7 CFR 3201.80 - Electronic components cleaners.
Code of Federal Regulations, 2013 CFR
2013-01-01
... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or systems... 7 Agriculture 15 2013-01-01 2013-01-01 false Electronic components cleaners. 3201.80 Section 3201...
7 CFR 3201.80 - Electronic components cleaners.
Code of Federal Regulations, 2014 CFR
2014-01-01
... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or systems... 7 Agriculture 15 2014-01-01 2014-01-01 false Electronic components cleaners. 3201.80 Section 3201...
RI 1170 advanced strapdown gyro
NASA Technical Reports Server (NTRS)
1973-01-01
The major components of the RI 1170 gyroscope are described. A detailed functional description of the electronics including block diagrams and photographs of output waveshapes within the loop electronics are presented. An electronic data flow diagram is included. Those gyro subassemblies that were originally planned and subsequently changed or modified for one reason or another are discussed in detail. Variations to the original design included the capacitive pickoffs, torquer flexleads, magnetic suspension, gas bearings, electronic design, and packaging. The selection of components and changes from the original design and components selected are discussed. Device failures experienced throughout the program are reported and design corrections to eliminate the failure modes are noted. Major design deficiencies such as those of the MSE electronics are described in detail. Modifications made to the gas bearing parts and design improvements to the wheel are noted. Changes to the gas bearing prints are included as well as a mathematical analysis of the 1170 gas bearing wheel by computer analysis. The mean free-path effects on gas bearing performance is summarized.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2011 CFR
2011-04-01
... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2013 CFR
2013-04-01
... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2012 CFR
2012-04-01
... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2014 CFR
2014-04-01
... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other than...
Analysis tool and methodology design for electronic vibration stress understanding and prediction
NASA Astrophysics Data System (ADS)
Hsieh, Sheng-Jen; Crane, Robert L.; Sathish, Shamachary
2005-03-01
The objectives of this research were to (1) understand the impact of vibration on electronic components under ultrasound excitation; (2) model the thermal profile presented under vibration stress; and (3) predict stress level given a thermal profile of an electronic component. Research tasks included: (1) retrofit of current ultrasonic/infrared nondestructive testing system with sensory devices for temperature readings; (2) design of software tool to process images acquired from the ultrasonic/infrared system; (3) developing hypotheses and conducting experiments; and (4) modeling and evaluation of electronic vibration stress levels using a neural network model. Results suggest that (1) an ultrasonic/infrared system can be used to mimic short burst high vibration loads for electronics components; (2) temperature readings for electronic components under vibration stress are consistent and repeatable; (3) as stress load and excitation time increase, temperature differences also increase; (4) components that are subjected to a relatively high pre-stress load, followed by a normal operating load, have a higher heating rate and lower cooling rate. These findings are based on grayscale changes in images captured during experimentation. Discriminating variables and a neural network model were designed to predict stress levels given temperature and/or grayscale readings. Preliminary results suggest a 15.3% error when using grayscale change rate and 12.8% error when using average heating rate within the neural network model. Data were obtained from a high stress point (the corner) of the chip.
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...
40 CFR 86.1803-01 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...
Modeling of power electronic systems with EMTP
NASA Technical Reports Server (NTRS)
Tam, Kwa-Sur; Dravid, Narayan V.
1989-01-01
In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.
Cryogenic applications of commercial electronic components
NASA Astrophysics Data System (ADS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.
2012-10-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
Cryogenic Applications of Commercial Electronic Components
NASA Technical Reports Server (NTRS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.
2012-01-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
NASA Tech Briefs, August 2000. Volume 24, No. 8
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design.
RF Design of a High Average Beam-Power SRF Electron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan
2016-06-01
There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.
Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course
NASA Astrophysics Data System (ADS)
Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul
2018-03-01
This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
Calculating Strain Relief in Electronic-Component Leads
NASA Technical Reports Server (NTRS)
Snytsheuvel, H.
1985-01-01
Stress/strain formulas applicable to design of electronic-component leads compiled in report. Such things as factors of safety and whether or not lead is likely to fall in service determined in advance. Set of formulas is simple enough to be solved on programable hand-held calculator.
VESL: Vocational English as a Second Language. Focus: Electronics.
ERIC Educational Resources Information Center
Scales, Virginia
These instructional materials are designed to help non-English speaking students in electronics classes to improve their knowledge of English. Covered in the six units are the following topics: safety, hand tools, measuring electricity, component identification, component function, and basic soldering. The lessons include readings, vocabulary…
In-Flight Manual Electronics Repair for Deep-Space Missions
NASA Technical Reports Server (NTRS)
Pettegrew, Richard; Easton, John; Struk, Peter; Anderson, Eric
2007-01-01
Severe limitations on mass and volume available for spares on long-duration spaceflight missions will require electronics repair to be conducted at the component level, rather than at the sub-assembly level (referred to as Orbital Replacement Unit, or 'ORU'), as is currently the case aboard the International Space Station. Performing reliable component-level repairs in a reduced gravity environment by crew members will require careful planning, and some specialty tools and systems. Additionally, spacecraft systems must be designed to enable such repairs. This paper is an overview of a NASA project which examines all of these aspects of component level electronic repair. Results of case studies that detail how NASA, the U.S. Navy, and a commercial company currently approach electronics repair are presented, along with results of a trade study examining commercial technologies and solutions which may be used in future applications. Initial design recommendations resulting from these studies are also presented.
Effects of electrons and protons on science instruments
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.
Evaluation of runaway-electron effects on plasma-facing components for NET
NASA Astrophysics Data System (ADS)
Bolt, H.; Calén, H.
1991-03-01
Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.
Design automation for integrated nonlinear logic circuits (Conference Presentation)
NASA Astrophysics Data System (ADS)
Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.
2016-05-01
A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite PCells (modules) which consist of primitive building-block PCells (components). To automatically produce layouts, we built on a construct provided by Luceda called a PlaceAndAutoRoute cell: we create a module component by supplying a list of child cells, and a list of the desired connections between the cells (e.g. the out0 port of a microring is connected to a grating coupler). This functionality allowed us to write algorithms to automatically lay out the components: for instance, by laying out the first component and walking through the list of connections to check to see if the next component is already placed or not. The placement and orientation of the new component is determined by minimizing the length of a connecting waveguide. Our photonic circuits also utilize electrical signals to tune the photonic elements (setting propagation phases or microring resonant frequencies via thermo-optical tuning): the algorithm also routes the contacts for the metal heaters to contact pads at the edge of the circuit being designed where it can be contacted by electrical probes. We are currently validating a test run fabricated over the summer, and will use detailed characterization results to prepare our final design cycle in which we aim to demonstrate complex operational logic circuits containing ~50-100 nonlinear resonators.
Method of mounting a PC board to a hybrid
NASA Technical Reports Server (NTRS)
O'Coin, James R. (Inventor)
1999-01-01
A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.
Packaging of electronic modules
NASA Technical Reports Server (NTRS)
Katzin, L.
1966-01-01
Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.
NASA Technical Reports Server (NTRS)
Smith, Gerald A.
1999-01-01
Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.
NASA Tech Briefs, March 1998. Volume 22, No. 3
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.
High-performance green semiconductor devices: materials, designs, and fabrication
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang
2017-06-01
From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.
Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.
2015-11-01
Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.
NASA Tech Briefs, May 2000. Volume 24, No. 5
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Sensors: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Composites and Plastics; Materials; Computer Programs; Mechanics;
NASA Tech Briefs, June 2000. Volume 24, No. 6
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Computers and Peripherals;
Repair of Electronics for Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pettegrew, Richard D.; Easton, John; Struk, Peter
2007-01-01
To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center, Langley Research Center, Johnson Space Center, the National Center for Space Exploration Research, and the U.S. Navy. The project goals are 1) develop and demonstrate a manually-operated electronics repair capability to be conducted in a spacecraft environment; and 2) develop guidelines for designs of electronics that facilitates component-level repair for future space exploration efforts. This multi-faceted program utilizes a cross-disciplinary approach to examine pre- and post-repair diagnostics, conformal coating removal and replacement, component soldering, and electronics design for supportability. These areas are investigated by a combination of trade studies, ground based testing, reduced gravity aircraft testing, and actual spaceflight testing on the International Space Station (ISS) in multiple experiments. This paper details the efforts of this program, with emphasis on early trade study results, ground-based efforts, and two upcoming ISS experiments.
RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid
NASA Astrophysics Data System (ADS)
Taylor, Zachariah David
In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.
Cucina, Russell J; Bokser, Seth J; Carter, Jonathan T; McLaren, Kevin M; Blum, Michael S
2007-10-11
We report the development and implementation of an electronic inpatient physician documentation system using off-the-shelf components, rapidly and at low cost. Within 9 months of deployment, over half of physician notes were electronic, and within 20 months, paper physician notes were eliminated. Our results suggest institutions can prioritize conversion to inpatient electronic physician documentation without waiting for development of sophisticated software packages or large capital investments.
A cloud-based approach for interoperable electronic health records (EHRs).
Bahga, Arshdeep; Madisetti, Vijay K
2013-09-01
We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security.
NASA Tech Briefs, December 1997. Volume 21, No. 12
NASA Technical Reports Server (NTRS)
1997-01-01
Topics: Design and Analysis Software; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Manufacturing/Fabrication; Mathematics and Information Sciences; Books and Reports.
Designing an Electronic Classroom for Large College Courses.
ERIC Educational Resources Information Center
Aiken, Milam W.; Hawley, Delvin D.
1995-01-01
Describes a state-of-the-art electronic classroom at the University of Mississippi School of Business designed for large numbers of students and regularly scheduled classes. Highlights include: architecture of the room, hardware components, software utilized in the room, and group decision support system software and its uses. (JKP)
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
Self-similar and fractal design for stretchable electronics
Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui
2017-04-04
The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.
Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics
NASA Astrophysics Data System (ADS)
Cumby, Brad Lee
Present day electronics are now taking on small form factors, unexpected uses, adaptability, and other features that only a decade ago were unimaginable even for most engineers. These electronic devices, such as tablets, smart phones, wearable sensors, and others, have further had a profound impact on how society interacts, works, maintains health, etc. To optimize electronics a growing trend has been to both minimize the physical space taken up by the individual electronic components as well as to maximize the number of functionalities in a single electronic device, forming a compact and efficient package. To accomplish this challenge in one step, many groups have used a design that has reconfigurable electromagnetic properties, maximizing the functionality density of the device. This would allow the replacement of multiple individual components into an integrated system that would achieve a similar result as the separate individual devices while taking up less space. For example, could a device have a reconfigurable antenna, allowing it optimal communication in various settings and across multiple communication bands, thus increasing functionality, range, and even reducing total device size. Thus far a majority of such reconfigurable devices involve connecting/disconnecting various physically static layouts to achieve a summation of individual components that give rise to multiple effects. However, this is not an ideal situation due to the fact that the individual components whether connected or not are taking up real-estate as well as electrical interference with adjacent connected components. This dissertation focuses on the reconfigurability of the metallic component of the electronic device, specifically microwave devices. This component used throughout this dissertation is that of an eutectic liquid metal alloy. The liquid metal allows the utilization of both the inherent compact form (spherical shape) of a liquid in the lowest energy state and the fact that it is resilient and shapeable to allow for reconfigurability. In this dissertation, first background information is given on the existing technology for reconfigurable microwave devices and the basic principles that these mechanisms are based upon. Then a new reconfigurable method is introduced that utilizes Laplace pressure. Materials that are associated with using liquid metals are discussed and an overall systematic view is given to provide a set of proof of concepts that are more applied and understandable by electronic designers and engineers. Finally a novel approach to making essential measurements of liquid metal microwave devices is devised and discussed. This dissertation encompasses a complete device design from materials used for fabrication, fabrication methods and measurement processes to provide a knowledge base for designing liquid metal microwave devices.
An analysis of electronic document management in oncology care.
Poulter, Thomas; Gannon, Brian; Bath, Peter A
2012-06-01
In this research in progress, a reference model for the use of electronic patient record (EPR) systems in oncology is described. The model, termed CICERO, comprises technical and functional components, and emphasises usability, clinical safety and user acceptance. One of the functional components of the model-an electronic document and records management (EDRM) system-is monitored in the course of its deployment at a leading oncology centre in the UK. Specifically, the user requirements and design of the EDRM solution are described.The study is interpretative and forms part a wider research programme to define and validate the CICERO model. Preliminary conclusions confirm the importance of a socio-technical perspective in Onco-EPR system design.
General Industrial Electronics. Oklahoma Trade and Industrial Education.
ERIC Educational Resources Information Center
Harwick, Jim; Siebert, Leo
This curriculum guide, part of a series of curriculum guides dealing with industrial electricity and electronics, is designed for use in teaching a course in general industrial electronics. Covered in the first half of the guide are units on the following electronic components: semiconductors, solid-state diodes, bipolar transistors, and special…
Electronic cooling design and test validation
NASA Astrophysics Data System (ADS)
Murtha, W. B.
1983-07-01
An analytical computer model has been used to design a counterflow air-cooled heat exchanger according to the cooling, structural and geometric requirements of a U.S. Navy shipboard electronics cabinet, emphasizing high reliability performance through the maintenance of electronic component junction temperatures lower than 110 C. Environmental testing of the design obtained has verified that the analytical predictions were conservative. Model correlation to the test data furnishes an upgraded capability for the evaluation of tactical effects, and has established a two-orders of magnitude growth potential for increased electronics capabilities through enhanced heat dissipation. Electronics cabinets of this type are destined for use with Vertical Launching System-type combatant vessel magazines.
NASA Tech Briefs, March 1996. Volume 20, No. 3
NASA Technical Reports Server (NTRS)
1996-01-01
Topics: Computer-Aided Design and Engineering; Electronic Components and Cicuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.
NASA Tech Briefs, August 1998. Volume 22, No. 8
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage of medical design, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, physical sciences, and a special section of Photonics Tech Briefs.
NASA Tech Briefs, September 1999. Volume 23, No. 9
NASA Technical Reports Server (NTRS)
1999-01-01
Topics discussed include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences;
NASA Tech Briefs, March 1993. Volume 17, No. 3
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
... hearing impairment. Most hearing aids share several similar electronic components, including a microphone that picks up sound; ... the ear canal; and batteries that power the electronic parts. Hearing aids differ by: design technology used ...
NASA Tech Briefs, November 1999. Volume 23, No. 11
NASA Technical Reports Server (NTRS)
1999-01-01
Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Machinery/Automation; Physical Sciences; Mathematics and Information Sciences; Books and Reports.
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
The Design of a Graphical User Interface for an Electronic Classroom.
ERIC Educational Resources Information Center
Cahalan, Kathleen J.; Levin, Jacques
2000-01-01
Describes the design of a prototype for the graphical user interface component of an electronic classroom (ECR) application that supports real-time lectures and question-and-answer sessions between an instructor and students. Based on requirements analysis and an analysis of competing products, a Web-based ECR prototype was produced. Findings show…
NASA Tech Briefs, December 1996. Volume 20, No. 12
NASA Technical Reports Server (NTRS)
1996-01-01
Topics: Design and Analysis Software; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, January 2000. Volume 24, No. 1
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.
Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker
NASA Technical Reports Server (NTRS)
1973-01-01
Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.
On the development of radiation tolerant surveillance camera from consumer-grade components
NASA Astrophysics Data System (ADS)
Klemen, Ambrožič; Luka, Snoj; Lars, Öhlin; Jan, Gunnarsson; Niklas, Barringer
2017-09-01
In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.
Materials for bioresorbable radio frequency electronics.
Hwang, Suk-Won; Huang, Xian; Seo, Jung-Hun; Song, Jun-Kyul; Kim, Stanley; Hage-Ali, Sami; Chung, Hyun-Joong; Tao, Hu; Omenetto, Fiorenzo G; Ma, Zhenqiang; Rogers, John A
2013-07-12
Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Tech Briefs, February 2000. Volume 24, No. 2
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.
NASA Tech Briefs, March 1994. Volume 18, No. 3
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 2000. Volume 24, No. 3
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1997. Volume 21, No. 3
NASA Technical Reports Server (NTRS)
1997-01-01
Topics: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Astrophysics Data System (ADS)
de Kok, Margreet M.
2014-10-01
Integration of electronics into materials and objects that have not been functionalized with electronics before, open up extensive possibilities to support mankind. By adding intelligence and/or operating power to materials in close skin contact like clothing, furniture or bandages the health of people can be monitored or even improved. Foil based electronics are interesting components to be integrated as they are thin, large area and cost effective available components Our developed technology of printed electronic structures to which components are reliably bonded, fulfills the promise. We have integrated these components into textiles and built wearable encapsulated products with foil based electronics. Foil components with organic and inorganic LEDs are interconnected and laminated onto electronic textiles by using conductive adhesives to bond the contact pads of the component to conductive yarns in the textile. Modelling and reliability testing under dynamic circumstances provided important insights in order to optimise the technology. The design of the interconnection and choice of conductive adhesive / underfill and lamination contributed to the durability of the system. Transition zones from laminated foil to textile are engineered to withstand dynamic use. As an example of a product, we have realized an electronic wristband that is encapsulated in rubber and has a number of sensor functionalities integrated on stretchable electronic circuits based on Cu and Ag. The encapsulation with silicone or polyurethanes was performed such, that charging and sensor/skin contacts are possible while simultaneously protecting the electronics from mechanical and environmental stresses.
Designing of a Digital Behind-the-Ear Hearing Aid to Meet the World Health Organization Requirements
Bento, Ricardo Ferreira; Penteado, Silvio Pires
2010-01-01
Hearing loss is a common health issue that affects nearly 10% of the world population as indicated by many international studies. The hearing impaired typically experience more frustration, anxiety, irritability, depression, and disorientation than those with normal hearing levels. The standard rehabilitation tool for hearing impairment is an electronic hearing aid whose main components are transducers (microphone and receiver) and a digital signal processor. These electronic components are manufactured by supply chain rather than by hearing aid manufacturers. Manufacturers can use custom-designed components or generic off-the-shelf components. These electronic components are available as application-specific or off-the-shelf products, with the former designed for a specific manufacturer and the latter for a generic approach. The choice of custom or generic components will affect the product specifications, pricing, manufacturing, life cycle, and marketing strategies of the product. The World Health Organization is interested in making available to developing countries hearing aids that are inexpensive to purchase and maintain. The hearing aid presented in this article was developed with these specifications in mind together with additional contemporary features such as four channels with wide dynamic range compression, an adjustable compression rate for each channel, four comfort programs, an adaptive feedback manager, and full volume control. This digital hearing aid is fitted using a personal computer with minimal hardware requirements in intuitive three-step fitting software. A trimmer-adjusted version can be developed where human and material resources are scarce. PMID:20724354
Bento, Ricardo Ferreira; Penteado, Silvio Pires
2010-06-01
Hearing loss is a common health issue that affects nearly 10% of the world population as indicated by many international studies. The hearing impaired typically experience more frustration, anxiety, irritability, depression, and disorientation than those with normal hearing levels. The standard rehabilitation tool for hearing impairment is an electronic hearing aid whose main components are transducers (microphone and receiver) and a digital signal processor. These electronic components are manufactured by supply chain rather than by hearing aid manufacturers. Manufacturers can use custom-designed components or generic off-the-shelf components. These electronic components are available as application-specific or off-the-shelf products, with the former designed for a specific manufacturer and the latter for a generic approach. The choice of custom or generic components will affect the product specifications, pricing, manufacturing, life cycle, and marketing strategies of the product. The World Health Organization is interested in making available to developing countries hearing aids that are inexpensive to purchase and maintain. The hearing aid presented in this article was developed with these specifications in mind together with additional contemporary features such as four channels with wide dynamic range compression, an adjustable compression rate for each channel, four comfort programs, an adaptive feedback manager, and full volume control. This digital hearing aid is fitted using a personal computer with minimal hardware requirements in intuitive three-step fitting software. A trimmer-adjusted version can be developed where human and material resources are scarce.
