Sample records for electronic circuits

  1. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  2. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  3. Electronic circuits: A compilation. [for electronic equipment in telecommunication

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation containing articles on newly developed electronic circuits and systems is presented. It is divided into two sections: (1) section 1 on circuits and techniques of particular interest in communications technology, and (2) section 2 on circuits designed for a variety of specific applications. The latest patent information available is also given. Circuit diagrams are shown.

  4. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  5. Electronic circuit for measuring series connected electrochemical cell voltages

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2000-01-01

    An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

  6. An Electronics Course Emphasizing Circuit Design

    ERIC Educational Resources Information Center

    Bergeson, Haven E.

    1975-01-01

    Describes a one-quarter introductory electronics course in which the students use a variety of inexpensive integrated circuits to design and construct a large number of useful circuits. Presents the subject matter of the course in three parts: linear circuits, digital circuits, and more complex circuits. (GS)

  7. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Davidson, James Courtney [Livermore, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K [Tracy, CA; Benett, William J [Livermore, CA; Tovar, Armando R [San Antonio, TX

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  8. Foldable graphene electronic circuits based on paper substrates.

    PubMed

    Hyun, Woo Jin; Park, O Ok; Chin, Byung Doo

    2013-09-14

    Graphene electronic circuits are prepared on paper substrates by using graphene nanoplates and applied to foldable paper-based electronics. The graphene circuits show a small change in conductance under various folding angles and maintain an electronic path on paper substrates after repetition of folding and unfolding. Foldable paper-based applications with graphene circuits exhibit excellent folding stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electronic Circuit Analysis Language (ECAL)

    NASA Astrophysics Data System (ADS)

    Chenghang, C.

    1983-03-01

    The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.

  10. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  11. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  12. 47 CFR 32.2232 - Circuit equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subaccount 2232.1 Electronic shall include the original cost of electronic circuit equipment. (c) This... 47 Telecommunication 2 2011-10-01 2011-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment...

  13. 47 CFR 32.2232 - Circuit equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subaccount 2232.1 Electronic shall include the original cost of electronic circuit equipment. (c) This... 47 Telecommunication 2 2012-10-01 2012-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment...

  14. 47 CFR 32.2232 - Circuit equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subaccount 2232.1 Electronic shall include the original cost of electronic circuit equipment. (c) This... 47 Telecommunication 2 2010-10-01 2010-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment...

  15. Electronic test and calibration circuits, a compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.

  16. 47 CFR 32.6232 - Circuit equipment expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) This subaccount 6232.1 Electronic shall include expenses associated with electronic circuit equipment... 47 Telecommunication 2 2011-10-01 2011-10-01 false Circuit equipment expense. 32.6232 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6232 Circuit...

  17. 47 CFR 32.2232 - Circuit equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subaccount 2232.1 Electronic shall include the original cost of electronic circuit equipment. (c) This... 47 Telecommunication 2 2013-10-01 2013-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment...

  18. 47 CFR 32.6232 - Circuit equipment expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) This subaccount 6232.1 Electronic shall include expenses associated with electronic circuit equipment... 47 Telecommunication 2 2012-10-01 2012-10-01 false Circuit equipment expense. 32.6232 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6232 Circuit...

  19. 47 CFR 32.2232 - Circuit equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subaccount 2232.1 Electronic shall include the original cost of electronic circuit equipment. (c) This... 47 Telecommunication 2 2014-10-01 2014-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment...

  20. 47 CFR 32.6232 - Circuit equipment expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) This subaccount 6232.1 Electronic shall include expenses associated with electronic circuit equipment... 47 Telecommunication 2 2013-10-01 2013-10-01 false Circuit equipment expense. 32.6232 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6232 Circuit...

  1. 47 CFR 32.6232 - Circuit equipment expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) This subaccount 6232.1 Electronic shall include expenses associated with electronic circuit equipment... 47 Telecommunication 2 2010-10-01 2010-10-01 false Circuit equipment expense. 32.6232 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6232 Circuit...

  2. 47 CFR 32.6232 - Circuit equipment expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) This subaccount 6232.1 Electronic shall include expenses associated with electronic circuit equipment... 47 Telecommunication 2 2014-10-01 2014-10-01 false Circuit equipment expense. 32.6232 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6232 Circuit...

  3. RF lockout circuit for electronic locking system

    NASA Astrophysics Data System (ADS)

    Becker, Earl M., Jr.; Miller, Allen

    1991-02-01

    An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.

  4. 7 CFR 1770.15 - Supplementary accounts required of all borrowers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...

  5. 7 CFR 1770.15 - Supplementary accounts required of all borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...

  6. 7 CFR 1770.15 - Supplementary accounts required of all borrowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...

  7. Position sensor for a fuel injection element in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, D.E.; Geske, M.L.

    1987-08-18

    This patent describes an electronic circuit for dynamically sensing and processing signals representative of changes in a magnet field, the circuit comprising: means for sensing a change in a magnetic field external to the circuit and providing an output representative of the change; circuit means electronically coupled with the output of the sensing means for providing an output indicating the presence of the magnetic field change; and a nulling circuit coupled with the output of the sensing means and across the indicating circuit means for nulling the electronic circuit responsive to the sensing means output, to thereby avoid ambient magneticmore » fields temperature and process variations, and wherein the nulling circuit comprises a capacitor coupled to the output of the nulling circuit, means for charging and discharging the capacitor responsive to any imbalance in the input to the nulling circuit, and circuit means coupling the capacitor with the output of the sensing means for nulling any imbalance during the charging or discharging of the capacitor.« less

  8. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  9. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Thermally matched fluid cooled power converter

    DOEpatents

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2005-06-21

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. Drive and protection circuit for converter module of cascaded H-bridge STATCOM

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Yuan, Hongliang; Wang, Xiaoxing; Wang, Shuai; Fu, Yongsheng

    2018-04-01

    Drive and protection circuit is an important part of power electronics, which is related to safe and stable operation issues in the power electronics. The drive and protection circuit is designed for the cascaded H-bridge STATCOM. This circuit can realize flexible dead-time setting, operation status self-detection, fault priority protection and detailed fault status uploading. It can help to improve the reliability of STATCOM's operation. Finally, the proposed circuit is tested and analyzed by power electronic simulation software PSPICE (Simulation Program with IC Emphasis) and a series of experiments. Further studies showed that the proposed circuit can realize drive and control of H-bridge circuit, meanwhile it also can realize fast processing faults and have advantage of high reliability.

  12. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  13. Industrial Electronics II for ICT. Student's Manual.

    ERIC Educational Resources Information Center

    Snider, Bob

    This student manual contains the following six units for classroom and laboratory experiences in high school industrial electronics: (1) introduction and review of DC and AC circuits; (2) semiconductors; (3) integrated circuits; (4) digital basics; (5) complex digital circuits; and (6) computer circuits. The units include unit objectives, specific…

  14. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  15. Connector and electronic circuit assembly for improved wet insulation resistance

    DOEpatents

    Reese, Jason A.; Teli, Samar R.; Keenihan, James R.; Langmaid, Joseph A.; Maak, Kevin D.; Mills, Michael E.; Plum, Timothy C.; Ramesh, Narayan

    2016-07-19

    The present invention is premised upon a connector and electronic circuit assembly (130) at least partially encased in a polymeric frame (200). The assembly including at least: a connector housing (230); at least one electrical connector (330); at least one electronic circuit component (430); and at least one barrier element (530).

  16. Quantum mechanical settings inspired by RLC circuits

    NASA Astrophysics Data System (ADS)

    Alicata, G.; Bagarello, F.; Gargano, F.; Spagnolo, S.

    2018-04-01

    In some recent papers, several authors used electronic circuits to construct loss and gain systems. This is particularly interesting in the context of PT-quantum mechanics, where this kind of effects appears quite naturally. The electronic circuits used so far are simple, but not so much. Surprisingly enough, a rather trivial RLC circuit can be analyzed with the same perspective and it produces a variety of unexpected results, both from a mathematical and on a physical side. In this paper, we show that this circuit produces two biorthogonal bases associated with the Liouville matrix L used in the treatment of its dynamics, with a biorthogonality which is linked to the value of the parameters of the circuit. We also show that the related loss RLC circuit is naturally associated with a gain RLC circuit and that the relation between the two is rather naturally encoded in L . We propose a pseudo-fermionic analysis of the circuit, and we introduce the notion of m-equivalence between electronic circuits.

  17. Hybrid Circuit QED with Electrons on Helium

    NASA Astrophysics Data System (ADS)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  18. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  19. E-Learning System for Experiments Involving Construction of Practical Electronic Circuits

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2013-01-01

    This paper proposes a novel e-learning system for technical experiments involving the construction of practical electronic circuits; this system would meet the various demands of individual experimenters. This mixed mode is beneficial for practical use in that an experimenter who does not have sufficient circuit components for circuit making can…

  20. Maxwell's demons realized in electronic circuits

    NASA Astrophysics Data System (ADS)

    Koski, Jonne V.; Pekola, Jukka P.

    2016-12-01

    We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.

  1. Virtual Lab to Develop Achievement in Electronic Circuits for Hearing-Impaired Students

    ERIC Educational Resources Information Center

    Baladoh, S. M.; Elgamal, A. F.; Abas, H. A.

    2017-01-01

    This paper aims to report and discuss the use of a virtual lab for developing achievement in electronic circuits for hearing-impaired students. Results from a number of studies have proved that the virtual lab allowed students to build and test a wide variety of electronic circuits. The present study was implemented to investigate the…

  2. Radiation damage in MOS integrated circuits, Part 1

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1971-01-01

    Complementary and p-channel MOS integrated circuits made by four commercial manufacturers were investigated for sensitivity to radiation environment. The circuits were irradiated with 1.5 MeV electrons. The results are given for electrons and for the Co-60 gamma radiation equivalent. The data are presented in terms of shifts in the threshold potentials and changes in transconductances and leakages. Gate biases of -10V, +10V and zero volts were applied to individual MOS units during irradiation. It was found that, in most of circuits of complementary MOS technologies, noticable changes due to radiation appear first as increased leakage in n-channel MOSFETs somewhat before a total integrated dose 10 to the 12th power electrons/sg cm is reached. The inability of p-channel MOSFETs to turn on sets in at about 10 to the 13th power electrons/sq cm. Of the circuits tested, an RCA A-series circuit was the most radiation resistant sample.

  3. Printed Electronic Devices in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2004-01-01

    The space environment requires robust sensing, control, and automation, whether in support of human spaceflight or of robotic exploration. Spaceflight embodies the known extremes of temperature, radiation, shock, vibration, and static loads, and demands high reliability at the lowest possible mass. Because printed electronic circuits fulfill all these requirements, printed circuit technology and the exploration of space have been closely coupled throughout their short histories. In this presentation, we will explore the space (and space launch) environments as drivers of printed circuit design, a brief history of NASA's use of printed electronic circuits, and we will examine future requirements for such circuits in our continued exploration of space.

  4. Vehicle drive module having improved terminal design

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  5. Power converter having improved terminal structure

    DOEpatents

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.

    2007-03-06

    A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  7. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  8. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    PubMed

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  9. Assessment of SOI Devices and Circuits at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.

    2007-01-01

    Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.

  10. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    University of Illinois

    2009-04-21

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  11. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC

    2012-06-12

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  12. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne

    2014-06-17

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  13. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne

    2016-12-06

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  14. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne

    2015-08-11

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  15. Localized radio frequency communication using asynchronous transfer mode protocol

    DOEpatents

    Witzke, Edward L [Edgewood, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  16. Electronic control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.

  17. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-08-07

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.

  18. Scalability issues in evolutionary synthesis of electronic circuits: lessons learned and challenges ahead

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Keymeulen, D.; Zebulum, R. S.; Ferguson, M. I.

    2003-01-01

    This paper describes scalability issues of evolutionary-driven automatic synthesis of electronic circuits. The article begins by reviewing the concepts of circuit evolution and discussing the limitations of this technique when trying to achieve more complex systems.

  19. Electronic circuits

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twenty-nine circuits and circuit techniques developed for communications and instrumentation technology are described. Topics include pulse-code modulation, phase-locked loops, data coding, data recording, detection circuits, logic circuits, oscillators, and amplifiers.

  20. AIN-Based Packaging for SiC High-Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Savrun, Ender

    2004-01-01

    Packaging made primarily of aluminum nitride has been developed to enclose silicon carbide-based integrated circuits (ICs), including circuits containing SiC-based power diodes, that are capable of operation under conditions more severe than can be withstood by silicon-based integrated circuits. A major objective of this development was to enable packaged SiC electronic circuits to operate continuously at temperatures up to 500 C. AlN-packaged SiC electronic circuits have commercial potential for incorporation into high-power electronic equipment and into sensors that must withstand high temperatures and/or high pressures in diverse applications that include exploration in outer space, well logging, and monitoring of nuclear power systems. This packaging embodies concepts drawn from flip-chip packaging of silicon-based integrated circuits. One or more SiC-based circuit chips are mounted on an aluminum nitride package substrate or sandwiched between two such substrates. Intimate electrical connections between metal conductors on the chip(s) and the metal conductors on external circuits are made by direct bonding to interconnections on the package substrate(s) and/or by use of holes through the package substrate(s). This approach eliminates the need for wire bonds, which have been the most vulnerable links in conventional electronic circuitry in hostile environments. Moreover, the elimination of wire bonds makes it possible to pack chips more densely than was previously possible.

  1. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 27

    DTIC Science & Technology

    1977-02-10

    input and output conditions. The power section of the circuit is modified to permit triacs and thyristors, respectively, to function. The purpose of the...electronic materials, components, and devices, on circuit theory, pulse techniques, electromagnetic wave propagation, radar, quantum electronic theory...Lasers, Masers, Holography, Quasi-Optical 20 Microelectronics and General Circuit Theory and Information 21 Radars and Radio Wavigati on 22

  2. Comprehensive photonics-electronics convergent simulation and its application to high-speed electronic circuit integration on a Si/Ge photonic chip

    NASA Astrophysics Data System (ADS)

    Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji

    2015-01-01

    We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.

  3. Power converter having improved fluid cooling

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2007-03-06

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  5. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  6. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  7. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  8. 47 CFR 32.2211 - Non-digital switching.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... switching. (a) This account shall include: (1) Original cost of stored program control analog circuit-switching and associated equipment. (2) Cost of remote analog electronic circuit switches. (3) Original cost of non-electronic circuit-switching equipment such as Step-by-Step, Crossbar, and Other Electro...

  9. Power converter having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-06-13

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Power converter connection configuration

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. 47 CFR 32.2212 - Digital electronic switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall include the original cost of digital electronic switching equipment used to provide circuit... electronic switching equipment used to provide both circuit and packet switching shall be recorded in the... 47 Telecommunication 2 2012-10-01 2012-10-01 false Digital electronic switching. 32.2212 Section...

