. The analog signal and the digital gates are then registered on VME ADC and TDC modules respectively. Performances in terms of linearity, gain and timing resolution will be discussed, presenting results obtained on a test bench with differentiated step voltage inputs and also with a prototype electronic board plugged into the H8500 PMT illuminated by a picosecond laser.

  11. Injecting Computational Thinking into Computing Activities for Middle School Girls

    ERIC Educational Resources Information Center

    Webb, Heidi Cornelia

    2013-01-01

    Advances in technology have caused high schools to update their computer science curricula; however there has been little analogous attention to technology-related education in middle schools. With respect to computer-related knowledge and skills, middle school students are at a critical phase in life, exploring individualized education options…

  12. A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…

  13. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  14. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    PubMed

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  15. Optically-synchronized encoder and multiplexer scheme for interleaved photonics analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Villa, Carlos; Kumavor, Patrick; Donkor, Eric

    2008-04-01

    Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.

  16. Design and Analysis of Compact DNA Strand Displacement Circuits for Analog Computation Using Autocatalytic Amplifiers.

    PubMed

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2018-01-19

    A main goal in DNA computing is to build DNA circuits to compute designated functions using a minimal number of DNA strands. Here, we propose a novel architecture to build compact DNA strand displacement circuits to compute a broad scope of functions in an analog fashion. A circuit by this architecture is composed of three autocatalytic amplifiers, and the amplifiers interact to perform computation. We show DNA circuits to compute functions sqrt(x), ln(x) and exp(x) for x in tunable ranges with simulation results. A key innovation in our architecture, inspired by Napier's use of logarithm transforms to compute square roots on a slide rule, is to make use of autocatalytic amplifiers to do logarithmic and exponential transforms in concentration and time. In particular, we convert from the input that is encoded by the initial concentration of the input DNA strand, to time, and then back again to the output encoded by the concentration of the output DNA strand at equilibrium. This combined use of strand-concentration and time encoding of computational values may have impact on other forms of molecular computation.

  17. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  18. Diamond turning machine controller implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less

  19. Normal Component of Induced Velocity for Entire Field of a Uniformly Loaded Lifting Rotor with Highly Swept Wake as Determined by Electromagnetic Analog

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Durham, Howard L., Jr.; Kevorkian, Jirair

    1959-01-01

    Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.

  20. 47 CFR 69.157 - Line port costs in excess of basic, analog service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Line port costs in excess of basic, analog service. 69.157 Section 69.157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers...

  1. Programming Languages, Natural Languages, and Mathematics

    ERIC Educational Resources Information Center

    Naur, Peter

    1975-01-01

    Analogies are drawn between the social aspects of programming and similar aspects of mathematics and natural languages. By analogy with the history of auxiliary languages it is suggested that Fortran and Cobol will remain dominant. (Available from the Association of Computing Machinery, 1133 Avenue of the Americas, New York, NY 10036.) (Author/TL)

  2. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  3. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  4. Toward an Organic Chemist's Periodic Table.

    ERIC Educational Resources Information Center

    Hall, H. K., Jr.

    1980-01-01

    An analogy between electron transfer reactions of the elements and those of organic molecules is offered. Examples of organic electron transfer reactions are presented. The rationale of constructing an organic chemists' periodic table is also discussed. (HM)

  5. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; hide

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  6. A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation.

    PubMed

    D'Angelo, Robert; Wood, Richard; Lowry, Nathan; Freifeld, Geremy; Huang, Haiyao; Salthouse, Christopher D; Hollosi, Brent; Muresan, Matthew; Uy, Wes; Tran, Nhut; Chery, Armand; Poppe, Dorothy C; Sonkusale, Sameer

    2018-06-27

    Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

  7. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  8. Development of analog watch with minute repeater

    NASA Astrophysics Data System (ADS)

    Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi

    A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.

  9. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1989-01-01

    Discussed are some uses of computers in chemistry classrooms. Described are: (1) interactive chromatographic analysis software; (2) computer interface for a digital frequency-period-counter-ratio meter and analog interface based on a voltage-to-frequency converter; and (3) use of spectrometer/microcomputer arrangement for teaching atomic theory.…

  10. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  11. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  12. Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha; LaBel, Kenneth A.; Kniffin, Scott D.; Howard, James W., Jr.; Poivey, Christian; Ladbury, Ray L.; Buchner, Stephen P.; Xapsos, Michael; Reed, Robert A.; Sanders, Anthony B.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  13. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad

    2016-10-01

    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. QPPM receiver for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.

    1994-01-01

    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.

  15. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    PubMed

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Splashing transients of 2D plasmons launched by swift electrons

    DOE PAGES

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; ...

    2017-01-27

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation,more » analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated.« less

  17. An analog filter approach to frequency domain fluorescence spectroscopy

    DOE PAGES

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less

  18. The Quantum Human Computer (QHC) Hypothesis

    ERIC Educational Resources Information Center

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…

  19. Drawing Analogies between Logic Programming and Natural Language Argumentation Texts to Scaffold Learners' Understanding

    ERIC Educational Resources Information Center

    Ragonis, Noa; Shilo, Gila

    2014-01-01

    The paper presents a theoretical investigational study of the potential advantages that secondary school learners may gain from learning two different subjects, namely, logic programming within computer science studies and argumentation texts within linguistics studies. The study suggests drawing an analogy between the two subjects since they both…

  20. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    NASA Technical Reports Server (NTRS)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  1. Success and failure of the plasma analogy for Laughlin states on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, Mikael

    2017-01-01

    We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.

  2. Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes

    PubMed Central

    Schramm, Vern L.

    2017-01-01

    Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein’s dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. PMID:21675920

  3. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    NASA Astrophysics Data System (ADS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  4. Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.

    PubMed

    Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen

    2017-09-25

    The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.

  5. Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa*

    PubMed Central

    van Duijn, Esther; Barbu, Ioana M.; Barendregt, Arjan; Jore, Matthijs M.; Wiedenheft, Blake; Lundgren, Magnus; Westra, Edze R.; Brouns, Stan J. J.; Doudna, Jennifer A.; van der Oost, John; Heck, Albert J. R.

    2012-01-01

    The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy, and small angle x-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA. Recently, a cryo-electron microscopy structure of Cascade revealed that the CRISPR RNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes. PMID:22918228

  6. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  7. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  8. Extension of transonic flow computational concepts in the analysis of cavitated bearings

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Keith, T. G., Jr.; Brewe, D. E.

    1990-01-01

    An analogy between the mathematical modeling of transonic potential flow and the flow in a cavitating bearing is described. Based on the similarities, characteristics of the cavitated region and jump conditions across the film reformation and rupture fronts are developed using the method of weak solutions. The mathematical analogy is extended by utilizing a few computational concepts of transonic flow to numerically model the cavitating bearing. Methods of shock fitting and shock capturing are discussed. Various procedures used in transonic flow computations are adapted to bearing cavitation applications, for example, type differencing, grid transformation, an approximate factorization technique, and Newton's iteration method. These concepts have proved to be successful and have vastly improved the efficiency of numerical modeling of cavitated bearings.

  9. Turning a $10 Computer into a Powerful DIY Data Logger

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.

    2017-12-01

    Due the rapid advance of consumer electronics, much more powerful and cheaper options are available for DIY projects. The $10 `Raspberry Pi Zero W' computer, with abilities like WiFi, Bluetooth, HDMI video output, and a large cheap memory, can be used for data logging purposes. The computer has a range of input and output pins on the board, with which virtually every type of digital sensor communication is possible. With an extra component, analog measurements can also be made. An extra option is the addition of a camera, which can be connected straight to the board. However, due to the relatively high power consumption (0.5 - 0.7 Watt), the `Zero W' is not optimal for off-the-grid locations. For ease of use, the collected data can be downloaded over a local WiFi network using your smartphone or a laptop. No extra software or skills are needed, it is as simple as visiting a webpage and pressing download, making data collection a quick and easy task. With simple step by step instructions you can set up your own data logger, to collect data from sensors ranging from simple temperature and water level measurements, to sonic anemometers.

  10. A multi-stimuli responsive switch as a fluorescent molecular analogue of transistors† †Electronic supplementary information (ESI) available: Detailed experimental procedures and additional data on the characterization of 1. See DOI: 10.1039/c5sc03395k Click here for additional data file.