Solar powered hybrid sensor module program
NASA Technical Reports Server (NTRS)
Johnson, J. M.; Holmes, H. K.
1985-01-01
Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed.
NASA Tech Briefs, July 1994. Volume 18, No. 7
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, November 2000. Volume 24, No. 11
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition.
NASA Tech Briefs, April 1996. Volume 20, No. 4
NASA Technical Reports Server (NTRS)
1996-01-01
Topics covered include: Advanced Composites and Plastics; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information; Books and Reports.
NASA Tech Briefs, October 1994. Volume 18, No. 10
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
Hiller, Caleb J; Stiebritz, Martin T; Lee, Chi Chung; Liedtke, Jasper; Hu, Yilin
2017-11-16
Nitrogenase uses a reductase component called Fe protein to deliver electrons to its catalytic partner for substrate reduction. The essential role of Fe protein in catalysis makes it an ideal target for regulating the electron flux and enzymatic activity of nitrogenase without perturbing the cofactor site. This work reports that hybrids between the Fe protein homologs of Methanosarcina acetivorans and the catalytic components of Azotobacter vinelandii can trap substrate CO through reduced electron fluxes. In addition, homology modeling/in silico docking is used to define markers for binding energy and specificity between the component proteins that correlate with the experimentally determined activities. This homologue-based approach could be further developed to allow identification or design of hybrids between homologous nitrogenase components for mechanistic investigations of nitrogenase through capture of substrates/ intermediates or for transgenic expression of nitrogenase through synthetic biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4
NASA Astrophysics Data System (ADS)
Garcia, F.; Kurvinen, K.; Brander, T.; Orava, R.; Heino, J.; Virtanen, A.; Kettunen, H.; Tenhunen, M.
2008-02-01
A design goal for current space system is to reduce the mass used to enclose components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP (Carbon Fiber Reinforced Plastic) is a well known and vastly used approach to mass reduction. A design goal, cost reduction, has increased the use of commercial (non-space qualified) electronics. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore, the use of standard electronics components poses a challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to provide insight on the radiation shielding protection produced by different configurations of CFRP tungsten laminates of epoxies and cyanate esters and then to compare them to the protection given by the commonly used aluminum. For a spacecraft operating in LEO and MEO orbits the main components of the space radiation environment are energetic electrons and protons, therefore in our study we will compare the experimental and simulation results of the radiation attenuation of different types of laminates for those particles. At the same time the experimental data has been used to validate the Geant4 model of the laminates, which can be used for future optimizations of the laminate structures.
NASA Astrophysics Data System (ADS)
Hazeli, K.; Kingstedt, O. T.
2017-05-01
It is critical to investigate the performance of electronic systems and their components under the environments experienced during proposed missions to improve spacecraft and robotic vehicle functionality and performance in extreme environments.
Heat-load simulator for heat sink design
NASA Technical Reports Server (NTRS)
Dunleavy, A. M.; Vaughn, T. J.
1968-01-01
Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.;
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.
NASA Technical Reports Server (NTRS)
1975-01-01
Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.
Advanced Data Acquisition Systems
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6,462,684. Furthermore, NASA KSC commercialization office has issued licensing rights to Circuit Avenue Netrepreneurs, LLC , a minority-owned business founded in 1999 located in Camden, NJ.
Parameterizable Library Components for SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2006-01-01
To facilitate quick fabrication of Surface Acoustic Wave (SAW) sensors we have found it necessary to develop a library of parameterizable components. This library is the first module in our strategy towards a design tool that is integrated into existing Electronic Design Automation (EDA) tools. This library is similar to the standard cell libraries found in digital design packages. The library cells allow the user to input the design parameters which automatically generate a detailed layout of the SAW component. This paper presents the results of our development of parameterizable cells for an InterDigitated Transducer (IDT), reflector, SAW delay line, and both one and two port resonators.
NASA Tech Briefs, July 2000. Volume 24, No. 7
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
A Survey of Electronics Obsolescence and Reliability
2010-07-01
properties but there are many minor and major variations (e.g. curing schedule) affecting their usage in packaging processes and in reworking. Curing...within them. Electronic obsolescence is increasingly associated with physical characteristics that reduce component and system reliability, both in usage ...semiconductor technologies and of electronic systems, both in usage and in storage. By design, electronics technologies include few reliability margins
The Importance of Engine External's Health
NASA Technical Reports Server (NTRS)
Stoner, Barry L.
2006-01-01
Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.
Electronically steerable millimeter wave antenna techniques for space shuttle applications
NASA Technical Reports Server (NTRS)
Kummer, W. H.
1975-01-01
A large multi-function antenna aperture and related components are described which will perform electronic steering of one or more beams for two of the three applications envisioned: (1) communications, (2) radar, and (3) radiometry. The array consists of a 6-meter folded antenna that fits into two pallets. The communications frequencies are 20 and 30 GHz, while the radar is to operate at 13.9 GHz. Weight, prime power, and volumes are given parametrically; antenna designs, electronics configurations, and mechanical design were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, D.O.; Graham, F.E.; Sauer, H.S.
1961-10-31
ning both the transient and permanent effects that an environment of the type created by a nuclear detonation or a pulsed reactor exerts on electronic devices, is described. The design of suitable test heads for containing the electronic devices is discussed. The design of a blockhouse for use near Ground Sero when evaluating components in a weapons environment is also discussed. (C.J.G.)
Informal information for web-based engineering catalogues
NASA Astrophysics Data System (ADS)
Allen, Richard D.; Culley, Stephen J.; Hicks, Ben J.
2001-10-01
Success is highly dependent on the ability of a company to efficiently produce optimal designs. In order to achieve this companies must minimize time to market and possess the ability to make fully informed decisions at the early phase of the design process. Such decisions may include the choice of component and suppliers, as well as cost and maintenance considerations. Computer modeling and electronic catalogues are becoming the preferred medium for the selection and design of mechanical components. In utilizing these techniques, the designer demands the capability to identify, evaluate and select mechanical components both quantitatively and qualitatively. Quantitative decisions generally encompass performance data included in the formal catalogue representation. It is in the area of qualitative decisions that the use of what the authors call 'Informal Information' is of crucial importance. Thus, 'Informal Information' must often be incorporated into the selection process and selection systems. This would enable more informed decisions to be made quicker, without the need for information retrieval via discussion with colleagues in the design environment. This paper provides an overview of the use of electronic information in the design of mechanical systems, including a discussion of limitations of current technology. The importance of Informal Information is discussed and the requirements for association with web based electronic catalogues are developed. This system is based on a flexible XML schema and enables the storage, classification and recall of Informal Information packets. Furthermore, a strategy for the inclusion of Informal Information is proposed, and an example case is used to illustrate the benefits.
Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…
Adiabatic diesel engine component development: Reference engine for on-highway applications
NASA Technical Reports Server (NTRS)
Hakim, Nabil S.
1986-01-01
The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.
Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components
1979-04-06
its excellent electrical properties are maintained at elevated temperatures. Even when the insulation is exposed to a direct flame, it burns to a...machine by one operator; these molds are generally equipped with insulated handles to prevent personal in- jury from burns . In electronic embedment...Excellent for large volume runs; tooling is minimal. Pres- ence of a shell or housing as- sures no exposed components, as can occur in casting. Some
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
Design and construction of a Faraday cup for measurement of small electronic currents
NASA Technical Reports Server (NTRS)
Veyssiere, A.
1985-01-01
The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.
Light and redox switchable molecular components for molecular electronics.
Browne, Wesley R; Feringa, Ben L
2010-01-01
The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forno, Massimo Dal; Department of Engineering and Architecture, University of Trieste, Trieste; Craievich, Paolo
The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolarmore » component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.« less
Optimization of equipment for electron radiation processing
NASA Astrophysics Data System (ADS)
Tartz, M.; Hartmann, E.; Lenk, M.; Mehnert, R.
1999-05-01
In the course of the last decade, IOM Leipzig has developed low-energy electron accelerators for electron beam curing of polymer coatings and printing inks. In order to optimize the electron irradiation field, electron optical calculations have been carried out using the commercially available EGUN code. The present study outlines the design of the diode-type low-energy electron accelerators LEA and EBOGEN, taking into account the electron optical effects of secondary components such as the retaining rods installed in the cathode assembly.
ERIC Educational Resources Information Center
Tofel-Grehl, Colby; Fields, Deborah
2015-01-01
Electronic textiles (e-textiles)--fabrics embedded with electrical or electronic components--offer a new model for teaching this content. E-textiles also engage students in programming and engineering design through nontraditional projects and materials. This article describes a four-week electricity curriculum using three e-textiles projects that…
Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing
NASA Astrophysics Data System (ADS)
Coleman, Rashadd L.
Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.
21 CFR 1020.10 - Television receivers.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., under normal usage, are not accessible to the user. (4) Television receiver means an electronic product designed to receive and display a television picture through broadcast, cable, or closed circuit television... from that component or circuit failure which maximizes x-radiation emissions. (4) Critical component...
21 CFR 1020.10 - Television receivers.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., under normal usage, are not accessible to the user. (4) Television receiver means an electronic product designed to receive and display a television picture through broadcast, cable, or closed circuit television... from that component or circuit failure which maximizes x-radiation emissions. (4) Critical component...
21 CFR 1020.10 - Television receivers.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., under normal usage, are not accessible to the user. (4) Television receiver means an electronic product designed to receive and display a television picture through broadcast, cable, or closed circuit television... from that component or circuit failure which maximizes x-radiation emissions. (4) Critical component...
21 CFR 1020.10 - Television receivers.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., under normal usage, are not accessible to the user. (4) Television receiver means an electronic product designed to receive and display a television picture through broadcast, cable, or closed circuit television... from that component or circuit failure which maximizes x-radiation emissions. (4) Critical component...
21 CFR 1020.10 - Television receivers.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., under normal usage, are not accessible to the user. (4) Television receiver means an electronic product designed to receive and display a television picture through broadcast, cable, or closed circuit television... from that component or circuit failure which maximizes x-radiation emissions. (4) Critical component...
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
NASA Technical Reports Server (NTRS)
Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.
1976-01-01
The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.
Astronaut tool development: An orbital replaceable unit-portable handhold
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.
1989-01-01
A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.
Electronic shift register memory based on molecular electron-transfer reactions
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.
1989-01-01
The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.
Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Sutherland, W. T.
1996-01-01
A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.
NASA/CARES dual-use ceramic technology spinoff applications
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.
1994-01-01
NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.
NASA Astrophysics Data System (ADS)
Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.
1998-02-01
Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Fabrication of compact electron gun for 6 MeV X-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Kumar, Mahendra, E-mail: ghodke_barc@yahoo.co.in
The 6 MeV X-Ray source for container cargo scanning application has been designed and developed by the Accelerator and Pulse Power Division, BARC, Mumbai. This compact linac has been designed as a mobile system, to be mounted on a moving container. In linac-based cargo-scanning system, to work electron gun on a movable container, it has to be robust. Electron gun is to work at 10{sup -7} mbar vacuum and 2000 degree Celsius temperature. An effort is made to engineer the gun assembly to make it more robust and aligned. The linac acts as the source of X-rays, which fall onmore » the cargo and are then detected by the detector system. Many components are indigenously developed like grid, insulating ring, Tungsten filament and filament guide, which are made from alumina ceramic and Tantalum which is to work at 1500 degree Celsius. Filament connector is made from Invar to reduce heat loss and to make rigid connection. It was CNC machined and wire cut by EDM. Invar and Copper electrode feed through is shrink fitted with the help of liquid Nitrogen. Shrink fit tolerances of 15 micrometer are achieved by jig boring machining processes. Tantalum cup for LaB6 cathode and heat shield are made from die and punch mechanism. For alignment of electron emitter with beam axis this Tantalum cup is a crucial component. Electron gun is assembled and aligned its components with the help of precision jigs. The whole assembly was Helium leak tested by MSLD up to 4 x 10{sup -10} mbar.l/s vacuum, no leak was found. This paper will describe the machining, Tantalum cup forming, ceramic components development, heat shields, ceramic feed through etc of electron gun. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel
2016-04-01
The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamba, O.S.; Badola, Richa; Baloda, Suman
The paper describes voltage break down phenomenon and preventive measures in components of 250 KW CW, C band Klystron under development at CEERI Pilani. The Klystron operates at a beam voltage of 50 kV and delivers 250 kW RF power at 5 GHz frequency. The Klystron consists of several key components and regions, which are subject to high electrical stress. The most important regions of electrical breakdown are electron gun, the RF ceramic window and output cavity gap area. In the critical components voltage breakdown considered at design stage by proper gap and other techniques. All these problems discussed, asmore » well as solution to alleviate this problem. The electron gun consists basically of cathode, BFE and anode. The cathode is operated at a voltage of 50 kV. In order to maintain the voltage standoff between cathode and anode a high voltage alumina seal and RF window have been designed developed and successfully used in the tube. (author)« less
NASA Astrophysics Data System (ADS)
Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.
2017-08-01
The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.
Developing a 300C Analog Tool for EGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normann, Randy
2015-03-23
This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.
Electronic waste disassembly with industrial waste heat.
Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun
2013-01-01
Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Kiesling, R.
1981-01-01
The major component fabrication program was completed. Assembly and system testing of the pulsed electron beam annealing machine are described. The design program for the transport reached completion, and the detailed drawings were released for fabrication and procurement of the long lead time components.
Parallel Optical Random Access Memory (PORAM)
NASA Technical Reports Server (NTRS)
Alphonse, G. A.
1989-01-01
It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.
2017-01-01
We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1. PMID:28102316
Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
NASA Astrophysics Data System (ADS)
Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.
2017-01-01
We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.
ELECTRON MICROSCOPIC OBSERVATIONS OF AMOEBA PROTEUS IN GROWTH AND INANITION
Cohen, Adolph I.
1957-01-01
Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation. PMID:13481020
Electron microscopic observations of amoeba proteus in growth and inanition.
COHEN, A I
1957-11-25
Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation.
JPL preferred parts list: Reliable electronic components
NASA Technical Reports Server (NTRS)
Covey, R. E.; Scott, W. R.; Hess, L. M.; Steffy, T. G.; Stott, F. R.
1982-01-01
The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
NASA Tech Briefs, December 1998. Volume 22, No. 12
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage section on design and analysis software, and sections on electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, physical sciences, and special sections of Photonics Tech Briefs, Motion Control Tech briefs and a Hot Technology File 1999 Resource Guide.
NASA Technical Reports Server (NTRS)
1995-01-01
This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences
Development of Electronics for Low-Temperature Space Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric
2001-01-01
Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mike; Carlson, Kermit; Nobrega, Lucy
The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII)more » gun and collector under ultra-high vacuum (UHV) conditions.« less
Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto
2013-11-01
The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.
e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.
Lovley, Derek R
2017-06-27
The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.
Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.
Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji
2015-09-09
Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.
1993-01-01
The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.
Self-assembled three dimensional network designs for soft electronics
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-01-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors. PMID:28635956
Self-assembled three dimensional network designs for soft electronics
NASA Astrophysics Data System (ADS)
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-06-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.
Understanding the Design, Function and Testing of Relays
ERIC Educational Resources Information Center
Adams, Roger E.; Lindbloom, Trent
2006-01-01
The increased use of electronics in today's automobiles has complicated the control of circuits and actuators. Manufacturers use relays to control a variety of complex circuits--for example, those involving actuators and other components like the A/C clutch, electronic cooling fans, and blower motors. Relays allow a switch or processor to control…
Electromechanical flight control actuator, volume 3
NASA Technical Reports Server (NTRS)
1978-01-01
The design verification tests which were conducted on the electromechanical actuator are described. A description is also given of the power components tests which were conducted to aid in selecting the power transistors for use in the single-channel power electronics breadboard and the results of tests which were conducted on the power electronics breadboard.
Giovanni, Mazza G; Shenvi, Rohit; Battles, Marcie; Orthner, Helmuth F
2008-11-06
The eMonitor is a component of the ePatient system; a prototype system used by emergency medical services (EMS) personnel in the field to record and transmits electronic patient care report (ePCR) information interactively. The eMonitor component allows each Mobile Data Terminal (MDT) on an unreliable Cisco MobileIP wireless network to securely send and received XML messages used to update patient information to and from the MDT before, during and after the transport of a patient.
Electron Accelerator Shielding Design of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less
The charged particle veto system of the cosmic ray electron synchrotron telescope
NASA Astrophysics Data System (ADS)
Geske, Matthew T.
The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.
Building Your Own Web Course: The Case for Off-the-Shelf Component Software.
ERIC Educational Resources Information Center
Kaplan, Howard
1998-01-01
Compares the features, advantages, and disadvantages of two major software options available for designing web courses: (1) component, off-the shelf software that allows for creation of audio slide lectures, course materials, discussion forums, animations, synchronous chat groups, quiz creators, and electronic mail, and (2) integrated packages…
NASA Astrophysics Data System (ADS)
Overstreet, Sarah; Wang, Haipeng
2017-09-01
An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.
Obsolescence of electronics at the VLT
NASA Astrophysics Data System (ADS)
Hüdepohl, Gerhard; Haddad, Juan-Pablo; Lucuix, Christian
2016-07-01
The ESO Very Large Telescope Observatory (VLT) at Cerro Paranal in Chile had its first light in 1998. Most of the telescopes' electronics components were chosen and designed in the mid 1990s and are now around 20 years old. As a consequence we are confronted with increasing failure rates due to aging and lack of spare parts, since many of the components are no longer available on the market. The lifetime of large telescopes is generally much beyond 25 years. Therefore the obsolescence of electronics components and modules becomes an issue sooner or later and forces the operations teams to upgrade the systems to new technology in order to avoid that the telescope becomes inoperable. Technology upgrade is a time and money consuming process, which in many cases is not straightforward and has various types of complications. This paper shows the strategy, analysis, approach, timeline, complications and progress in obsolescence driven electronics upgrades at the ESO Very Large Telescope (VLT) at the Paranal Observatory.
Tutorial: Radiation Effects in Electronic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.
Low-Temperature Power Electronics Program
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott
1997-01-01
Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.
Portable Electron-Beam Free-Form Fabrication System
NASA Technical Reports Server (NTRS)
Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.
2005-01-01
A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, A. V., E-mail: karelin@hotbox.ru; Borisov, S. V.; Voronov, S. A.
2013-06-15
The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.
Multiple sensor smart robot hand with force control
NASA Technical Reports Server (NTRS)
Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal
1987-01-01
A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.
Loudspeaker Design and Performance Evaluation
NASA Astrophysics Data System (ADS)
Mäkivirta, Aki Vihtori
A loudspeaker comprises transducers converting an electrical driving signal into sound pressure, an enclosure working as a holder for transducers, front baffle and box to contain and eliminate the rear-radiating audio signal, and electronic components. Modeling of transducers as well as enclosures is treated in Chap. 32 of this handbook. The purpose of the present chapter is to shed light on the design choices and options for the electronic circuits conditioning the electrical signal fed into loudspeaker transducers in order to optimize the acoustic performance of the loudspeaker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staller, G.E.; Hamilton, I.D.; Aker, M.F.
1978-02-01
A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.
Thermal design verification testing for the ATS-F and -G spacecraft.
NASA Technical Reports Server (NTRS)
Coyle, M.; Greenwell, J.
1972-01-01
There is a wide fluctuation in the internal power dissipation from the components within the earth viewing module (EVM). The electronic component functional reliability required for a two-to-five year mission is the most significant factor for the thermal design criteria. A mathematical thermal model of the EVM and the orbital environment is used to predict the performance of the thermal control system. Comparisons of the results obtained in chamber thermal balance tests with the data computed on the basis of the theoretical model provide the means for validating the thermal design.
Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes☆
Liu, Lu-Ning
2016-01-01
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26619924
Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.
Liu, Lu-Ning
2016-03-01
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom
2013-01-01
As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.
Do, Thanh Nho; Visell, Yon
2017-05-11
Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.
A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer
NASA Astrophysics Data System (ADS)
Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.
1996-07-01
A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Electronic Circuit Analysis Language (ECAL)
NASA Astrophysics Data System (ADS)
Chenghang, C.