  12. 47 CFR 32.2212 - Digital electronic switching.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall include the original cost of digital electronic switching equipment used to provide circuit... electronic switching equipment used to provide both circuit and packet switching shall be recorded in the... 47 Telecommunication 2 2014-10-01 2014-10-01 false Digital electronic switching. 32.2212 Section...

  13. 47 CFR 32.2212 - Digital electronic switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall include the original cost of digital electronic switching equipment used to provide circuit... electronic switching equipment used to provide both circuit and packet switching shall be recorded in the... 47 Telecommunication 2 2011-10-01 2011-10-01 false Digital electronic switching. 32.2212 Section...

  14. 47 CFR 32.2212 - Digital electronic switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall include the original cost of digital electronic switching equipment used to provide circuit... electronic switching equipment used to provide both circuit and packet switching shall be recorded in the... 47 Telecommunication 2 2010-10-01 2010-10-01 false Digital electronic switching. 32.2212 Section...

  15. 47 CFR 32.2212 - Digital electronic switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall include the original cost of digital electronic switching equipment used to provide circuit... electronic switching equipment used to provide both circuit and packet switching shall be recorded in the... 47 Telecommunication 2 2013-10-01 2013-10-01 false Digital electronic switching. 32.2212 Section...

  16. Electronic circuits for communications systems: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.

  17. Electronics Book II.

    ERIC Educational Resources Information Center

    Johnson, Dennis; And Others

    This manual, the second of three curriculum guides for an electronics course, is intended for use in a program combining vocational English as a second language (VESL) with bilingual vocational education. Ten units cover the electrical team, Ohm's law, Watt's law, series resistive circuits, parallel resistive circuits, series parallel circuits,…

  18. An electronic circuit for sensing malfunctions in test instrumentation

    NASA Technical Reports Server (NTRS)

    Miller, W. M., Jr.

    1969-01-01

    Monitoring device differentiates between malfunctions occurring in the system undergoing test and malfunctions within the test instrumentation itself. Electronic circuits in the monitor use transistors to commutate silicon controlled rectifiers by removing the drive voltage, display circuits are then used to monitor multiple discrete lines.

  19. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  20. CIRCUS--A digital computer program for transient analysis of electronic circuits

    NASA Technical Reports Server (NTRS)

    Moore, W. T.; Steinbert, L. L.

    1968-01-01

    Computer program simulates the time domain response of an electronic circuit to an arbitrary forcing function. CIRCUS uses a charge-control parameter model to represent each semiconductor device. Given the primary photocurrent, the transient behavior of a circuit in a radiation environment is determined.

  1. The Induction of Chaos in Electronic Circuits Final Report-October 1, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.M.Wheat, Jr.

    2003-04-01

    This project, now known by the name ''Chaos in Electronic Circuits,'' was originally tasked as a two-year project to examine various ''fault'' or ''non-normal'' operational states of common electronic circuits with some focus on determining the feasibility of exploiting these states. Efforts over the two-year duration of this project have been dominated by the study of the chaotic behavior of electronic circuits. These efforts have included setting up laboratory space and hardware for conducting laboratory tests and experiments, acquiring and developing computer simulation and analysis capabilities, conducting literature surveys, developing test circuitry and computer models to exercise and test ourmore » capabilities, and experimenting with and studying the use of RF injection as a means of inducing chaotic behavior in electronics. An extensive array of nonlinear time series analysis tools have been developed and integrated into a package named ''After Acquisition'' (AA), including capabilities such as Delayed Coordinate Embedding Mapping (DCEM), Time Resolved (3-D) Fourier Transform, and several other phase space re-creation methods. Many computer models have been developed for Spice and for the ATP (Alternative Transients Program), modeling the several working circuits that have been developed for use in the laboratory. And finally, methods of induction of chaos in electronic circuits have been explored.« less

  2. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor)

    1995-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.

  3. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)

    1991-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.

  4. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOEpatents

    Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2014-05-20

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  5. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOEpatents

    Rogers, John A [Champaign, IL; Meitl, Matthew [Raleigh, NC; Sun, Yugang [Naperville, IL; Ko, Heung Cho [Urbana, IL; Carlson, Andrew [Urbana, IL; Choi, Won Mook [Champaign, IL; Stoykovich, Mark [Dover, NH; Jiang, Hanqing [Urbana, IL; Huang, Yonggang [Glencoe, IL; Nuzzo, Ralph G [Champaign, IL; Lee, Keon Jae [Tokyo, JP; Zhu, Zhengtao [Rapid City, SD; Menard, Etienne [Durham, NC; Khang, Dahl-Young [Seoul, KR; Kan, Seong Jun [Daejeon, KR; Ahn, Jong Hyun [Suwon, KR; Kim, Hoon-sik [Champaign, IL

    2012-07-10

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  6. Development of analog watch with minute repeater

    NASA Astrophysics Data System (ADS)

    Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi

    A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.

  7. Electronic firing systems and methods for firing a device

    DOEpatents

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  8. EHW Approach to Temperature Compensation of Electronics

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search-andoptimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by mathematical modeling (that is, computational simulation) only, tested in real hardware, or tested in combinations of computational simulation and real hardware.

  9. Compact fluid cooled power converter supporting multiple circuit boards

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Beihoff, Bruce C.; Kannenberg, Daniel G.

    2005-03-08

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Stitching Codeable Circuits: High School Students' Learning About Circuitry and Coding with Electronic Textiles

    NASA Astrophysics Data System (ADS)

    Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.

    2017-10-01

    Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light outputs and examining how the two domains interact. We implemented an electronic textiles unit with 23 high school students ages 16-17 years who learned how to craft and code circuits with the LilyPad Arduino, an electronic textile construction kit. Our analyses not only confirm significant increases in students' understanding of functional circuits but also showcase students' ability in designing and remixing program code for controlling circuits. In our discussion, we address opportunities and challenges of introducing codeable circuit design for integrating maker activities that include engineering and computing into classrooms.

  11. Bridge Circuits: One Topic in the Modular Course in Electronics Instrumentation.

    ERIC Educational Resources Information Center

    Aldridge, Bill G.; Stringer, Gene A.

    This learning module is intended to illustrate the functioning and uses of bridge circuits. The discussion and laboratory procedures suggested in the module presume familiarity with basic concepts of electronics such as voltage, current, resistance, capacitance, inductance, phase, and knowledge of such skills as breadboarding circuits from…

  12. Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    NASA Technical Reports Server (NTRS)

    Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.

    1968-01-01

    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.

  13. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  14. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  16. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  17. Electronic Components Subsystems and Equipment: a Compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.

  18. Vehicle drive module having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. System and method for interfacing large-area electronics with integrated circuit devices

    DOEpatents

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  20. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  1. Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept.

    PubMed

    Pandya, Killol V; Kosta, ShivPrasad

    2016-09-01

    Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood -synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.

  2. Long life assurance study for manned spacecraft long life hardware. Volume 2: Long life assurance studies of EEE parts and packaging

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines for the design, development, and fabrication of electronic components and circuits for use in spacecraft construction are presented. The subjects discussed involve quality control procedures and test methodology for the following subjects: (1) monolithic integrated circuits, (2) hybrid integrated circuits, (3) transistors, (4) diodes, (5) tantalum capacitors, (6) electromechanical relays, (7) switches and circuit breakers, and (8) electronic packaging.

  3. Silicon Carbide Integrated Circuit Chip

    NASA Image and Video Library

    2015-02-17

    A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.

  4. The Art of Electronics - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Hill, Winfield

    1989-09-01

    This is the thoroughly revised and updated second edition of the hugely successful The Art of Electronics. Widely accepted as the single authoritative text and reference on electronic circuit design, both analog and digital, the original edition sold over 125,000 copies worldwide and was translated into eight languages. The book revolutionized the teaching of electronics by emphasizing the methods actually used by citcuit designers - a combination of some basic laws, rules to thumb, and a large nonmathematical treatment that encourages circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits. The best self-teaching book and reference book in electronics Simply indispensable, packed with essential information for all scientists and engineers who build electronic circuits Totally rewritten chapters on microcomputers and microprocessors The first edition of this book has sold over 100,000 copies in seven years, it has a market in virtually all research centres where electronics is important

  5. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  6. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  7. An electronic circuit that detects left ventricular ejection events by processing the arterial pressure waveform

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.

  8. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  9. Maximum Acceleration Recording Circuit

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  10. Monolithically integrated bacteriorhodopsin/semiconductor opto-electronic integrated circuit for a bio-photoreceiver.

    PubMed

    Xu, J; Bhattacharya, P; Váró, G

    2004-03-15

    The light-sensitive protein, bacteriorhodopsin (BR), is monolithically integrated with an InP-based amplifier circuit to realize a novel opto-electronic integrated circuit (OEIC) which performs as a high-speed photoreceiver. The circuit is realized by epitaxial growth of the field-effect transistors, currently used semiconductor device and circuit fabrication techniques, and selective area BR electro-deposition. The integrated photoreceiver has a responsivity of 175 V/W and linear photoresponse, with a dynamic range of 16 dB, with 594 nm photoexcitation. The dynamics of the photochemical cycle of BR has also been modeled and a proposed equivalent circuit simulates the measured BR photoresponse with good agreement.

  11. Zipper Connectors for Flexible Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.

    2003-01-01

    Devices that look and function much like conventional zippers on clothing have been proposed as connectors for flexible electronic circuits. Heretofore, flexible electronic circuits have commonly included rigid connectors like those of conventional rigid electronic circuits. The proposed zipper connectors would make it possible to connect and disconnect flexible circuits quickly and easily. Moreover, the flexibility of zipper connectors would make them more (relative to rigid connectors) compatible with flexible circuits, so that the advantages of flexible circuitry could be realized more fully. Like a conventional zipper, a zipper according to the proposal would include teeth anchored on flexible tapes, a slider with a loosely attached clasp, a box at one end of the rows of mating teeth, and stops at the opposite ends. The tapes would be made of a plastic or other dielectric material. On each of the two mating sides of the zipper, metal teeth would alternate with dielectric (plastic) teeth, there being two metal teeth for each plastic one. When the zipper was closed, each metal tooth from one side would be in mechanical and electrical contact with a designated metal tooth from the other side, and these mating metal teeth would be electrically insulated from the next pair of mating metal teeth by an intervening plastic tooth. The metal teeth would be soldered or crimped to copper tabs. Wires or other conductors connected to electronic circuits would be soldered or crimped to the ends of the tabs opposite the teeth.

  12. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  13. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  14. Advanced Electronics Systems 1, Industrial Electronics 3: 9327.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 12th year consists of outlines for blocks of instruction on transistor applications to basic circuits, principles of single sideband communications, maintenance practices, preparation for FCC licenses, application of circuits to advanced electronic systems, nonsinusoidal wave shapes, multivibrators, and blocking…

  15. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  16. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electronic circuits, in addition to miscellaneous custom made cams and rods, shock absorbing linkages, and... burn time to 0.1 second. An electronic or mechanical timer can be used to record the burn time, and electro-mechanical devices (i.e., servo-motors, solenoids, micro-switches, and electronic circuits, in...

  17. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... electronic circuits, in addition to miscellaneous custom made cams and rods, shock absorbing linkages, and... burn time to 0.1 second. An electronic or mechanical timer can be used to record the burn time, and electro-mechanical devices (i.e., servo-motors, solenoids, micro-switches, and electronic circuits, in...

  18. 16 CFR § 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... electronic circuits, in addition to miscellaneous custom made cams and rods, shock absorbing linkages, and... burn time to 0.1 second. An electronic or mechanical timer can be used to record the burn time, and electro-mechanical devices (i.e., servo-motors, solenoids, micro-switches, and electronic circuits, in...

  19. Educational Support System for Experiments Involving Construction of Sound Processing Circuits

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2012-01-01

    This paper proposes a novel educational support system for technical experiments involving the production of practical electronic circuits for sound processing. To support circuit design and production, each student uses a computer during the experiments, and can learn circuit design, virtual circuit making, and real circuit making. In the…

  20. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    ERIC Educational Resources Information Center

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  1. Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits

    DTIC Science & Technology

    1993-02-10

    new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low

  2. Circuits Protect Against Incorrect Power Connections

    NASA Technical Reports Server (NTRS)

    Delombard, Richard

    1992-01-01

    Simple circuits prevent application of incorrectly polarized or excessive voltages. Connected temporarily or permanently at power-connecting terminals. Devised to protect electrical and electronic equipment installed in spacecraft and subjected to variety of tests in different facilities prior to installation. Basic concept of protective circuits also applied easily to many kinds of electrical and electronic equipment that must be protected against incorrect power connections.

  3. Fixture aids soldering of electronic components on circuit board

    NASA Technical Reports Server (NTRS)

    Ross, M. H.

    1966-01-01

    Spring clamp fixture holds small electronic components in a desired position while they are being soldered on a circuit board. The spring clamp is clipped on the edge of the circuit board and an adjustable spring-steel boom holds components against the board. The felt pad at the end of the boom is replaced with different attachments for other holding tasks.

  4. E-learning platform for automated testing of electronic circuits using signature analysis method

    NASA Astrophysics Data System (ADS)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  5. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  6. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  7. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  8. An innovative approach to predict technology evolution for the desoldering of printed circuit boards: A perspective from China and America.

    PubMed

    Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing

    2016-06-01

    The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.

  9. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    PubMed

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more areas, even daily pervasive electronics.

  10. Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics

    PubMed Central

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    Background The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Methods Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Results Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. Conclusions The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more areas, even daily pervasive electronics. PMID:23936349

  11. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  12. Electronic Circuit Experiments and SPICE Simulation of Double Covering Bifurcation of 2-Torus Quasi-Periodic Flow in Phase-Locked Loop Circuit

    NASA Astrophysics Data System (ADS)

    Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa

    2016-06-01

    Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.

  13. Miniaturized ultrasound imaging probes enabled by CMUT arrays with integrated frontend electronic circuits.

    PubMed

    Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.

  14. Electronics box having internal circuit cards interconnected to external connectors sans motherboard

    NASA Technical Reports Server (NTRS)

    Hockett, John E. (Inventor)

    2005-01-01

    An electronics chassis box includes a pair of opposing sidewalls, a pair of opposing end walls, a bottom surface, a top cover, and ring connectors assemblies mounted in selective ones of the walls of the electronic box. Boss members extend from the bottom surface at different heights upon which circuit cards are mounted in spatial relationship to each other. A flex interconnect substantially reduces and generally eliminates the need of a motherboard by interconnecting the circuit cards to one another and to external connectors mounted within the ring connector assemblies.