    PubMed Central

    Gallardo, Iluminada; Morais, Sandy; Prats, Gemma

    2016-01-01

    Although the quantum nature of molecules makes them specially suitable for mimicking the operation of digital electronic elements, molecular compounds can also be envisioned to emulate the behavior of analog devices. In this work we report a novel fluorescent three-state switch capable of reproducing the analog response of transistors, an ubiquitous device in modern electronics. Exploiting the redox and thermal sensitivity of this compound, the amplitude of its fluorescence emission can be continuously modulated, in a similar way as the output current in a transistor is amplified by the gate-to-source voltage. PMID:28959394

  11. Compendium of Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.

    2007-01-01

    Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  12. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    NASA Astrophysics Data System (ADS)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  13. An Innovative Method of Teaching Electronic System Design with PSoC

    ERIC Educational Resources Information Center

    Ye, Zhaohui; Hua, Chengying

    2012-01-01

    Programmable system-on-chip (PSoC), which provides a microprocessor and programmable analog and digital peripheral functions in a single chip, is very convenient for mixed-signal electronic system design. This paper presents the experience of teaching contemporary mixed-signal electronic system design with PSoC in the Department of Automation,…

  14. The Heisenberg Uncertainty Principle Demonstrated with An Electron Diffraction Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio; Ferrari, Loris; Migliori, Andrea

    2010-01-01

    An experiment analogous to the classical diffraction of light from a circular aperture has been realized with electrons. The results are used to introduce undergraduate students to the wave behaviour of electrons. The diffraction fringes produced by the circular aperture are compared to those predicted by quantum mechanics and are exploited to…

  15. Caring and Dominance Affect Participants’ Perceptions and Behaviors During a Virtual Medical Visit

    PubMed Central

    Hall, Judith A.; Roter, Debra L.

    2008-01-01

    BACKGROUND Physician communication style affects patients’ perceptions and behaviors. Two aspects of physician communication style, caring and dominance, are often related in that a high caring physician is usually not dominant and vice versa. OBJECTIVE This research was aimed at testing the sole or joint impact of physician caring and physician dominance on participant perceptions and behavior during the medical visit. PARTICIPANTS AND DESIGN In an experimental design, analog patients (APs) (167 university students) interacted with a computer-generated virtual physician on a computer screen. Participants were randomly assigned to 1 of 4 experimental conditions (physician communication style: high dominance and low caring, high dominance and high caring, low dominance and low caring, or low dominance and high caring). The APs’ verbal and nonverbal behavior during the visit as well as their perception of the virtual physician were assessed. RESULTS Analog patients were able to distinguish dominance and caring dimensions of the virtual physician’s communication. Moreover, APs provided less medical information, spoke less, and agreed more when interacting with a high-dominant compared to a low-dominant physician. They also talked more about emotions and were quicker in taking their turn to speak when interacting with a high-caring compared to a low-caring physician. CONCLUSIONS Dominant and caring physicians elicit different emotional and behavioral responses from APs. Physician dominance reduces patient engagement in the medical dialog and produces submissiveness, whereas physician caring increases patient emotionality. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0512-5) contains supplementary material, which is available to authorized users. PMID:18259824

  16. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  17. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect to external events. Both VideoSwitcher and RTbox are available for users to purchase. The relevant information and many demonstration programs can be found at http://lobes.usc.edu/.

  18. Research on application of intelligent computation based LUCC model in urbanization process

    NASA Astrophysics Data System (ADS)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  19. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  20. Associative memory in an analog iterated-map neural network

    NASA Astrophysics Data System (ADS)

    Marcus, C. M.; Waugh, F. R.; Westervelt, R. M.

    1990-03-01

    The behavior of an analog neural network with parallel dynamics is studied analytically and numerically for two associative-memory learning algorithms, the Hebb rule and the pseudoinverse rule. Phase diagrams in the parameter space of analog gain β and storage ratio α are presented. For both learning rules, the networks have large ``recall'' phases in which retrieval states exist and convergence to a fixed point is guaranteed by a global stability criterion. We also demonstrate numerically that using a reduced analog gain increases the probability of recall starting from a random initial state. This phenomenon is comparable to thermal annealing used to escape local minima but has the advantage of being deterministic, and therefore easily implemented in electronic hardware. Similarities and differences between analog neural networks and networks with two-state neurons at finite temperature are also discussed.

  1. Construction of the Hunveyor-Husar space probe model system for planetary science education and analog studies and simulations in universities and colleges of Hungary.

    NASA Astrophysics Data System (ADS)

    Bérczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokiny, A.; Drommer, B.; Gucsik, A.; Pintér, A.; Kovács, Zs.

    Several teachers and students had the possibility to visit International Space Camp in the vicinity of the MSFC NASA in Huntsville Alabama USA where they learned the success of simulators in space science education To apply these results in universities and colleges in Hungary we began a unified complex modelling in planetary geology robotics electronics and complex environmental analysis by constructing an experimental space probe model system First a university experimental lander HUNVEYOR Hungarian UNiversity surVEYOR then a rover named HUSAR Hungarian University Surface Analyser Rover has been built For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies for the Husar the idea and example was the Pathfinder s rover Sojouner rover The first step was the construction of the lander a year later the rover followed The main goals are 1 to build the lander structure and basic electronics from cheap everyday PC compatible elements 2 to construct basic experiments and their instruments 3 to use the system as a space activity simulator 4 this simulator contains lander with on board computer for works on a test planetary surface and a terrestrial control computer 5 to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits 6 to use the complex system in education for in situ understanding complex planetary environmental problems 7 to build various planetary environments for application of the

  2. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  3. An investigation of potential applications of OP-SAPS: Operational sampled analog processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1976-01-01

    The impact of charge-coupled device (CCD) processors on future instrumentation was investigated. The CCD devices studied process sampled analog data and are referred to as OP-SAPS - operational sampled analog processors. Preliminary studies into various architectural configurations for systems composed of OP-SAPS show that they have potential in such diverse applications as pattern recognition and automatic control. It appears probable that OP-SAPS may be used to construct computing structures which can serve as special peripherals to large-scale computer complexes used in real time flight simulation. The research was limited to the following benchmark programs: (1) face recognition, (2) voice command and control, (3) terrain classification, and (4) terrain identification. A small amount of effort was spent on examining a method by which OP-SAPS may be used to decrease the limiting ground sampling distance encountered in remote sensing from satellites.

  4. Autonomous Telemetry Collection for Single-Processor Small Satellites

    NASA Technical Reports Server (NTRS)

    Speer, Dave

    2003-01-01

    For the Space Technology 5 mission, which is being developed under NASA's New Millennium Program, a single spacecraft processor will be required to do on-board real-time computations and operations associated with attitude control, up-link and down-link communications, science data processing, solid-state recorder management, power switching and battery charge management, experiment data collection, health and status data collection, etc. Much of the health and status information is in analog form, and each of the analog signals must be routed to the input of an analog-to-digital converter, converted to digital form, and then stored in memory. If the micro-operations of the analog data collection process are implemented in software, the processor may use up a lot of time either waiting for the analog signal to settle, waiting for the analog-to-digital conversion to complete, or servicing a large number of high frequency interrupts. In order to off-load a very busy processor, the collection and digitization of all analog spacecraft health and status data will be done autonomously by a field-programmable gate array that can configure the analog signal chain, control the analog-to-digital converter, and store the converted data in memory.

  5. Perspective: Electronic systems of knowledge in the world of virtual microscopy.

    PubMed

    Maybury, Terrence; Farah, Camile S

    2009-09-01

    Across a broad range of medical disciplines, learning how to use an optical or light microscope has been a mandatory inclusion in the undergraduate curriculum. The development of virtual microscopy (VM) technology during the past 10 years has called into question the use of the optical microscope in educational contexts. VM allows slide specimens to be digitized, which, in turn, allows the computer to mimic the workings of the light microscope. This move from analog technology (the light microscope) to digital technology (the computer as microscope) is part of the many significant changes going on in education, a singular manifestation of the broader move from print-literate traditions of knowledge (requiring literacy) to an electronics-literate, or "electrate," mode (requiring "electracy"). VM is here used as an exemplar of this broad transition from literacy to electracy, some components of which include data deluge, a multimodal structure, and modularity. Understandably, this transition is important to clarify educationally, especially in a global context mediated via digital means. A related aspect of these educational changes is the move from teacher-directed learning to student-centered learning, or "user-led education," which points to a redefinition of "pedagogy" as "andragogy." The dissemination of the specific value of VM, then, is critical to both learners and teachers and to a more coherent understanding of electracy. A practical consequence of this clarity might be a better application of this knowledge in the evolving fields of computer simulation and telemedicine, areas in which today's medical students will need future expertise.