1983-03-01
The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
Hardware design for the Autonomous Visibility Monitoring (AVM) observatory
NASA Technical Reports Server (NTRS)
Cowles, K.
1993-01-01
The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.
Air Force Manufacturing Technology. Year 2000 Project Book
2000-01-01
Electronic Warfare Component Manufacturing 13 National Center for Manufacturing Science 14 Product Research Market Analysis System 15 Electronics Acoustic...other agile organizations that can respond to rapidly changing market demands. Approach This program demonstrated and evaluated the advanced design...production worker contact with customers and suppliers; shopfloor identification of new technologies, markets , and products; and strategic planning to assure
Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices
ERIC Educational Resources Information Center
Bortnik, Boris; Stozhko, Natalia; Pervukhina, Irina; Tchernysheva, Albina; Belysheva, Galina
2017-01-01
This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory…
Novel Overhang Support Designs for Powder-Based Electron Beam Additive Manufacturing (EBAM)
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2014-01-01
NASA Marshall Space Flight Center, in collaboration with the University of Alabama, has developed a contact-free support structure used to fabricate overhang-type geometries via EBAM. The support structure is used for 3-D metal-printed components for the aerospace, automotive, biomedical and other industries. Current techniques use support structures to address deformation challenges inherent in 3-D metal printing. However, these structures (overhangs) are bonded to the component and need to be removed in post-processing using a mechanical tool. This new technology improves the overhang support structure design for components by eliminating associated geometric defects and post-processing requirements.
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
e-Biologics: Fabrication of Sustainable Electronics with “Green” Biological Materials
2017-01-01
ABSTRACT The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new “green age” of sustainable electronic materials and devices. PMID:28655820
Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.
Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y
2018-03-08
Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
Lesson 3: Typical Application Components
Cross-Media Electronic Reporting Regulation (CROMERR) 101: Fundamentals for States, Tribes, and Local Governments is designed for States, Tribes, and Local Governments that administer EPA-authorized programs under Title 40 of the Code of Federal Regulation
Integrated two-cylinder liquid piston Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ning; Rickard, Robert; Pluckter, Kevin
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less
Integrated two-cylinder liquid piston Stirling engine
NASA Astrophysics Data System (ADS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
NASA Astrophysics Data System (ADS)
Byrd, Donald A.; Viswanathan, Vriddhachalam K.; Woodfin, Gregg L.; Horn, William W.; Lazazzera, Vito J.; Schmell, Rodney A.
1993-08-01
At Los Alamos National Laboratory, we are preparing to image submicrometer-size features using the Free Electron Laser (FEL) operating at 248 nm. This article describes the optical transfer systems that were designed to relay the ultraviolet (UV) optical output of the FEL, resulting in expected imaged feature sizes in the range 0.3 - 0.5 micrometers . Nearly all optical subsystems are reflective, and once the coatings were optimized any optical wavelength could be used. All refractive optics were UV-grade fused silica. The optical design, engineering, and manufacture of the various component systems are described along with some experimental results.
Deep Trek High Temperature Electronics Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce Ohme
2007-07-31
This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.
Low power signal processing electronics for wearable medical devices.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, Scot
Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.
Interfacial characterization of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott
2018-03-01
Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.
NASA Astrophysics Data System (ADS)
Zhang, Jianguo; Chen, Xiaomeng; Zhuang, Jun; Jiang, Jianrong; Zhang, Xiaoyan; Wu, Dongqing; Huang, H. K.
2003-05-01
In this paper, we presented a new security approach to provide security measures and features in both healthcare information systems (PACS, RIS/HIS), and electronic patient record (EPR). We introduced two security components, certificate authoring (CA) system and patient record digital signature management (DSPR) system, as well as electronic envelope technology, into the current hospital healthcare information infrastructure to provide security measures and functions such as confidential or privacy, authenticity, integrity, reliability, non-repudiation, and authentication for in-house healthcare information systems daily operating, and EPR exchanging among the hospitals or healthcare administration levels, and the DSPR component manages the all the digital signatures of patient medical records signed through using an-symmetry key encryption technologies. The electronic envelopes used for EPR exchanging are created based on the information of signers, digital signatures, and identifications of patient records stored in CAS and DSMS, as well as the destinations and the remote users. The CAS and DSMS were developed and integrated into a RIS-integrated PACS, and the integration of these new security components is seamless and painless. The electronic envelopes designed for EPR were used successfully in multimedia data transmission.
Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Imai, T.; Kobayashi, N.
2005-01-15
The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.
2010-01-01
LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.
Qualification and cryogenic performance of cryomodule components at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, J.; Macha, K.; Fischer, J.
1996-12-31
At CEBAF an electron beam is accelerated by superconducting resonant niobium cavities which are operated submerged in superfluid helium. The accelerator has 42 1/4 cryomodules, each containing eight cavities. The qualification and design of components for the cryomodules under went stringent testing and evaluation for acceptance. Indium wire seals are used between the cavity and helium vessel interface to make a superfluid helium leak tight seal. Each cavity is equipped with a mechanical tuner assembly designed to stretch and compress the cavities. Two rotary feedthroughs are used to operate each mechanical tuner assembly. Ceramic feedthroughs not designed for super-fluid weremore » qualified for tuner and cryogenic instrumentation. To ensure long term integrity of the machine special attention is required for material specifications and machine processes. The following is to share the qualification methods, design and performance of the cryogenic cryomodule components.« less
NASA Astrophysics Data System (ADS)
Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.
2017-11-01
Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomchuk, V.
1997-09-01
High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very closemore » to theoretical prediction for a usual two component plasma heat exchange.« less
Skin-Inspired Electronics: An Emerging Paradigm.
Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan
2018-05-15
Future electronics will take on more important roles in people's lives. They need to allow more intimate contact with human beings to enable advanced health monitoring, disease detection, medical therapies, and human-machine interfacing. However, current electronics are rigid, nondegradable and cannot self-repair, while the human body is soft, dynamic, stretchable, biodegradable, and self-healing. Therefore, it is critical to develop a new class of electronic materials that incorporate skinlike properties, including stretchability for conformable integration, minimal discomfort and suppressed invasive reactions; self-healing for long-term durability under harsh mechanical conditions; and biodegradability for reducing environmental impact and obviating the need for secondary device removal for medical implants. These demands have fueled the development of a new generation of electronic materials, primarily composed of polymers and polymer composites with both high electrical performance and skinlike properties, and consequently led to a new paradigm of electronics, termed "skin-inspired electronics". This Account covers recent important advances in skin-inspired electronics, from basic material developments to device components and proof-of-concept demonstrations for integrated bioelectronics applications. To date, stretchability has been the most prominent focus in this field. In contrast to strain-engineering approaches that extrinsically impart stretchability into inorganic electronics, intrinsically stretchable materials provide a direct route to achieve higher mechanical robustness, higher device density, and scalable fabrication. The key is the introduction of strain-dissipation mechanisms into the material design, which has been realized through molecular engineering (e.g., soft molecular segments, dynamic bonds) and physical engineering (e.g., nanoconfinement effect, geometric design). The material design concepts have led to the successful demonstrations of stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.
HALT to qualify electronic packages: a proof of concept
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2014-03-01
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.
The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. Thismore » QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.« less
NASA Astrophysics Data System (ADS)
Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.
2017-08-01
High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3 × 106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.
ERIC Educational Resources Information Center
Hayes, Alfred S.
1963-01-01
During the past fifteen years, educators and electronics specialists have been experimenting with language facilities, usually by modifying equipment components which were originally designed for other purposes. The rapid growth, wide diversity, and newness of these electronic aids to language learning have created the need for a study of the most…
Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Cherie; Murray, Christopher; Kikkawa, James
2017-06-14
Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less
Fiber Ring Optical Gyroscope (FROG)
NASA Technical Reports Server (NTRS)
1979-01-01
The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.
2003-01-01
Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).
ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics
NASA Astrophysics Data System (ADS)
Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.
2017-04-01
The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.
Microwave scanning beam approach and landing system phased array antenna.
DOT National Transportation Integrated Search
1971-09-01
The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...
Cost effectiveness of ergonomic redesign of electronic motherboard.
Sen, Rabindra Nath; Yeow, Paul H P
2003-09-01
A case study to illustrate the cost effectiveness of ergonomic redesign of electronic motherboard was presented. The factory was running at a loss due to the high costs of rejects and poor quality and productivity. Subjective assessments and direct observations were made on the factory. Investigation revealed that due to motherboard design errors, the machine had difficulty in placing integrated circuits onto the pads, the operators had much difficulty in manual soldering certain components and much unproductive manual cleaning (MC) was required. Consequently, there were high rejects and occupational health and safety (OHS) problems, such as, boredom and work discomfort. Also, much labour and machine costs were spent on repairs. The motherboard was redesigned to correct the design errors, to allow more components to be machine soldered and to reduce MC. This eliminated rejects, reduced repairs, saved US dollars 581495/year and improved operators' OHS. The customer also saved US dollars 142105/year on loss of business.
Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)
NASA Technical Reports Server (NTRS)
1989-01-01
Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and
Apparatus for measurements of thermal and optical stimulated exo-electron emission and luminescence
NASA Astrophysics Data System (ADS)
Pokorný, P.; Novotný, M.; Fitl, P.; Zuklín, J.; Vlček, J.; Nikl, J.; Marešová, E.; Hruška, P.; Bulíř, J.; Drahokoupil, J.; Čerňanský, M.; Lančok, J.
2018-06-01
The purpose of the design, construction and implementation of vacuum apparatus for measuring simultaneously three or more stimulated phenomena in dielectrics and eventually semiconductors is to investigate those phenomena as a function of temperature and wavelength. The test of equipment and its functionality were carried out step by step (apparatus, components and control sample) and associated with the calculation of the main physical parameters. The tests of individual parts of the apparatus clearly confirmed that the design, construction and selected components fulfil or even exceed the required properties. On the basis of the measurement of selected sample, it was shown that even weak signals from the material can be detected from both thermally stimulated luminescence and thermally stimulated exo-electron emission moreover transmission and desorption can be measured. NaCl:Ni (0.2%) was chosen as the test material. The activation energies and frequency factor were calculated using the methods of different authors.
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Coherent-Phase Monitoring Of Cavitation In Turbomachines
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.
Harrysson, Ola LA; Hosni, Yasser A; Nayfeh, Jamal F
2007-01-01
Background Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive. Methods This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design. Results The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening. Conclusion The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components. PMID:17854508
NASA Astrophysics Data System (ADS)
Shin, Young-Min; Figora, Michael
2017-10-01
A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor—a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10-4 and a bunch length (electron probe) within <500 fs. In this paper, the design analysis and instrumental test results are presented along with the development of the quasi-relativistic UED system.
Shin, Young-Min; Figora, Michael
2017-10-01
A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within <500 fs. In this paper, the design analysis and instrumental test results are presented along with the development of the quasi-relativistic UED system.
NASA Astrophysics Data System (ADS)
Durfee, David; Johnson, Walter; McLeod, Scott
2007-04-01
Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert
2008-01-01
The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.
Design of a microfluidic cell using microstereolithography for electronic tongue applications
NASA Astrophysics Data System (ADS)
Jacesko, Stefany L.; Ji, Taeksoo; Abraham, Jose K.; Varadan, Vijay K.; Gardner, Julian W.
2003-07-01
In this paper we present design, fabrication and integration of a micro fluidic cell for use with the electronic tongue. The cell was machined using microstereo lithography on a Hexanediol Diacrylate (HDDA) liquid monomer. The wet cell was designed to confine the liquid under test to the sensing area and insure complete isolation of the interdigital transducers (IDTs). The electronic tongue is a shear horizontal surface acoustic wave (SH-SAW) device. Shear horizontally polarized Love-waves are guided between transmitting and receiving IDTs, over a piezoelectric substrate, which creates an electronic oscillator effect. This device has a dual delay line configuration, which accounts for the measuring of both mechanical and electrical properties of a liquid, simultaneously, with the ability to eliminate environmental factors. The data collected is distinguished using principal components analysis in conjunction with pre-processing parameters. The experiments show that the micro fluidic cell for this electronic tongue does not affect the losses or phase of the device to any extent of concern. Experiments also show that liquids such as Strawberry Hi-C, Teriyaki Sauce, DI Water, Coca Cola, and Pepsi are distinguishable using these methods.
Nurses' Experiences of an Initial and Reimplemented Electronic Health Record Use.
Chang, Chi-Ping; Lee, Ting-Ting; Liu, Chia-Hui; Mills, Mary Etta
2016-04-01
The electronic health record is a key component of healthcare information systems. Currently, numerous hospitals have adopted electronic health records to replace paper-based records to document care processes and improve care quality. Integrating healthcare information system into traditional nursing daily operations requires time and effort for nurses to become familiarized with this new technology. In the stages of electronic health record implementation, smooth adoption can streamline clinical nursing activities. In order to explore the adoption process, a descriptive qualitative study design and focus group interviews were conducted 3 months after and 2 years after electronic health record system implementation (system aborted 1 year in between) in one hospital located in southern Taiwan. Content analysis was performed to analyze the interview data, and six main themes were derived, in the first stage: (1) liability, work stress, and anticipation for electronic health record; (2) slow network speed, user-unfriendly design for learning process; (3) insufficient information technology/organization support; on the second stage: (4) getting used to electronic health record and further system requirements, (5) benefits of electronic health record in time saving and documentation, (6) unrealistic information technology competence expectation and future use. It concluded that user-friendly design and support by informatics technology and manpower backup would facilitate this adoption process as well.
Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems
NASA Astrophysics Data System (ADS)
Tsaliovich, Anatoly
Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.
Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora)
NASA Astrophysics Data System (ADS)
Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.
2010-10-01
A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.
Compact self-powered synchronous energy extraction circuit design with enhanced performance
NASA Astrophysics Data System (ADS)
Liu, Weiqun; Zhao, Caiyou; Badel, Adrien; Formosa, Fabien; Zhu, Qiao; Hu, Guangdi
2018-04-01
Synchronous switching circuit is viewed as an effective solution of enhancing the generator’s performance and providing better adaptability for load variations. A critical issue for these synchronous switching circuits is the self-powered realization. In contrast with other methods, the electronic breaker possesses the advantage of simplicity and reliability. However, beside the energy consumption of the electronic breakers, the parasitic capacitance decreases the available piezoelectric voltage. In this technical note, a new compact design of the self-powered switching circuit using electronic breaker is proposed. The envelope diodes are excluded and only a single envelope capacitor is used. The parasitic capacitance is reduced to half with boosted performance while the components are reduced with cost saved.
Design and engineering of a man-made diffusive electron-transport protein
Fry, Bryan A.; Solomon, Lee A.; Dutton, P. Leslie
2016-01-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7 × 106 M−1s−1 to 1.2 × 109 M−1s−1 follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and −19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. PMID:26423266
Viewfinder/tracking system for Skylab
NASA Technical Reports Server (NTRS)
Casey, W. L.
1975-01-01
Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.
Design and engineering of a man-made diffusive electron-transport protein.
Fry, Bryan A; Solomon, Lee A; Leslie Dutton, P; Moser, Christopher C
2016-05-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.
Radiation effects in spacecraft electronics
NASA Technical Reports Server (NTRS)
Raymond, James P.
1989-01-01
Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2002-06-01
Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.
Fundamental Studies of Hydroporphyrin Architectures for Solar-Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Jonathan S.; Bocian, David F.; Holten, Dewey
2013-10-30
The long-term objective of the Bocian/Holten&Kirmaier/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten&Kirmaier group), and electrochemical, electron paramagnetic resonance,more » resonance Raman, and infrared studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (i) Gain a deeper understanding of the spectral and electronic properties of bacteriochlorins, with a subsidiary aim of learning how to shift the long-wavelength absorption band deeper into the NIR region. Bacteriochlorins bearing diverse substituents, including annulated rings, will be prepared and examined. A set of bacteriochlorins with site-specific isotopic (13C, 2H) substitution patterns about the macrocycle perimeter will be prepared for studies of vibrational and electronic properties. (ii) Examine the underlying electronic origin of panchromatic absorption and excited-state behavior of strongly coupled rylene–tetrapyrrole arrays. The rylene constituents include a perylene-monoimide and a terrylene-monoimide. The tetrapyrroles include porphyrins (meso- or β-linked) and bacteriochlorins (β-linked). The objective is to achieve panchromatic absorption while preserving a viable, long-lived excited singlet state. (iii) Determine the rates of ground-state hole/electron transfer between (hydro)porphyrins as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (iv) Build upon the results of the aforementioned studies to design, synthesize, and characterize integrated architectures that incorporate a panchromatic absorber and other molecular components that that afford efficient hole/electron migration and long-lived charge separation. Such architectures will be examined on solid substrates to explore the viability of the component parts and processes under application-oriented conditions. Such architectures or successors may prove directly useful for solar-energy conversion systems. An equally important attribute is to serve as a test-bed for successful integration of the requisite properties and processes, some of which require rather weak coupling between constituents, some of which require very strong electronic interactions to elicit the desired behavior, and all of which should be tunable under molecular design control to the extent possible. Collectively, the proposed studies will provide fundamental insights into molecular properties, interactions, and processes relevant to the design of molecular architectures for solar-energy conversion. The accomplishment of these goals is only possible through a highly synergistic program that encompasses molecular design, synthesis, and in-depth characterization.« less
NASA Technical Reports Server (NTRS)
Nuttall, L. J.; Titterington, W. A.
1974-01-01
Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.
Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan
2012-03-20
Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within gas-sensing devices and has enabled stable sensor operation within aqueous media. Furthermore, careful tuning of the chemical composition of the dielectric layer has provided a means to operate the sensor in real time within an aqueous environment and without the need for encapsulation layers. The integration of such devices as electronic mimics of skin will require the incorporation of biocompatible or biodegradable components. Toward this goal, OFETs may be fabricated with >99% biodegradable components by weight, and the devices are robust and stable, even in aqueous environments. Collectively, progress to date suggests that OFETs may be integrated within a single substrate to function as an electronic mimic of human skin, which could enable a large range of sensing-related applications from novel prosthetics to robotic surgery.
Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei
2017-12-27
A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.
2008-04-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration
2008-03-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.
1989-07-01
for further development are indicated. This guide addresses the major components over which we have the ability to excercise control in the design...this same period, very fast electronic analyzers also became available at a reasonable cost. Known as Fast Fourier Transform (FFT), these analyzers...An oscilloscope is desirable anyway to judge whether the signals look reasonable or not. Usually intermittent connections, 60 Hz noise, or other
Design evaluation: S-band exciters
NASA Technical Reports Server (NTRS)
1974-01-01
A design evaluation study was conducted to produce S-band exciter (SBE) system to provide a highly stable phase or modulated carrier for transmission to spacecraft. The exciter is part of an S-band receiver/exciter/ranging system at Spaceflight Tracking and Data Network (STDN) ground stations. The major features of the system are defined. Circuit diagrams of the electronic components are provided.
Concept and realization of unmanned aerial system with different modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech
2014-12-10
In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of themore » system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.« less
Overview of microoptics: Past, present, and future
NASA Technical Reports Server (NTRS)
Veldkamp, Wilfrid B.
1993-01-01
Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.
Transparent War Fighter Recharging
2014-10-17
taken by loading the rectified DC voltage in Soldier’s electronics pack. It does not include the efficiency of the battery charger . Figure 9...and battery charger ) Receive Weight -- -- 0.1lb .413 lbs, not including enclosure Compliance FCC FCC Not tested but designed for compliance Table 5...receiver and battery charger Total 2.66 Table 6- Component Weights Vest Transmitter Component Weight in lbs Rx Coil .175 Secondary Charger PCBA .238 Total
Lumped element filters for electronic warfare systems
NASA Astrophysics Data System (ADS)
Morgan, D.; Ragland, R.
1986-02-01
Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.
Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
NASA Astrophysics Data System (ADS)
Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David
2017-01-01
The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.
Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.
Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David
2017-01-01
The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.