  15. Electronic Position Sensor for Power Operated Accessory

    DOEpatents

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  16. Mouldable all-carbon integrated circuits

    NASA Astrophysics Data System (ADS)

    Sun, Dong-Ming; Timmermans, Marina Y.; Kaskela, Antti; Nasibulin, Albert G.; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I.; Ohno, Yutaka

    2013-08-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027cm2V-1s-1 and an ON/OFF ratio of 105. The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  17. Mouldable all-carbon integrated circuits.

    PubMed

    Sun, Dong-Ming; Timmermans, Marina Y; Kaskela, Antti; Nasibulin, Albert G; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I; Ohno, Yutaka

    2013-01-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027 cm(2) V(-1) s(-1) and an ON/OFF ratio of 10(5). The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  18. Image dissector control and data system electronics, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The operating and calibration procedures, design details, and maintenance information for the control console and the associated electronics are presented. Detailed circuit connector information is included which describes the destination of each wire leaving each pin of each circuit board. The schematic diagrams of the circuit boards in the system and of the interconnection between boards and consoles are presented.

  19. Analysis and Design of Power Factor Pre-Regulator Based on a Symmetrical Charge Pump Circuit Applied to Electronic Ballast

    NASA Astrophysics Data System (ADS)

    Lazcano Olea, Miguel; Ramos Astudillo, Reynaldo; Sanhueza Robles, René; Rodriguez Rubke, Leopoldo; Ruiz-Caballero, Domingo Antonio

    This paper presents the analysis and design of a power factor pre-regulator based on a symmetrical charge pump circuit applied to electronic ballast. The operation stages of the circuit are analyzed and its main design equations are obtained. Simulation and experimental results are presented in order to show the design methodology feasibility.

  20. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.

    PubMed

    Grote, Hartmut; Weinert, Michael; Adhikari, Rana X; Affeldt, Christoph; Kringel, Volker; Leong, Jonathan; Lough, James; Lück, Harald; Schreiber, Emil; Strain, Kenneth A; Vahlbruch, Henning; Wittel, Holger

    2016-09-05

    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5μA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments.

  1. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  2. Compact self-powered synchronous energy extraction circuit design with enhanced performance

    NASA Astrophysics Data System (ADS)

    Liu, Weiqun; Zhao, Caiyou; Badel, Adrien; Formosa, Fabien; Zhu, Qiao; Hu, Guangdi

    2018-04-01

    Synchronous switching circuit is viewed as an effective solution of enhancing the generator’s performance and providing better adaptability for load variations. A critical issue for these synchronous switching circuits is the self-powered realization. In contrast with other methods, the electronic breaker possesses the advantage of simplicity and reliability. However, beside the energy consumption of the electronic breakers, the parasitic capacitance decreases the available piezoelectric voltage. In this technical note, a new compact design of the self-powered switching circuit using electronic breaker is proposed. The envelope diodes are excluded and only a single envelope capacitor is used. The parasitic capacitance is reduced to half with boosted performance while the components are reduced with cost saved.

  3. Computer programs: Electronic circuit design criteria: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A Technology Utilization Program for the dissemination of information on technological developments which have potential utility outside the aerospace community is presented. The 21 items reported herein describe programs that are applicable to electronic circuit design procedures.

  4. Design criteria: data acquisition system for waste tank liquid level gauges and SX Tank Farm thermocouples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, G.E.; Oliver, R.G.

    1972-02-17

    This design criteria revision (revision 2) will cancel revision 1 and will provide complete functional supervision of the liquid level gauges. A new.counter and an electronic supervisory circuit will be installed in each waste tank liquid level gauge. The electronic supervisory circuit will monitor (via the new counter and a signal from the gauge electronics) cycling of the gauge on a one minute time cycle. This supervisory circuit will fulfill the intent of revision 1 (monitor AC power to the gauge) and, in addition, will supervise all other aspects of the gauge including: the electronics, the drive motor, all sprocketsmore » and chain linkages, and the counter. If a gauge failure should occur, this circuit will remove the +12 volts excitation from the data acquisition system inferface board; and the computer will be programmed to recognize this condition as a gauge failure. (auth)« less

  5. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics

    PubMed Central

    Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing

    2013-01-01

    There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.

  6. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  7. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    PubMed

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  9. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  10. Electronic circuit provides accurate sensing and control of dc voltage

    NASA Technical Reports Server (NTRS)

    Loftus, W. D.

    1966-01-01

    Electronic circuit used relay coil to sense and control dc voltage. The control relay is driven by a switching transistor that is biased to cutoff for all input up to slightly less than the threshold level.

  11. Fuse protects circuit from voltage and current overloads

    NASA Technical Reports Server (NTRS)

    Casey, L. O.

    1969-01-01

    Low-melting resistor connected in series with the load protects the circuit against current overloads. It protects test subjects and patients being monitored by electronic instrumentation from inadvertant overloads of current, and sensitive electronic equipment against high-voltage damage.

  12. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  13. Tomography experiment of an integrated circuit specimen using 3 MeV electrons in the transmission electron microscope.

    PubMed

    Zhang, Hai-Bo; Zhang, Xiang-Liang; Wang, Yong; Takaoka, Akio

    2007-01-01

    The possibility of utilizing high-energy electron tomography to characterize the micron-scale three dimensional (3D) structures of integrated circuits has been demonstrated experimentally. First, electron transmission through a tilted SiO(2) film was measured with an ultrahigh-voltage electron microscope (ultra-HVEM) and analyzed from the point of view of elastic scattering of electrons, showing that linear attenuation of the logarithmic electron transmission still holds valid for effective specimen thicknesses up to 5 microm under 2 MV accelerating voltages. Electron tomography of a micron-order thick integrated circuit specimen including the Cu/via interconnect was then tried with 3 MeV electrons in the ultra-HVEM. Serial projection images of the specimen tilted at different angles over the range of +/-90 degrees were acquired, and 3D reconstruction was performed with the images by means of the IMOD software package. Consequently, the 3D structures of the Cu lines, via and void, were revealed by cross sections and surface rendering.

  14. Cooled electrical terminal assembly and device incorporating same

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-08-22

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Cooled electrical terminal assembly and device incorporating same

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2005-05-24

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  16. Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics.

    PubMed

    Yu, Lili; El-Damak, Dina; Radhakrishna, Ujwal; Ling, Xi; Zubair, Ahmad; Lin, Yuxuan; Zhang, Yuhao; Chuang, Meng-Hsi; Lee, Yi-Hsien; Antoniadis, Dimitri; Kong, Jing; Chandrakasan, Anantha; Palacios, Tomas

    2016-10-12

    Two-dimensional electronics based on single-layer (SL) MoS 2 offers significant advantages for realizing large-scale flexible systems owing to its ultrathin nature, good transport properties, and stable crystalline structure. In this work, we utilize a gate first process technology for the fabrication of highly uniform enhancement mode FETs with large mobility and excellent subthreshold swing. To enable large-scale MoS 2 circuit, we also develop Verilog-A compact models that accurately predict the performance of the fabricated MoS 2 FETs as well as a parametrized layout cell for the FET to facilitate the design and layout process using computer-aided design (CAD) tools. Using this CAD flow, we designed combinational logic gates and sequential circuits (AND, OR, NAND, NOR, XNOR, latch, edge-triggered register) as well as switched capacitor dc-dc converter, which were then fabricated using the proposed flow showing excellent performance. The fabricated integrated circuits constitute the basis of a standard cell digital library that is crucial for electronic circuit design using hardware description languages. The proposed design flow provides a platform for the co-optimization of the device fabrication technology and circuits design for future ubiquitous flexible and transparent electronics using two-dimensional materials.

  17. Plasmonic integrated circuits comprising metal waveguides, multiplexer/demultiplexer, detectors, and logic circuits on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Ota, M.; Sumimura, A.; Okahisa, S.; Ito, M.; Ishii, Y.; Ishiyama, T.

    2017-05-01

    A plasmonic integrated circuit configuration comprising plasmonic and electronic components is presented and the feasibility for high-speed signal processing applications is discussed. In integrated circuits, plasmonic signals transmit data at high transfer rates with light velocity. Plasmonic and electronic components such as wavelength-divisionmultiplexing (WDM) networks comprising metal wires, plasmonic multiplexers/demultiplexers, and crossing metal wires are connected via plasmonic waveguides on the nanometer or micrometer scales. To merge plasmonic and electronic components, several types of plasmonic components were developed. To ensure that the plasmonic components could be easily fabricated and monolithically integrated onto a silicon substrate using silicon complementary metal-oxide-semiconductor (CMOS)-compatible processes, the components were fabricated on a Si substrate and made from silicon, silicon oxides, and metal; no other materials were used in the fabrication. The plasmonic components operated in the 1300- and 1550-nm-wavelength bands, which are typically employed in optical fiber communication systems. The plasmonic logic circuits were formed by patterning a silicon oxide film on a metal film, and the operation as a half adder was confirmed. The computed plasmonic signals can propagate through the plasmonic WDM networks and be connected to electronic integrated circuits at high data-transfer rates.

  18. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  19. Multifunctional Logic Gate Controlled by Temperature

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A complementary metal oxide/semiconductor (CMOS) electronic circuit has been designed to function as a NAND gate at a temperature between 0 and 80 deg C and as a NOR gate at temperatures from 120 to 200 C. In the intermediate temperature range of 80 to 120 C, this circuit is expected to perform a function intermediate between NAND and NOR with degraded noise margin. The process of designing the circuit and the planned fabrication and testing of the circuit are parts of demonstration of polymorphic electronics a technological discipline that emphasizes designing the same circuit to perform different analog and/or digital functions under different conditions. In this case, the different conditions are different temperatures.

  20. High performance protection circuit for power electronics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less

  1. Waveshaping electronic circuit

    NASA Technical Reports Server (NTRS)

    Harper, T. P.

    1971-01-01

    Circuit provides output signal with sinusoidal function in response to bipolar transition of input signal. Instantaneous transition shapes into linear rate of change and linear rate of change shapes into sinusoidal rate of change. Circuit contains only active components; therefore, compatibility with integrated circuit techniques is assured.

  2. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than 30 inches. (g) This section does not apply to communications systems; electronic navigation equipment; electronic circuits having a current flow of less than one ampere; conductors which are totally inside an equipment housing; resistance conductors that control circuit amperage; high voltage secondary...

  3. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 30 inches. (g) This section does not apply to communications systems; electronic navigation equipment; electronic circuits having a current flow of less than one ampere; conductors which are totally inside an equipment housing; resistance conductors that control circuit amperage; high voltage secondary...

  4. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than 30 inches. (g) This section does not apply to communications systems; electronic navigation equipment; electronic circuits having a current flow of less than one ampere; conductors which are totally inside an equipment housing; resistance conductors that control circuit amperage; high voltage secondary...

  5. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than 30 inches. (g) This section does not apply to communications systems; electronic navigation equipment; electronic circuits having a current flow of less than one ampere; conductors which are totally inside an equipment housing; resistance conductors that control circuit amperage; high voltage secondary...

  6. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than 30 inches. (g) This section does not apply to communications systems; electronic navigation equipment; electronic circuits having a current flow of less than one ampere; conductors which are totally inside an equipment housing; resistance conductors that control circuit amperage; high voltage secondary...

  7. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  8. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  9. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    PubMed Central

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  10. Detecting short circuits during assembly

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  11. Interface Circuit Board For Space-Shuttle Communications

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Report describes interface electronic circuit developed to enable ground controllers to send commands and data via Ku-band radio uplink to multiple circuits connected to standard IEEE-488 general-purpose interface bus in space shuttle. Design of circuit extends data-throughput capability of communication system.

  12. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  13. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  14. Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code

    DTIC Science & Technology

    1979-06-01

    dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was

  15. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  16. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  17. Circuit modification aids in atomic particle discrimination

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Shook, D. F.

    1970-01-01

    Circuit, using a bialkali photomultiplier tube and liquid scintillator, eliminates disadvantages of Owen circuit. It distinguishes between recoil protons /energies of 200 keV/ and Compton electrons /energies of 20 keV/.

  18. Integrated Circuits in the Introductory Electronics Laboratory

    ERIC Educational Resources Information Center

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  19. Detail, lower half of electronics rack in radio room. Westtoeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, lower half of electronics rack in radio room. West-to-east circuit is on left, east-to-west circuit is on right. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  20. Detail, top half of electronics rack in radio room. Westtoeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, top half of electronics rack in radio room. West-to-east circuit is on left, east-to-west circuit is on right. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  1. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    PubMed

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multifunctional Logic Gate Controlled by Supply Voltage

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A complementary metal oxide/semiconductor (CMOS) electronic circuit functions as a NAND gate at a power-supply potential (V(sub dd)) of 3.3 V and as NOR gate for V(sub dd) = 1.8 V. In the intermediate V(sub dd) range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics -- a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of V(sub dd).

  3. Elements configuration of the open lead test circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp; Ono, Akira

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a testmore » circuit in the past. This paper propose elements configuration of the test circuit.« less

  4. Electronics Book III.

    ERIC Educational Resources Information Center

    Johnson, Dennis; And Others

    This manual, the third of three curriculum guides for an electronics course, is intended for use in a program combining vocational English as a second language (VESL) with bilingual vocational education. Ten units cover AC fundamentals, circuit protection devices, low voltage circuits, communication systems, graphic illustrations, house wiring,…

  5. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  6. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  7. Mems: Platform for Large-Scale Integrated Vacuum Electronic Circuits

    DTIC Science & Technology

    2017-03-20

    SECURITY CLASSIFICATION OF: The objective of the LIVEC advanced study project was to develop a platform for large-scale integrated vacuum electronic ...Distribution Unlimited UU UU UU UU 20-03-2017 1-Jul-2014 30-Jun-2015 Final Report: MEMS Platform for Large-Scale Integrated Vacuum Electronic ... Electronic Circuits (LIVEC) Contract No: W911NF-14-C-0093 COR Dr. James Harvey U.S. ARO RTP, NC 27709-2211 Phone: 702-696-2533 e-mail

  8. Speech therapy and voice recognition instrument

    NASA Technical Reports Server (NTRS)

    Cohen, J.; Babcock, M. L.

    1972-01-01

    Characteristics of electronic circuit for examining variations in vocal excitation for diagnostic purposes and in speech recognition for determiniog voice patterns and pitch changes are described. Operation of the circuit is discussed and circuit diagram is provided.

  9. Thermometry and thermal management of carbon nanotube circuits

    NASA Astrophysics Data System (ADS)

    Mayle, Scott; Gupta, Tanuj; Davis, Sam; Chandrasekhar, Venkat; Shafraniuk, Serhii

    2015-05-01

    Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.