  6. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE PAGES

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...

    2016-06-21

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  7. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  8. Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks

    PubMed Central

    Hellen, Edward H.; Dana, Syamal K.; Kurths, Jürgen; Kehler, Elizabeth; Sinha, Sudeshna

    2013-01-01

    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic. PMID:24124531

  9. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  10. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  11. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  12. Two analogy strategies: the cases of mind metaphors and introspection

    NASA Astrophysics Data System (ADS)

    Fischer, Eugen

    2018-04-01

    Analogical reasoning is often employed in problem-solving and metaphor interpretation. This paper submits that, as a default, analogical reasoning addressing these different tasks employs different mapping strategies. In problem-solving, it employs analogy-maximising strategies (like structure mapping, Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52, 45-56); in metaphor interpretation, analogy-minimising strategies (like ATT-Meta, Barnden, J. A. (2015). Open-ended elaborations in creative metaphor. In T. R. Besold, M. Schorlemmer, & A. Smaill (Eds.), Computational creativity research: Towards creative machines (pp. 217-242). Berlin: Springer). The two strategies interact in analogical reasoning with conceptual metaphors. This interaction leads to predictable fallacies. The paper supports these hypotheses through case-studies on "mind" metaphors from ordinary discourse, and abstract problem-solving in the philosophy of mind, respectively. It shows that (1) default metaphorical interpretations for vision- and space-cognition metaphors can be derived with a variant of the analogy-minimising ATT-Meta approach, (2) philosophically influential introspective conceptions of the mind can be derived with conceptual metaphors only through an analogy-maximising strategy, and (3) the interaction of these strategies leads to hitherto unrecognised fallacies in analogical reasoning with metaphors. This yields a debunking explanation of introspective conceptions.

  13. Structural design of intrinsically fluorescent oxysterols.

    PubMed

    Nåbo, Lina J; Modzel, Maciej; Krishnan, Kathiresan; Covey, Douglas F; Fujiwara, Hideji; Ory, Daniel S; Szomek, Maria; Khandelia, Himanshu; Wüstner, Daniel; Kongsted, Jacob

    2018-05-01

    Oxysterols are oxidized derivatives of cholesterol with many important biological functions. Trafficking of oxysterols in and between cells is not well studied, largely due to the lack of appropriate oxysterol analogs. Intrinsically fluorescent oxysterols present a new route towards direct observation of intracellular oxysterol trafficking by fluorescence microscopy. We characterize the fluorescence properties of the existing fluorescent 25-hydroxycholesterol analog 25-hydroxycholestatrienol, and propose a new probe with an extended conjugated system. The location of both probes inside a membrane is analyzed and compared with that of 25-hydroxycholesterol using molecular dynamics simulations. The analogs' one- and two-photon absorption properties inside the membrane are evaluated using electronic structure calculations with polarizable embedding. Due to predicted keto-enol tautomerisation of the new oxysterol analog, we also evaluate the keto form. Both analogs are found to be good probe candidates for 25-hydroxycholesterol, provided that the new analog remains in the enol-form. Only the new analog with extended conjugated system shows significant two-photon absorption, which is strongly enhanced by the presence of the membrane. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    NASA Astrophysics Data System (ADS)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik

    2013-12-01

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and "thresholding" operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that "spin-neurons" (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.

  15. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices.more » Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.« less

  16. Electric dipole moment of the electron and of the neutron

    NASA Technical Reports Server (NTRS)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  17. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  18. Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.

    ERIC Educational Resources Information Center

    Gilbert, D. D.; And Others

    1982-01-01

    Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…

  19. Time lens assisted photonic sampling extraction

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith Gordon

    Telecommunication bandwidth demands have dramatically increased in recent years due to Internet based services like cloud computing and storage, large file sharing, and video streaming. Additionally, sensing systems such as wideband radar, magnetic imaging resonance systems, and complex modulation formats to handle large data transfer in telecommunications require high speed, high resolution analog-to-digital converters (ADCs) to interpret the data. Accurately processing and acquiring the information at next generation data rates from these systems has become challenging for electronic systems. The largest contributors to the electronic bottleneck are bandwidth and timing jitter which limit speed and reduce accuracy. Optical systems have shown to have at least three orders of magnitude increase in bandwidth capabilities and state of the art mode locked lasers have reduced timing jitters into thousands of attoseconds. Such features have encouraged processing signals without the use of electronics or using photonics to assist electronics. All optical signal processing has allowed the processing of telecommunication line rates up to 1.28 Tb/s and high resolution analog-to-digital converters in the 10s of gigahertz. The major drawback to these optical systems is the high cost of the components. The application of all optical processing techniques such as a time lens and chirped processing can greatly reduce bandwidth and cost requirements of optical serial to parallel converters and push photonically assisted ADCs into the 100s of gigahertz. In this dissertation, the building blocks to a high speed photonically assisted ADC are demonstrated, each providing benefits to its own respective application. A serial to parallel converter using a continuously operating time lens as an optical Fourier processor is demonstrated to fully convert a 160-Gb/s optical time division multiplexed signal to 16 10-Gb/s channels with error free operation. Using chirped processing, an optical sample and hold concept is demonstrated and analyzed as a resolution improvement to existing photonically assisted ADCs. Simulations indicate that the application of a continuously operating time lens to a photonically assisted sampling system can increase photonically sampled systems by an order of magnitude while acquiring properties similar to an optical sample and hold system.

  20. Some Analogies between Computer Programming and the Composing Process.

    ERIC Educational Resources Information Center

    Skulicz, Matthew

    Since there are similarities between the process of writing computer programs and the process of writing successful expository prose, a student's knowledge of computer programing can contribute to the understanding of some principles of composition. The establishment of a clear objective is the first priority of both the writer and the programer,…

  1. Soviet Cybernetics Review, Vol. 3, No. 9, September 1969.

    ERIC Educational Resources Information Center

    Holland, Wade B., Ed.

    The issue features articles and photographs of computers displayed at the Automation-69 Exhibition in Moscow, especially the Mir-1 and Ruta-110. Also discussed are the Doza analog computer for radiological dosage; 'on-the-fly' output printers; other ways to increase computer speed and productivity; and the planned ultra-high-energy 1000-Bev…

  2. Divergent effects of compounds on the hydrolysis and transpeptidation reactions of γ-glutamyl transpeptidase.

    PubMed

    Wickham, Stephanie; Regan, Nicholas; West, Matthew B; Kumar, Vidya Prasanna; Thai, Justin; Li, Pui Kai; Cook, Paul F; Hanigan, Marie H

    2012-08-01

    A novel class of inhibitors of the enzyme γ-glutamyl transpeptidase (GGT) were evaluated. The analog OU749 was shown previously to be an uncompetitive inhibitor of the GGT transpeptidation reaction. The data in this study show that it is an equally potent uncompetitive inhibitor of the hydrolysis reaction, the primary reaction catalyzed by GGT in vivo. A series of structural analogs of OU749 were evaluated. For many of the analogs, the potency of the inhibition differed between the hydrolysis and transpeptidation reactions, providing insight into the malleability of the active site of the enzyme. Analogs with electron withdrawing groups on the benzosulfonamide ring, accelerated the hydrolysis reaction, but inhibited the transpeptidation reaction by competing with a dipeptide acceptor. Several of the OU749 analogs inhibited the transpeptidation reaction by slow onset kinetics, similar to acivicin. Further development of inhibitors of the GGT hydrolysis reaction is necessary to provide new therapeutic compounds.

  3. Electronic gaming machines: are they the 'crack-cocaine' of gambling?

    PubMed

    Dowling, Nicki; Smith, David; Thomas, Trang

    2005-01-01

    There is a general view that electronic gaming is the most 'addictive' form of gambling, in that it contributes more to causing problem gambling than any other gambling activity. As such, electronic gaming machines have been referred to as the 'crack-cocaine' of gambling. While this analogy has popular appeal, it is only recently that the scientific community has begun to investigate its validity. In line with the belief that electronic gambling has a higher 'addictive' potential than other forms of gambling, research has also begun to focus on identifying the characteristics of gaming machines that may be associated with problem gambling behaviour. This paper will review the different types of modern electronic gaming machines, and will use the introduction of gaming machines to Australia to examine the association between electronic gaming and problem gambling, with particular reference to the characteristics of modern electronic gaming machines. Despite overwhelming acceptance that gaming machines are associated with the highest level of problem gambling, the empirical literature provides inconclusive evidence to support the analogy linking electronic gaming to 'crack-cocaine'. Rigorous and systematic evaluation is required to establish definitively the absolute 'addictive' potential of gaming machines and the degree to which machine characteristics influence the development and maintenance of problem gambling behaviour.