Electronics design of a multi-rate DPSK modem for free-space optical communications
NASA Astrophysics Data System (ADS)
Rao, H. G.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Seaver, M. M.; Scheinbart, M. S.; Spellmeyer, N. W.; Wang, J. P.
2014-03-01
We have designed and experimentally demonstrated a radiation-hardened modem suitable for NASA's Laser Communications Relay Demonstration. The modem supports free-space DPSK communication over a wide range of channel rates, from 72 Mb/s up to 2.88 Gb/s. The modem transmitter electronics generate a bursty DPSK waveform, such that only one optical modulator is required. The receiver clock recovery is capable of operating over all channel rates at average optical signal levels below -70 dBm. The modem incorporates a radiation-hardened Xilinx Virtex 5 FPGA and a radiation-hardened Aeroflex UT699 CPU. The design leverages unique capabilities of each device, such as the FPGA's multi-gigabit transceivers. The modem scrubs itself against radiation events, but does not require pervasive triple-mode redundant logic. The modem electronics include automatic stabilization functions for its optical components, and software to control its initialization and operation. The design allows the modem to be put into a low-power standby mode.
Design and development of the 6-18 MeV electron beam system for medical and other applications
NASA Astrophysics Data System (ADS)
Shahzad, A.; Phatangare, A. B.; Bharud, V. D.; Bhadane, M. S.; Tahakik, C. D.; Patil, B. J.; Dahiwale, S. S.; Chavan, S. T.; Pethe, S. N.; Dhole, S. D.; Bhoraskar, V. N.
2017-12-01
A system for the electron and photon therapy has been designed and developed at SAMEER, IITB, Mumbai. All the components of the system such as the 270° beam bending electromagnet, trim coils, magnet chamber, electron scattering foil, slits, applicators, etc., were designed and fabricated indigenously. The electrons of 6, 8, 9, 12, 15 and 18 MeV energies were provided by a linear accelerator, indigenously designed and made at SAMEER, IITB campus, Mumbai. The electron beam from the LINAC enters the magnet chamber horizontally, and after deflection and focusing in the 270° bending magnet, comes out of the exit port, and travels a straight path vertically down. After passing through the beryllium and tantalum scattering foils, the electron beam gets scattered and turns into a solid cone shape such that the diameter increases with the travel distance. The simulation results indicate that at the exit port of the 270° beam bending magnet, the electron beam has a divergence angle of ≤ 3 mrad and diameter ∼2-3 mm, and remains constant over 6-18 MeV. Normally, 6-18 MeV electrons are used for the electron therapy of skin and malignant cancer near the skin surface. On a plane at a distance of 100 cm from the scattering foils, the size of the electron beam could be varied from 10 cm × 10 cm to 25 cm × 25 cm using suitable applicators and slits. Different types of applicators were therefore designed and fabricated to provide required beam profile and dose of electrons to a patient. The 6 MeV cyclic electron accelerator called Race-Track Microtron of S. P. Pune University, Pune, was extensively used for studying the performances of the scattering foils, electron beam uniformity and radiation dose measurement. Different types of thermoluminescent dosimetry dosimeters were developed to measure dose in the range of 1-10kGy.
Comfortable, lightweight safety helmet holds radio transmitter, receiver
NASA Technical Reports Server (NTRS)
Atlas, N. D.
1964-01-01
For two-way radio communication where safety gear is required, a lightweight helmet with few protrusions has been designed. The electronics components and power supply are mounted between the inner and outer shells, and resilient padding is used for the lining.
NASA Technical Reports Server (NTRS)
Regan, Timothy F.
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
Printed electronic on flexible and glass substrates
NASA Astrophysics Data System (ADS)
Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna
2010-09-01
Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.
Reliability analysis of component-level redundant topologies for solid-state fault current limiter
NASA Astrophysics Data System (ADS)
Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam
2018-04-01
Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.
Design and characterization of a hybrid-integrated MEMS scanning grating spectrometer
NASA Astrophysics Data System (ADS)
Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Schenk, Harald
2013-03-01
Grating spectrometer, like the well-established Czerny-Turner, are based on an optical design consisting of several components. Typically at least two slits, two mirrors, the grating stage and a detector are required. There has been much work to reduce this effort, setups using only one mirror (Ebert - Fastie) or the replacement of the entrance slit through the use of thin optical fibers as well as integrated electronic detector arrays instead of a moving grating and an exit slit and single detector device have been applied. Reduced effort comes along with performance limitations: Either the optical resolution or throughput is affected or the use of the system is limited to the availability of detectors arrays with reasonable price. Components in micro opto electro mechanical systems (MOEMS-) technology and spectroscopic systems based thereon have been developed to improve this situation. Miniaturized scanning gratings fabricated on bonded silicon on insulator (BSOI-) wafers were used to design grating spectrometer for the near infrared requiring single detectors only. Discrete components offer flexibility but also need for adjustment of two mirrors, grating stage, fiber mount and the detector with its slit and optionally a second slit in the entrance area. Further development leads towards the integration of the slits into the MOEMS chip, thus less effort for adjustment. Flexibility might be reduced as adjustments of the optical design or grating spacing would require a new chip with own set of masks. Nevertheless if extreme miniaturization is desired this approach seems to be promising. Besides this, high volume production might be able for a comparable low price. A new chip was developed offering grating, two slits and a cavity for the detector chip. The optical design was adjusted to a planar arrangement of grating and slits. A detector buried in a chip cavity required a new mounting strategy. Other optical components were optimized and fabricated then the systems was assembled with electronics and software adjusted to the new design including some new features like integrated position sensors. A first test of systems to grant function of all components is presented. Further work will be aimed at improved performance like higher resolution and lower SNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Jih-Sheng
This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and outputmore » current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.« less
Tritium-powered radiation sensor network
NASA Astrophysics Data System (ADS)
Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos
2016-05-01
Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.
MeRHIC - staging approach to eRHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptitsyn,V.; Beebe-Wang, J.; Ben-Zvi, I.
Design of a medium energy electron-ion collider (MeRHIC) is under development at the Collider-Accelerator Department at BNL. The design envisions construction of a 4 GeV electron accelerator in a local area inside and near the RHIC tunnel. Electrons will be produced by a polarized electron source and accelerated in energy recovery linacs. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at the 10{sup 32} cm{sup -2}s{sup -1} level will be achieved with 50 mA CW electronmore » current and presently available proton beam parameters. Efficient proton beam cooling at collision energy may bring the luminosity to 10{sup 33} cm{sup -2}s{sup -1}. An important feature of MeRHIC is that it serves as a first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of MeRHIC accelerator components will be used in eRHIC.« less
Kinematics Analysis of End Effector for Carrier Robot of Feeding Broiler Chicken System
NASA Astrophysics Data System (ADS)
Syam, Rafiuddin; Arsyad, Hairul; Bauna, Ruslan; Renreng, Ilyas; Bakhri, Syaiful
2018-02-01
The demand for commodities, especially Broiler chicken farms are increasing, the volume of feed requirements Broiler chickens increased with age up to the age of 30-57 days required feed 3,829 grams/day/head, so if the chicken population is 3,000 needed transporting feed 11 487 kg/day, This research aims to produce a robot capable of transporting feed in the top of the cage by using a control system so as to make efficient use of manpower. Design robot performed using software design three-dimensional Solidworks2010, process of making the robot is started with the design manufacture three (3) units of mechanical systems (mechanical system for holder feed, mechanical systems for lifter feed and mechanical systems for transporting feed), then do the design process framework as a component buffer so that the mechanical system will work properly and safely when the robot operates. Furthermore, the manufacture of electronic circuits and control are using Arduino Mega microcontroller. After assembling all components mechanical systems and installation of electronic systems and control, then experiments to evaluate the performance of the robot have been made. The results of experiments showed that all components work well according to plan, in particular the speed and acceleration of end effector motion so it can hold and release the feed well. This strongly supports the robots perform tasks in accordance with the intent, i.e., holding, lifting and moving feed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHNEIDER,LARRY X.
2000-06-01
The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of componentmore » and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.« less
Ion source design for industrial applications
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1981-01-01
The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.
2016-12-01
easily would be preferred. Many studies have been conducted to model the effects of potting materials on PCBs and their components: two such studies ...catch (SCAT) gun Guidance electronics On -board recorder (OBR) Precision guided munition (PGM) 16. SECURITY CLASSIFICATION OF: 17... On -board Recorder 2 Initial Method - Modeling Assumptions 2 Initial Method - Parts, Instances, and Simplifications in the Model 3 Initial Method
NASA Technical Reports Server (NTRS)
1972-01-01
Guidelines for the design, development, and fabrication of electronic components and circuits for use in spacecraft construction are presented. The subjects discussed involve quality control procedures and test methodology for the following subjects: (1) monolithic integrated circuits, (2) hybrid integrated circuits, (3) transistors, (4) diodes, (5) tantalum capacitors, (6) electromechanical relays, (7) switches and circuit breakers, and (8) electronic packaging.
Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben
2017-07-18
Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
Spacecraft transformer and inductor design
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1977-01-01
The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.
Tutorial on X-Ray Free-Electron Lasers
Carlsten, Bruce E.
2018-05-02
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
Tutorial on X-Ray Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsten, Bruce E.
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
Microcomputer control of an electronically commutated dc motor
NASA Astrophysics Data System (ADS)
El-Sharkawi, M. A.; Coleman, J. S.; Mehdi, I. S.; Sommer, D. L.
A microcomputer control system for an electronically commutated dc motor (ECM) has been designed, built and tested. A 3-hp, 270-volt, samarium-cobalt brushless dc motor is controlled by an Intel 8086-based microcomputer. The main functions of the microcomputer are to control the speed of the motor, to provide forward or reverse rotation, to brake, and to protect the motor and its power electronic switching circuits from overcurrents. The necessary interface circuits were designed and built, and the system components have been integrated and tested. It is shown that the proposed ECM system with the microcomputer control operate the motor reliably over a wide range of speeds. The purpose of this effort is to develop the motorcontroller for driving electromechanical actuators for flight control and other aircraft applications.
The Design and Implementation of a Prototype Surf-Zone Robot for Waterborne Operations
2015-12-01
parents, Oscar and Ada Lucia, for allowing my mind to dream and pursue those dreams since I was a child. To Sean, Judith, Tatiana, David and...prolonged immersion periods. Grease or marine silicone was applied to prevent water intrusion into the mechanical components of the gearbox. The following... intrusion . The waterproof cylinder for electronics successfully served this purpose. Components external to the cylinder were potted for protection
2006-12-01
intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on critical components research, to demonstrate how an...control action, engine component life usage, and designing an intelligent control algorithm embedded in the FADEC . This paper evaluates the LEC, based on...simulation code for each simulator. One is typically configured to operate as a Full- Authority Digital Electronic Controller ( FADEC
Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M
NASA Astrophysics Data System (ADS)
Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.
2016-06-01
As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.
The optical design of 3D ICs for smartphone and optro-electronics sensing module
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji
2012-01-01
This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019
High Energy/LET Radiation EEE Parts Certification Handbook
NASA Technical Reports Server (NTRS)
Reddell, Brandon
2012-01-01
Certifying electronic components is a very involved process. It includes pre-coordination with the radiation test facility for time, schedule and cost, as well as intimate work with designers to develop test procedures and hardware. It also involves work with radiation engineers to understand the effects of the radiation field on the test article/setup as well as the analysis and production of a test report. The technical content of traditional ionizing radiation testing protocol is in wide use and generally follows established standards (ref. Appendix C). This document is not intended to cover all these areas but to cover the methodology of using Variable Depth Bragg Peak (VDBP) to accomplish the goal of characterizing an electronic component. The Variable Depth Bragg Peak (VDBP) test method is primarily used for deep space applications of electronics. However, it can be used on any part for any radiation environment, especially those parts where the sensitive volume cannot be reached by the radiation beam. An example of this problem would be issues that arise in de-lidding of parts or in parts with flip-chip designs, etc. The VDBP method is ideally suited to test modern avionics designs which increasingly incorporate commercial off-the-shelf (COTS) parts and units. Johnson Space Center (JSC) developed software provides assistance to users in developing the radiation characterization data from the raw test data.
Laser profilometer module based on a low-temperature cofired ceramic substrate
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Heikkinen, Mikko; Keranen, Kimmo; Mitikka, Risto S.; Putila, Veli-Pekka; Tukkiniemi, Kari
2005-09-01
We realized a laser profilometer module using low temperature cofired ceramics technology. The device consists of a vertical-cavity surface-emitting laser as the light source and a complementary metal oxide semiconductor image sensor as the detector. The laser transmitter produces a thin light stripe on the measurable object, and the receiver calculates the distance profile using triangulation. Because the design of optoelectronic modules, such as the laser profilometer, is usually carried out using specialized software, its electronic compatibility is very important. We developed a data transmission network using commercial optical, electrical, and mechanical design software, which enabled us to electronically transfer data between the designers. The module electronics were realized with multilayer ceramics technology that eases component assembly by providing precision alignment features in the substrate. The housing was manufactured from aluminum using electronic data transfer from the mechanical design software to the five-axis milling workstation. Target distance profiles were obtained from 100 points with an accuracy varying from 0.1 mm at a 5-cm distance to 2 cm at 1.5 m. The module has potential for distance measurement in portable devices where small size, light weight, and low power consumption are important.
Conceptual Design of a Nano-Networking Device
Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan
2016-01-01
Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated. PMID:27973430
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Astrophysics Data System (ADS)
Silverman, Edward M.
1995-08-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
Space environmental effects on spacecraft: LEO materials selection guide, part 2
NASA Technical Reports Server (NTRS)
Silverman, Edward M.
1995-01-01
This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
Conceptual Design of a Nano-Networking Device.
Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan
2016-12-11
Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2015-12-15
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2016-05-17
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, X.; Schrottke, L.; Grahn, H. T.
We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...
2017-07-05
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Majeski, R.; Schmitt, J. C.
It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less
Stretchable electronics based on Ag-PDMS composites
Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos
2014-01-01
Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843
Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC
NASA Astrophysics Data System (ADS)
Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group
The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.
Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyeKyoung; Castilla, Alejandro; Delayen, Jean R.
2016-05-01
The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options.more » It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.« less
Electrical design of payload G-534: The Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Francisco, David R.
1992-01-01
Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special that is scheduled to fly on the shuttle in 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors and other electrical components along with grounding and shielding policy for the entire experiment will be presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.
NASA Astrophysics Data System (ADS)
Feng, Fan; Yang, Weiyi; Gao, Shuang; Zhu, Linggang; Li, Qi
2018-02-01
External stimulations of applied force or voltage have been reported to induce crystal lattice dimension changes with the order of 0.1% or above by imposing external mechanical or electric forces on atoms forming the lattice for various types of materials, including oxides, metals, polymers, and carbon nanostructures. As far as we know, however, no report is available for similar level changes in oxides from their internal electronic structure changes induced by photoirradiation. We show that reversible lattice expansion comparable to those by applied force or voltage can be induced by UV-irradiation on an oxide of W-doped TiO2 nanotubes through the reversible changes of its internal electronic structure by the accumulation and release of photogenerated electrons in W-dopants when UV-illumination is on and off. This photoirradiation-induced reversible lattice expansion and subsequent optical, electric, and magnetic property changes may also be present in other material systems by proper material design if they possess one component that is able to produce electrons upon photoirradiation and the other component that is able to accumulate photogenerated electrons to induce lattice changes and release them after the photoirradiation is off.
Basic Electronic Design for Proposed NMSU Hitchhiker Payload
NASA Technical Reports Server (NTRS)
Horan, Stephen
2000-01-01
This document presents the bas'c hardware design developed by the EE 499 class during the spring semester of the 1999-2000 academic year. This design covers the electrical components to supply power to the experiments, the computer software and interfaces to control the experiments, and the ground data processing to provide an operator interface. This document is a follow-on to the Payload Mission description document and the System Requirements document developed during the EE 498 class during the fall semester. The design activities are broken down by functional area within the structure. For each area, we give the requirements that need to be met and the design to meet the requirements. For each of these areas, a prototype selection of hardware and/or software was done by the class and the components assembled as part of the class to verify that they worked as intended.
The NASA computer aided design and test system
NASA Technical Reports Server (NTRS)
Gould, J. M.; Juergensen, K.
1973-01-01
A family of computer programs facilitating the design, layout, evaluation, and testing of digital electronic circuitry is described. CADAT (computer aided design and test system) is intended for use by NASA and its contractors and is aimed predominantly at providing cost effective microelectronic subsystems based on custom designed metal oxide semiconductor (MOS) large scale integrated circuits (LSIC's). CADAT software can be easily adopted by installations with a wide variety of computer hardware configurations. Its structure permits ease of update to more powerful component programs and to newly emerging LSIC technologies. The components of the CADAT system are described stressing the interaction of programs rather than detail of coding or algorithms. The CADAT system provides computer aids to derive and document the design intent, includes powerful automatic layout software, permits detailed geometry checks and performance simulation based on mask data, and furnishes test pattern sequences for hardware testing.
NASA Astrophysics Data System (ADS)
Gausachs, Gaston; Bec, Matthieu; Galvez, Ramon; Cavedoni, Chas; Vergara, Vicente; Diaz, Herman; Fernandez, German
2010-07-01
CANOPUS is the facility instrument for the Gemini Multi Conjugate Adaptive Optics System (GeMS) wherein all the adaptive optics mechanisms and associated electronic are tightly packed. At an early stage in the pre-commissioning phase Gemini undertook the redesign and implementation of its chilled Ethylene Glycol Water (EGW) cooling system to remove the heat generated by the electronic hardware. The electronic boards associated with the Deformable Mirrors (DM) represent the highest density heat yielding components in CANOPUS and they are also quite sensitive to overheating. The limited size of the two electronic thermal enclosures (TE) requires the use of highly efficient heat exchangers (HX) coupled with powerful yet compact DC fans. A systematic approach to comply with all the various design requirements brought about a thorough and robust solution that, in addition to the core elements (HXs and fan), makes use of features such as high performance vacuum insulated panels, vibration mitigation elements and several environment sensors. This paper describes the design and implementation of the solution in the lab prior to delivering CANOPUS for commissioning.
NASA Astrophysics Data System (ADS)
Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.
2016-06-01
The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.
Lightning protection for aircraft
NASA Technical Reports Server (NTRS)
Fisher, F. A.; Plumer, J. A.
1980-01-01
Reference book summarizes current knowledge concerning potential lightning effects on aircraft and means available to designers and operators to protect against effects. Book is available because of increasing use of nonmetallic materials in aircraft structural components and use of electronic equipment for control of critical flight operations and navigation.
ERIC Educational Resources Information Center
Hazari, Sunil I.
1991-01-01
Local area networks (LANs) are systems of computers and peripherals connected together for the purposes of electronic mail and the convenience of sharing information and expensive resources. In planning the design of such a system, the components to consider are hardware, software, transmission media, topology, operating systems, and protocols.…
Integration of transmissible organic electronic devices for sensor application
NASA Astrophysics Data System (ADS)
Tam, Hoi Lam; Wang, Xizu; Zhu, Furong
2013-09-01
A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.
DEMS - a second generation diabetes electronic management system.
Gorman, C A; Zimmerman, B R; Smith, S A; Dinneen, S F; Knudsen, J B; Holm, D; Jorgensen, B; Bjornsen, S; Planet, K; Hanson, P; Rizza, R A
2000-06-01
Diabetes electronic management system (DEMS) is a component-based client/server application, written in Visual C++ and Visual Basic, with the database server running Sybase System 11. DEMS is built entirely with a combination of dynamic link libraries (DLLs) and ActiveX components - the only exception is the DEMS.exe. DEMS is a chronic disease management system for patients with diabetes. It is used at the point of care by all members of the diabetes team including physicians, nurses, dieticians, clinical assistants and educators. The system is designed for maximum clinical efficiency and facilitates appropriately supervised delegation of care. Dispersed clinical sites may be supervised from a central location. The system is designed for ease of navigation; immediate provision of many types of automatically generated reports; quality audits; aids to compliance with good care guidelines; and alerts, advisories, prompts, and warnings that guide the care provider. The system now contains data on over 34000 patients and is in daily use at multiple sites.