  10. Electrical power converter method and system employing multiple output converters

    DOEpatents

    Beihoff, Bruce C [Wauwatosa, WI; Radosevich, Lawrence D [Muskego, WI; Meyer, Andreas A [Richmond Heights, OH; Gollhardt, Neil [Fox Point, WI; Kannenberg, Daniel G [Waukesha, WI

    2007-05-01

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. Fluid cooled vehicle drive module

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  12. Electrical power converter method and system employing multiple-output converters

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2006-03-21

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Proceedings of the Electronics Manufacturing Seminar (14th Annual) Held in China Lake, California on 21-22 February 1990

    DTIC Science & Technology

    1990-02-01

    Aging effects Aging of metalic surfaces Aqueous cleaning Circuit- card assembly Cleanability Closed-loop soldering Conformal coating Defect...5 Standard Electronic Circuit Card Assembly System ....................................... 7 Douglas Green Lockheed-Sanders Corp. Nashua, New...Facility Naval Weapons Center NAVIRSA Detachment 5 NWC TP 7066 EMPF TR 0010 STANDARD ELECTRONIC CIRCUTT CARD ASSEMBLY SYSTEM (SECAS PROJECT) by Douglas

  14. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  15. Non-Gaussianity in a quasiclassical electronic circuit

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi J.; Hayakawa, Hisao

    2017-05-01

    We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.

  16. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    NASA Astrophysics Data System (ADS)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  17. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, J.W.; Biscardi, R.W.

    1991-03-19

    An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.

  18. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, John W.; Biscardi, Richard W.

    1991-01-01

    An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.

  19. Design for low-power and reliable flexible electronics

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Ching (Jim)

    Flexible electronics are emerging as an alternative to conventional Si electronics for large-area low-cost applications such as e-paper, smart sensors, and disposable RFID tags. By utilizing inexpensive manufacturing methods such as ink-jet printing and roll-to-roll imprinting, flexible electronics can be made on low-cost plastics just like printing a newspaper. However, the key elements of exible electronics, thin-film transistors (TFTs), have slower operating speeds and less reliability than their Si electronics counterparts. Furthermore, depending on the material property, TFTs are usually mono-type -- either p- or n-type -- devices. Making air-stable complementary TFT circuits is very challenging and not applicable to most TFT technologies. Existing design methodologies for Si electronics, therefore, cannot be directly applied to exible electronics. Other inhibiting factors such as high supply voltage, large process variation, and lack of trustworthy device modeling also make designing larger-scale and robust TFT circuits a significant challenge. The major goal of this dissertation is to provide a viable solution for robust circuit design in exible electronics. I will first introduce a reliability simulation framework that can predict the degraded TFT circuits' performance under bias-stress. This framework has been validated using the amorphous-silicon (a-Si) TFT scan driver for TFT-LCD displays. To reuse the existing CMOS design ow for exible electronics, I propose a Pseudo-CMOS cell library that can make TFT circuits operable under low supply voltage and which has post-fabrication tunability for reliability and performance enhancement. This cell library has been validated using 2V self-assembly-monolayer (SAM) organic TFTs with a low-cost shadow-mask deposition process. I will also demonstrate a 3-bit 1.25KS/s Flash ADC in a-Si TFTs, which is based on the proposed Pseudo-CMOS cell library, and explore more possibilities in display, energy, and sensing applications.

  20. Electronic circuit delivers pulse of high interval stability

    NASA Technical Reports Server (NTRS)

    Fisher, B.

    1966-01-01

    Circuit generates a pulse of high interval stability with a complexity level considerably below systems of comparable stability. This circuit is being used as a linear frequency discriminator in the signal conditioner of the Apollo command module.

  1. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  2. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  3. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  4. Electronic skewing circuit monitors exact position of object underwater

    NASA Technical Reports Server (NTRS)

    Roller, R.; Yaroshuk, N.

    1967-01-01

    Linear Variable Differential Transformer /LVDT/ electronic skewing circuit guides a long cylindrical capsule underwater into a larger tube so that it does not contact the tube wall. This device detects movement of the capsule from a reference point and provides a continuous signal that is monitored on an oscilloscope.

  5. 46 CFR 116.202 - Plans and information required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electronic format. Information for submitting the VSP electronically can be found at http://www.uscg.mil/HQ... movers; (v) Type and size of generator cables, bus-tie cables, feeders, and branch circuit cables; (vi) Power, lighting, and interior communication panelboards with number of circuits and rating of energy...

  6. 46 CFR 116.202 - Plans and information required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electronic format. Information for submitting the VSP electronically can be found at http://www.uscg.mil/HQ... movers; (v) Type and size of generator cables, bus-tie cables, feeders, and branch circuit cables; (vi) Power, lighting, and interior communication panelboards with number of circuits and rating of energy...

  7. The dc power circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation of reports concerning power circuits is presented for the dissemination of aerospace information to the general public as part of the NASA Technology Utilization Program. The descriptions for the electronic circuits are grouped as follows: dc power supplies, power converters, current-voltage power supply regulators, overload protection circuits, and dc constant current power supplies.

  8. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  9. Over-voltage protection system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Song; Dong, Dong; Lai, Rixin

    An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less

  10. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    PubMed

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  11. A gradient system solution to Potts mean field equations and its electronic implementation.

    PubMed

    Urahama, K; Ueno, S

    1993-03-01

    A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.

  12. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Fragner, A.; Koolstra, G.

    2016-03-01

    The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less

  13. 76 FR 15340 - In the Matter of Certain GPS Devices and Products Containing Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket... Circuit (``Federal Circuit''). On April 12, 2010, the Federal Circuit affirmed the Commission's Final...

  14. The evolvability of programmable hardware.

    PubMed

    Raman, Karthik; Wagner, Andreas

    2011-02-06

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.

  15. The evolvability of programmable hardware

    PubMed Central

    Raman, Karthik; Wagner, Andreas

    2011-01-01

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598

  16. Polymorphic Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Polymorphic electronics is a nascent technological discipline that involves, among other things, designing the same circuit to perform different analog and/or digital functions under different conditions. For example, a circuit can be designed to function as an OR gate or an AND gate, depending on the temperature (see figure). Polymorphic electronics can also be considered a subset of polytronics, which is a broader technological discipline in which optical and possibly other information- processing systems could also be designed to perform multiple functions. Polytronics is an outgrowth of evolvable hardware (EHW). The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles. To recapitulate: The essence of EHW is to design, construct, and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The evolution is guided by a search-and-optimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by computational simulation (in which case the evolution is said to be extrinsic), tested in real hardware (in which case the evolution is said to be intrinsic), or tested in random sequences of computational simulation and real hardware (in which case the evolution is said to be mixtrinsic).

  17. Product assurance technology for custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Jennings, G. A.; Moore, B. T.; Nixon, R. H.; Pina, C. A.; Sayah, H. R.; Sievers, M. W.; Stahlberg, N. F.

    1985-01-01

    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification.

  18. Measurement and Analysis of a Ferroelectric Field-Effect Transistor NAND Gate

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Sayyah, Rana; Ho, Fat Duen

    2009-01-01

    Previous research investigated expanding the use of Ferroelectric Field-Effect Transistors (FFET) to other electronic devices beyond memory circuits. Ferroelectric based transistors possess unique characteris tics that give them interesting and useful properties in digital logic circuits. The NAND gate was chosen for investigation as it is one of the fundamental building blocks of digital electronic circuits. In t his paper, NAND gate circuits were constructed utilizing individual F FETs. N-channel FFETs with positive polarization were used for the standard CMOS NAND gate n-channel transistors and n-channel FFETs with n egative polarization were used for the standard CMOS NAND gate p-chan nel transistors. The voltage transfer curves were obtained for the NA ND gate. Comparisons were made between the actual device data and the previous modeled data. These results are compared to standard MOS logic circuits. The circuits analyzed are not intended to be fully opera tional circuits that would interface with existing logic circuits, bu t as a research tool to look into the possibility of using ferroelectric transistors in future logic circuits. Possible applications for th ese devices are presented, and their potential benefits and drawbacks are discussed.

  19. On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Miguel A.; Masó, Nahum; West, Anthony R.

    Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electricallymore » heterogeneous.« less

  20. Transistor Level Circuit Experiments using Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.

    2005-01-01

    The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.

  1. Interactive Electronic Circuit Simulation on Small Computer Systems

    DTIC Science & Technology

    1979-11-01

    longer needed. Do not return it to the originator. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Whan Dots Entered) REPORT DOCUMENTATION PAGE... CLASSIFICATION OF THIS PAGE(H7i»n Data Entend) Interactive-mode circuit simulation and batch-mode circuit simulation on minicomputers are compared...on the circuit Q. For circuits with Q less than 1, this ratio is typically 10:1. UNCLASSIFIED 2 SECURITY CLASSIFICATION OF THIS PAGEflWiim Data

  2. Dimension scaling effects on the yield sensitivity of HEMT digital circuits

    NASA Technical Reports Server (NTRS)

    Sarker, Jogendra C.; Purviance, John E.

    1992-01-01

    In our previous works, using a graphical tool, yield factor histograms, we studied the yield sensitivity of High Electron Mobility Transistors (HEMT) and HEMT circuit performance with the variation of process parameters. This work studies the scaling effects of process parameters on yield sensitivity of HEMT digital circuits. The results from two HEMT circuits are presented.

  3. Simple photometer circuits using modular electronic components

    NASA Technical Reports Server (NTRS)

    Wampler, J. E.

    1975-01-01

    Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.

  4. 49 CFR Appendix A to Part 236 - Civil Penalties 1

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...

  5. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a... Standard 1128. (b) This section does not apply to communication systems; electronic navigation equipment...

  6. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a... Standard 1128. (b) This section does not apply to communication systems; electronic navigation equipment...

  7. 49 CFR Appendix A to Part 236 - Civil Penalties 1

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...

  8. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a... Standard 1128. (b) This section does not apply to communication systems; electronic navigation equipment...

  9. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a... Standard 1128. (b) This section does not apply to communication systems; electronic navigation equipment...

  10. General purpose computer programs for numerically analyzing linear ac electrical and electronic circuits for steady-state conditions

    NASA Technical Reports Server (NTRS)

    Egebrecht, R. A.; Thorbjornsen, A. R.

    1967-01-01

    Digital computer programs determine steady-state performance characteristics of active and passive linear circuits. The ac analysis program solves the basic circuit parameters. The compiler program solves these circuit parameters and in addition provides a more versatile program by allowing the user to perform mathematical and logical operations.

  11. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Conductors in circuits of less... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a... Standard 1128. (b) This section does not apply to communication systems; electronic navigation equipment...

  12. Understanding the Design, Function and Testing of Relays

    ERIC Educational Resources Information Center

    Adams, Roger E.; Lindbloom, Trent

    2006-01-01

    The increased use of electronics in today's automobiles has complicated the control of circuits and actuators. Manufacturers use relays to control a variety of complex circuits--for example, those involving actuators and other components like the A/C clutch, electronic cooling fans, and blower motors. Relays allow a switch or processor to control…

  13. Electronic Device of Didactic and Electrometric Interest for the Study of RLC Circuits.

    ERIC Educational Resources Information Center

    Rodriguez, Angel L. Perez; And Others

    1979-01-01

    Presents a method of studying RLC circuits with the help of the oscilloscope in the XYZ mode, complemented by an electronic device which generates a marker-trace on the screen and which is used to measure frequencies without the need of a reference point on the screen. (Author/GA)

  14. Easy-to-Implement Project Integrates Basic Electronics and Computer Programming

    ERIC Educational Resources Information Center

    Johnson, Richard; Shackelford, Ray

    2008-01-01

    The activities described in this article give students excellent experience with both computer programming and basic electronics. During the activities, students will work in small groups, using a BASIC Stamp development board to fabricate digital circuits and PBASIC to write program code that will control the circuits they have built. The…

  15. AIN-Coated Al(2)O(3) Substrates For Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen

    1996-01-01

    Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.

  16. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    NASA Astrophysics Data System (ADS)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  17. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials.

    PubMed

    Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji; Rogers, John A; Huang, Yonggang

    2017-01-26

    Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration.

  18. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials

    PubMed Central

    Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji

    2017-01-01

    Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration. PMID:29046624

  19. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  20. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers.

    PubMed

    Lee, Song-Woo; Jo, Gunho; Lee, Takhee; Lee, Yong-Gu

    2009-09-28

    In(2)O(3) nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In(2)O(3) nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.

  1. Paper-Based Inkjet-Printed Flexible Electronic Circuits.

    PubMed

    Wang, Yan; Guo, Hong; Chen, Jin-Ju; Sowade, Enrico; Wang, Yu; Liang, Kun; Marcus, Kyle; Baumann, Reinhard R; Feng, Zhe-Sheng

    2016-10-05

    Printed flexible electronics have been widely studied for their potential use in various applications. In this paper, a simple, low-cost method of fabricating flexible electronic circuits with high conductivity of 4.0 × 10 7 S·m -1 (about 70% of the conductivity of bulk copper) is demonstrated. Teslin paper substrate is treated with stannous chloride (SnCl 2 ) colloidal solution to reduce the high ink absorption rate, and then the catalyst ink is inkjet-printed on its surface, followed by electroless deposition of copper at low temperature. In spite of the decrease in conductance to some extent, electronic circuits fabricated by this method can maintain function even under various folding angles or after repeated folding. This developed technology has great potential in a variety of applications, such as three-dimensional devices and disposable RFID tags.

  2. Logic Circuits as a Vehicle for Technological Literacy.

    ERIC Educational Resources Information Center

    Hazeltine, Barrett

    1985-01-01

    Provides basic information on logic circuits, points out that the topic is a good vehicle for developing technological literacy. The subject could be included in such courses as philosophy, computer science, communications, as well as in courses dealing with electronic circuits. (JN)

  3. Redundant electronic circuit provides fail-safe control

    NASA Technical Reports Server (NTRS)

    Archer, J. W.

    1970-01-01

    Circuit using dual control amplifiers and dual position demand potentiometers powered from separate sources is used for reliable hydraulic valve controller that prevents closure of valve when control circuits fail, and maintains valve control to close tolerance for more common modes of controller failure.

  4. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  5. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, Anthony M.

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  6. Inexpensive robots used to teach dc circuits and electronics

    NASA Astrophysics Data System (ADS)

    Sidebottom, David L.

    2017-05-01

    This article describes inexpensive, autonomous robots, built without microprocessors, used in a college-level introductory physics laboratory course to motivate student learning of dc circuits. Detailed circuit descriptions are provided as well as a week-by-week course plan that can guide students from elementary dc circuits, through Kirchhoff's laws, and into simple analog integrated circuits with the motivational incentive of building an autonomous robot that can compete with others in a public arena.