  4. Creativity through Analogy. Proceedings of the ADCIS International Conference (31st, Washington, D.C., November 13-16, 1989).

    ERIC Educational Resources Information Center

    Association for the Development of Computer-based Instructional Systems.

    The theme of the 31st Conference of the International Association for the Development of Computer-Based Instructional Systems (ADCIS) was "Creativity through Analogy." This collection of conference presentations contains 66 papers and 131 abstracts for which there are no formal papers. The papers and abstracts are presented in two separate…

  5. Distributed Episodic and Analogical Reasoning (DEAR)

    DTIC Science & Technology

    2010-04-01

    of a more abstract class like environmental catastrophe. Analogical reasoning researchers like Gentner and Stevens (1983) caution that “the...hurricane and an earthquake can be useful for quickly determining how to respond to an environmental catastrophe in general but will need to be...with Uncertain Dynamic Outside Options. Proceedings of the First IEEE International Workshop on Electronic Contracting ( WEC 󈧈), p.54-61, July 06-06

  6. Spectroscopic and Computational Investigation of Iron(III) Cysteine Dioxygenase: Implications for the Nature of the Putative Superoxo-Fe(III) Intermediate

    PubMed Central

    2015-01-01

    Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron-dependent enzyme that converts exogenous cysteine (Cys) to cysteine sulfinic acid using molecular oxygen. Although the complete catalytic mechanism is not yet known, several recent reports presented evidence for an Fe(III)-superoxo reaction intermediate. In this work, we have utilized spectroscopic and computational methods to investigate the as-isolated forms of CDO, as well as Cys-bound Fe(III)CDO, both in the absence and presence of azide (a mimic of superoxide). An analysis of our electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance data of the azide-treated as-isolated forms of CDO within the framework of density functional theory (DFT) computations reveals that azide coordinates directly to the Fe(III), but not the Fe(II) center. An analogous analysis carried out for Cys-Fe(III)CDO provides compelling evidence that at physiological pH, the iron center is six coordinate, with hydroxide occupying the sixth coordination site. Upon incubation of this species with azide, the majority of the active sites retain hydroxide at the iron center. Nonetheless, a modest perturbation of the electronic structure of the Fe(III) center is observed, indicating that azide ions bind near the active site. Additionally, for a small fraction of active sites, azide displaces hydroxide and coordinates directly to the Cys-bound Fe(III) center to generate a low-spin (S = 1/2) Fe(III) complex. In the DFT-optimized structure of this complex, the central nitrogen atom of the azide moiety lies within 3.12 Å of the cysteine sulfur. A similar orientation of the superoxide ligand in the putative Fe(III)-superoxo reaction intermediate would promote the attack of the distal oxygen atom on the sulfur of substrate Cys. PMID:25093959

  7. Digital redesign of the control system for the Robotics Research Corporation model K-1607 robot

    NASA Technical Reports Server (NTRS)

    Carroll, Robert L.

    1989-01-01

    The analog control system for positioning each link of the Robotics Research Corporation Model K-1607 robot manipulator was redesigned for computer control. In order to accomplish the redesign, a linearized model of the dynamic behavior of the robot was developed. The parameters of the model were determined by examination of the input-output data collected in closed-loop operation of the analog control system. The robot manipulator possesses seven degrees of freedom in its motion. The analog control system installed by the manufacturer of the robot attempts to control the positioning of each link without feedback from other links. Constraints on the design of a digital control system include: the robot cannot be disassembled for measurement of parameters; the digital control system must not include filtering operations if possible, because of lack of computer capability; and criteria of goodness of control system performing is lacking. The resulting design employs sampled-data position and velocity feedback. The criteria of the design permits the control system gain margin and phase margin, measured at the same frequencies, to be the same as that provided by the analog control system.

  8. 'Soft' amplifier circuits based on field-effect ionic transistors.

    PubMed

    Boon, Niels; Olvera de la Cruz, Monica

    2015-06-28

    Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.

  9. Orbitals, Occupation Numbers, and Band Structure of Short One-Dimensional Cadmium Telluride Polymers.

    PubMed

    Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A

    2017-04-27

    Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.

  10. Scalable properties of metal clusters: A comparative study of modern exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Soini, Thomas M.; Genest, Alexander; Trickey, S. B.; Rösch, Notker

    2012-07-01

    The performance of eight generalized gradient approximation exchange-correlation (xc) functionals is assessed by a series of scalar relativistic all-electron calculations on octahedral palladium model clusters Pdn with n = 13, 19, 38, 55, 79, 147 and the analogous clusters Aun (for n up through 79). For these model systems, we determined the cohesive energies and average bond lengths of the optimized octahedral structures. We extrapolate these values to the bulk limits and compare with the corresponding experimental values. While the well-established functionals BP, PBE, and PW91 are the most accurate at predicting energies, the more recent forms PBEsol, VMTsol, and VT{84}sol significantly improve the accuracy of geometries. The observed trends are largely similar for both Pd and Au. In the same spirit, we also studied the scalability of the ionization potentials and electron affinities of the Pd clusters, and extrapolated those quantities to estimates of the work function. Overall, the xc functionals can be classified into four distinct groups according to the accuracy of the computed parameters. These results allow a judicious selection of xc approximations for treating transition metal clusters.

  11. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.

    PubMed

    Gawthrop, Peter J

    2017-04-01

    Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

  12. Kerman Photovoltaic Power Plant R&D data collection computer system operations and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, P.B.

    1994-06-01

    The Supervisory Control and Data Acquisition (SCADA) system at the Kerman PV Plant monitors 52 analog, 44 status, 13 control, and 4 accumulator data points in real-time. A Remote Terminal Unit (RTU) polls 7 peripheral data acquisition units that are distributed throughout the plant once every second, and stores all analog, status, and accumulator points that have changed since the last scan. The R&D Computer, which is connected to the SCADA RTU via a RS-232 serial link, polls the RTU once every 5-7 seconds and records any values that have changed since the last scan. A SCADA software package calledmore » RealFlex runs on the R&D computer and stores all updated data values taken from the RTU, along with a time-stamp for each, in a historical real-time database. From this database, averages of all analog data points and snapshots of all status points are generated every 10 minutes and appended to a daily file. These files are downloaded via modem by PVUSA/Davis staff every day, and the data is placed into the PVUSA database.« less

  13. Computers in the General Physics Laboratory.

    ERIC Educational Resources Information Center

    Preston, Daryl W.; Good, R. H.

    1996-01-01

    Provides ideas and outcomes for nine computer laboratory experiments using a commercial eight-bit analog to digital (ADC) interface. Experiments cover statistics; rotation; harmonic motion; voltage, current, and resistance; ADC conversions; temperature measurement; single slit diffraction; and radioactive decay. Includes necessary schematics. (MVL)

  14. Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nemanja; Salzmann, Susanne; Marian, Christel M.

    2008-06-01

    Minimum nuclear arrangements of the ground and low-lying excited electronic states of furan were obtained by means of (time dependent) Kohn-Sham density functional theory. A combined density functional/multi-reference configuration interaction method (DFT/MRCI) was employed to compute the spectral properties at these points. Multiple minima were found on the first excited singlet (S 1) potential energy hypersurface with electronic structures S1, S2, S3 corresponding to the 1 1A 2 (π → 3s-Ryd), 1 1B 2 (π → π ∗), and 2 1A 1 (π → π ∗) states in the vertical absorption spectrum, respectively. In analogy to recently published studies in thiophene [S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf, C.M. Marian, Phys. Chem. Chem. Phys. 10 (2008) 380] a deactivation mechanism for electronically excited furan was detected that involves the opening of the pentacyclic ring. We found a nearly barrierless relaxation pathway from the Franck-Condon region along a C-O bond-breaking coordinate. Hereby the initially excited 1B 2 (π → π ∗) state undergoes a conical intersection with a 1B 1 (π → σ ∗) state. The system can return to the electronic ground state through a second conical intersection of the 1(π → σ ∗) state before the minimum of that B 1 state is reached.

  15. How learning one category influences the learning of another: intercategory generalization based on analogy and specific stimulus information.