Simulation and Characterization of a Miniaturized Scanning Electron Microscope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.
2011-01-01
A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.
Design integration for minimal energy and cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halldane, J.E.
The authors present requirements for creating alternative energy conserving designs including energy management and architectural, plumbing, mechanical, electrical, electronic and optical design. Parameters of power, energy, life cycle costs and benefit for resource for an evaluation by the interested parties are discussed. They present an analysis of power systems through a seasonal power distribution diagram. An analysis of cost systems includes capital cost from the power components, annual costs from the utility energy use, and finance costs with loans, taxes, settlement and design fees. Equations are transposed to the evaluative parameter and are uniquely explicit with consistent symbols, parameter definitions,more » dual and balanced units, unit conversions, criteria for operation, incorporated constants for rapid calculations, references to data in the handbook, other common terms, and instrumentation for the measurement. Each component equation has a key power diagram.« less
Radiation leakage dose from Elekta electron collimation system
Hogstrom, Kenneth R.; Carver, Robert L.
2016-01-01
This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101
Thermal and Structural Analysis of Beamline Components in the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Luke Daniel
2016-01-01
Fermi National Accelerator Laboratory will be conducting the high energy particle physics experiment Muons to Electrons (Mu2e). In this experiment, physicists will attempt to witness and understand an ultra-rare process which is the conversion of a muon into the lighter mass electron, without creating additional neutrinos. The experiment is conducted by first generating a proton beam which will be collided into a target within the production solenoid (PS). This creates a high-intensity muon beam which passes through a transport solenoid (TS) and into the detector solenoid (DS). In the detector solenoid the muons will be stopped in an aluminum targetmore » and a series of detectors will measure the electrons produced. These components have been named the DS train since they are coupled and travel on a rail system when being inserted or extracted from the DS. To facilitate the installation and removal of the DS train, a set of external stands and a support stand for the instrumentation feed-through bulkhead (IFB) have been designed. Full analysis of safety factors and performance of these two designs has been completed. The detector solenoid itself will need to be maintained to a temperature of 22°C ± 10°C. This will minimize thermal strain and ensure the accurate position of the components is maintained to the tolerance of 2 mm. To reduce the thermal gradient, a passive heating system has been developed and reported.« less
Parts and Components Reliability Assessment: A Cost Effective Approach
NASA Technical Reports Server (NTRS)
Lee, Lydia
2009-01-01
System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.
Energy Efficient Engine (E3) controls and accessories detail design report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Lavash, J. P.
1982-01-01
An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.
Design, Qualification, and On Orbit Performance of the CALIPSO Aerosol Lidar Transmitter
NASA Technical Reports Server (NTRS)
Hovis, Floyd E.; Witt, Greg; Sullivan, Edward T.; Le, Khoa; Weimer, Carl; Applegate, Jeff; Luck, William S., Jr.; Verhapen, Ron; Cisewski, Michael S.
2007-01-01
The laser transmitter for the CALIPSO aerosol lidar mission has been operating on orbit as planned since June 2006. This document discusses the optical and laser system design and qualification process that led to this success. Space-qualifiable laser design guidelines included the use of mature laser technologies, the use of alignment sensitive resonator designs, the development and practice of stringent contamination control procedures, the operation of all optical components at appropriately derated levels, and the proper budgeting for the space-qualification of the electronics and software.
Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications
Yan, Tian-Hong; Wang, Wei; Chen, Xue-Dong; Li, Qing; Xu, Chang
2009-01-01
A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM). Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV) and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder. PMID:22408564
Radiation Specifications for Fission Power Conversion Component Materials
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Shin, E. Eugene; Mireles, Omar R.; Radel, Ross F.; Qualls, A. Louis
2011-01-01
NASA has been supporting design studies and technology development that could provide power to an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system heritage that can be transferred to the design and fabrication of a fission power system for space missions, but there are certain design aspects that require qualification. The radiation tolerance of the power conversion system requires scrutiny because the compact nature of a space power plant restricts the dose reduction methodologies compared to those used in terrestrial systems. An integrated research program has been conducted to establish the radiation tolerance of power conversion system-component materials. The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad ionizing dose and 5 x 10(exp 14) neutron per square centimeter fluence for a convertor operating at 150 C. Specific component materials and their radiation tolerances are discussed. This assessment is for the power convertor hardware; electronic components are not covered here.
Autonomous control of roving vehicles for unmanned exploration of the planets
NASA Technical Reports Server (NTRS)
Yerazunis, S. W.
1978-01-01
The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.
Capacitance-Voltage (CV) Measurement of Type-2 Superlattice Photodiodes
2016-01-05
interlayer tunneling of carriers without the requirement of an external bias or additional doping. The resulting energy gap depends upon the layer...design which involves the interaction of electrons and holes via tunneling through adjacent barriers. By adjusting the Conduction Miniband Valance...design the effective masses can be increased further to reduce the tunneling current, which is a major component of the dark current in MCT detectors
The "New Oxford English Dictionary" Project.
ERIC Educational Resources Information Center
Fawcett, Heather
1993-01-01
Describes the conversion of the 22,000-page Oxford English Dictionary to an electronic version incorporating a modified Standard Generalized Markup Language (SGML) syntax. Explains that the database designers chose structured markup because it supports users' data searching needs, allows textual components to be extracted or modified, and allows…
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1...
NASA Technical Reports Server (NTRS)
Divine, N.
1975-01-01
The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.
Configuration of electro-optic fire source detection system
NASA Astrophysics Data System (ADS)
Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir
2007-04-01
The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.
Recommendations for Enabling Manual Component Level Electronic Repair for Future Space Missions
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Easton, John W.; Funk, Gregory P.; Latta, Gary S.; Ganster, Andrew W.; Estes, Brett E.
2011-01-01
Long duration missions to the Moon and Mars pose a number of challenges to mission designers, controllers, and the crews. Among these challenges are planning for corrective maintenance actions which often require a repair. Current repair strategies on the International Space Station (ISS) rely primarily on the use of Orbital Replacement Units (ORUs), where a faulty unit is replaced with a spare, and the faulty unit typically returns to Earth for analysis and possible repair. The strategy of replace to repair has posed challenges even for the ISS program. Repairing faulty hardware at lower levels such as the component level can help maintain system availability in situations where no spares exist and potentially reduce logistic resupply mass.This report provides recommendations to help enable manual replacement of electronics at the component-level for future manned space missions. The recommendations include hardware, tools, containment options, and crew training. The recommendations are based on the work of the Component Level Electronics Assembly Repair (CLEAR) task of the Exploration Technology Development Program from 2006 to 2009. The recommendations are derived based on the experience of two experiments conducted by the CLEAR team aboard the International Space Station as well as a group of experienced Miniature/Microminiature (2M) electronics repair technicians and instructors from the U.S. Navy 2M Project Office. The emphasis of the recommendations is the physical repair. Fault diagnostics and post-repair functional test are discussed in other CLEAR reports.
Measuring the orbital angular momentum spectrum of an electron beam
Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim
2017-01-01
Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
HARMONI instrument control electronics
NASA Astrophysics Data System (ADS)
Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan
2014-07-01
HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.
Optical memory development. Volume 1: prototype memory system
NASA Technical Reports Server (NTRS)
Cosentino, L. S.; Mezrich, R. S.; Nagle, E. M.; Stewart, W. C.; Wendt, F. S.
1972-01-01
The design, development, and implementation of a prototype, partially populated, million bit read-write holographic memory system using state-of-the-art components are described. The system employs an argon ion laser, acoustooptic beam deflectors, a holographic beam splitter (hololens), a nematic liquid crystal page composer, a photoconductor-thermoplastic erasable storage medium, a silicon P-I-N photodiode array, with lenses and electronics of both conventional and custom design. Operation of the prototype memory system was successfully demonstrated. Careful attention is given to the analysis from which the design criteria were developed. Specifications for the major components are listed, along with the details of their construction and performance. The primary conclusion resulting from this program is that the basic principles of read-write holographic memory system are well understood and are reducible to practice.
High resolution X-ray CT for advanced electronics packaging
NASA Astrophysics Data System (ADS)
Oppermann, M.; Zerna, T.
2017-02-01
Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grasso, D; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hartman, R C; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocevski, D; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Massai, M M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pohl, M; Porter, T A; Profumo, S; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stephens, T E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-05-08
Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m;{2} sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E-3.0 and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.
Optical read/write memory system components
NASA Technical Reports Server (NTRS)
Kozma, A.
1972-01-01
The optical components of a breadboard holographic read/write memory system have been fabricated and the parameters specified of the major system components: (1) a laser system; (2) an x-y beam deflector; (3) a block data composer; (4) the read/write memory material; (5) an output detector array; and (6) the electronics to drive, synchronize, and control all system components. The objectives of the investigation were divided into three concurrent phases: (1) to supply and fabricate the major components according to the previously established specifications; (2) to prepare computer programs to simulate the entire holographic memory system so that a designer can balance the requirements on the various components; and (3) to conduct a development program to optimize the combined recording and reconstruction process of the high density holographic memory system.
Beam-dynamics driven design of the LHeC energy-recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
Beam-dynamics driven design of the LHeC energy-recovery linac
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; ...
2015-12-23
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
Electrical design of Space Shuttle payload G-534: The pool boiling experiment
NASA Technical Reports Server (NTRS)
Francisco, David R.
1993-01-01
Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.
Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert
2013-03-01
Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute
NASA Technical Reports Server (NTRS)
1975-01-01
A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.
Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho
2016-02-01
The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.
NASA Astrophysics Data System (ADS)
Leclerc, Melanie R.; Côté, Patrice; Duchesne, François; Bastien, Pierre; Hernandez, Olivier; Colonna d'Istria, Pierre; Demers, Mathieu; Girard, Marc; Savard, Maxime; Lemieux, Dany; Thibault, Simon; Brousseau, Denis
2014-08-01
A polarimeter, to observe exoplanets in the visible and infrared, was built for the "Observatoire du Mont Mégantic" (OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics was developed to measure the AC and DC amplitudes, and characterization results are presented.
Design of an electrostatic phase shifting device for biological transmission electron microscopy.
Koeck, Philip J B
2018-04-01
I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.
RADIATION DAMAGE TO SATELLITE ELECTRONIC SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, S.C.
The radiation sensitivity of satellite electronic systems was examined in order to determine the limitations they place on satellite life. The effects of radiation on components are briefly reviewed. Methods are presented and illustrated for determining the minimum radiation level at which circuit failure could occur. The effects of shielding on the radiation belt levels are discussed. It is shown that the effects of space radiation on satellite circuits, in general, can be made negligible by using good design practices. (M.C.G.)
NASA Technical Reports Server (NTRS)
Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike
1995-01-01
Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, L. D.
Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.
NASA Technical Reports Server (NTRS)
Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.
2005-01-01
Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.
Design and performance evaluation of the imaging payload for a remote sensing satellite
NASA Astrophysics Data System (ADS)
Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush
2012-11-01
In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.
2004-04-15
The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.
Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…
ERIC Educational Resources Information Center
Ritz, John; Knaack, Zane
2017-01-01
In the 21st century, electronic connectivity is a major component of everyday life. One expects to have mobile phone coverage and to have access to log a computer or tablet onto the internet. This connectivity enables users to keep track of personal affairs and conduct work from remote locations. Designers and manufacturers are also connecting…
Accelerator shield design of KIPT neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Gohar, Y.
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less
Metrication study for large space telescope
NASA Technical Reports Server (NTRS)
Creswick, F. A.; Weller, A. E.
1973-01-01
Various approaches which could be taken in developing a metric-system design for the Large Space Telescope, considering potential penalties on development cost and time, commonality with other satellite programs, and contribution to national goals for conversion to the metric system of units were investigated. Information on the problems, potential approaches, and impacts of metrication was collected from published reports on previous aerospace-industry metrication-impact studies and through numerous telephone interviews. The recommended approach to LST metrication formulated in this study cells for new components and subsystems to be designed in metric-module dimensions, but U.S. customary practice is allowed where U.S. metric standards and metric components are not available or would be unsuitable. Electrical/electronic-system design, which is presently largely metric, is considered exempt from futher metrication. An important guideline is that metric design and fabrication should in no way compromise the effectiveness of the LST equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.
1994-07-01
This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less
Magnetic field of longitudinal gradient bend
NASA Astrophysics Data System (ADS)
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Active noise control technique for diesel train locomotor exhaust noise abatement
NASA Astrophysics Data System (ADS)
Cotana, Franco; Rossi, Federico
2002-11-01
An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.
Design and implementation of an affordable, public sector electronic medical record in rural Nepal.
Raut, Anant; Yarbrough, Chase; Singh, Vivek; Gauchan, Bikash; Citrin, David; Verma, Varun; Hawley, Jessica; Schwarz, Dan; Harsha Bangura, Alex; Shrestha, Biplav; Schwarz, Ryan; Adhikari, Mukesh; Maru, Duncan
2017-06-23
Globally, electronic medical records are central to the infrastructure of modern healthcare systems. Yet the vast majority of electronic medical records have been designed for resource-rich environments and are not feasible in settings of poverty. Here we describe the design and implementation of an electronic medical record at a public sector district hospital in rural Nepal, and its subsequent expansion to an additional public sector facility.DevelopmentThe electronic medical record was designed to solve for the following elements of public sector healthcare delivery: 1) integration of the systems across inpatient, surgical, outpatient, emergency, laboratory, radiology, and pharmacy sites of care; 2) effective data extraction for impact evaluation and government regulation; 3) optimization for longitudinal care provision and patient tracking; and 4) effectiveness for quality improvement initiatives. For these purposes, we adapted Bahmni, a product built with open-source components for patient tracking, clinical protocols, pharmacy, laboratory, imaging, financial management, and supply logistics. In close partnership with government officials, we deployed the system in February of 2015, added on additional functionality, and iteratively improved the system over the following year. This experience enabled us then to deploy the system at an additional district-level hospital in a different part of the country in under four weeks. We discuss the implementation challenges and the strategies we pursued to build an electronic medical record for the public sector in rural Nepal.DiscussionOver the course of 18 months, we were able to develop, deploy and iterate upon the electronic medical record, and then deploy the refined product at an additional facility within only four weeks. Our experience suggests the feasibility of an integrated electronic medical record for public sector care delivery even in settings of rural poverty.
Design and implementation of an affordable, public sector electronic medical record in rural Nepal
Raut, Anant; Yarbrough, Chase; Singh, Vivek; Gauchan, Bikash; Citrin, David; Verma, Varun; Hawley, Jessica; Schwarz, Dan; Harsha, Alex; Shrestha, Biplav; Schwarz, Ryan; Adhikari, Mukesh; Maru, Duncan
2018-01-01
Introduction Globally, electronic medical records are central to the infrastructure of modern healthcare systems. Yet the vast majority of electronic medical records have been designed for resource-rich environments and are not feasible in settings of poverty. Here we describe the design and implementation of an electronic medical record at a public sector district hospital in rural Nepal, and its subsequent expansion to an additional public sector facility. Development The electronic medical record was designed to solve for the following elements of public sector healthcare delivery: 1) integration of the systems across inpatient, surgical, outpatient, emergency, laboratory, radiology, and pharmacy sites of care; 2) effective data extraction for impact evaluation and government regulation; 3) optimization for longitudinal care provision and patient tracking; and 4) effectiveness for quality improvement initiatives. Application For these purposes, we adapted Bahmni, a product built with open-source components for patient tracking, clinical protocols, pharmacy, laboratory, imaging, financial management, and supply logistics. In close partnership with government officials, we deployed the system in February of 2015, added on additional functionality, and iteratively improved the system over the following year. This experience enabled us then to deploy the system at an additional district-level hospital in a different part of the country in under four weeks. We discuss the implementation challenges and the strategies we pursued to build an electronic medical record for the public sector in rural Nepal. Discussion Over the course of 18 months, we were able to develop, deploy and iterate upon the electronic medical record, and then deploy the refined product at an additional facility within only four weeks. Our experience suggests the feasibility of an integrated electronic medical record for public sector care delivery even in settings of rural poverty. PMID:28749321
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes
Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...
2016-08-30
In this paper, magnetite (Fe 3O 4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe 3O 4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridgesmore » between the carbon and Fe 3O 4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less
NASA Astrophysics Data System (ADS)
Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.
2017-12-01
Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.
Development of the ITER ICH Transmission Line and Matching System
NASA Astrophysics Data System (ADS)
Rasmussen, D. A.; Goulding, R. H.; Pesavento, P. V.; Peters, B.; Swain, D. W.; Fredd, E. H.; Hosea, J.; Greenough, N.
2011-10-01
The ITER Ion Cyclotron Heating (ICH) System is designed to couple 20 MW of heating power for ion and electron heating. Prototype components for the ITER Ion Cyclotron Heating (ICH) transmission line and matching system are being designed and tested. The ICH transmission lines are pressurized 300 mm diameter coaxial lines with water-cooled aluminum outer conductor and gas-cooled and water-cooled copper inner conductor. Each ICH transmission line is designed to handle 40-55 MHz power at up to 6 MW/line. A total of 8 lines split to 16 antenna inputs on two ICH antennas. Industrial suppliers have designed coaxial transmission line and matching components and prototypes will be manufactured. The prototype components will be qualified on a test stand operating at the full power and pulse length needed for ITER. The matching system must accommodated dynamic changes in the plasma loading due to ELMS and the L to H-mode transition. Passive ELM tolerance will be performed using hybrid couplers and loads, which can absorb the transient reflected power. The system is also designed to compensate for the mutual inductances of the antenna current straps to limit the peak voltages on the antenna array elements.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...
2016-01-14
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Jah, Muzar A.; Jeffers, Basil S.
2016-01-01
James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.
Optically controlled laser-plasma electron accelerator for compact gamma-ray sources
NASA Astrophysics Data System (ADS)
Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.
2018-02-01
Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.
Clinical evaluation of the Novacor totally implantable ventricular assist system. Current status.
Daniel, M A; Lee, J; LaForge, D H; Chen, H; Billich, J; Miller, P J; Ramasamy, N; Strauss, L R; Jassawalla, J S; Portner, P M
1991-01-01
The totally implantable Novacor left ventricular assist system (LVAS) is currently approaching clinical evaluation. In vivo testing and production are underway with National Institutes of Health (NIH) support. Activity over the past year has focused on manufacturing engineering, preproduction quality assurance, and in vivo experiment completion. Subsequent to successful completion of the NIH-sponsored, 2-year preclinical device readiness test (DRT), a number of refinements were identified and approved by the NIH technical/data review board. Most of these were necessitated by obsolescence or unavailability of electronic components and the decision to use only high reliability military (MIL) qualified electronic components and processes. A few additional refinements were identified to increase design margins, all of which were qualified by accelerated testing. The development of production processes, automated test programs, and MIL compliant environmental stress screening procedures was completed. Production of LVAS subsystems, including core electronic components (hybrids, application-specific integrated circuits, and surface mount boards), was initiated. Animal studies are underway. The clinical trial, at Presbyterian-University Hospital of Pittsburgh and St. Louis University Medical Center, awaits completion of in vivo experiments, protocol development, and Food and Drug Administration approval.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranford, W.; Falkenbury, R.F.; Miller, R.A.
1962-07-31
The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less
LDEF electronic systems: Successes, failures, and lessons
NASA Technical Reports Server (NTRS)
Miller, Emmett; Porter, Dave; Smith, Dave; Brooks, Larry; Levorsen, Joe; Mulkey, Owen
1991-01-01
Following the Long Duration Exposure Facility (LDEF) retrieval, the Systems Special Investigation Group (SIG) participated in an extensive series of tests of various electronic systems, including the NASA provided data and initiate systems, and some experiment systems. Overall, these were found to have performed remarkably well, even though most were designed and tested under limited budgets and used at least some nonspace qualified components. However, several anomalies were observed, including a few which resulted in some loss of data. The postflight test program objectives, observations, and lessons learned from these examinations are discussed. All analyses are not yet complete, but observations to date will be summarized, including the Boeing experiment component studies and failure analysis results related to the Interstellar Gas Experiment. Based upon these observations, suggestions for avoiding similar problems on future programs are presented.