  7. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Qing; Zhao, Junyu; Chen, Hui

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasingmore » stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.« less

  8. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    NASA Astrophysics Data System (ADS)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  9. Reliability Assessment of Critical Electronic Components

    DTIC Science & Technology

    1992-07-01

    Failures FLHP - Full Horse Power FSN - Federal Stock Number I Current IC - Integrated Circuit IPB - Illustrated Parts Breakdown K - Boltzmans Constant L...Classified P - Power PC - Printed Circuit PCB - Printed Circuit Board PGA - Pin Grid Array PPM - Parts Per Million PWB - Printed Wiring Board 0...4-59 4.4.3.2.3 Circuit Brcakers ......................................................... 4-59 4.4.3.2.4 Thermal

  10. E-Learning System for Learning Virtual Circuit Making with a Microcontroller and Programming to Control a Robot

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2015-01-01

    This paper proposes a novel e-Learning system for learning electronic circuit making and programming a microcontroller to control a robot. The proposed e-Learning system comprises a virtual-circuit-making function for the construction of circuits with a versatile, Arduino microcontroller and an educational system that can simulate behaviors of…

  11. On the SCTC-OCTC Method for the Analysis and Design of Circuits

    ERIC Educational Resources Information Center

    Salvatori, S.; Conte, G.

    2009-01-01

    This paper discusses guidelines that emphasize the relevance of short-circuit- and open-circuit-time constant (SCTC and OCTC, respectively) methods in the analysis and design of electronic amplifiers. It is demonstrated that it is only necessary to grasp a few concepts in order to understand that the two short- and open-circuit cases fall into a…

  12. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  13. Flexible organic transistors and circuits with extreme bending stability

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2010-12-01

    Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.

  14. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing

    PubMed Central

    Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok

    2018-01-01

    The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144

  15. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  16. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  17. Measurement of Gravitational Acceleration Using a Computer Microphone Port

    ERIC Educational Resources Information Center

    Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny

    2012-01-01

    A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…

  18. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  19. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  20. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  1. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less

  2. Insulation of a synthetic hydrogen metabolism circuit in bacteria

    PubMed Central

    2010-01-01

    Background The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued. Results Here we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds. Conclusions Through the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled. PMID:20184755

  3. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    PubMed

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-07

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  4. Measurement of electron density using reactance cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-05-15

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less

  5. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  6. Serpentine and corduroy circuits to enhance the stretchability of a stretchable electronic device

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K. , Park; Christina, [Cambridge, MA

    2007-09-04

    A stretchable electronic apparatus and method of producing the apparatus. The apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body, and at least one circuit line operatively connected to the stretchable polymer body, the at least one circuit line extending in the longitudinal direction and having a longitudinal component that extends in the longitudinal direction and having an offset component that is at an angle to the longitudinal direction, the longitudinal component and the offset component allowing the apparatus to stretch in the longitudinal direction while maintaining the integrity of the at least one circuit line.

  7. Serpentine and corduroy circuits to enhance the stretchablity of a stretchable electronic device

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K [Tracy, CA; Park, Christina [Cambridge, MA

    2011-01-18

    A stretchable electronic apparatus and method of producing the apparatus. The apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body, and at least one circuit line operatively connected to the stretchable polymer body, the at least one circuit line extending in the longitudinal direction and having a longitudinal component that extends in the longitudinal direction and having an offset component that is at an angle to the longitudinal direction, the longitudinal component and the offset component allowing the apparatus to stretch in the longitudinal direction while maintaining the integrity of the at least one circuit line.

  8. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  9. Instrument For Simulation Of Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Mcnichol, Randal S.

    1996-01-01

    Electronic instrument designed to simulate dynamic output of integrated-circuit piezoelectric acceleration or pressure transducer. Operates in conjunction with external signal-conditioning circuit, generating square-wave signal of known amplitude for use in calibrating signal-conditioning circuit. Instrument also useful as special-purpose square-wave generator in other applications.

  10. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circuits with each other or with local or tandem telephone central office trunks, intertoll dial selector equipment, or intertoll trunk equipment in No. 5 type electronic offices. Equipment, including switchboards... interconnection of: Toll center to toll center circuits; toll center to tributary circuits; tributary to tributary...

  11. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits with each other or with local or tandem telephone central office trunks, intertoll dial selector equipment, or intertoll trunk equipment in No. 5 type electronic offices. Equipment, including switchboards... interconnection of: Toll center to toll center circuits; toll center to tributary circuits; tributary to tributary...

  12. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits with each other or with local or tandem telephone central office trunks, intertoll dial selector equipment, or intertoll trunk equipment in No. 5 type electronic offices. Equipment, including switchboards... interconnection of: Toll center to toll center circuits; toll center to tributary circuits; tributary to tributary...

  13. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuits with each other or with local or tandem telephone central office trunks, intertoll dial selector equipment, or intertoll trunk equipment in No. 5 type electronic offices. Equipment, including switchboards... interconnection of: Toll center to toll center circuits; toll center to tributary circuits; tributary to tributary...

  14. 29 CFR 1910.68 - Manlifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circuit directly they shall be of the multipole type. (b) Where electronic devices are used they shall be... will be forced straight, tripping the switch and opening the electrical circuit. (8) Step (platform). A... at landings.) (ii) Control of illumination. Lighting of manlift runways shall be by means of circuits...

  15. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circuits with each other or with local or tandem telephone central office trunks, intertoll dial selector equipment, or intertoll trunk equipment in No. 5 type electronic offices. Equipment, including switchboards... interconnection of: Toll center to toll center circuits; toll center to tributary circuits; tributary to tributary...

  16. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    PubMed Central

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321

  17. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  18. Effect of Ground Layer Patterns with Slits on Conducted Noise Currents from Printed Circuit Board

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu

    Electromagnetic disturbances for vehicle-mounted radios can be caused by conducted noise currents that flows out from electronic equipment for vehicles to wire-harnesses. In this paper, for reducing the conducted noise currents from electronic equipment for vehicles, we made a simulation and experiment on how ground patterns affect the noise currents from three-layer printed circuit boards (PCBs) with slit-types and plane-type ground patterns. As a result, we could confirm that slits on a ground pattern allow conducted noise currents to flow out from PCBs to wire-harnesses. For the PCBs with plane-type ground and one of three slit-type patterns, on the other hand, both the simulation and examination showed that resonance phenomena occur at unexpected low-frequencies. A circuit analysis revealed that the above phenomena can be caused by the imbalance of a bridge circuit consisting of the trace circuits on the PCB.

  19. Integrated logic circuits using single-atom transistors

    PubMed Central

    Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.

    2011-01-01

    Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050

  20. A multi-channel isolated power supply in non-equipotential circuit

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  1. Negative Difference Resistance and Its Application to Construct Boolean Logic Circuits

    NASA Astrophysics Data System (ADS)

    Nikodem, Maciej; Bawiec, Marek A.; Surmacz, Tomasz R.

    Electronic circuits based on nanodevices and quantum effect are the future of logic circuits design. Today's technology allows constructing resonant tunneling diodes, quantum cellular automata and nanowires/nanoribbons that are the elementary components of threshold gates. However, synthesizing a threshold circuit for an arbitrary logic function is still a challenging task where no efficient algorithms exist. This paper focuses on Generalised Threshold Gates (GTG), giving the overview of threshold circuit synthesis methods and presenting an algorithm that considerably simplifies the task in case of GTG circuits.

  2. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  3. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  4. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  6. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part P: ACE Competency Based Job Descriptions: #77--Secretary; #78--Keypunch Operator; Assembly Worker Core Job Description; #82--Electronics Assembler; #83--Printed Circuit Assembler; #84--Micro Electronics Assembler; #85--Chassis Assembler; #87--Machinist Apprentice.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This thirteenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Secretary, Keypunch Operator, Electronics Assembler, Printed Circuit Assembler, Micro Electronincs Assembler, Chassis Assembler, and Machinist Apprentice. Each begins with a fact sheet that includes…

  7. Module Eleven: Capacitance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about another circuit quantity, capacitance, and discover the effects of this component on circuit current, voltage, and power. The module is divided into seven lessons: the capacitor, theory of capacitance, total capacitance, RC (resistive-capacitive circuit) time constant, capacitive reactance, phase and…

  8. A Better Way to Drive "RLC" Circuits

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguia

    2009-01-01

    An electronic circuit for controlling "RLC" experiments is shown. This arrangement does not employ a function generator, which makes it more suitable when a wide range of "R," "L" and "C" values is required and a relatively high current is involved. This circuit can be used for driven and undriven DC…

  9. Circuit II--A Conversational Graphical Interface.

    ERIC Educational Resources Information Center

    Singer, Ronald A.

    1993-01-01

    Provides an overview of Circuit II, an interactive system that provides users with a graphical representation of an electronic circuit within which questions may be posed and manipulated, and discusses how mouse selections have analogous roles to certain natural language features, such as anaphora, deixis, and ellipsis. (13 references) (EA)

  10. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Circuit Devices and Products Containing Same; Notice of Commission Determination Not To Review an Initial... public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http... certain semiconductor integrated circuit devices and products containing same by reason of infringement of...

  11. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... INTERNATIONAL TRADE COMMISSION [DN 2888] Certain Semiconductor Integrated Circuit Devices and... Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is soliciting comments on... Commission's electronic docket (EDIS) at http://edis.usitc.gov , and will be available for inspection during...

  12. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2899] Certain Integrated Circuit Packages Provided With... complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and..., telephone (202) 205-2000. The public version of the complaint can be accessed on the Commission's electronic...

  13. 47 CFR 12.4 - Reliability of covered 911 service providers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electronic records, as long as they reflect whether critical 911 circuits are physically diverse. (7... calls and associated number or location information to the appropriate PSAP. (5) Critical 911 circuits... calls to the PSAP(s). Critical 911 circuits also include ALI and ANI facilities that originate at the...

  14. The Electrocardiogram as an Electronic Filter and Why AC Circuits Are Important for Pre-Health Physics Students

    ERIC Educational Resources Information Center

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions.…

  15. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  16. Inkjet deposited circuit components

    NASA Astrophysics Data System (ADS)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  17. Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids

    NASA Astrophysics Data System (ADS)

    Balevicius, Z.; Lescinskas, R.; Celiesiute, R.; Stirke, A.; Balevicius, S.; Kersulis, S.; Bleizgys, V.; Maciuleviciene, R.; Ramanavicius, A.; Zurauskiene, N.

    2018-04-01

    The compact potentiometer, based on an electronic circuit protected from electrostatic and electromagnetic interference, was developed for the measurement of low ion concentrations in liquids. The electronic circuit of the potentiometer, consisting of analogous and digital parts, enables the measurement of fA currents. This makes it possible to perform reliable measurements of ion concentrations in liquids that are as small as 10-8-10-7M. The instrument was tested using electrodes that were selective for tetraphenylphosphonium (TPP+) ions. It was demonstrated that the characteristic response time of the potentiometer electronic circuit to changes in the concentration of these ions in a liquid was in the order of 10 s. An investigation of TPP+ absorption by baker yeast has shown that this device can be successfully used for long term (several hours) measurements with zero signal drift, which was about 1 μV/s. Finally, due to the small dimensions of the electronic circuit (7.5 × 2 × 1.5 cm), this potentiometer can be easily installed at a large apparatus in the laboratory condition (≈25 °C), such as high pulsed electrical generators of magnetic fields that are used in electroporation studies of biological cells.

  18. The electrocardiogram as an electronic filter and why ac circuits are important for pre-health physics students

    NASA Astrophysics Data System (ADS)

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.

  19. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  20. Investigation of noise insensitive electronic circuits for automotive applications with particular regard to MOS circuits

    NASA Astrophysics Data System (ADS)

    Gorille, I.

    1980-11-01

    The application of MOS switching circuits of high complexity in essential automobile systems, such as ignition and injection, was investigated. A bipolar circuit technology, current hogging logic (CHL), was compared to MOS technologies for its competitiveness. The functional requirements of digital automotive systems can only be met by technologies allowing large packing densities and medium speeds. The properties of n-MOS and CMOS are promising whereas the electrical power needed by p-MOS circuits is in general prohibitively large.

  1. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  2. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  3. 77 FR 2957 - Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ..., mechanical seals, electric motors, transformers, capacitors, switches, electronic components, integrated circuits, process controllers, printed circuit assemblies, electrical components, and measuring instruments...

  4. Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Ma, Xinlei; Chen, Jihua; Zheng, Zijian; Roy, V. A. L.

    2015-01-01

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits. PMID:25801827

  5. Physically separating printed circuit boards with a resilient, conductive contact

    NASA Technical Reports Server (NTRS)

    Baker, John D. (Inventor); Montalvo, Alberto (Inventor)

    1999-01-01

    A multi-board module provides high density electronic packaging in which multiple printed circuit boards are stacked. Electrical power, or signals, are conducted between the boards through a resilient contact. One end of the contact is located at a via in the lower circuit board and soldered to a pad near the via. The top surface of the contact rests against a via of the facing printed circuit board.

  6. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beammore » Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.« less

  7. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  8. Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer.

    PubMed

    Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki

    2016-07-20

    We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter.

  9. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  10. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  11. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Harne, Ryan L.

    2018-05-01

    Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.

  12. Identification of Microbial Communities in Open and Closed Circuit Bioelectrochemical MBRs by High-Throughput 454 Pyrosequencing

    PubMed Central

    Huang, Jian; Wang, Zhiwei; Zhu, Chaowei; Ma, Jinxing; Zhang, Xingran; Wu, Zhichao

    2014-01-01

    Two bioelectrochemical membrane bioreactors (MBRs) developed by integrating microbial fuel cell and MBR technology were operated under closed-circuit and open-circuit modes, and high-throughput 454 pyrosequencing was used to investigate the effects of the power generation on the microbial community of bio-anode and bio-cathode. Microbes on the anode under open-circuit operation (AO) were enriched and highly diverse when compared to those on the anode under closed-circuit operation (AC). However, among the cathodes the closed-circuit mode (CC) had richer and more diverse microbial community compared to the cathode under open-circuit mode (CO). On the anodes AO and AC, Proteobacteria and Bacteroidetes were the dominant phyla, while Firmicutes was enriched only on AC. Deltaproteobacteria affiliated to Proteobacteria were also more abundant on AC than AO. Furthermore, the relative abundance of Desulfuromonas, which are well-known electrogenic bacteria, were much higher on AC (10.2%) when compared to AO (0.11%), indicating that closed-circuit operation was more conducive for the growth of electrogenic bacteria on the anodes. On the cathodes, Protebacteria was robust on CC while Bacteroidetes was more abundant on CO. Rhodobacter and Hydrogenophaga were also enriched on CC than CO, suggesting that these genera play a role in electron transfer from the cathode surface to the terminal electron acceptors in the bioelectrochemical MBR under closed-circuit operation. PMID:24705450

  13. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.

    PubMed

    Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A

    2009-12-01

    Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.

  14. Finite element analysis on deformation of stretchable electronic interconnect substrate using polydimethylsiloxanes (PDMS)

    NASA Astrophysics Data System (ADS)

    Roslan, M. F.; Shaffiar, N. M.; Khairusshima, M. K. N.; Sharifah, I. S. S.