    PubMed

    Nahinsky, Irwin D; Lucas, Barbara A; Edgell, Stephen E; Overfelt, Joseph; Loeb, Richard

    2004-01-01

    We investigated the effect of learning one category structure on the learning of a related category structure. Photograph-name combinations, called identifiers, were associated with values of four demographic attributes. Two problems were related by analogous demographic attributes, common identifiers, or both to examine the impact of common identifier, related general characteristics, and the interaction of the two variables in mediating learning transfer from one category structure to another. Problems sharing the same identifier information prompted greater positive transfer than those not sharing the same identifier information. In contrast, analogous defining characteristics in the two problems did not facilitate transfer. We computed correlations between responses to first-problem stimuli and responses to analogous second-problem stimuli for each participant. The analogous characteristics produced a tendency to respond in the same way to corresponding stimuli in the two problems. The results support an alignment between category structures related by analogous defining characteristics, which is facilitated by specific identifier information shared by two category structures.

  16. Rotary encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  17. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    ERIC Educational Resources Information Center

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  18. Method and apparatus for data decoding and processing

    DOEpatents

    Hunter, Timothy M.; Levy, Arthur J.

    1992-01-01

    A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.

  19. Electron and Ion Conductivity Calculations using the Model of Lee and More

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, John C.

    The following notes describe the ARES implementation of the inverse of the electron conduction coefficient, using the model of Lee and More, Physics of Fluids 27, page 1273, 1984. An addendum describing the modifications for analogous ion conduction coeffiecient appears at the bottom.

  20. Simulation Accelerator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract, (NAS5-30905), EAI Simulation Associates, Inc., developed a new digital simulation computer, Starlight(tm). With an architecture based on the analog model of computation, Starlight(tm) outperforms all other computers on a wide range of continuous system simulation. This system is used in a variety of applications, including aerospace, automotive, electric power and chemical reactors.

  1. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  2. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

    PubMed

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E

    2014-06-01

    Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A data mining method to facilitate SAR transfer.

    PubMed

    Wassermann, Anne Mai; Bajorath, Jürgen

    2011-08-22

    A challenging practical problem in medicinal chemistry is the transfer of SAR information from one chemical series to another. Currently, there are no computational methods available to rationalize or support this process. Herein, we present a data mining approach that enables the identification of alternative analog series with different core structures, corresponding substitution patterns, and comparable potency progression. Scaffolds can be exchanged between these series and new analogs suggested that incorporate preferred R-groups. The methodology can be applied to search for alternative analog series if one series is known or, alternatively, to systematically assess SAR transfer potential in compound databases.

  4. An analog retina model for detecting dim moving objects against a bright moving background

    NASA Technical Reports Server (NTRS)

    Searfus, R. M.; Colvin, M. E.; Eeckman, F. H.; Teeters, J. L.; Axelrod, T. S.

    1991-01-01

    We are interested in applications that require the ability to track a dim target against a bright, moving background. Since the target signal will be less than or comparable to the variations in the background signal intensity, sophisticated techniques must be employed to detect the target. We present an analog retina model that adapts to the motion of the background in order to enhance targets that have a velocity difference with respect to the background. Computer simulation results and our preliminary concept of an analog 'Z' focal plane implementation are also presented.

  5. Using NCAR Yellowstone for PhotoVoltaic Power Forecasts with Artificial Neural Networks and an Analog Ensemble

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L.

    2016-12-01

    A methodology based on Artificial Neural Networks (ANN) and an Analog Ensemble (AnEn) is presented to generate 72-hour deterministic and probabilistic forecasts of power generated by photovoltaic (PV) power plants using input from a numerical weather prediction model and computed astronomical variables. ANN and AnEn are used individually and in combination to generate forecasts for three solar power plant located in Italy. The computational scalability of the proposed solution is tested using synthetic data simulating 4,450 PV power stations. The NCAR Yellowstone supercomputer is employed to test the parallel implementation of the proposed solution, ranging from 1 node (32 cores) to 4,450 nodes (141,140 cores). Results show that a combined AnEn + ANN solution yields best results, and that the proposed solution is well suited for massive scale computation.

  6. Compressed sensing: Radar signal detection and parameter measurement for EW applications

    NASA Astrophysics Data System (ADS)

    Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara

    2016-09-01

    State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.

  7. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  8. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  9. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    NASA Astrophysics Data System (ADS)

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  10. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  11. Demonstrating Proof by Contrapositive and Contradiction through Physical Analogs.

    ERIC Educational Resources Information Center

    Kaiser, Mark J.

    1993-01-01

    Presents examples where mathematical and physical reasoning complement each other in interpreting and analyzing some basic science concepts using proof by contradiction and contrapositive. Examples involve the rotation of the moon, the stability of electrons and protons, the electron's orbit about the nucleus, and the earth's liquid core. (MDH)

  12. The Periodic Table as a Mnemonic Device for Writing Electronic Configurations.

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2003-01-01

    Presents an interactive method for using the periodic table as an effective mnemonic for writing electronic configurations. Discusses the intrinsic relevance of configurations to chemistry by building upon past analogies. Addresses pertinent background information, describes the hands-on method, and demonstrates its use. Transforms the traditional…

  13. Winning the Energy Game.

    ERIC Educational Resources Information Center

    Zielinski, Edward J.; Bethel, Lowell J.

    1983-01-01

    Describes the use of an Energy-Environment Simulator in environmental/energy education programs. The simulator is a specially designed analog computer that simulates real-world conditions of energy production and use. Energy resources, demands, and the environmental effects of energy use are programmed into the computer. (Author/JN)

  14. Eight-Channel Digital Signal Processor and Universal Trigger Module

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Wolfs, Frank

    2003-04-01

    A 10-bit, 8-channel, 40 megasamples per second digital signal processor and waveform digitizer DDC-8 (nicknamed Universal Trigger Module) is presented. The digitizer features 8 analog inputs, 1 analog output for a reconstructed analog waveform, 16 NIM logic inputs, 8 NIM logic outputs, and a pool of 16 TTL logic lines which can be individually configured as either inputs or outputs. The first application of this device is to enhance the present trigger electronics for PHOBOS at RHIC. The status of the development and the first results are presented. Possible applications of the new device are discussed. Supported by the NSF grant PHY-0072204.

  15. A study on airborne integrated display system and human information processing

    NASA Technical Reports Server (NTRS)

    Mizumoto, K.; Iwamoto, H.; Shimizu, S.; Kuroda, I.

    1983-01-01

    The cognitive behavior of pilots was examined in an experiment involving mock ups of an eight display electronic attitude direction indicator for an airborne integrated display. Displays were presented in digital, analog digital, and analog format to experienced pilots. Two tests were run, one involving the speed of memorization in a single exposure and the other comprising two five second exposures spaced 30 sec apart. Errors increased with the speed of memorization. Generally, the analog information was assimilated faster than the digital data, with regard to the response speed. Information processing was quantified as 25 bits for the first five second exposure and 15 bits during the second.

  16. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform

    PubMed Central

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B.

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks. PMID:26909015

  17. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    PubMed

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.

  18. Tomographic and analog 3-D simulations using NORA. [Non-Overlapping Redundant Image Array formed by multiple pinholes

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.

    1984-01-01

    The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.

  19. Rotary encoding device with polygonal reflector and centroid detection

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1994-01-01

    A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  20. Linear encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

  1. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.

  2. Avoiding Split Attention in Computer-Based Testing: Is Neglecting Additional Information Facilitative?

    ERIC Educational Resources Information Center

    Jarodzka, Halszka; Janssen, Noortje; Kirschner, Paul A.; Erkens, Gijsbert

    2015-01-01

    This study investigated whether design guidelines for computer-based learning can be applied to computer-based testing (CBT). Twenty-two students completed a CBT exam with half of the questions presented in a split-screen format that was analogous to the original paper-and-pencil version and half in an integrated format. Results show that students…

  3. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances

    DOE PAGES

    Dantas, Joana M.; Kokhan, Oleksandr; Pokkuluri, P. Raj; ...