Computer-Aided Design of Low-Noise Microwave Circuits
NASA Astrophysics Data System (ADS)
Wedge, Scott William
1991-02-01
Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.
Lunar PMAD technology assessment
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.
1992-01-01
This report documents an initial set of power conditioning models created to generate 'ballpark' power management and distribution (PMAD) component mass and size estimates. It contains converter, rectifier, inverter, transformer, remote bus isolator (RBI), and remote power controller (RPC) models. These models allow certain studies to be performed; however, additional models are required to assess a full range of PMAD alternatives. The intent is to eventually form a library of PMAD models that will allow system designers to evaluate various power system architectures and distribution techniques quickly and consistently. The models in this report are designed primarily for space exploration initiative (SEI) missions requiring continuous power and supporting manned operations. The mass estimates were developed by identifying the stages in a component and obtaining mass breakdowns for these stages from near term electronic hardware elements. Technology advances were then incorporated to generate hardware masses consistent with the 2000 to 2010 time period. The mass of a complete component is computed by algorithms that calculate the masses of the component stages, control and monitoring, enclosure, and thermal management subsystem.
Recent advances in design and fabrication of on-chip micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid; Wang, Chunlei
2012-06-01
Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
Special purpose modes in photonic band gap fibers
Spencer, James; Noble, Robert; Campbell, Sara
2013-04-02
Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
Antenna Electronics Concept for the Next-Generation Very Large Array
NASA Astrophysics Data System (ADS)
Shillue, Bill; Jackson, James; Selina, Rob
2018-01-01
The National Radio Astronomy Observatory (NRAO) is considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milliarcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.The design of the antenna electronics, reference signal distribution, and data transmission systems will be construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. With the size of the array, design effort on manufacturability and integration of components can lead to reduced lifecycle costs. With current uncertainty in the feasibility of wideband receivers, and advancements in digitizer technology, the architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizer ICs. The focus of the presentation will be a proposed architecture for the electronics system, parameter tradeoffs within the system specification, and areas where technical advances are required when compared to existing array designs.
LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing
NASA Astrophysics Data System (ADS)
Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min
2009-06-01
In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.
Design and characterization of an irradiation facility with real-time monitoring
NASA Astrophysics Data System (ADS)
Braisted, Jonathan David
Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The resultant radiation effects data was seen to be repeatable and exceptionally finely-resolved. Therefore, the capability at UT TRIGA has been proven competitive with world-class effects characterization facilities.
The Application of SNiPER to the JUNO Simulation
NASA Astrophysics Data System (ADS)
Lin, Tao; Zou, Jiaheng; Li, Weidong; Deng, Ziyan; Fang, Xiao; Cao, Guofu; Huang, Xingtao; You, Zhengyun; JUNO Collaboration
2017-10-01
The JUNO (Jiangmen Underground Neutrino Observatory) is a multipurpose neutrino experiment which is designed to determine neutrino mass hierarchy and precisely measure oscillation parameters. As one of the important systems, the JUNO offline software is being developed using the SNiPER software. In this proceeding, we focus on the requirements of JUNO simulation and present the working solution based on the SNiPER. The JUNO simulation framework is in charge of managing event data, detector geometries and materials, physics processes, simulation truth information etc. It glues physics generator, detector simulation and electronics simulation modules together to achieve a full simulation chain. In the implementation of the framework, many attractive characteristics of the SNiPER have been used, such as dynamic loading, flexible flow control, multiple event management and Python binding. Furthermore, additional efforts have been made to make both detector and electronics simulation flexible enough to accommodate and optimize different detector designs. For the Geant4-based detector simulation, each sub-detector component is implemented as a SNiPER tool which is a dynamically loadable and configurable plugin. So it is possible to select the detector configuration at runtime. The framework provides the event loop to drive the detector simulation and interacts with the Geant4 which is implemented as a passive service. All levels of user actions are wrapped into different customizable tools, so that user functions can be easily extended by just adding new tools. The electronics simulation has been implemented by following an event driven scheme. The SNiPER task component is used to simulate data processing steps in the electronics modules. The electronics and trigger are synchronized by triggered events containing possible physics signals. The JUNO simulation software has been released and is being used by the JUNO collaboration to do detector design optimization, event reconstruction algorithm development and physics sensitivity studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...
Electronics and triggering challenges for the CMS High Granularity Calorimeter
NASA Astrophysics Data System (ADS)
Lobanov, A.
2018-02-01
The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha
2012-10-19
The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less
Schematic driven silicon photonics design
NASA Astrophysics Data System (ADS)
Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris
2016-03-01
Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...
NASA Technical Reports Server (NTRS)
1990-01-01
This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.
Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m{sup 2}sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply-falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E{sup -3.0} and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.
Appendix A: Proposed statement of work, 1994
NASA Technical Reports Server (NTRS)
1993-01-01
This NRA effort is devoted to developing new techniques and methodologies which utilize and/or provide support to Integrated Vehicle Health Management (IVHM) concepts and techniques, modern design processes, and open architectures to realize an avionics system architecture that relieves the flight control system (FCS) of the requirement of maintaining intimate knowledge and control of the vehicle subsystems (for instance, the reaction control system (RCS)). The benefit of this architecture is that future upgrades and enhancements to the system(s) or to individual components within the system(s) are greatly simplified. This approach also allows a much more straightforward treatment of failure analysis, system diagnosis, and the design of fault containment domains. This NRA effort is also devoted to realizing capabilities to provide an available avionics system (and subsystem(s)) at minimum operational cost. This thrust provides a direct benefit to NASA in that it seeks to accelerate the design cycle to allow state of the art components and designs to actually appear in the fielded system rather than merely in the initial design. To achieve this, this effort is intended to benefit from efforts already underway at Lockheed and other major contractors. For instance, Lockheed Sanders is currently engaged in a major DoD funded development program which has the goal of cutting design cycle time of high performance electronics by a factor of four while simultaneously improving quality also by a factor of four. The early work on this program was used to enable the rapid prototyping of the Reaction Jet Drive Controller which was accomplished in 1993. Similarly, maximum leverage will be derived from recent NASA and DoD efforts to increase the content of high quality commercial grade electronic components in systems for aerospace applications. Both of these goals result in a system with enhanced cost effectiveness, increased reliability, and greatly increased performance compared to a system developed using a more conventional approach.
Appendix A: Proposed statement of work, 1994
NASA Astrophysics Data System (ADS)
1993-12-01
This NRA effort is devoted to developing new techniques and methodologies which utilize and/or provide support to Integrated Vehicle Health Management (IVHM) concepts and techniques, modern design processes, and open architectures to realize an avionics system architecture that relieves the flight control system (FCS) of the requirement of maintaining intimate knowledge and control of the vehicle subsystems (for instance, the reaction control system (RCS)). The benefit of this architecture is that future upgrades and enhancements to the system(s) or to individual components within the system(s) are greatly simplified. This approach also allows a much more straightforward treatment of failure analysis, system diagnosis, and the design of fault containment domains. This NRA effort is also devoted to realizing capabilities to provide an available avionics system (and subsystem(s)) at minimum operational cost. This thrust provides a direct benefit to NASA in that it seeks to accelerate the design cycle to allow state of the art components and designs to actually appear in the fielded system rather than merely in the initial design. To achieve this, this effort is intended to benefit from efforts already underway at Lockheed and other major contractors. For instance, Lockheed Sanders is currently engaged in a major DoD funded development program which has the goal of cutting design cycle time of high performance electronics by a factor of four while simultaneously improving quality also by a factor of four. The early work on this program was used to enable the rapid prototyping of the Reaction Jet Drive Controller which was accomplished in 1993. Similarly, maximum leverage will be derived from recent NASA and DoD efforts to increase the content of high quality commercial grade electronic components in systems for aerospace applications. Both of these goals result in a system with enhanced cost effectiveness, increased reliability, and greatly increased performance compared to a system developed using a more conventional approach.
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Reysa, R. P.; Fricks, D. H.
1981-01-01
Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.
Motor-Reducer Sizing through a MATLAB-Based Graphical Technique
ERIC Educational Resources Information Center
Giberti, H.; Cinquemani, S.
2012-01-01
The design of the drive system for an automatic machine and its correct sizing is a very important competence for an electrical or mechatronic engineer. This requires knowledge that crosses the fields of electrical engineering, electronics and mechanics, as well as the skill to choose commercial components based upon their technical documentation.…
An eCommerce Development Case: Your Company's eCommerce Web Site
ERIC Educational Resources Information Center
Ballenger, Robert M.
2007-01-01
This case provides a real-world semester long project-oriented case study for students enrolled in an electronic commerce course that has a significant development component. The case provides the technical framework in the form of functional requirements for students to design and build a fully functional transaction processing e-commerce Web…
Reliability of Multiple Component Systems
1975-07-15
George Washington University Bethesda, Maryland .20014 Dr. Larry Cornwell Western Illinois University Macomb, Illinois 61455 Dr. Lester A...Jersey 07801 Robert M. Eissner USA Materiel Sys Anal Agency Aberdeen Proving Ground, Md. 21005 Bernard Engebos USA Electronics Command White...Philadelphia, Pennsylvania 19137 587 J Attendee»-- 19lh Design of Experiments Conference (continued) Captain Bernard J. Lawless Hqs
77 FR 42704 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... Vision Sensors, 12 AN/APG-78 Fire Control Radars (FCR) with Radar Electronics Unit (LONGBOW component... Target Acquisition and Designation Sight, 27 AN/AAR-11 Modernized Pilot Night Vision Sensors, 12 AN/APG... enhance the protection of key oil and gas infrastructure and platforms which are vital to U.S. and western...
Glucose sensing molecules having selected fluorescent properties
Satcher, Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh
2004-01-27
An analyte sensing fluorescent molecule that employs intramolecular electron transfer is designed to exhibit selected fluorescent properties in the presence of analytes such as saccharides. The selected fluorescent properties include excitation wavelength, emission wavelength, fluorescence lifetime, quantum yield, photostability, solubility, and temperature or pH sensitivity. The compound comprises an aryl or a substituted phenyl boronic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. The fluorophore and switch component are selected such that the value of the free energy for electron transfer is less than about 3.0 kcal mol.sup.-1. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
Electronic Components and Circuits for Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott
2003-01-01
Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports
NASA Technical Reports Server (NTRS)
Karr, G. R.; Dozier, J. B.; Kent, M. I.; Barfield, B. F.
1982-01-01
Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed.
Electronic cigarettes: product characterisation and design considerations.
Brown, Christopher J; Cheng, James M
2014-05-01
To review the available evidence regarding electronic cigarette (e-cigarette) product characterisation and design features in order to understand their potential impact on individual users and on public health. Systematic literature searches in 10 reference databases were conducted through October 2013. A total of 14 articles and documents and 16 patents were included in this analysis. Numerous disposable and reusable e-cigarette product options exist, representing wide variation in product configuration and component functionality. Common e-cigarette components include an aerosol generator, a flow sensor, a battery and a nicotine-containing solution storage area. e-cigarettes currently include many interchangeable parts, enabling users to modify the character of the delivered aerosol and, therefore, the product's 'effectiveness' as a nicotine delivery product. Materials in e-cigarettes may include metals, rubber and ceramics. Some materials may be aerosolised and have adverse health effects. Several studies have described significant performance variability across and within e-cigarette brands. Patent applications include novel product features designed to influence aerosol properties and e-cigarette efficiency at delivering nicotine. Although e-cigarettes share a basic design, engineering variations and user modifications result in differences in nicotine delivery and potential product risks. e-cigarette aerosols may include harmful and potentially harmful constituents. Battery explosions and the risks of exposure to the e-liquid (especially for children) are also concerns. Additional research will enhance the current understanding of basic e-cigarette design and operation, aerosol production and processing, and functionality. A standardised e-cigarette testing regime should be developed to allow product comparisons.
Start Up Application Concerns with Field Programmable Gate Arrays (FPGAs)
NASA Technical Reports Server (NTRS)
Katz, Richard B.
1999-01-01
This note is being published to improve the visibility of this subject, as we continue to see problems surface in designs, as well as to add additional information to the previously published note for design engineers. The original application note focused on designing systems with no single point failures using Actel Field Programmable Gate Arrays (FPGAs) for critical applications. Included in that note were the basic principles of operation of the Actel FPGA and a discussion of potential single-point failures. The note also discussed the issue of startup transients for that class of device. It is unfortunate that we continue to see some design problems using these devices. This note will focus on the startup properties of certain electronic components, in general, and current Actel FPGAs, in particular. Devices that are "power-on friendly" are currently being developed by Actel, as a variant of the new SX series of FPGAs. In the ideal world, electronic components would behave much differently than they do in the real world, The chain, of course, starts with the power supply. Ideally, the voltage will immediately rise to a stable V(sub cc) level, of course, it does not. Aside from practical design considerations, inrush current limits of certain capacitors must be observed and the power supply's output may be intentionally slew rate limited to prevent a large current spike on the system power bus. In any event, power supply rise time may range from less than I msec to 100 msec or more.
Development of a dual-field heteropoplar power converter
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.
1981-01-01
The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.
Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji; Takayama, Shuichi
2012-10-08
This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This Concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high-complexity and high-throughput analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High bandwidth magnetically isolated signal transmission circuit
NASA Technical Reports Server (NTRS)
Repp, John Donald (Inventor)
2005-01-01
Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.
Isaacs, Eric B.; Wolverton, Chris
2018-02-26
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, Eric B.; Wolverton, Chris
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
Concept for a Differential Lock and Traction Control Model in Automobiles
NASA Astrophysics Data System (ADS)
Shukul, A. K.; Hansra, S. K.
2014-01-01
The automobile is a complex integration of electronics and mechanical components. One of the major components is the differential which is limited due to its shortcomings. The paper proposes a concept of a cost effective differential lock and traction for passenger cars to sports utility vehicles alike, employing a parallel braking mechanism coming into action based on the relative speeds of the wheels driven by the differential. The paper highlights the employment of minimum number of components unlike the already existing systems. The system was designed numerically for the traction control and differential lock for the world's cheapest car. The paper manages to come up with all the system parameters and component costing making it a cost effective system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...
Cooling Concepts for High Power Density Magnetic Devices
NASA Astrophysics Data System (ADS)
Biela, Juergen; Kolar, Johann W.
In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik
In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less
A Test Apparatus for the MAJORANA DEMONSTRATOR Front-end Electronics
NASA Astrophysics Data System (ADS)
Singh, Harjit; Loach, James; Poon, Alan
2012-10-01
One of the most important experimental programs in neutrino physics is the search for neutrinoless double-beta decay. The MAJORANA collaboration is searching for this rare nuclear process in the Ge-76 isotope using HPGe detectors. Each detector is instrumented with high-performance electronics to read out and amplify the signals. The part of the electronics close to the detectors, consisting of a novel front-end circuit, cables and connectors, is made of radio-pure materials and is exceedingly delicate. In this work a dedicated test apparatus was created to benchmark the performance of the electronics before installation in the experiment. The apparatus was designed for cleanroom use, with fixtures to hold the components without contaminating them, and included the electronics necessary for power and readout. In addition to testing, the station will find longer term use in development of future versions of the electronics.
Ion tracking in photocathode rf guns
NASA Astrophysics Data System (ADS)
Lewellen, John W.
2002-02-01
Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.
Thermal Management and Reliability of Automotive Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E
Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.
Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen
2017-01-01
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031
Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen
2017-06-19
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Update on the status of the ITER ECE diagnostic design
NASA Astrophysics Data System (ADS)
Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.
2017-07-01
Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
Reliability/maintainability/testability design for dormancy
NASA Astrophysics Data System (ADS)
Seman, Robert M.; Etzl, Julius M.; Purnell, Arthur W.
1988-05-01
This document has been prepared as a tool for designers of dormant military equipment and systems. The purpose of this handbook is to provide design engineers with Reliability/Maintainability/Testability design guidelines for systems which spend significant portions of their life cycle in a dormant state. The dormant state is defined as a nonoperating mode where a system experiences very little or no electrical stress. The guidelines in this report present design criteria in the following categories: (1) Part Selection and Control; (2) Derating Practices; (3) Equipment/System Packaging; (4) Transportation and Handling; (5) Maintainability Design; (6) Testability Design; (7) Evaluation Methods for In-Plant and Field Evaluation; and (8) Product Performance Agreements. Whereever applicable, design guidelines for operating systems were included with the dormant design guidelines. This was done in an effort to produce design guidelines for a more complete life cycle. Although dormant systems spend significant portions of their life cycle in a nonoperating mode, the designer must design the system for the complete life cycle, including nonoperating as well as operating modes. The guidelines are primarily intended for use in the design of equipment composed of electronic parts and components. However, they can also be used for the design of systems which encompass both electronic and nonelectronic parts, as well as for the modification of existing systems.
Printed Spacecraft Separation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmans, Walter; Dehoff, Ryan
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly intomore » a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.« less
NASA Astrophysics Data System (ADS)
Stinson, Harry Theodore, III
This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.
Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting
Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Medina, Frank; Wicker, Ryan B.
2012-01-01
This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM. PMID:22956957
Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin
2017-12-01
The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Design technique for all-dielectric non-polarizing beam splitter plate
NASA Astrophysics Data System (ADS)
Rizea, A.
2012-03-01
There are many situations when, for the proper working, an opto-electronic device requiring optical components does not change the polarization state of light after a reflection, splitting or filtering. In this paper, a design for a non-polarizing beam splitter plate is proposed. Based on certain optical properties of homogeneous dielectric materials we will establish a reliable thin film package formula, excellent for the start of optimization to obtain a 20-nm bandwidth non-polarizing beam splitter.
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
NASA Astrophysics Data System (ADS)
Gutierrez, Francisco; Cordero, Enrique; Sánchez, Carolina; Barbero, Juan; Mosberger, Martin; Boehle, Peter; Tornell, Manuel; Lundmark, Karin
2017-11-01
A dedicated evaluation and qualification campaign has been performed on several optical COTS components in order to use them on ESA's SMOS mission. The evaluation phase consisted of a set of critical tests and analyses and led to the selection of the flight lot component. After selection of the components, one lot of each component has been qualified for the SMOS mission. The overall approach is presented together with a summary of all activities performed. The whole task has been handled in a joint effort between ESA, EADS CASA Espacio (prime contractor), Contraves Space AG (MOHA subsystem), TECNOLOGICA SA (component qualification experts) and the respective manufacturers, each party providing their specific know-how. Test results are presented and the issues discovered and lessons learned are addressed. Special emphasis is given to particular tests for which dedicated setups had to be designed due to the unavailability of standard equipment.
Packaging printed circuit boards: A production application of interactive graphics
NASA Technical Reports Server (NTRS)
Perrill, W. A.
1975-01-01
The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
Modular design of synthetic gene circuits with biological parts and pools.
Marchisio, Mario Andrea
2015-01-01
Synthetic gene circuits can be designed in an electronic fashion by displaying their basic components-Standard Biological Parts and Pools of molecules-on the computer screen and connecting them with hypothetical wires. This procedure, achieved by our add-on for the software ProMoT, was successfully applied to bacterial circuits. Recently, we have extended this design-methodology to eukaryotic cells. Here, highly complex components such as promoters and Pools of mRNA contain hundreds of species and reactions whose calculation demands a rule-based modeling approach. We showed how to build such complex modules via the joint employment of the software BioNetGen (rule-based modeling) and ProMoT (modularization). In this chapter, we illustrate how to utilize our computational tool for synthetic biology with the in silico implementation of a simple eukaryotic gene circuit that performs the logic AND operation.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.