    2018-01-01

    Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.

  15. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  16. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  17. Field-Sequential Color Converter

    NASA Technical Reports Server (NTRS)

    Studer, Victor J.

    1989-01-01

    Electronic conversion circuit enables display of signals from field-sequential color-television camera on color video camera. Designed for incorporation into color-television monitor on Space Shuttle, circuit weighs less, takes up less space, and consumes less power than previous conversion equipment. Incorporates state-of-art memory devices, also used in terrestrial stationary or portable closed-circuit television systems.

  18. Small, Optically-Driven Power Source

    NASA Technical Reports Server (NTRS)

    Cockrum, Richard H.; Wang, Ke-Li J.

    1988-01-01

    Power transmitted along fiber-optic cables. Transmitted as infrared light along fiber-optic cable, converted to electricity to supply small electronic circuit. Power source and circuit remains electrically isolated from each other for safety or reduces electromagnetic interference. Array of diodes made by standard integrated-circuit techniques and packaged for mounting at end of fiber-optic cable.

  19. E-Learning System Using Segmentation-Based MR Technique for Learning Circuit Construction

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system using the mixed reality (MR) technique for technical experiments involving the construction of electronic circuits. The proposed system comprises experimenters' mobile computers and a remote analysis system. When constructing circuits, each learner uses a mobile computer to transmit image data from the…

  20. An e-Learning System with MR for Experiments Involving Circuit Construction to Control a Robot

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system for technological experiments involving electronic circuit-construction and controlling robot motion that are necessary in the field of technology. The proposed system performs automated recognition of circuit images transmitted from individual learners and automatically supplies the learner with…

  1. 76 FR 58040 - Certain Coaxial Cable Connectors and Components Thereof and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... United States Court of Appeals for the Federal Circuit (``Federal Circuit'') in John Mezzalingua... public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http... for the `257 patent. Complainant PPC appealed to the Federal Circuit. In John Mezzalingua Associates v...

  2. 76 FR 12133 - In the Matter of Certain GPS Devices and Products Containing Same; Enforcement Proceeding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket... appealed the Commission's final determination to the United States Court of Appeals for Federal Circuit (``Federal Circuit''). In a precedential opinion issued April 12, 2010, the Federal Circuit affirmed the...

  3. 75 FR 70289 - In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http... importation, and the sale within the United States after importation of certain ground fault circuit...

  4. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    PubMed

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  5. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  6. RLE progress report no. 133, 1 January - 31 December 1990

    NASA Technical Reports Server (NTRS)

    Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)

    1990-01-01

    Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.

  7. The LANL P14 temperature control electronics for the waveshaping filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahman, N.S.

    1993-12-17

    The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.

  8. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    ERIC Educational Resources Information Center

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  9. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.

  10. Circuit for echo and noise suppression of accoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, Douglas S.; Scott, Douglas D.

    1993-01-01

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.

  11. 'Soft' amplifier circuits based on field-effect ionic transistors.

    PubMed

    Boon, Niels; Olvera de la Cruz, Monica

    2015-06-28

    Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.

  12. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  13. Characterization of quantum well structures using a photocathode electron microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  14. Learning high-quality soldering

    NASA Technical Reports Server (NTRS)

    Read, W. S.

    1981-01-01

    Soldering techniques for high-reliability electronic equipment are taught in 5 day course at NASA's Jet Propulsion Laboratory. Topic covered include new circuit assembly, printed-wiring board reworking, circuit changes, wire routing, and component installation.

  15. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  16. Microfluidic Automation using elastomeric valves and droplets: reducing reliance on external controllers

    PubMed Central

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji

    2012-01-01

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019

  17. Very high speed integrated circuits - Into the second generation. V - The issues of standardization and technology insertion

    NASA Astrophysics Data System (ADS)

    Martin, J.

    1982-04-01

    It is shown that the fulfillment of very high speed integrated circuit (VHSIC) device development goals entails the restructuring of military electronics acquisition policy, standardization which produces the maximum number of systems and subsystems by means of the minimum number of flexible, broad-purpose, high-power semiconductors, and especially the standardization of bus structures incorporating a priorization system. It is expected that the Design Specification Handbook currently under preparation by the VHSIC program office of the DOD will make the design of such systems a task whose complexity is comparable to that of present integrated circuit electronics.

  18. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    PubMed

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  19. A novel grounded to floating admittance converter with electronic control

    NASA Astrophysics Data System (ADS)

    Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank

    2018-01-01

    This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.

  20. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  1. Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids

    DOE PAGES

    Zhou, Ye; Han, Su -Ting; Sonar, Prashant; ...

    2015-03-24

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. Wemore » conclude that this hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.« less

  2. Open-channel integrating-type flow meter

    USGS Publications Warehouse

    Koopman, K.C.

    1971-01-01

    A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.

  3. Modeling recombination processes and predicting energy conversion efficiency of dye sensitized solar cells from first principles

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Meng, Sheng

    2014-03-01

    We present a set of algorithms based on solo first principles calculations, to accurately calculate key properties of a DSC device including sunlight harvest, electron injection, electron-hole recombination, and open circuit voltages. Two series of D- π-A dyes are adopted as sample dyes. The short circuit current can be predicted by calculating the dyes' photo absorption, and the electron injection and recombination lifetime using real-time time-dependent density functional theory (TDDFT) simulations. Open circuit voltage can be reproduced by calculating energy difference between the quasi-Fermi level of electrons in the semiconductor and the electrolyte redox potential, considering the influence of electron recombination. Based on timescales obtained from real time TDDFT dynamics for excited states, the estimated power conversion efficiency of DSC fits nicely with the experiment, with deviation below 1-2%. Light harvesting efficiency, incident photon-to-electron conversion efficiency and the current-voltage characteristics can also be well reproduced. The predicted efficiency can serve as either an ideal limit for optimizing photovoltaic performance of a given dye, or a virtual device that closely mimicking the performance of a real device under different experimental settings.

  4. Hybrid stretchable circuits on silicone substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk; Liu, Q.

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  5. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  6. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    PubMed

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  7. MOS Circuitry Would Detect Low-Energy Charged Particles

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva; Wadsworth, Mark

    2003-01-01

    Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.

  8. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian; GNS theory Group Team

    In between 2 metallic nanopads, adding identical and independent electron transfer paths in parallel increases the electronic effective coupling between the 2 nanopads through the quantum circuit defined by those paths. Measuring this increase of effective coupling using the tunnelling current intensity can lead for example for 2 paths in parallel to the now standard G =G1 +G2 + 2√{G1 .G2 } conductance superposition law (1). This is only valid for the tunnelling regime (2). For large electronic coupling to the nanopads (or at resonance), G can saturate and even decay as a function of the number of parallel paths added in the quantum circuit (3). We provide here the explanation of this phenomenon: the measurement of the effective Rabi oscillation frequency using the current intensity is constrained by the normalization principle of quantum mechanics. This limits the quantum conductance G for example to go when there is only one channel per metallic nanopads. This ef fect has important consequences for the design of Boolean logic gates at the atomic scale using atomic scale or intramolecular circuits. References: This has the financial support by European PAMS project.

  9. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  10. Electronics for Everyone.

    ERIC Educational Resources Information Center

    Mooney, P. M.

    1979-01-01

    Describes two laboratory courses in electronics designed for nonscience students. The courses require no prerequisites in physics or in mathematics, and emphasis is put on the laboratory aspect of electronics, such as building and testing various electronic circuits. (GA)

  11. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    PubMed

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economicmore » and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.« less

  13. Superconductive Microwave Single-Flux-Quantum Digital Circuits and Corresponding Opto-Electronic Interfaces: On-Going Studies and First Experimental Results

    DTIC Science & Technology

    2005-07-13

    UHLMANN University of Technology Ilmenau– PO Box 105565 – D-98684 Ilmenau - Germany RESUME : Les circuits numériques supraconducteurs micro-ondes...circuits RSFQ. Ce banc de mesure comporte deux types d’interfaces opto-RSFQ, basées sur des matériaux semiconducteurs et supraconducteurs , respectivement

  14. Resonant Circuits and Introduction to Vacuum Tubes, Industrial Electronics 2: 9325.03. Course Outline.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…

  15. Discrete Semiconductor Device Reliability

    DTIC Science & Technology

    1988-03-25

    array or alphanumeric display. "--" indicates unknown diode count. Voc Open circuit voltage for photovoltaic modules . indicates unknown. Isc Short... circuit current for photovoltaic modules . "--" indicates unknown. Number Tested Quantity of parts under the described test or field conditions for that...information pertaining to electronic systems and parts used therein. The present scope includes integrated circuits , hybrids, discrete semiconductors

  16. Module Six: Parallel Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn the rules that govern the characteristics of parallel circuits; the relationships between voltage, current, resistance and power; and the results of common troubles in parallel circuits. The module is divided into four lessons: rules of voltage and current, rules for resistance and power, variational analysis,…

  17. Module Five: Relationships of Current, Voltage, and Resistance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    This module covers the relationships between current and voltage; resistance in a series circuit; how to determine the values of current, voltage, resistance, and power in resistive series circuits; the effects of source internal resistance; and an introduction to the troubleshooting of series circuits. This module is divided into five lessons:…

  18. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    ERIC Educational Resources Information Center

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  19. Theory and Practice of Chinese-English Bilingual Teaching in Circuit Course

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    The Chinese-English bilingual teaching in the circuit course is an important approach to foster innovational talents for the electronic industry in the new century. In this article, we analyze the background, applicability and feasibility of bilingual teaching in the course of circuit and the difficulties facing in the process of implementation.…

  20. Analysis of Multilayered Printed Circuit Boards using Computed Tomography

    DTIC Science & Technology

    2014-05-01

    complex PCBs that present a challenge for any testing or fault analysis. Set-to- work testing and fault analysis of any electronic circuit require...Electronic Warfare and Radar Division in December 2010. He is currently in Electro- Optic Countermeasures Group. Samuel works on embedded system design...and software optimisation of complex electro-optical systems, including the set to work and characterisation of these systems. He has a Bachelor of

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Six: Parallel Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  2. Chaotic Motions in the Real Fuzzy Electronic Circuits

    DTIC Science & Technology

    2012-12-30

    field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be...Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended ...model. The overall fuzzy model of the system is achieved by fuzzy blending of the linear system models. Consider a continuous-time nonlinear dynamic

  3. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  5. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  6. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  7. New equivalent lumped electrical circuit for piezoelectric transformers.

    PubMed

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  8. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  9. Cost optimization in low volume VLSI circuits

    NASA Technical Reports Server (NTRS)

    Cook, K. B., Jr.; Kerns, D. V., Jr.

    1982-01-01

    The relationship of integrated circuit (IC) cost to electronic system cost is developed using models for integrated circuit cost which are based on design/fabrication approach. Emphasis is on understanding the relationship between cost and volume for custom circuits suitable for NASA applications. In this report, reliability is a major consideration in the models developed. Results are given for several typical IC designs using off the shelf, full custom, and semicustom IC's with single and double level metallization.

  10. Hybrid measurement chains for the SAS-C spacecraft. [advantages over analog signal processing circuits

    NASA Technical Reports Server (NTRS)

    Goeke, R. F.

    1975-01-01

    Spacecraft electronic systems usually demand tight packaging. It was this consideration which initially forced us to consider hybrid circuits for the analog signal processing circuits in the Small Astronomy Satellite-C (SAS-C) scientific payload. We gradually discovered that increased reliability, low power consumption, and reduced program costs all followed. This paper will attempt to share our laboratory's first experience with hybrid circuits and indicate those areas which we found to be important.

  11. Electronics Demonstrated for Low- Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.

  12. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  13. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the defense agencies. Electronic part means an integrated circuit, a discrete electronic component... electronic part means an unlawful or unauthorized reproduction, substitution, or alteration that has been knowingly mismarked, misidentified, or otherwise misrepresented to be an authentic, unmodified electronic...

  14. Applications of Electronic Devices in the Sixth Form Laboratory

    ERIC Educational Resources Information Center

    Dyson, J. E.

    1974-01-01

    Described are two experiments using electronic circuits designed for the activities. The first experiment is Ruchardt's experiment and the second demonstrates the distribution of velocity of electrons. (RH)

  15. Fundamental energy limits of SET-based Brownian NAND and half-adder circuits. Preliminary findings from a physical-information-theoretic methodology

    NASA Astrophysics Data System (ADS)

    Ercan, İlke; Suyabatmaz, Enes

    2018-06-01

    The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.

  16. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  17. On Polymorphic Circuits and Their Design Using Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Lohn, Jason; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces the concept of polymorphic electronics (polytronics) - referring to electronics with superimposed built-in functionality. A function change does not require switches/reconfiguration as in traditional approaches. Instead the change comes from modifications in the characteristics of devices involved in the circuit, in response to controls such as temperature, power supply voltage (VDD), control signals, light, etc. The paper illustrates polytronic circuits in which the control is done by temperature, morphing signals, and VDD respectively. Polytronic circuits are obtained by evolutionary design/evolvable hardware techniques. These techniques are ideal for the polytronics design, a new area that lacks design guidelines, know-how,- yet the requirements/objectives are easy to specify and test. The circuits are evolved/synthesized in two different modes. The first mode explores an unstructured space, in which transistors can be interconnected freely in any arrangement (in simulations only). The second mode uses a Field Programmable Transistor Array (FPTA) model, and the circuit topology is sought as a mapping onto a programmable architecture (these experiments are performed both in simulations and on FPTA chips). The experiments demonstrated the synthesis. of polytronic circuits by evolution. The capacity of storing/hiding "extra" functions provides for watermark/invisible functionality, thus polytronics may find uses in intelligence/security applications.

  18. The inside-out supercapacitor: induced charge storage in reduced graphene oxide.

    PubMed

    Martin, Samuel T; Akbari, Abozar; Chakraborty Banerjee, Parama; Neild, Adrian; Majumder, Mainak

    2016-11-30

    Iontronic circuits are built using components which are analogous to those used in electronic circuits, however they involve the movement of ions in an electrolyte rather than electrons in a metal or semiconductor. Developments in these circuits' performance have led to applications in biological sensing, interfacing and drug delivery. While transistors, diodes and elementary logic circuits have been demonstrated for ionic circuits if more complex circuits are to be realized, the precident set by electrical circuits suggests that a component which is analogous to an electrical capacitor is required. Herein, an ionic supercapacitor is reported, our experiments show that charge may be stored in a conductive porous reduced graphene oxide film that is contacted by two isolated aqueous solutions and that this concept extends to an arbitrary polarizable sample. Parametric studies indicate that the conductivity and porosity of this film play important roles in the resultant device's performance. This ionic capacitor has a specific capacitance of 8.6 F cm -3 at 1 mV s -1 and demonstrates the ability to filter and smooth signals in an electrolyte at a variety of low frequencies. The device has the same interfaces as a supercapacitor but their arrangement is changed, hence the name inside-out supercapacitor.