    2015-06-09

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH 2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA andmore » AH 2QDS, and to measure their binding affinity. The results showed that the AH 2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (- 127 mV) compared to that of AH 2QDS (- 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH 2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. In conclusion, such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs.« less

  4. A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Owen, Jeffrey E.

    1988-01-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  5. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin

    PubMed Central

    Liu, Yan; Li, Nan; Qi, Yipin; Niu, Li-na; Elshafiy, Sally; Mao, Jing; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Objectives This study examined the use of sodium trimetaphosphate (STMP) as a biomimetic analog of matrix phosphoproteins for remineralization of artificial carious-affected dentin. Methods Artificial carious lesions with lesion depths of 300±30 µm were created by pH-cycling. 2.5% hydrolyzed STMP was applied to the artificial carious lesions to phosphorylate the partially-demineralized collagen matrix. Half of the STMP-treated specimens were bonded with One-Step. The adhesive and non-adhesive infiltrated specimens were remineralized in a Portland cement-simulated body fluid system containing polyacrylic acid (PAA) to stabilize amorphous calcium phosphate as nanoprecursors. Micro-computed tomography (micro-CT) and transmission electron microscopy (TEM) were used to evaluate the results of remineralization after a 4-month period. Results In absence of PAA and STMP as biomimetic analogs (control groups), there was no remineralization irrespective of whether the lesions were infiltrated with adhesive. For the STMP-treated experimental groups immersed in PAA-containing simulated body fluid, specimens without adhesive infiltration were more heavily remineralized than those infiltrated with adhesive. Statistical analysis of the 4-month micro-CT data revealed significant differences in the lesion depth, relative mineral content along the lesion surface and changes in ΔZ between the non-adhesive and adhesive experimental groups (p<0.05 for all the three parameters). TEM examination indicated that collagen degradation occurred in both the non-adhesive and adhesive control and experimental groups after 4 months of remineralization. Significance Biomimetic remineralization using STMP is a promising method to remineralize artificial carious lesions particularly in areas devoid of seed crystallites. Future studies should consider the incorporation of MMP-inhibitors within the partially-demineralized collagen matrix to prevent collagen degradation during remineralization. PMID:21354608

  6. A system for automatic analysis of blood pressure data for digital computer entry

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1972-01-01

    Operation of automatic blood pressure data system is described. Analog blood pressure signal is analyzed by three separate circuits, systolic, diastolic, and cycle defect. Digital computer output is displayed on teletype paper tape punch and video screen. Illustration of system is included.

  7. Animatronics, Children and Computation

    ERIC Educational Resources Information Center

    Sempere, Andrew

    2005-01-01

    In this article, we present CTRL_SPACE: a design for a software environment with companion hardware, developed to introduce preliterate children to basic computational concepts by means of an animatronic face, whose individual features serve as an analogy for a programmable object. In addition to presenting the environment, this article briefly…

  8. Biomedical implications of information processing in chemical systems: non-classical approach to photochemistry of coordination compounds.

    PubMed

    Szaciłowski, Konrad

    2007-01-01

    Analogies between photoactive nitric oxide generators and various electronic devices: logic gates and operational amplifiers are presented. These analogies have important biological consequences: application of control parameters allows for better targeting and control of nitric oxide drugs. The same methodology may be applied in the future for other therapeutic strategies and at the same time helps to understand natural regulatory and signaling processes in biological systems.

  9. Electron doped layered nickelates: Spanning the phase diagram of the cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botana, Antia S.; Pardo, Victor; Norman, Michael R.

    2017-07-01

    Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.

  10. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200more » MHz signal and precisely control amplitude and phase.« less

  11. COED Transactions, Vol. X, No. 7 & 8, July/August 1978. Bridging Theory and Reality: Analog Simulation as an Aid to Heuristic Understanding.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    A particularly difficult area for many engineering students is the approximate nature of the relation between models and physical systems. This is notably true when the models consist of differential equations. An approach applied to this problem has been to use analog computers to assist in portraying the output of a model as it is progressively…

  12. Microprocessor-based cardiotachometer

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Donaldson, J. A.

    1981-01-01

    Instrument operates reliably even with stress-test electrocardiogram (ECG) signals subject to noise, baseline wandering, and amplitude change. It records heart rate from preamplified, single-lead ECG input signal and produces digital and analog heart-rate outputs which are fed elsewhere. Analog hardware processes ECG input signal, producing 10-ms pulse for each heartbeat. Microprocessor analyzes resulting pulse train, identifying irregular heartbeats and maintaining stable output during lead switching. Easily modified computer program provides analysis.

  13. Investigation of the bindings of a class of inhibitors with GSK3β kinase using thermodynamic integration MD simulation and kinase assay.

    PubMed

    Hsu, Chia-Jen; Hsu, Wen-Chi; Lee, Der-Jay; Liu, An-Lun; Chang, Chia-Ming; Shih, Huei-Jhen; Huang, Wun-Han; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu Mei; Lee, Guan-Chiun; Sun, Ying-Chieh

    2017-08-01

    GSK3β kinase is a noteworthy target for discovery of the drugs that will be used to treat several diseases. In the effort to identify a new inhibitor lead compound, we utilized thermodynamic integration (TI)-molecular dynamics (MD) simulation and kinase assay to investigate the bindings between GSK3β kinase and five compounds that were analogous to a known inhibitor with an available crystal structure. TI-MD simulations of the first two compounds (analogs 1 and 2) were used for calibration. The computed binding affinities of analogs 1 and 2 agreed well with the experimental results. The rest three compounds (analogs 3-5) were newly obtained from a database search, and their affinity data were newly measured in our labs. TI-MD simulations predicted the binding modes and the computed ΔΔG values have a reasonably good correlation with the experimental affinity data. These newly identified inhibitors appear to be new leads according to our survey of GSK3β inhibitors listed in recent review articles. The predicted binding modes of these compounds should aid in designing new derivatives of these compounds in the future. © 2017 John Wiley & Sons A/S.

  14. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity

    PubMed Central

    Prakash, Thazha P.; Lima, Walt F.; Murray, Heather M.; Li, Wenyu; Kinberger, Garth A.; Chappell, Alfred E.; Gaus, Hans; Seth, Punit P.; Bhat, Balkrishen; Crooke, Stanley T.; Swayze, Eric E.

    2015-01-01

    The ss-siRNA activity in vivo requires a metabolically stable 5′-phosphate analog. In this report we used crystal structure of the 5′-phosphate binding pocket of Ago-2 bound with guide strand to design and synthesize ss-siRNAs containing various 5′-phosphate analogs. Our results indicate that the electronic and spatial orientation of the 5′-phosphate analog was critical for ss-siRNA activity. Chemically modified ss-siRNA targeting human apoC III mRNA demonstrated good potency for inhibiting ApoC III mRNA and protein in transgenic mice. Moreover, ApoC III ss-siRNAs were able to reduce the triglyceride and LDL cholesterol in transgenic mice demonstrating pharmacological effect of ss-siRNA. Our study provides guidance to develop surrogate phosphate analog for ss-siRNA and demonstrates that ss-siRNA provides an alternative strategy for therapeutic gene silencing. PMID:25753666

  15. Intrinsic Hardware Evolution for the Design and Reconfiguration of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.

  16. Six networks on a universal neuromorphic computing substrate.

    PubMed

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

  17. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  18. Six Networks on a Universal Neuromorphic Computing Substrate

    PubMed Central

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A.; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality. PMID:23423583

  19. Data and results of a laboratory investigation of microprocessor upset caused by simulated lightning-induced analog transients

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.

    1984-01-01

    Advanced composite aircraft designs include fault-tolerant computer-based digital control systems with thigh reliability requirements for adverse as well as optimum operating environments. Since aircraft penetrate intense electromagnetic fields during thunderstorms, onboard computer systems maya be subjected to field-induced transient voltages and currents resulting in functional error modes which are collectively referred to as digital system upset. A methodology was developed for assessing the upset susceptibility of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general-purpose microprocessor were studied via tests which involved the random input of analog transients which model lightning-induced signals onto interface lines of an 8080-based microcomputer from which upset error data were recorded. The application of Markov modeling to upset susceptibility estimation is discussed and a stochastic model development.

  20. Non-standard analysis and embedded software

    NASA Technical Reports Server (NTRS)

    Platek, Richard

    1995-01-01

    One model for computing in the future is ubiquitous, embedded computational devices analogous to embedded electrical motors. Many of these computers will control physical objects and processes. Such hidden computerized environments introduce new safety and correctness concerns whose treatment go beyond present Formal Methods. In particular, one has to begin to speak about Real Space software in analogy with Real Time software. By this we mean, computerized systems which have to meet requirements expressed in the real geometry of space. How to translate such requirements into ordinary software specifications and how to carry out proofs is a major challenge. In this talk we propose a research program based on the use of no-standard analysis. Much detail remains to be carried out. The purpose of the talk is to inform the Formal Methods community that Non-Standard Analysis provides a possible avenue to attack which we believe will be fruitful.