78 FR 17781 - Transportation Worker Identification Credential (TWIC)-Reader Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
...In this Notice of Proposed Rulemaking (NPRM), the Coast Guard proposes to require owners and operators of certain vessels and facilities regulated by the Coast Guard to use electronic readers designed to work with the Transportation Worker Identification Credential (TWIC) as an access control measure. This NPRM also proposes additional requirements associated with electronic TWIC readers, including recordkeeping requirements for those owners and operators required to use an electronic TWIC reader, and security plan amendments to incorporate TWIC requirements. The TWIC program, including the proposed TWIC reader requirements in this rule, is an important component of the Coast Guard's multi-layered system of access control requirements and other measures designed to enhance maritime security. This rulemaking action, once final, would build upon existing Coast Guard regulations designed to ensure that only individuals who hold a TWIC are granted unescorted access to secure areas at those locations. The Coast Guard has already promulgated regulations pursuant to the Maritime Transportation Security Act of 2002 (MTSA) that require mariners and other individuals to obtain a TWIC and present it for inspection by security personnel prior to gaining access to such secure areas. By requiring certain vessels and facilities to perform TWIC inspections using electronic TWIC readers, this rulemaking would further enhance security at those locations. This rulemaking would also implement the Security and Accountability For Every Port Act of 2006 electronic TWIC reader requirements.
Long-Lived Glass Mirrors For Outer Space
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.
1988-01-01
Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... tools research and development by organizing and implementing joint engineering and scientific research... components in the engineering and scientific areas of electronic systems, hardware design, packaging and... Civil Enforcement, Antitrust Division. [FR Doc. 2011-27114 Filed 10-21-11; 8:45 am] BILLING CODE 4410-11...
26 CFR 1.1060-1 - Special allocation rules for certain asset acquisitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) (relating to the allocation of adjusted grossed-up basis among the assets of the target corporation when a... of value. P is a company that designs, manufactures, and markets electronic components. It wants to... market value of the non-recognition assets transferred by one party exceeds the fair market value of the...
Simple photometer circuits using modular electronic components
NASA Technical Reports Server (NTRS)
Wampler, J. E.
1975-01-01
Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.
Scheeline, Alexander
2017-10-01
Designing a spectrometer requires knowledge of the problem to be solved, the molecules whose properties will contribute to a solution of that problem and skill in many subfields of science and engineering. A seemingly simple problem, design of an ultraviolet, visible, and near-infrared spectrometer, is used to show the reasoning behind the trade-offs in instrument design. Rather than reporting a fully optimized instrument, the Yin and Yang of design choices, leading to decisions about financial cost, materials choice, resolution, throughput, aperture, and layout are described. To limit scope, aspects such as grating blaze, electronics design, and light sources are not presented. The review illustrates the mixture of mathematical rigor, rule of thumb, esthetics, and availability of components that contribute to the art of spectrometer design.
Ashley, L; Jones, H; Thomas, J; Forman, D; Newsham, A; Morris, E; Johnson, O; Velikova, G; Wright, P
2011-01-01
Background: Understanding the psychosocial challenges of cancer survivorship, and identifying which patients experience ongoing difficulties, is a key priority. The ePOCS (electronic patient-reported outcomes from cancer survivors) project aims to develop and evaluate a cost-efficient, UK-scalable electronic system for collecting patient-reported outcome measures (PROMs), at regular post-diagnostic timepoints, and linking these with clinical data in cancer registries. Methods: A multidisciplinary team developed the system using agile methods. Design entailed process mapping the system's constituent parts, data flows and involved human activities, and undertaking usability testing. Informatics specialists built new technical components, including a web-based questionnaire tool and tracking database, and established component-connecting data flows. Development challenges were overcome, including patient usability and data linkage and security. Results: We have developed a system in which PROMs are completed online, using a secure questionnaire administration tool, accessed via a public-facing website, and the responses are linked and stored with clinical registry data. Patient monitoring and communications are semiautomated via a tracker database, and patient correspondence is primarily Email-based. The system is currently honed for clinician-led hospital-based patient recruitment. Conclusions: A feasibility test study is underway. Although there are possible challenges to sustaining and scaling up ePOCS, the system has potential to support UK epidemiological PROMs collection and clinical data linkage. PMID:22048035
E-learning platform for automated testing of electronic circuits using signature analysis method
NASA Astrophysics Data System (ADS)
Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel
2016-12-01
Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.
Picture archiving and communication systems (PACS).
Gamsu, Gordon; Perez, Enrico
2003-07-01
Over the past 2 decades, groups of computer scientists, electronic design engineers, and physicians, in universities and industry, have worked to achieve an electronic environment for the practice of medicine and radiology. The radiology component of this revolution is often called PACS (picture archiving and communication systems). More recently it has become evident that the efficiencies and cost savings of PACS are realized when they are part of an enterprise-wide electronic medical record. The installation of PACS requires careful planning by all the various stakeholds over many months prior to installation. All of the users must be aware of the initial disruption that will occur as they become familiar with the systems. Modern fourth generation PACS is linked to radiology and hospital information systems. The PACS consist of electronic acquisition sites-a robust network intelligently managed by a server, multiple viewing sites, and an archive. The details of how these are linked and their workflow analysis determines the success of PACS. PACS evolves over time, components are frequently replaced, and so the users must expect continuous learning about new updates and improved functionality. The digital medical revolution is rapidly being adopted in many medical centers, improving patient care and the success of the institution.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
Vehicle drive module having improved terminal design
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-04-25
A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Multilayer electronic component systems and methods of manufacture
NASA Technical Reports Server (NTRS)
Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)
2010-01-01
Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.
The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system
NASA Astrophysics Data System (ADS)
Vachon, B.
2018-03-01
The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.
Integrated low power digital gyro control electronics
NASA Technical Reports Server (NTRS)
M'Closkey, Robert (Inventor); Grayver, Eugene (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor)
2005-01-01
Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.
Heat pipes for spacecraft temperature control: Their usefulness and limitations
NASA Technical Reports Server (NTRS)
Ollendorf, S.; Stipandic, E.
1972-01-01
Heat pipes are used in spacecraft to equalize the temperature of structures and maintain temperature control of electronic components. Information is provided for a designer on: (1) a typical mounting technique, (2) choices available in wick geometries and fluids, (3) tests involved in flight-qualifying the design, and (4) heat pipe limitations. An evaluation of several heat pipe designs showed that the behavior of heat pipes at room temperature does not necessarily correlate with the classic equations used to predict their performance. They are sensitive to such parameters as temperature, fluid inventory, orientation, and noncondensable gases.
NASA Astrophysics Data System (ADS)
Deffenbaugh, Paul Issac
3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.
Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa
2018-04-24
A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.
Electronic Components Subsystems and Equipment: a Compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milic, A.
The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the triggermore » primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above 20 MeV. For the digital components like the ADC, cross-sections for single event effects have been determined. This talk will present R and D results from tests of the radiation tolerant components, the fast data processing electronics and prototypes of the LTDB and LDPS boards. First experience from a Demonstrator setup will be reported, in which about 1/10 of the full Super Cell readout will be equipped with prototype versions of the LTDB and LDPS boards. The Demonstrator will be operated in parallel to the regular ATLAS trigger read-out during the upcoming LHC run. (authors)« less
Soft Active Materials for Actuation, Sensing, and Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca Krone
Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.
PERLE. Powerful energy recovery linac for experiments. Conceptual design report
NASA Astrophysics Data System (ADS)
Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.
2018-06-01
A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.
Packaging Technologies for 500C SiC Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2013-01-01
Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.
Mechatronics design principles for biotechnology product development.
Mandenius, Carl-Fredrik; Björkman, Mats
2010-05-01
Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.
Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware
NASA Technical Reports Server (NTRS)
Kniffin, Scott
2016-01-01
X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.
Integration of magnetic bearings in the design of advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.
1994-01-01
Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.
On Substrate for Atomic Chain Electronics
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Bauschlicher, Charles W., Jr.; Partridge, Harry; Saini, Subhash (Technical Monitor)
1998-01-01
A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. However, the two requirements conflict. For excellent electronic isolation, we may seek adatom confinement via van der Waals interaction without chemical bonding to the substrate atoms, but the confinement turns out to be very weak and hence unsatisfactory. An alternative chemical bonding scheme with excellent structural strength is examined, but even fundamental adatom chain properties such as whether chains are semiconducting or metallic are strongly influenced by the nature of the chemical bonding, and electronic isolation is not always achieved. Conditions for obtaining semiconducting chains with well-localized surface-modes, leading to good isolation, are clarified and discussed.
Substrate Effects for Atomic Chain Electronics
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Saini, Subhash (Technical Monitor)
1998-01-01
A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. For excellent structural stability, we demand chemical bonding between the adatoms and substrate atoms, but then good electronic isolation may not be guaranteed. Conditions are clarified for good isolation. Because of the chemical bonding, fundamental adatom properties are strongly influenced: a chain with group IV adatoms having two chemical bonds, or a chain with group III adatoms having one chemical bond is semiconducting. Charge transfer from or to the substrate atoms brings about unintentional doping, and the electronic properties have to be considered for the entire combination of the adatom and substrate systems even if the adatom modes are well localized at the surface.
NASA Astrophysics Data System (ADS)
Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.
2017-03-01
A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.
A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires
NASA Astrophysics Data System (ADS)
Altamura, Lucie; Horvath, Christophe; Rengaraj, Saravanan; Rongier, Anaëlle; Elouarzaki, Kamal; Gondran, Chantal; Maçon, Anthony L. B.; Vendrely, Charlotte; Bouchiat, Vincent; Fontecave, Marc; Mariolle, Denis; Rannou, Patrice; Le Goff, Alan; Duraffourg, Nicolas; Holzinger, Michael; Forge, Vincent
2017-02-01
Engineering bioelectronic components and set-ups that mimic natural systems is extremely challenging. Here we report the design of a protein-only redox film inspired by the architecture of bacterial electroactive biofilms. The nanowire scaffold is formed using a chimeric protein that results from the attachment of a prion domain to a rubredoxin (Rd) that acts as an electron carrier. The prion domain self-assembles into stable fibres and provides a suitable arrangement of redox metal centres in Rd to permit electron transport. This results in highly organized films, able to transport electrons over several micrometres through a network of bionanowires. We demonstrate that our bionanowires can be used as electron-transfer mediators to build a bioelectrode for the electrocatalytic oxygen reduction by laccase. This approach opens opportunities for the engineering of protein-only electron mediators (with tunable redox potentials and optimized interactions with enzymes) and applications in the field of protein-only bioelectrodes.
A review of typical thermal fatigue failure models for solder joints of electronic components
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong
2017-09-01
For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.
Design and implemention of a multi-functional x-ray computed tomography system
NASA Astrophysics Data System (ADS)
Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang
2015-10-01
A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.
Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material
NASA Astrophysics Data System (ADS)
Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana
2014-08-01
In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.
Low cost method for manufacturing a data acquisition system with USB connectivity
NASA Astrophysics Data System (ADS)
Niculescu, V.; Dobre, R. A.; Popovici, E.
2016-06-01
In the process of designing and manufacturing an electronic system the digital oscilloscope plays an essential role but it also represents one of the most expensive equipment present on the typical workbench. In order to make electronic design more accessible to students and hobbyists, an affordable data acquisition system was imagined. The paper extensively presents the development and testing of a low cost, medium speed, data acquisition system which can be used in a wide range of electronic measurement and debugging applications, assuring also great portability due to the small physical dimensions. Each hardware functional block and is thoroughly described, highlighting the challenges that occurred as well as the solutions to overcome them. The entire system was successfully manufactured using high quality components to assure increased reliability, and high frequency PCB materials and techniques were preferred. The measured values determined based on test signals were compared to the ones obtained using a digital oscilloscope available on the market and differences less than 1% were observed.
The COMET Sleep Research Platform.
Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A
2014-01-01
The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.
The COMET Sleep Research Platform
Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.
2014-01-01
Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590
Electro-Mechanical Systems for Extreme Space Environments
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg
2011-01-01
Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller form factor was designed to surround or be at the actuator. Communication with the slave controllers is accomplished by a bus, thus limiting the number of wires that must be routed to the extremity locations. Efforts have also been made to increase the power capability of these electronics for the ability to power and control actuators up to 2.5KW and still meet the environmental challenges. For commutation and control of the actuator, a resolver was integrated and tested with the actuator. Testing of this resolver demonstrated temperature limitations. Subsequent failure analysis isolated the low temperature failure mechanism and a design solution was negotiated with the manufacturer. Several years of work have resulted in specialized electro-mechanical hardware to meet extreme space exploration environments, a test history that verifies and finds limitations of the designs and a growing knowledge base that can be leveraged by future space exploration missions.
NASA Astrophysics Data System (ADS)
Kaabi, Abderrahmen; Bienvenu, Yves; Ryckelynck, David; Pierre, Bertrand
2014-03-01
Power electronics modules (>100 A, >500 V) are essential components for the development of electrical and hybrid vehicles. These modules are formed from silicon chips (transistors and diodes) assembled on copper substrates by soldering. Owing to the fact that the assembly is heterogeneous, and because of thermal gradients, shear stresses are generated in the solders and cause premature damage to such electronics modules. This work focuses on architectured materials for the substrate and on lead-free solders to reduce the mechanical effects of differential expansion, improve the reliability of the assembly, and achieve a suitable operating temperature (<175°C). These materials are composites whose thermomechanical properties have been optimized by numerical simulation and validated experimentally. The substrates have good thermal conductivity (>280 W m-1 K-1) and a macroscopic coefficient of thermal expansion intermediate between those of Cu and Si, as well as limited structural evolution in service conditions. An approach combining design, optimization, and manufacturing of new materials has been followed in this study, leading to improved thermal cycling behavior of the component.
Bacteriostatic conformal coating for electronic components
NASA Technical Reports Server (NTRS)
Bland, C.; Le Doux, F. N.
1967-01-01
Coating for electronic components used in space applications has bacteriostatic qualities capable of hindering bacterial reproduction, both vegetative and sporulative viable microorganisms. It exhibits high electrical resistivity, a low outgassing rate, and is capable of restraining electronic components when subjected to mechanical vibrations.
Viking heat sterilization - Progress and problems
NASA Technical Reports Server (NTRS)
Daspit, L. P.; Cortright, E. M.; Stern, J. A.
1974-01-01
The Viking Mars landers to be launched in 1975 will carry experiments in biology, planetology, and atmospheric physics. A terminal dry-heat sterilization process using an inert gas was chosen to meet planetary quarantine requirements and preclude contamination of the biology experiment by terrestrial organisms. Deep sterilization is performed at the component level and terminal surface sterilization at the system level. Solutions to certain component problems relating to sterilization are discussed, involving the gyroscope, tape recorder, battery, electronic circuitry, and outgassing. Heat treatment placed special requirements on electronic packaging, including fastener preload monitoring and solder joints. Chemical and physical testing of nonmetallic materials was performed to establish data on their behavior in heat-treatment and vacuum environments. A Thermal Effects Test Model and a Proof Test Capsule were used. It is concluded that a space vehicle can be designed and fabricated to withstand heat sterilization requirements.
Computing in the presence of soft bit errors. [caused by single event upset on spacecraft
NASA Technical Reports Server (NTRS)
Rasmussen, R. D.
1984-01-01
It is shown that single-event-upsets (SEUs) due to cosmic rays are a significant source of single bit error in spacecraft computers. The physical mechanism of SEU, electron hole generation by means of Linear Energy Transfer (LET), it discussed with reference made to the results of a study of the environmental effects on computer systems of the Galileo spacecraft. Techniques for making software more tolerant of cosmic ray effects are considered, including: reducing the number of registers used by the software; continuity testing of variables; redundant execution of major procedures for error detection; and encoding state variables to detect single-bit changes. Attention is also given to design modifications which may reduce the cosmic ray exposure of on-board hardware. These modifications include: shielding components operating in LEO; removing low-power Schottky parts; and the use of CMOS diodes. The SEU parameters of different electronic components are listed in a table.
Foundry fabricated photonic integrated circuit optical phase lock loop.
Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C
2017-07-24
This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.
Using ePortfolios to Measure Student Learning in a Graduate Preparation Program in Higher Education
ERIC Educational Resources Information Center
Janosik, Steven M.; Frank, Tara E.
2013-01-01
Ten second-year master's students in a higher education program participated in this study, which was designed to assess their experience with an electronic portfolio that had been introduced recently as a primary component of their comprehensive exam. This qualitative study used a focus group and long-interview methods for data collection.…
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
Australian DefenceScience. Volume 15, Number 3, Spring
2007-01-01
ignition, high pressure sealing, ignitor and propellent design, and ballistics instrumentation . Validation of simulation models of internal ballistics...supplementing visual information obtained by sources such as radiography and scanning electron microscopy, revealing details about features that are not...otherwise visible. Hence, it can assist with the inspection of vital component parts that are subject to high stresses, like aircraft engine turbine
TACOM LCMC Industrial Base Networking Summit
2010-03-25
CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes , Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical, Electronics...system that can efficiently fabricate standard and unique parts at the point of need • Lathe modules deployed at 4 strategic SWA locations • Concepts...Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems
Design of a Miniaturized Langmuir Plasma Probe for the QuadSat/PnP
NASA Astrophysics Data System (ADS)
Landavazo, M.; Jorgensen, A. M.; Del Barga, C.; Ferguson, D.; Guillette, D.; Huynh, A.; Klepper, J.; Kuker, J.; Lyke, J. C.; Marohn, B.; Mason, J.; Quiroga, J.; Ravindran, V.; Yelton, C.; Zagrai, A. N.; Zufelt, B.
2011-12-01
We have developed a miniaturized Langmuir plasma probe for measuring plasma density in low-earth orbit. Measuring plasma density in the upper ionosphere is important as a diagnostic for the rest of the ionosphere and as an input to space weather forecasting models. Developing miniaturized instrumentation allows easier deployment of a large number of small satellites for monitoring space weather. Our instrument was designed for the Swedish QuadSat/PnP, with the following constraints: A volume constraint of 5x5x1.25cm for the electronics enclosure, a mass budget 100 g, and a power budget of 0.5 W. We met the volume and mass constraints and where able to use less power than budgeted, only 0.25 W. We designed the probe for a bias range of +/-15V and current measurements in the 1 nA to 1 mA range (6 orders of magnitude). Necessary voltage of +/- 15 V and 3.3 V were generated on-board from a single 5 V supply. The electronics suite is based off carefully selected yet affordable commercial components that exhibit low noise, low leakage currents and low power consumption. Size constraints, low noise and low leakage requirements called for a carefully designed four layer PCB with a properly guarded current path using surface mount components on both sides. An ultra-low power microcontroller handles instrument functionality and is fully controllable over i2c using SPA-1 space plug and play. We elected for a probe launched deployed, which required careful design to survive launch vibrations while staying within the mass budget. The QuadSat/PnP has not been launched at the time of writing. We will present details of the instrument design and initial calibration data.
Henderson, Rebecca J; Johnson, Andrew M; Moodie, Sheila T
2016-06-01
A scoping review of the literature was conducted, resulting in the development of a conceptual framework of parent-to-parent support for parents with children who are Deaf or hard of hearing. This is the 2nd stage of a dual-stage scoping review. This study sought stakeholder opinion and feedback with an aim to achieve consensus on the constructs, components, and design of the initial conceptual framework. A modified electronic Delphi study was completed with 21 handpicked experts from 7 countries who have experience in provision, research, or experience in the area of parent-to-parent support. Participants completed an online questionnaire using an 11-point Likert scale (strongly disagree to strongly agree) and open-ended questions to answer various questions related to the descriptor terms, definitions, constructs, components, and overall design of the framework. Participant responses led to the revision of the original conceptual framework. The findings from this dual-stage scoping review and electronic Delphi study provide a conceptual framework that defines the vital contribution of parents in Early Hearing Detection and Intervention programs that will be a useful addition to these programs.
Mark 3 wideband digital recorder in perspective
NASA Technical Reports Server (NTRS)
Hinteregger, H. F.