  19. The Electron Runaround: Understanding Electric Circuit Basics Through a Classroom Activity

    NASA Astrophysics Data System (ADS)

    Singh, Vandana

    2010-05-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not completely resolve these misconceptions. Mazur and Knight,2 in particular, separately note that such misconceptions include the notion that electric current on either side of a light bulb in a circuit can be different. Other difficulties and confusions involve understanding why the current in a parallel circuit exceeds the current in a series circuit with the same components, and include the role of the battery (where students may assume wrongly that a dry cell battery is a fixed-current rather than a fixed-voltage device). A simple classroom activity that students can play as a game can resolve these misconceptions, providing an intellectual as well as a hands-on understanding. This paper describes the "Electron Runaround," first developed by the author to teach extremely bright 8-year-old home-schooled children the basics of electric circuits and subsequently altered (according to the required level of instruction) and used for various college physics courses.

  20. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  1. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  2. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  3. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  4. 47 CFR 15.103 - Exempted devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exclusively as an electronic control or power system utilized by a public utility or in an industrial plant... circuit to convert the signal to the format required (e.g., an integrated circuit for analog to digital...

  5. Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Cheng-Po; Shaddock, David; Sandvik, Peter

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can bemore » used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.« less

  6. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  7. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  8. Bridging the Hardware-Software Gap: A Proof Carrying Approach for Computer Systems Trust Evaluation (5.3.5)

    DTIC Science & Technology

    2017-08-22

    has significantly lowered the design cost and shortened the time-to- market (TTM) of Integrated Circuits (ICs) in the electronic industry. Over the...semiconductor companies have focused on high-profit phases such as design, marketing , and sales and have outsourced chip manufacturing, wafer fabrication...supply chain has significantly lowered the design cost and shortened the time- to- market (TTM) of integrated circuits (ICs) in the electronic

  9. Operation and Maintenance Manual, TECS 18.

    DTIC Science & Technology

    1978-11-01

    width modulated variable output voltage and frequency using a three-phase transistor bridge circuit . Reduced power line electromagnetic interference...Description 3-1 Section II. Circuit Fundamentals 3-1 Section III. System Description 3-2 CHAPTER 4. Protection and Maintenance 4-1 Section I. Internal...Number I-la TECS 18 Electronic Module Location-Evaporator Side 1-3 1-lb TECS 18 Electronic Module Location-Condenser Side 1-4 1-2 Remote Control Panel 1-5

  10. Designing an Electronics Data Package for Printed Circuit Boards (PCBs)

    DTIC Science & Technology

    2013-08-01

    finished PCB flatness deviation should be less than 0.010 inches per inch. 4  The minimum copper wall thickness of plated-thru holes should be...Memory Card International Association)  IPC-6015 MCM-L (Multi-Chip Module – Laminated )  IPC-6016 HDI (High Density Interconnect)  IPC-6018...Interconnect ICT In Circuit Tester IPC Association Connecting Electronics Industries MCM-L Multi-Chip Module – Laminated MIL Military NEMA National

  11. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  12. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  13. A high resolution on-chip delay sensor with low supply-voltage sensitivity for high-performance electronic systems.

    PubMed

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-02-13

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.

  14. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    PubMed

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An open-source laser electronics suite

    NASA Astrophysics Data System (ADS)

    Pisenti, Neal C.; Reschovsky, Benjamin J.; Barker, Daniel S.; Restelli, Alessandro; Campbell, Gretchen K.

    2016-05-01

    We present an integrated set of open-source electronics for controlling external-cavity diode lasers and other instruments in the laboratory. The complete package includes a low-noise circuit for driving high-voltage piezoelectric actuators, an ultra-stable current controller based on the design of, and a high-performance, multi-channel temperature controller capable of driving thermo-electric coolers or resistive heaters. Each circuit (with the exception of the temperature controller) is designed to fit in a Eurocard rack equipped with a low-noise linear power supply capable of driving up to 5 A at +/- 15 V. A custom backplane allows signals to be shared between modules, and a digital communication bus makes the entire rack addressable by external control software over TCP/IP. The modular architecture makes it easy for additional circuits to be designed and integrated with existing electronics, providing a low-cost, customizable alternative to commercial systems without sacrificing performance.

  16. Stretchable electronics based on Ag-PDMS composites

    PubMed Central

    Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos

    2014-01-01

    Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  18. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  19. Modeling of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat Duen

    2005-01-01

    Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.

  20. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  1. Tool for Crimping Flexible Circuit Leads

    NASA Technical Reports Server (NTRS)

    Hulse, Aaron; Diftler, Myron A.

    2009-01-01

    A hand tool has been developed for crimping leads in flexible tails that are parts of some electronic circuits -- especially some sensor circuits. The tool is used to cut the tails to desired lengths and attach solder tabs to the leads. For tailoring small numbers of circuits for special applications, this hand tool is a less expensive alternative to a commercially available automated crimping tool. The crimping tool consists of an off-the-shelf hand crimping tool plus a specialized crimping insert designed specifically for the intended application.

  2. Evolutionary Technique for Automated Synthesis of Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2007-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  3. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-10-01

    Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.

  4. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  5. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  6. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  7. Electronic bidirectional valve circuit prevents crossover distortion and threshold effect

    NASA Technical Reports Server (NTRS)

    Kernick, A.

    1966-01-01

    Four-terminal network forms a bidirectional valve which will switch or alternate an ac signal without crossover distortion or threshold effect. In this network, an isolated control signal is sufficient for circuit turn-on.

  8. 16 CFR 1211.4 - General requirements for protection against risk of injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... closes. (c) An electronic or solid-state circuit that performs a back-up, limiting, or other function... circuits, shall comply with the requirements in the Standard for Safety for Tests for Safety-Related...

  9. 16 CFR 1211.4 - General requirements for protection against risk of injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... closes. (c) An electronic or solid-state circuit that performs a back-up, limiting, or other function... circuits, shall comply with the requirements in the Standard for Safety for Tests for Safety-Related...

  10. 16 CFR 1211.4 - General requirements for protection against risk of injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... closes. (c) An electronic or solid-state circuit that performs a back-up, limiting, or other function... circuits, shall comply with the requirements in the Standard for Safety for Tests for Safety-Related...

  11. 16 CFR 1211.4 - General requirements for protection against risk of injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... closes. (c) An electronic or solid-state circuit that performs a back-up, limiting, or other function... circuits, shall comply with the requirements in the Standard for Safety for Tests for Safety-Related...

  12. Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro

    1992-08-01

    A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayle, Scott; Gupta, Tanuj; Davis, Sam

    Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.

  14. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  15. ELECTRONIC MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-08-25

    An electronic multiplier circuit is described in which an output voltage having an amplitude proportional to the product or quotient of the input signals is accomplished in a novel manner which facilitates simplicity of circuit construction and a high degree of accuracy in accomplishing the multiplying and dividing function. The circuit broadly comprises a multiplier tube in which the plate current is proportional to the voltage applied to a first control grid multiplied by the difference between voltage applied to a second control grid and the voltage applied to the first control grid. Means are provided to apply a first signal to be multiplied to the first control grid together with means for applying the sum of the first signal to be multiplied and a second signal to be multiplied to the second control grid whereby the plate current of the multiplier tube is proportional to the product of the first and second signals to be multiplied.

  16. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  17. Tomonaga-Luttinger physics in electronic quantum circuits.

    PubMed

    Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

  18. Chemical Processing of Electrons and Holes.

    ERIC Educational Resources Information Center

    Anderson, Timothy J.

    1990-01-01

    Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)

  19. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip

    NASA Astrophysics Data System (ADS)

    Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish

    2017-07-01

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  20. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.

    PubMed

    Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish

    2017-07-05

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  1. Electronic inverter assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Brij N.; Schmit, Christopher J.

    A first driver portion comprises a set of first components mounted on or associated with a first circuit board. A second circuit board is spaced apart from the first circuit board. A second driver portion comprises a set of second components mounted on or associated with the second circuit board, where the first driver portion and the second driver portion collectively are adapted to provide input signals to the control terminal of each semiconductor switch of an inverter. A first edge connector is mounted on the first circuit board. A second edge connector is mounted on the second circuit board.more » An interface board has mating edges that mate with the first edge connector and the second edge connector.« less

  2. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  3. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.

    PubMed

    Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan

    2014-04-28

    Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.

  4. Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics.

    PubMed

    Ahmadraji, Termeh; Gonzalez-Macia, Laura; Ritvonen, Tapio; Willert, Andreas; Ylimaula, Satu; Donaghy, David; Tuurala, Saara; Suhonen, Mika; Smart, Dave; Morrin, Aoife; Efremov, Vitaly; Baumann, Reinhard R; Raja, Munira; Kemppainen, Antti; Killard, Anthony J

    2017-07-18

    Organic and printed electronics integration has the potential to revolutionize many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon integrated circuits via pick and place or using organic electronic circuits. The device was capable of measuring 8 μL samples of both hydrogen peroxide (0-5 mM, 2.72 × 10 -6 A·mM -1 ) and total cholesterol in serum from 0 to 9 mM (1.34 × 10 -8 A·mM -1 , r 2 = 0.99, RSD < 10%, n = 3), and the result was output on a semiquantitative linear bar display. The device could operate for 10 min via a printed battery, and display the result for many hours or days. A mobile phone "app" was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.

  5. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  6. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    PubMed

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.

  8. Interface For MIL-STD-1553B Data Bus

    NASA Technical Reports Server (NTRS)

    Davies, Bryan L.; Osborn, Stephen H.; Sullender, Craig C.

    1993-01-01

    Electronic control-logic subsystem acts as interface between microcontroller and MIL-STD-1553B data bus. Subsystem made of relatively small number of integrated circuits. Advantages include low power, few integrated-circuit chips, and little need for control signals.

  9. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  10. Apparatus for Teaching Physics

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1977-01-01

    Describes an electronic digital counter, a speed-of-light experiment using a television, a simple out-of-circuit method for determining if a transistor is made of silicon or germanium, and the use of dry cells to power TTL integrated circuits. (MLH)

  11. 29 CFR 1910.307 - Hazardous (classified) locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...

  12. 16 CFR § 1211.4 - General requirements for protection against risk of injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... closes. (c) An electronic or solid-state circuit that performs a back-up, limiting, or other function... circuits, shall comply with the requirements in the Standard for Safety for Tests for Safety-Related...

  13. 29 CFR 1910.307 - Hazardous (classified) locations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...

  14. Teaching Oscillations with a Small Computer.

    ERIC Educational Resources Information Center

    Calvo, J. L.; And Others

    1983-01-01

    Describes a simple, inexpensive electronic circuit used as a small analog computer in an experimental approach to the study of oscillations. Includes circuit diagram and an example of the method using steps followed by students studying underdamped oscillatory motion. (JN)

  15. 29 CFR 1910.307 - Hazardous (classified) locations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...

  16. NASA Tech Briefs, July 1997. Volume 21, No. 7

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics: Mechanical Components; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Life Sciences.

  17. NASA Tech Briefs, December 1991. Volume 15, No. 12

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences,

  18. NASA Tech Briefs, December 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  19. Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere

    DTIC Science & Technology

    2013-01-01

    measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used

  20. Use of a Frequency Divider to Evaluate an SOI NAND Gate Device, Type CHT-7400, for Wide Temperature Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    Frequency dividers constitute essential elements in designing phase-locked loop circuits and microwave systems. In addition, they are used in providing required clocking signals to microprocessors and can be utilized as digital counters. In some applications, particularly space missions, electronics are often exposed to extreme temperature conditions. Therefore, it is required that circuits designed for such applications incorporate electronic parts and devices that can tolerate and operate efficiently in harsh temperature environments. While present electronic circuits employ COTS (commercial-off- the-shelf) parts that necessitate and are supported with some form of thermal control systems to maintain adequate temperature for proper operation, it is highly desirable and beneficial if the thermal conditioning elements are eliminated. Amongst these benefits are: simpler system design, reduced weight and size, improved reliability, simpler maintenance, and reduced cost. Devices based on silicon-on-insulator (SOI) technology, which utilizes the addition of an insulation layer in the device structure to reduce leakage currents and to minimize parasitic junctions, are well suited for high temperatures due to reduced internal heating as compared to the conventional silicon devices, and less power consumption. In addition, SOI electronic integrated circuits display good tolerance to radiation by virtue of introducing barriers or lengthening the path for penetrating particles and/or providing a region for trapping incident ionization. The benefits of these parts make them suitable for use in deep space and planetary exploration missions where extreme temperatures and radiation are encountered. Although designed for high temperatures, very little data exist on the operation of SOI devices and circuits at cryogenic temperatures. In this work, the performance of a divide-by-two frequency divider circuit built using COTS SOI logic gates was evaluated over a wide temperature range and thermal cycling to determine suitability for use in space exploration missions and terrestrial fields under extreme temperature conditions.

  1. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  2. Biological Signal Processing with a Genetic Toggle Switch

    PubMed Central

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  3. The Tao of Microelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin

    2014-12-01

    Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.

  4. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    NASA Astrophysics Data System (ADS)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

  5. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  6. Phased-Array Antenna With Optoelectronic Control Circuits

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.

    1995-01-01

    Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.

  7. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  8. Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Wallraff, Andreas

    2009-03-01

    A combination of ideas from atomic physics, quantum optics and solid state physics allows us to investigate the fundamental interaction of matter and light on the level of single quanta in electronic circuits. In an approach known as circuit quantum electrodynamics, we coherently couple individual photons stored in a high quality microwave frequency resonator to a fully controllable superconducting two-level system (qubit) realized in a macroscopic electronic circuit [1]. In particular, we have recently observed the simultaneous interaction of one, two and three photons with a single qubit. In these experiments, we have probed the quantum nonlinearity of the qubit/light interaction governed by the Jaynes-Cummings hamiltonian, clearly demonstrating the quantization of the radiation field in the on-chip cavity. We have also performed quantum optics experiments with no photons at all. In this situation, i.e. in pure vacuum, we have resolved the renormalization of the qubit transition frequency - known as the Lamb shift - due to its non-resonant interaction with the cavity vacuum fluctuations [3].[4pt] [1] A. Wallraff et al., Nature (London) 431, 162 (2004)[0pt] [2] J. Fink et al., Nature (London) 454, 315 (2008)[0pt] [3] A. Fragner et al., Science 322, 1357 (2008)

  9. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  10. Electrically driven monolithic subwavelength plasmonic interconnect circuits

    PubMed Central

    Liu, Yang; Zhang, Jiasen; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2017-01-01

    In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)–compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its “photovoltaic” operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks. PMID:29062890

  11. Synaptic behaviors of a single metal-oxide-metal resistive device

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Jun; Kim, Guk-Bae; Lee, Kyoobin; Kim, Ki-Hong; Yang, Woo-Young; Cho, Soohaeng; Bae, Hyung-Jin; Seo, Dong-Seok; Kim, Sang-Il; Lee, Kyung-Jin

    2011-03-01

    The mammalian brain is far superior to today's electronic circuits in intelligence and efficiency. Its functions are realized by the network of neurons connected via synapses. Much effort has been extended in finding satisfactory electronic neural networks that act like brains, i.e., especially the electronic version of synapse that is capable of the weight control and is independent of the external data storage. We demonstrate experimentally that a single metal-oxide-metal structure successfully stores the biological synaptic weight variations (synaptic plasticity) without any external storage node or circuit. Our device also demonstrates the reliability of plasticity experimentally with the model considering the time dependence of spikes. All these properties are embodied by the change of resistance level corresponding to the history of injected voltage-pulse signals. Moreover, we prove the capability of second-order learning of the multi-resistive device by applying it to the circuit composed of transistors. We anticipate our demonstration will invigorate the study of electronic neural networks using non-volatile multi-resistive device, which is simpler and superior compared to other storage devices.