  1. Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics

    NASA Technical Reports Server (NTRS)

    Tan, Xiaofeng; Salama, Farid

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.

  2. Irmpd Action Spectroscopy and Computational Approaches to Elucidate Gas-Phase Structures and Energetics of 2'-DEOXYCYTIDINE and Cytidine Sodium Complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.

    2016-06-01

    The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.

  3. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  4. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    NASA Astrophysics Data System (ADS)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  5. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  6. Transitioning to digital radiography.

    PubMed

    Drost, Wm Tod

    2011-04-01

    To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.

  7. Rubrolides as model for the development of new lactones and their aza analogs as potential photosynthesis inhibitors.

    PubMed

    Pereira, Ulisses A; Barbosa, Luiz C A; Demuner, Antônio J; Silva, Antônio A; Bertazzini, Michele; Forlani, Giuseppe

    2015-07-01

    Natural phytotoxins and their synthetic analogs are a potential source of new bioactive compounds for agriculture. Analogs of rubrolides, a class of γ-alkylidene-γ-lactones isolated from different ascidians, have been shown to interfere with the photosynthetic electron-transport chain, yet their activity needs to be improved. With this aim, ten 5-aryl-6-benzyl-4-bromopyridazin-3(2H)-ones were prepared in yields ranging from 44 to 88% by reaction of their correspondent γ-alkylidene-γ-lactones with NH2 NH2 . The structures of these rubrolide analogs were determined by (1) H- and (13) C-NMR, 2D-NMR (COSY and HETCOR), NOE difference, and MS techniques. These compounds were evaluated for their abilities of interfering with the light-driven reduction of ferricyanide by isolated spinach chloroplasts. Lactones with electron-withdrawing substituents in the para-position of the benzylidene ring were the most effective inhibitors. Characterization of the activity of 11b/11b' suggested a mechanism based on the interaction with the plastoquinone binding site of photosystem II. Addition of several compounds to the culture medium of a cyanobacterial model strain was found to inhibit algal growth. However, the relative effectiveness was not consistent with their activity in vitro, suggesting the occurrence of multiple targets and/or detoxyfication mechanisms. Indeed, the compounds showed differential effects on the heterotrophic growth of some crop species, Cucumis sativus and Sorghum bicolor. Pyridazin-3(2H)-ones 12e, 12i, and 12j, which have been found poorly active against the photosynthetic electron transport, were the most effective in inhibiting the growth of some weeds, Ipomoea grandifolia and Brachiaria decumbens, under greenhouse conditions. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Quinoline-Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm2 V-1 s-1 in Flexible Thin Film Devices.

    PubMed

    Ni, Zhenjie; Dong, Huanli; Wang, Hanlin; Ding, Shang; Zou, Ye; Zhao, Qiang; Zhen, Yonggang; Liu, Feng; Jiang, Lang; Hu, Wenping

    2018-03-01

    Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm 2 V -1 s -1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 10 5 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  10. Triazolophostins: a library of novel and potent agonists of IP3 receptors† †Electronic supplementary information (ESI) available: Synthetic procedures and spectral data for all new compounds, crystal data for disaccharide 4 and details of the docking study. CCDC 1022279. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob00440c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Vibhute, Amol M.; Konieczny, Vera; Taylor, Colin W.

    2015-01-01

    IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs. PMID:25869535

  11. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    ERIC Educational Resources Information Center

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  12. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  13. Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl

    2007-01-01

    Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.

  14. Calculations of Electron Transport through Radicals

    NASA Astrophysics Data System (ADS)

    Smeu, Manuel; Dilabio, Gino

    2010-03-01

    Organic radicals are of interest in molecular electronics because a singly occupied molecular orbital (SOMO) would have a higher energy than its doubly occupied analog, suggesting they might make better conductors. The unpaired electron present in a radical leads to degeneracy splitting in other energy levels and such molecules may act as spin filters. Our study employs first principles transport calculations that are performed using a combination of density functional theory and a non-equilibrium Green's function technique. The conductance of 1,4-benzenediamine (BDA) molecules bridging two Au electrodes was modeled. These molecules were substituted in the 2-position with: -CH3, -NH2, and -OH; as well as with their radical analogs: -CH2, -NH, and -O, all of which have π-type SOMOs. The conductance of a radical with a σ-type SOMO was also calculated from a BDA molecule with the H atom in the 2-position removed. Comparing the transmission spectra for these species will yield insight into the nature of electron transport through radicals vs. transport through their reduced form as well as the nature of transport through π- and σ-type molecular orbitals.

  15. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan

    2017-12-01

    Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.

  16. A Laboratory Application of Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  17. Advanced Signal Conditioners for Data-Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro

    2004-01-01

    Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the reliability of each component is assessed in terms of such considerations as risks of damage, mean times between failures, and the effects of certain failures on the performance of the signal conditioner as a whole system. Then, fewer or more spares are assigned for each affected component, pursuant to the results of this analysis, in order to obtain the required degree of reliability of the signal conditioner as a whole system. The digital module comprises one or more processors and field-programmable gate arrays, the number of each depending on the results of the aforementioned analysis. The digital module provides redundant control, monitoring, and processing of several analog signals. It is designed to minimize unnecessary consumption of electric energy, including, when possible, going into a low-power "sleep" mode that is implemented in firmware. The digital module communicates with external equipment via a personal-computer serial port. The digital module monitors the "health" of the rest of the signal conditioner by processing defined measurements and/or trends. It automatically makes adjustments to respond to channel failures, compensate for effects of temperature, and maintain calibration.

  18. On the Possibility of Superconductivity in Bilayer Heterostructures

    NASA Astrophysics Data System (ADS)

    Iordansky, S. V.

    2018-04-01

    A model is created for bilayer heterostructures in a strong magnetic field which makes it possible to neglect the Coulomb interaction. The thermodynamic instability of states of the electron system in a strong magnetic field leads to the formation of a periodic vortex lattice. The case is considered where the electron density is close to the density of the half-filled Landau level. An electron spectrum is found and an analog of the Cooper effect appearing under the Bogoliubov canonical transformation for electron Fermi operators is studied.

  19. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  20. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  1. Data acquisition from blast overpressure trials

    NASA Astrophysics Data System (ADS)

    Kirk, D. R.

    1993-03-01

    A Macintosh computer has been used to acquire data from blast overpressure trials on various weapons. The computer is connected to a multiple channel FM data recorder via a MacSCS1488 bus controller, allowing the computer to control the recorder and to acquire data from it through an analog to digital converter. Detailed instructions are given for connecting the hardware and operating the software involved.

  2. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.

    PubMed

    Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A

    2011-04-01

    The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics

  3. Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator

    DTIC Science & Technology

    1992-04-01

    mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects

  4. Hybrid measurement chains for the SAS-C spacecraft. [advantages over analog signal processing circuits

    NASA Technical Reports Server (NTRS)

    Goeke, R. F.

    1975-01-01

    Spacecraft electronic systems usually demand tight packaging. It was this consideration which initially forced us to consider hybrid circuits for the analog signal processing circuits in the Small Astronomy Satellite-C (SAS-C) scientific payload. We gradually discovered that increased reliability, low power consumption, and reduced program costs all followed. This paper will attempt to share our laboratory's first experience with hybrid circuits and indicate those areas which we found to be important.

  5. Topological dynamics of gyroscopic and Floquet lattices from Newton's laws

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Li, Guangjie; Jin, Guliuxin; Liu, Yuhan; Zhang, Xiao

    2018-02-01

    Despite intense interest in realizing topological phases across a variety of electronic, photonic, and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes—boundary localization and chirality—emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, an experimentally realistic mechanical nonequilibrium (Floquet) Chern lattice driven by ac electromagnets. Through appropriate synchronization of the ac driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog, i.e., analogs of anomalous Floquet Chern insulators edge modes. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems is applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.

  6. A Generalized Experiment Control and Data Acquisition System.

    DTIC Science & Technology

    1981-03-01

    1205 Multiplexer Harris H13-0506-5 Instrumentation Anplifier Analog Devices 605K-100 DC/DC Converter Analog Devices 940 Carrying Case Zero Corporation...from the Miniterm to the computer which will perform data reduction and/or provide long-term storage. This mode is also used to transfer the absolute ...tenperature reading in channel i, say, is over 350 degrees Farenheit when certain chemical reactions are known to take place. The dependency file

  7. Reconfigurable nanoscale spin-wave directional coupler

    PubMed Central

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117

  8. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less

  9. Reconfigurable nanoscale spin-wave directional coupler.

    PubMed

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.