1980-01-01
The tape recorder used for the Mark 3 data acquisition and processing system is compared with earlier very long baseline interferometry recorders. Wideband 33-1/3 kbpi digital channel characteristics of instrumentation recorders and of a modern video cassette recorder are illustrated. Factors which influenced selection of the three major commercial components (transport, heads, and tape) are discussed. A brief functional description and the reasons for development of efficient signal electronics and necessary auxiliary control electronics are given. The design and operation of a digital bit synchronizer is illustrated as an example of the high degree of simplicity achieved.
Tracking and Control of Gas Turbine Engine Component Damage/Life
NASA Technical Reports Server (NTRS)
Jaw, Link C.; Wu, Dong N.; Bryg, David J.
2003-01-01
This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.
Status of the design of the ITER ECE diagnostic
Taylor, G.; Austin, M. E.; Beno, J. H.; ...
2015-03-12
In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-01-01
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-09-07
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.
Low noise optical position sensor
Spear, J.D.
1999-03-09
A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.
Low noise optical position sensor
Spear, Jonathan David
1999-01-01
A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.
Monkey search algorithm for ECE components partitioning
NASA Astrophysics Data System (ADS)
Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.
2018-05-01
The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.
NASA Astrophysics Data System (ADS)
Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna
2016-05-01
Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.
Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J
2010-04-28
In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.
NASA Astrophysics Data System (ADS)
Rickard, Scott
Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.
The Conference on High Temperature Electronics
NASA Technical Reports Server (NTRS)
Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.
1981-01-01
The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.
The Conference on High Temperature Electronics
NASA Astrophysics Data System (ADS)
Hamilton, D. J.; McCormick, J. B.; Kerwin, W. J.; Narud, J. A.
The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.
Practicality of electronic beam steering for MST/ST radars, part 6.2A
NASA Technical Reports Server (NTRS)
Clark, W. L.; Green, J. L.
1984-01-01
Electronic beam steering is described as complex and expensive. The Sunset implementation of electronic steering is described, and it is demonstrated that such systems are cost effective, versatile, and no more complex than fixed beam alternatives, provided three or more beams are needed. The problem of determining accurate meteorological wind components in the presence of spatial variation is considered. A cost comparison of steerable and fixed systems allowing solution of this problem is given. The concepts and relations involved in phase steering are given, followed by the description of the Sunset ST radar steering system. The implications are discussed, references to the competing SAD method are provided, and a recommendation concerning the design of the future Doppler ST/MST systems is made.
Big Science, Small-Budget Space Experiment Package Aka MISSE-5: A Hardware And Software Perspective
NASA Technical Reports Server (NTRS)
Krasowski, Michael; Greer, Lawrence; Flatico, Joseph; Jenkins, Phillip; Spina, Dan
2007-01-01
Conducting space experiments with small budgets is a fact of life for many design groups with low-visibility science programs. One major consequence is that specialized space grade electronic components are often too costly to incorporate into the design. Radiation mitigation now becomes more complex as a result of being restricted to the use of commercial off-the-shelf (COTS) parts. Unique hardware and software design techniques are required to succeed in producing a viable instrument suited for use in space. This paper highlights some of the design challenges and associated solutions encountered in the production of a highly capable, low cost space experiment package.
NASA Technical Reports Server (NTRS)
Krasowski, Michael; Greer, Lawrence; Flatico, Joseph; Jenkins, Phillip; Spina, Dan
2005-01-01
Conducting space experiments with small budgets is a fact of life for many design groups with low-visibility science programs. One major consequence is that specialized space grade electronic components are often too costly to incorporate into the design. Radiation mitigation now becomes more complex as a result of being restricted to the use of commercial off-the-shelf (COTS) parts. Unique hardware and software design techniques are required to succeed in producing a viable instrument suited for use in space. This paper highlights some of the design challenges and associated solutions encountered in the production of a highly capable, low cost space experiment package.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.
Developing a patient-led electronic feedback system for quality and safety within Renal PatientView.
Giles, Sally J; Reynolds, Caroline; Heyhoe, Jane; Armitage, Gerry
2017-03-01
It is increasingly acknowledged that patients can provide direct feedback about the quality and safety of their care through patient reporting systems. The aim of this study was to explore the feasibility of patients, healthcare professionals and researchers working in partnership to develop a patient-led quality and safety feedback system within an existing electronic health record (EHR), known as Renal PatientView (RPV). Phase 1 (inception) involved focus groups (n = 9) and phase 2 (requirements) involved cognitive walkthroughs (n = 34) and 1:1 qualitative interviews (n = 34) with patients and healthcare professionals. A Joint Services Expert Panel (JSP) was convened to review the findings from phase 1 and agree the core principles and components of the system prototype. Phase 1 data were analysed using a thematic approach. Data from phase 1 were used to inform the design of the initial system prototype. Phase 2 data were analysed using the components of heuristic evaluation, resulting in a list of core principles and components for the final system prototype. Phase 1 identified four main barriers and facilitators to patients feeding back on quality and safety concerns. In phase 2, the JSP agreed that the system should be based on seven core principles and components. Stakeholders were able to work together to identify core principles and components for an electronic patient quality and safety feedback system in renal services. Tensions arose due to competing priorities, particularly around anonymity and feedback. Careful consideration should be given to the feasibility of integrating a novel element with differing priorities into an established system with existing functions and objectives. © 2016 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Commission Determination Not To Review an Initial... certain electronic devices for capturing and transmitting images, and components thereof. The complaint...
Synchronized voltage contrast display analysis system
NASA Technical Reports Server (NTRS)
Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C. (Inventor)
1982-01-01
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.
Development and characterization of a high-reliability, extended-lifetime H- ion source
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Barrows, Preston; Sherman, Joseph
2015-11-01
Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.
NASA Astrophysics Data System (ADS)
Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.
2011-12-01
The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.
Competitive bidding for health insurance contracts: lessons from the online HMO auctions.
Gupta, Alok; Parente, Stephen T; Sanyal, Pallab
2012-12-01
Healthcare is an important social and economic component of modern society, and the effective use of information technology in this industry is critical to its success. As health insurance premiums continue to rise, competitive bidding may be useful in generating stronger price competition and lower premium costs for employers and possibly, government agencies. In this paper, we assess an endeavor by several Fortune 500 companies to reduce healthcare procurement costs for their employees by having HMOs compete in open electronic auctions. Although the auctions were successful in generating significant cost savings for the companies in the first year, i.e., 1999, they failed to replicate the success and were eventually discontinued after two more years. Over the past decade since the failed auction experiment, effective utilization of information technologies have led to significant advances in the design of complex electronic markets. Using this knowledge, and data from the auctions, we point out several shortcomings of the auction design that, we believe, led to the discontinuation of the market after three years. Based on our analysis, we propose several actionable recommendations that policy makers can use to design a sustainable electronic market for procuring health insurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.
2011-12-15
The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less
LWS design replacement study: Optimum design and tradeoff analysis
NASA Technical Reports Server (NTRS)
1973-01-01
A design for two long-wavelength (LW) focal-plane and cooler assemblies, including associated preamplifiers and post-amplifiers is presented. The focal-planes and associated electronic assemblies are intended as direct replacement hardware to be installed into the existing 24-channel multispectral scanner used with the NASA Earth Observations Aircraft Program. An organization skilled in the art of LWIR systems can fabricate and deliver the two long-wavelength focal-plane assemblies described in this report when provided with the data and drawings developed during the performance of this contract. The concepts developed during the study including the alternative approaches and selection of components are discussed. Modifications to the preliminary design as reported in a preliminary design review meeting have also been included.
Development of 50kV air-core transformer for electron gun static power source of 3MeV DC accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewangan, S.; Bakhtsingh, R.I.; Rajan, R.N.
A 3 MeV, 10 mA DC Electron Beam Accelerator based on the capacitively coupled parallel-fed voltage multiplier in 6 kg/cm{sup 2} SF{sub 6} gas environment is under commissioning at Electron Beam Centre, Kharghar, Navi Mumbai. Electron Gun is situated at -3 MV terminal which requires a constant power for its anode and filament. Gun power source has been derived by suitably coupling the ac components present in the HV Multiplier column. An aircore step down transformer rated for 50kV/600V/120kHz floating at 3 MV to extract the required power for electron gun from high voltage column has been developed. The transformermore » has been operated for 7 kW, 1 MeV of electron beam in 6 kg/cm{sup 2} nitrogen gas environment. The paper describes briefly about the design aspects and test results. (author)« less
Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications
Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States
2017-12-09
Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates. Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use. Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in âwavyâ buckled configurations on elastomeric supports. This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits. Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.
A fault tolerant 80960 engine controller
NASA Technical Reports Server (NTRS)
Reichmuth, D. M.; Gage, M. L.; Paterson, E. S.; Kramer, D. D.
1993-01-01
The paper describes the design of the 80960 Fault Tolerant Engine Controller for the supervision of engine operations, which was designed for the NASA Marshall Space Center. Consideration is given to the major electronic components of the controller, including the engine controller, effectors, and the sensors, as well as to the controller hardware, the controller module and the communications module, and the controller software. The architecture of the controller hardware allows modifications to be made to fit the requirements of any new propulsion systems. Multiple flow diagrams are presented illustrating the controller's operations.
Ceramic thermal barrier coatings for commercial gas turbine engines
NASA Technical Reports Server (NTRS)
Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.
1991-01-01
The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.
Tools for Understanding Space Weather Impacts to Satellites
NASA Astrophysics Data System (ADS)
Green, J. C.; Shprits, Y.; Likar, J. J.; Kellerman, A. C.; Quinn, R. A.; Whelan, P.; Reker, N.; Huston, S. L.
2017-12-01
Space weather causes dramatic changes in the near-Earth radiation environment. Intense particle fluxes can damage electronic components on satellites, causing temporary malfunctions, degraded performance, or a complete system/mission loss. Understanding whether space weather is the cause of such problems expedites investigations and guides successful design improvements resulting in a more robust satellite architecture. Here we discuss our progress in developing tools for satellite designers, manufacturers, and decision makers - tools that summarize space weather impacts to specific satellite assets and enable confident identification of the cause and right solution.
Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A
2015-05-13
Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon
2018-01-01
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861
Effective energy storage from a triboelectric nanogenerator.
Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin
2016-03-11
To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.
RF emittance in a low energy electron linear accelerator
NASA Astrophysics Data System (ADS)
Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani
2018-04-01
Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.
Effective energy storage from a triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin
2016-03-01
To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.
Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong
2018-01-24
Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.
Framework Design of Unified Cross-Authentication Based on the Fourth Platform Integrated Payment
NASA Astrophysics Data System (ADS)
Yong, Xu; Yujin, He
The essay advances a unified authentication based on the fourth integrated payment platform. The research aims at improving the compatibility of the authentication in electronic business and providing a reference for the establishment of credit system by seeking a way to carry out a standard unified authentication on a integrated payment platform. The essay introduces the concept of the forth integrated payment platform and finally put forward the whole structure and different components. The main issue of the essay is about the design of the credit system of the fourth integrated payment platform and the PKI/CA structure design.
Child safety driver assistant system and its acceptance.
Quendler, Elisabeth; Diskus, Christian; Pohl, Alfred; Buchegger, Thomas; Beranek, Ernst; Boxberger, Josef
2009-01-01
Farming machinery incidents frequently cause the injury and death of children on farms worldwide. The two main causes of this problem are the driver's view being restricted by construction and/or environmental factors and insufficient risk awareness by children and parents. It is difficult to separate working and living areas on family farms, and the adult supervision necessary to avoid work accidents is often lacking. For this reason, additional preventive measures are required to reduce the number of crushings. Electronic tools that deliver information about the presence of children in the blind spots surrounding vehicles and their attached machines can be very effective. Such an electronic device must cover all security gaps around operating agricultural vehicles and their attached machines, ensure collision-free stopping in risk situations, and be inexpensive. Wireless sensor network and electrical near-field electronic components are suited to the development of low-cost wireless detection devices. For reliable detection in a versatile environment, it is necessary for children to continuously wear a slumbering transponder. This means that children and adults must have a high acceptance of the device, which can be improved by easy usability, design, and service quality. The developed demonstrator achieved detection distances of up to 40 m in the far field and 2.5 m in the near field. Recognized far-field sensor detection weaknesses, determined by user-friendliness tests, are false alarms in farmyards and around buildings. The detection distance and reliability of the near-field sensor varied with the design of the attached machines' metallic components.
Limiting factors in atomic resolution cryo electron microscopy: No simple tricks
Zhang, Xing; Zhou, Z. Hong
2013-01-01
To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992
NASA Astrophysics Data System (ADS)
Hedayatian, F.; Salem, M. K.; Saviz, S.
2018-01-01
In this study, microwave radiation is used to excite hybrid modes in a radially inhomogeneous cold plasma-filled cylindrical waveguide in the presence of external static magnetic field applied along the waveguide axis. The analytical expressions for EH0l field components, which accelerate an injected electron in the waveguide, are calculated. To study the effects of radial inhomogeneity on the electron dynamics and its acceleration, a model based on the Bessel-Fourier expansion is used while considering hybrid modes E H0 l(l =1 ,2 ,3 ,4 ) inside the waveguide, and the results are compared with the homogeneous plasma waveguide. The numerical results show that the field components related to the coupled EH0l modes are amplified due to radial inhomogeneity, which leads to an increase in the electron's energy gain. It is found that, if the waveguide is filled with radially inhomogeneous plasma, the electron acquires a higher energy gain while covering a shorter distance along the waveguide length (60 MeV energy gain in 1.1 cm distance along the waveguide length), so, a waveguide with a lesser length and a higher energy gain can be designed. The effects of radial inhomogeneity are studied on the deflection angle, the radial position, and the trajectory of an electron in the waveguide. The effects of the initial phase of the wave, injection point of the electron, and microwave power density are also investigated on the electron's energy gain. It is shown that the present model is applicable to both homogeneous and radially inhomogeneous plasma waveguides.
Schlam, Tanya R; Fiore, Michael C; Smith, Stevens S; Fraser, David; Bolt, Daniel M; Collins, Linda M; Mermelstein, Robin; Piper, Megan E; Cook, Jessica W; Jorenby, Douglas E; Loh, Wei-Yin; Baker, Timothy B
2016-01-01
To identify promising intervention components that help smokers attain and maintain abstinence during a quit attempt. A 2 × 2 × 2 × 2 × 2 randomized factorial experiment. Eleven primary care clinics in Wisconsin, USA. A total of 544 smokers (59% women, 86% white) recruited during primary care visits and motivated to quit. Five intervention components designed to help smokers attain and maintain abstinence: (1) extended medication (26 versus 8 weeks of nicotine patch + nicotine gum); (2) maintenance (phone) counseling versus none; (3) medication adherence counseling versus none; (4) automated (medication) adherence calls versus none; and (5) electronic medication monitoring with feedback and counseling versus electronic medication monitoring alone. The primary outcome was 7-day self-reported point-prevalence abstinence 1 year after the target quit day. Only extended medication produced a main effect. Twenty-six versus 8 weeks of medication improved point-prevalence abstinence rates (43 versus 34% at 6 months; 34 versus 27% at 1 year; P = 0.01 for both). There were four interaction effects at 1 year, showing that an intervention component's effectiveness depended upon the components with which it was combined. Twenty-six weeks of nicotine patch + nicotine gum (versus 8 weeks) and maintenance counseling provided by phone are promising intervention components for the cessation and maintenance phases of smoking treatment. © 2015 Society for the Study of Addiction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...
NASA Astrophysics Data System (ADS)
Zwickl, R. D.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Fuselier, S. A.; Huebner, W. F.; McComas, D. J.; Young, D. T.
1986-04-01
The observation of three distinct components of the electron distribution function measured in the intermediate ionized coma (IIC) and plasma tail of Comet Giacobini-Zinner is reported. It is believed that the cold component represents electrons produced close to the comet nucleus by ionization of cometary matter and subsequent cooling by Coulomb collisions. The second component also appears to be composed of electrons produced by photoionization of cometary neutrals, but sufficiently far from the nucleus that the distributions are largely unaffected by Coulomb interactions. The hot component is probably a population of electrons originating in the solar wind. Throughout the IIC, the electrostatic potential of the spacecraft was very low (less than 0.8 eV), implying that ICE generated very little impact-produced plasma during its passage.
Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.
Trung, Tran Quang; Lee, Nae-Eung
2017-01-01
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control software and electronics architecture design in the framework of the E-ELT instrumentation
NASA Astrophysics Data System (ADS)
Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.
2010-07-01
During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.
Design and fabrication of a window for the gas Cherenkov detector 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatherley, V. E., E-mail: vef@lanl.gov; Bingham, D. A.; Cartelli, M. D.
2016-11-15
The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set ofmore » requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.« less
Design and fabrication of a window for the Gas Cherenkov Detector 3
Fatherley, Valerie E.; Bingham, David A.; Cartelli, Myles Derrick; ...
2016-08-23
The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set ofmore » requirements and footprint limitations. Finally, the selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described.« less
PCBA depaneling stress minimization study
NASA Astrophysics Data System (ADS)
Darus, M. H. B. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Retnasamy, V.
2017-09-01
Printed circuit board (PCB) is board that used to connect the electricity using the conductive pathways. The PCB that consists with electronic components was called as printed circuit board assembly (PCBA). Bending process has been used as one of the depaneling techniques may contribute to mechanical stress and the failure of capacitors and other components to function. As a result, the idea to create holes in particular location was implemented in order to absorb the stress. In this study, finite element analysis is demonstrated by using ANSYS software. Two PCBA design models are considered in order to investigate the effect of the hole and the stress response. The simulation results show that the hole on the PCBA has reduced the stress. For Design model 2, the stress response of the holes located vertically to the PCBA is lower than the holes located horizontally to the PCBA.
NASA Technical Reports Server (NTRS)
Alt, Shannon
2016-01-01
Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.
Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, T.J.; Long, K.S.; Sayre, J.A.
1994-08-01
The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.
NASA Astrophysics Data System (ADS)
Bailly, Yannick; Nika, Philippe
2002-10-01
The design of a double inlet pulse tube refrigerator is investigated by means of an analogy with an electric circuit. The results obtained are compared with both those of the thermodynamic model (Part A) and experiments. The basic formulation of equivalent electronic components is discussed and a few improvements are proposed for adjusting the theoretical expressions of the electric impedance concerning the capillaries and the regenerator. Then additional effects such as pressure drops due to geometrical singularities are taken into account considering the different internal flow regimes that may occur. Besides a simplified formulation for the regenerator efficiency is deduced from considerations on its harmonic functioning. In this analysis, the emphasis concerns principally the design of miniature cryocoolers dedicated to electronic applications. Those models are applied to a commercial miniature refrigerator. A discussion of their relevance is achieved and a few suggestions on the refrigerator design are proposed in order to improve the cooling production.
South Atlantic anomaly and CubeSat design considerations
NASA Astrophysics Data System (ADS)
Fennelly, Judy A.; Johnston, William R.; Ober, Daniel M.; Wilson, Gordon R.; O'Brien, T. Paul; Huston, Stuart L.
2015-09-01
Effects of the South Atlantic Anomaly (SAA) on spacecraft in low Earth orbit (LEO) are well known and documented. The SAA exposes spacecraft in LEO to high dose of ionizing radiation as well as higher than normal rates of Single Event Upsets (SEU) and Single Event Latch-ups (SEL). CubeSats, spacecraft built around 10 x 10 x 10 cm cubes, are even more susceptible to SEUs and SELs due to the use of commercial off-the-shelf components for electronics and payload instrumentation. Examination of the SAA using both data from the Defense Meteorological Satellite Program (DMSP) and a new set of models for the flux of particles is presented. The models, AE9, AP9, and SPM for energetic electrons, energetic protons and space plasma, were developed for use in space system design. These models introduce databased statistical constraints on the uncertainties from measurements and climatological variability. Discussion of the models' capabilities and limitations with regard to LEO CubeSat design is presented.
2016-06-01
therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless
The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning.
Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O'Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo
2015-05-01
The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.
High Power Silicon Carbide (SiC) Power Processing Unit Development
NASA Technical Reports Server (NTRS)
Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.
2015-01-01
NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.
NASA Technical Reports Server (NTRS)
1978-01-01
A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.