  12. Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics.

    PubMed

    Cantarella, Giuseppe; Vogt, Christian; Hopf, Raoul; Münzenrieder, Niko; Andrianakis, Panagiotis; Petti, Luisa; Daus, Alwin; Knobelspies, Stefan; Büthe, Lars; Tröster, Gerhard; Salvatore, Giovanni A

    2017-08-30

    Although recent progress in the field of flexible electronics has allowed the realization of biocompatible and conformable electronics, systematic approaches which combine high bendability (<3 mm bending radius), high stretchability (>3-4%), and low complexity in the fabrication process are still missing. Here, we show a technique to induce randomly oriented and customized wrinkles on the surface of a biocompatible elastomeric substrate, where Thin-Film Transistors (TFTs) and circuits (inverter and logic NAND gates) based on amorphous-IGZO are fabricated. By tuning the wavelength and the amplitude of the wrinkles, the devices are fully operational while bent to 13 μm bending radii as well as while stretched up to 5%, keeping unchanged electrical properties. Moreover, a flexible rectifier is also realized, showing no degradation in the performances while flat or wrapped on an artificial human wrist. As proof of concept, transparent TFTs are also fabricated, presenting comparable electrical performances to the nontransparent ones. The extension of the buckling approach from our TFTs to circuits demonstrates the scalability of the process, prospecting applications in wireless stretchable electronics to be worn or implanted.

  13. 47 CFR 32.6212 - Digital electronic switching expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with digital electronic switching equipment used to provide circuit switching. (c) This subaccount 6212... 47 Telecommunication 2 2014-10-01 2014-10-01 false Digital electronic switching expense. 32.6212... Digital electronic switching expense. (a) This account shall include expenses associated with digital...

  14. 47 CFR 32.6212 - Digital electronic switching expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with digital electronic switching equipment used to provide circuit switching. (c) This subaccount 6212... 47 Telecommunication 2 2011-10-01 2011-10-01 false Digital electronic switching expense. 32.6212... Digital electronic switching expense. (a) This account shall include expenses associated with digital...

  15. 47 CFR 32.6212 - Digital electronic switching expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with digital electronic switching equipment used to provide circuit switching. (c) This subaccount 6212... 47 Telecommunication 2 2013-10-01 2013-10-01 false Digital electronic switching expense. 32.6212... Digital electronic switching expense. (a) This account shall include expenses associated with digital...

  16. 47 CFR 32.6212 - Digital electronic switching expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with digital electronic switching equipment used to provide circuit switching. (c) This subaccount 6212... 47 Telecommunication 2 2010-10-01 2010-10-01 false Digital electronic switching expense. 32.6212... Digital electronic switching expense. (a) This account shall include expenses associated with digital...

  17. 47 CFR 32.6212 - Digital electronic switching expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with digital electronic switching equipment used to provide circuit switching. (c) This subaccount 6212... 47 Telecommunication 2 2012-10-01 2012-10-01 false Digital electronic switching expense. 32.6212... Digital electronic switching expense. (a) This account shall include expenses associated with digital...

  18. NASA Tech Briefs, November 1991. Volume 15, No. 11

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences,

  19. Biocompatible circuit-breaker chip for thermal management of biomedical microsystems

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Dahmardeh, Masoud; Takahata, Kenichi

    2015-05-01

    This paper presents a thermoresponsive micro circuit breaker for biomedical applications specifically targeted at electronic intelligent implants. The circuit breaker is micromachined to have a shape-memory-alloy cantilever actuator as a normally closed temperature-sensitive switch to protect the device of interest from overheating, a critical safety feature for smart implants including those that are electrothermally driven with wireless micro heaters. The device is fabricated in a size of 1.5  ×  2.0  ×  0.46 mm3 using biocompatible materials and a chip-based titanium package, exhibiting a nominal cold-state resistance of 14 Ω. The breaker rapidly enters the full open condition when the chip temperature exceeds 63 °C, temporarily breaking the circuit of interest to lower its temperature until chip temperature drops to 51 °C, at which the breaker closes the circuit to allow current to flow through it again, physically limiting the maximum temperature of the circuit. This functionality is tested in combination with a wireless resonant heater powered by radio-frequency electromagnetic radiation, demonstrating self-regulation of heater temperature. The developed circuit-breaker chip operates in a fully passive manner that removes the need for active sensor and circuitry to achieve temperature regulation in a target device, contributing to the miniaturization of biomedical microsystems including electronic smart implants where thermal management is essential.

  20. Hazardous Waste Cleanup: Marlborough Press LTD in Plainview, New York

    EPA Pesticide Factsheets

    This parcel is located in an industrial park in Plainview, Nassau County, New York. It was operated as Three Dimensional Circuits from 1970 to 1984, manufacturing electronic circuit boards. During its operation, the site discharged metal plating solutions

  1. Hardening Logic Encryption against Key Extraction Attacks with Circuit Camouflage

    DTIC Science & Technology

    2017-03-01

    camouflage; obfuscation; SAT; key extraction; reverse engineering; security; trusted electronics Introduction Integrated Circuit (IC) designs are...Encryption Algorithms”, Hardware Oriented Security and Trust , 2015. 3. Rajendran J., Pino, Y., Sinanoglu, O., Karri, R., “Security Analysis of Logic

  2. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.

  3. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-07-01

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. NASA Tech Briefs, November 1997. Volume 21, No. 11

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Machinery/Automation; Books and Reports..

  5. NASA Tech Briefs, August 1992. Volume 16, No. 8

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, September 1992. Volume 16, No.9

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  7. NASA Tech Briefs, Summer 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  8. NASA Tech Briefs, January 1993. Volume 17, No. 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  9. NASA Tech Briefs, November 1992. Volume 16, No. 11

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  10. NASA Tech Briefs, December 1992. Volume 16, No. 12

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  11. NASA Tech Briefs, Spring 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topic include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  12. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  13. Design and Hardware Implementation of a New Chaotic Secure Communication Technique

    PubMed Central

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385

  14. Design and Hardware Implementation of a New Chaotic Secure Communication Technique.

    PubMed

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.

  15. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.

    PubMed

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji; Takayama, Shuichi

    2012-10-08

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This Concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high-complexity and high-throughput analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A scalable neural chip with synaptic electronics using CMOS integrated memristors.

    PubMed

    Cruz-Albrecht, Jose M; Derosier, Timothy; Srinivasa, Narayan

    2013-09-27

    The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal-oxide-semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior.

  17. Simple BiCMOS CCCTA design and resistorless analog function realization.

    PubMed

    Tangsrirat, Worapong

    2014-01-01

    The simple realization of the current-controlled conveyor transconductance amplifier (CCCTA) in BiCMOS technology is introduced. The proposed BiCMOS CCCTA realization is based on the use of differential pair and basic current mirror, which results in simple structure. Its characteristics, that is, parasitic resistance (R x) and current transfer (i o/i z), are also tunable electronically by external bias currents. The realized circuit is suitable for fabrication using standard 0.35 μm BiCMOS technology. Some simple and compact resistorless applications employing the proposed CCCTA as active elements are also suggested, which show that their circuit characteristics with electronic controllability are obtained. PSPICE simulation results demonstrating the circuit behaviors and confirming the theoretical analysis are performed.

  18. NASA Tech Briefs, May 1998. Volume 22, No. 5

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage on advanced composites, plastics and metals, electronic components and circuits, electronic systems, physical sciences, computer software, mechanics, machinery/automation, manufacturing/fabrication book and reports, and a special section of Electronics Tech Briefs.

  19. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    PubMed Central

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  20. Integrated testing system FiTest for diagnosis of PCBA

    NASA Astrophysics Data System (ADS)

    Bogdan, Arkadiusz; Lesniak, Adam

    2016-12-01

    This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.

  1. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  2. Developing Basic Electronics Aptitudes.

    ERIC Educational Resources Information Center

    Lakeshore Technical Coll., Cleveland, WI.

    This curriculum guide provides materials for basic training in electrical and electronic theory to enable participants to analyze circuits and use test equipment to verify electrical operations and to succeed in the beginning electrical and electronic courses in the Lakeshore Technical College (Wisconsin) electronics programs. The course includes…

  3. Inverted battery design as ion generator for interfacing with biosystems

    DOE PAGES

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...

    2017-07-24

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  4. Inverted battery design as ion generator for interfacing with biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  5. Inverted battery design as ion generator for interfacing with biosystems

    PubMed Central

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-01-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174

  6. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    PubMed

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  7. RADIATION DAMAGE TO SATELLITE ELECTRONIC SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, S.C.

    The radiation sensitivity of satellite electronic systems was examined in order to determine the limitations they place on satellite life. The effects of radiation on components are briefly reviewed. Methods are presented and illustrated for determining the minimum radiation level at which circuit failure could occur. The effects of shielding on the radiation belt levels are discussed. It is shown that the effects of space radiation on satellite circuits, in general, can be made negligible by using good design practices. (M.C.G.)

  8. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  9. Extending a Lippmann style seismometer's dynamic range by using a non-linear feedback circuit

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Spinelli, Giuseppe

    2013-04-01

    A Lippmann style seismometer uses a single-coil velocity-feedback method in order to extend toward lower frequencies a geophone's frequency response. Strong seismic signals may saturate the electronics, sometimes producing a characteristic whale-shaped recording. Adding a non linear feedback in the electronic circuit may avoid saturation, allowing the strong-motion use of the seismometer without affecting the usual performance. We show results from both simulations and experiments, using a Teledyne Geotech s13 as a mechanical part.

  10. On the modulation of the Jovian decametric radiation by Io. I - Acceleration of charged particles

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goertz, C. K.

    1978-01-01

    A steady-state analysis of the current circuit between Io and the Jovian ionosphere is performed, assuming that the current is carried by electrons accelerated through potential double layers in the Io flux tube. The circuit analysis indicates that electrons may be accelerated up to energies of several hundred keV. Several problems associated with the formation of double layers are also discussed. The parallel potential drops decouple the flux tube from the satellite's orbital motion.

  11. Command, Control, Communications, Computers, Intelligence Electronic Warfare (C4IEW) and Sensors. Project Book. Fiscal Year 1996

    DTIC Science & Technology

    1996-01-01

    INTENSIFICATION (AI2) ATD AERIAL SCOUT SENSORS INTEGRATION (ASSI) BISTATIC RADAR FOR WEAPONS LOCATION (BRWL) ATD CLOSE IN MAN PORTABLE MINE DETECTOR (CIMMD...MS IV PE & LINE #: 1X428010.D107 HI Operations/Support DESCRIPTION: The AN/TTC-39A Circuit Switch is a 744 line mobile , automatic ...SYNOPSIS: AN/TTC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL COMSEC AND MULTIPLEX EQUIPMENT. AN/TTC

  12. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  13. Application of GA package in functional packaging

    NASA Astrophysics Data System (ADS)

    Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.

    2018-05-01

    The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.

  14. Developing a 300C Analog Tool for EGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy

    2015-03-23

    This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.

  15. Fixation of operating point and measurement of turn on characteristics of IGBT F4-75R06W1E3

    NASA Astrophysics Data System (ADS)

    Haseena, A.; Subhash Joshi T., G.; George, Saly

    2018-05-01

    For the proficient operation of the Power electronic circuit, signal level performance of power electronic devices are very important. For getting good signal level characteristics, fixing operating point is very critical. Device deviates from the typical characteristics given in the datasheet due to the presence of stray components in the circuit lay out. Fixation of operating point of typical silicon IGBT and its turn on characteristics is discussed in this paper.

  16. Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage

    NASA Astrophysics Data System (ADS)

    Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.

    2017-07-01

    We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.

  17. LEAD SEVERING CONTRIVANCE

    DOEpatents

    Widmaier, W.

    1958-04-01

    A means for breaking an electrical circuit within an electronic tube during the process of manufacture is described. Frequently such circuits must be employed for gettering or vapor coating purposes, however, since an external pair of corector pins having no use after manufacture, is undesirable, this invention permits the use of existing leads to form a temporary circuit during manufacture, and severing it thereafter. One portion of the temporary circuit, made from a springy material such as tungsten, is spot welded to a fusable member. To cut the circuit an external radiant heat source melts the fusable member, allowing the tensed tungsten spring to contract and break the circuit. This inexpensive arrangement is particularly useful when the tube has a great many external leads crowded into the tube base.

  18. The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    PubMed

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-01-28

    We report on the commonly unaccounted for process of recombination under short-circuit conditions in nanostructured photoelectrodes with special attention to the charge collection efficiency. It is observed that when recombination under short circuit conditions is significant, small perturbation methods overestimate the charge-collection efficiency, which is related to the inaccurate determination of the electron diffusion coefficient and diffusion length.

  19. Ultra-Wideband Harmonic Radar for Locating Radio-Frequency Electronics

    DTIC Science & Technology

    2015-03-01

    13  Fig. A-1 Measured S-parameters for the MiniCircuits SLP ...MiniCircuits SLP -1000+ lowpass filters. The relatively weak signal at f0 is increased by 40 dB by the Amplifier Research AR4W1000 power amplifier. The...Fig. A-1 Measured S-parameters for the MiniCircuits SLP -1000+ lowpass filter pair Fig. A-2 Measured S-parameters for the Amplifier Research

  20. Effect of Bypass Capacitor in Common-mode Noise Reduction Technique for Automobile PCB

    NASA Astrophysics Data System (ADS)

    Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atushi

    In this letter, we studied the use of common mode noise reduction technique for in-vehicle electronic equipment, each comprising large-scale integrated circuit (LSI), printed circuit board (PCB), wiring harnesses, and ground plane. We have improved the model circuit of the common mode noise that flows to the wire harness to add the effect of by-pass capacitors located near an LSI.

Top