  10. Silicon Schottky Diode Safe Operating Area

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Campola, Michael J.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Phan, Anthony M.; LaBel, Kenneth A.

    2016-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  11. Proceedings of the International Conference on Stiff Computation, April 12-14, 1982, Park City, Utah. Volume I.

    DTIC Science & Technology

    1982-01-01

    physical reasoning and based on computational experience with similar equations. There is another non- automatic way: through proper scaling of all...1979) for an automatic scheme for this scaling on a digitial computer . Shampine(1980) reports a special definition of stiffness appropriate for...an analog for a laboratory that typically already has a digital computer . The digitial is much more versatile. Also there does not yet exist " software

  12. The spectroscopic impact of interactions with the four Gouterman orbitals from peripheral decoration of porphyrins with simple electron withdrawing and donating groups.

    PubMed

    Zhang, Angel; Kwan, Lydia; Stillman, Martin J

    2017-11-07

    Tetrapyrroles are of great interest for solar cell and photodynamic therapy applications due to their structural analogy with chlorophyll, a natural photosensitizer. Unsubstituted symmetric porphyrins exhibit weak absorption in the red region which makes them unsuitable for these applications. The push-pull peripheral decoration modifies the energies of the frontier molecular orbitals, which in turn influences the tetrapyrrole's spectroscopic properties. The absorption, magnetic circular dichroism, and emission spectra were measured for four zinc tetratolylporphyrin compounds substituted peripherally with a fused dimethoxybenzo group as an electron withdrawing group (EWG) on one pyrrole and on the opposite pyrrole, a single acetamido (1), a nitro (2), a proton (3), or a benzoylamino (4) substituent. Unusually, the magnetic circular dichroism spectrum of 2 exhibited a negative A term for the lowest energy absorption band (the Q band) and its emission spectrum was also unlike those of 1, 3, and 4. A complete computational analysis was carried out to obtain the energies and electron distribution, shown by electron density surfaces, of the four Gouterman MOs. TD-DFT calculations showed that for 2, ΔLUMO was greater than ΔHOMO, which accounted for the observed negative A term. The trend in the estimated MCD A term magnitudes, normalized to the absorbance as [A/(dipole strength) BM], provides experimental confirmation of the computationally determined ratio of ΔLUMO/ΔHOMO data. The value of ΔHOMO was confirmed by the trend in oscillator strengths. A series of fictive porphyrins (F1-F5) incorporating simple push-pull substituents were designed and their electronic structures were investigated using TD-DFT calculations. The substituents in the five fictive molecules illustrate the differential effect of the donor and acceptor groups in the β-position of the pyrroles on the relative stabilities of the four Gouterman orbitals. NO 2 groups result in the greatest splitting of the LUMO pair. We show that on using strong EWGs, opposite electron donating groups result in a ΔLUMO > 0, which red-shifts the Q band and introduces a strong dipole. With the nitro and formyl EWGs, ΔLUMO becomes greater than ΔHOMO, resulting in a complex electronic structure of the Q band, recognizable by a negative A term suggesting a design objective for future photosensitizers.

  13. A neurocomputational system for relational reasoning.

    PubMed

    Knowlton, Barbara J; Morrison, Robert G; Hummel, John E; Holyoak, Keith J

    2012-07-01

    The representation and manipulation of structured relations is central to human reasoning. Recent work in computational modeling and neuroscience has set the stage for developing more detailed neurocomputational models of these abilities. Several key neural findings appear to dovetail with computational constraints derived from a model of analogical processing, 'Learning and Inference with Schemas and Analogies' (LISA). These include evidence that (i) coherent oscillatory activity in the gamma and theta bands enables long-distance communication between the prefrontal cortex and posterior brain regions where information is stored; (ii) neurons in prefrontal cortex can rapidly learn to represent abstract concepts; (iii) a rostral-caudal abstraction gradient exists in the PFC; and (iv) the inferior frontal gyrus exerts inhibitory control over task-irrelevant information. Copyright © 2012. Published by Elsevier Ltd.

  14. Computational analysis of the binding ability of heterocyclic and conformationally constrained epibatidine analogs in the neuronal nicotinic acetylcholine receptor.

    PubMed

    Soriano, Elena; Marco-Contelles, José; Colmena, Inés; Gandía, Luis

    2010-05-01

    One of the most critical issues on the study of ligand-receptor interactions in drug design is the knowledge of the bioactive conformation of the ligand. In this study, we describe a computational approach aimed at estimating the binding ability of epibatidine analogs to interact with the neuronal nicotinic acetylcholine receptor (nAChR) and get insights into the bioactive conformation. The protocol followed consists of a docking analysis and evaluation of pharmacophore parameters of the docked structures. On the basis of the biological data, the results have revealed that the docking analysis is able to predict active ligands, whereas further efforts are needed to develop a suitable and solid pharmacophore model.

  15. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  16. A High-Performance Neural Prosthesis Incorporating Discrete State Selection With Hidden Markov Models.

    PubMed

    Kao, Jonathan C; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V

    2017-04-01

    Communication neural prostheses aim to restore efficient communication to people with motor neurological injury or disease by decoding neural activity into control signals. These control signals are both analog (e.g., the velocity of a computer mouse) and discrete (e.g., clicking an icon with a computer mouse) in nature. Effective, high-performing, and intuitive-to-use communication prostheses should be capable of decoding both analog and discrete state variables seamlessly. However, to date, the highest-performing autonomous communication prostheses rely on precise analog decoding and typically do not incorporate high-performance discrete decoding. In this report, we incorporated a hidden Markov model (HMM) into an intracortical communication prosthesis to enable accurate and fast discrete state decoding in parallel with analog decoding. In closed-loop experiments with nonhuman primates implanted with multielectrode arrays, we demonstrate that incorporating an HMM into a neural prosthesis can increase state-of-the-art achieved bitrate by 13.9% and 4.2% in two monkeys ( ). We found that the transition model of the HMM is critical to achieving this performance increase. Further, we found that using an HMM resulted in the highest achieved peak performance we have ever observed for these monkeys, achieving peak bitrates of 6.5, 5.7, and 4.7 bps in Monkeys J, R, and L, respectively. Finally, we found that this neural prosthesis was robustly controllable for the duration of entire experimental sessions. These results demonstrate that high-performance discrete decoding can be beneficially combined with analog decoding to achieve new state-of-the-art levels of performance.

  17. Principles for Integrating Mars Analog Science, Operations, and Technology Research

    NASA Technical Reports Server (NTRS)

    Clancey, William J.

    2003-01-01

    During the Apollo program, the scientific community and NASA used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. Human factors studies (Harrison, Clearwater, & McKay 1991; Stuster 1996) have focused on the effects of isolation in extreme environments. More recently, with the advent of wireless computing, we have prototyped advanced EVA technologies for navigation, scheduling, and science data logging (Clancey 2002b; Clancey et al., in press). Combining these interests in a single expedition enables tremendous synergy and authenticity, as pioneered by Pascal Lee's Haughton-Mars Project (Lee 2001; Clancey 2000a) and the Mars Society s research stations on a crater rim on Devon Island in the High Canadian Arctic (Clancey 2000b; 2001b) and the Morrison Formation of southeast Utah (Clancey 2002a). Based on this experience, the following principles are proposed for conducting an integrated science, operations, and technology research program at analog sites: 1) Authentic work; 2) PI-based projects; 3) Unencumbered baseline studies; 4) Closed simulations; and 5) Observation and documentation. Following these principles, we have been integrating field science, operations research, and technology development at analog sites on Devon Island and in Utah over the past five years. Analytic methods include work practice simulation (Clancey 2002c; Sierhuis et a]., 2000a;b), by which the interaction of human behavior, facilities, geography, tools, and procedures are formalized in computer models. These models are then converted into the runtime EVA system we call mobile agents (Clancey 2002b; Clancey et al., in press). Furthermore, we have found that the Apollo Lunar Surface Journal (Jones, 1999) provides a vast repository or understanding astronaut and CapCom interactions, serving as a baseline for Mars operations and quickly highlighting opportunities for computer automation (Clancey, in press).

  18. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  19. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  20. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

Top