Sample records for electronic computing devices

  1. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...

  2. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  3. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  4. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  5. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  6. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...

  7. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  8. Extended write combining using a write continuation hint flag

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  9. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers... mobile phones, mobile tablets, portable music players, and computers, and components thereof that...

  10. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  11. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  12. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  13. Ag2S atomic switch-based `tug of war' for decision making

    NASA Astrophysics Data System (ADS)

    Lutz, C.; Hasegawa, T.; Chikyow, T.

    2016-07-01

    For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f

  14. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  15. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    PubMed

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  16. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  17. 76 FR 41522 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-771] In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components... certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...

  18. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players...

  19. Adolescent sleep patterns and night-time technology use: results of the Australian Broadcasting Corporation's Big Sleep Survey.

    PubMed

    Gamble, Amanda L; D'Rozario, Angela L; Bartlett, Delwyn J; Williams, Shaun; Bin, Yu Sun; Grunstein, Ronald R; Marshall, Nathaniel S

    2014-01-01

    Electronic devices in the bedroom are broadly linked with poor sleep in adolescents. This study investigated whether there is a dose-response relationship between use of electronic devices (computers, cellphones, televisions and radios) in bed prior to sleep and adolescent sleep patterns. Adolescents aged 11-17 yrs (n = 1,184; 67.6% female) completed an Australia-wide internet survey that examined sleep patterns, sleepiness, sleep disorders, the presence of electronic devices in the bedroom and frequency of use in bed at night. Over 70% of adolescents reported 2 or more electronic devices in their bedroom at night. Use of devices in bed a few nights per week or more was 46.8% cellphone, 38.5% computer, 23.2% TV, and 15.8% radio. Device use had dose-dependent associations with later sleep onset on weekdays (highest-dose computer adjOR  = 3.75: 99% CI  = 2.17-6.46; cellphone 2.29: 1.22-4.30) and weekends (computer 3.68: 2.14-6.32; cellphone 3.24: 1.70-6.19; TV 2.32: 1.30-4.14), and later waking on weekdays (computer 2.08: 1.25-3.44; TV 2.31: 1.33-4.02) and weekends (computer 1.99: 1.21-3.26; cellphone 2.33: 1.33-4.08; TV 2.04: 1.18-3.55). Only 'almost every night' computer use (: 2.43: 1.45-4.08) was associated with short weekday sleep duration, and only 'almost every night' cellphone use (2.23: 1.26-3.94) was associated with wake lag (waking later on weekends). Use of computers, cell-phones and televisions at higher doses was associated with delayed sleep/wake schedules and wake lag, potentially impairing health and educational outcomes.

  20. Molecular and nanoscale materials and devices in electronics.

    PubMed

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  1. Modems and More: The Computer Branches Out.

    ERIC Educational Resources Information Center

    Dyrli, Odvard Egil

    1986-01-01

    Surveys new "peripherals," electronic devices that attach to computers. Devices such as videodisc players, desktop laser printers, large screen projectors, and input mechanisms that circumvent the keyboard dramatically expand the computer's instructional uses. (Author/LHW)

  2. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  5. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... music players, and computers by reason of infringement of various claims of United States Patent Nos. 6...

  6. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650

  7. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. Computational imaging of defects in commercial substrates for electronic and photonic devices

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi

    2012-03-01

    Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.

  9. Computational Nanotechnology of Molecular Materials, Electronics, and Actuators with Carbon Nanotubes and Fullerenes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.

  10. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  11. Adolescent Sleep Patterns and Night-Time Technology Use: Results of the Australian Broadcasting Corporation's Big Sleep Survey

    PubMed Central

    Gamble, Amanda L.; D'Rozario, Angela L.; Bartlett, Delwyn J.; Williams, Shaun; Bin, Yu Sun; Grunstein, Ronald R.; Marshall, Nathaniel S.

    2014-01-01

    Introduction Electronic devices in the bedroom are broadly linked with poor sleep in adolescents. This study investigated whether there is a dose-response relationship between use of electronic devices (computers, cellphones, televisions and radios) in bed prior to sleep and adolescent sleep patterns. Methods Adolescents aged 11–17 yrs (n = 1,184; 67.6% female) completed an Australia-wide internet survey that examined sleep patterns, sleepiness, sleep disorders, the presence of electronic devices in the bedroom and frequency of use in bed at night. Results Over 70% of adolescents reported 2 or more electronic devices in their bedroom at night. Use of devices in bed a few nights per week or more was 46.8% cellphone, 38.5% computer, 23.2% TV, and 15.8% radio. Device use had dose-dependent associations with later sleep onset on weekdays (highest-dose computer adjOR  = 3.75: 99% CI  = 2.17–6.46; cellphone 2.29: 1.22–4.30) and weekends (computer 3.68: 2.14–6.32; cellphone 3.24: 1.70–6.19; TV 2.32: 1.30–4.14), and later waking on weekdays (computer 2.08: 1.25–3.44; TV 2.31: 1.33–4.02) and weekends (computer 1.99: 1.21–3.26; cellphone 2.33: 1.33–4.08; TV 2.04: 1.18–3.55). Only ‘almost every night’ computer use (: 2.43: 1.45–4.08) was associated with short weekday sleep duration, and only ‘almost every night’ cellphone use (2.23: 1.26–3.94) was associated with wake lag (waking later on weekends). Conclusions Use of computers, cell-phones and televisions at higher doses was associated with delayed sleep/wake schedules and wake lag, potentially impairing health and educational outcomes. PMID:25390034

  12. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Computing Devices, Related Software, and Components Thereof; Notice of Investigation AGENCY: U.S... devices, related software, and components thereof by reason of infringement of certain claims of U.S... devices, related software, and components thereof that infringe one or more of claims 1 and 5 of the '372...

  13. 76 FR 18247 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers... importation of certain electronic devices, including mobile phones, mobile tablets, portable music players...

  14. Command, Control, Communications, Computers and Intelligence Electronic Warfare (C4IEW) Project Book, Fiscal Year 1994. (Non-FOUO Version)

    DTIC Science & Technology

    1994-04-01

    TSW-7A, AIR TRAFFIC CONTROL CENTRAL (ATCC) 32- 8 AN/TTC-41(V), CENTRAL OFFICE, TELEPHONE, AUTOMATIC 32- 9 MISSILE COUNTERMEASURE DEVICE (MCD) .- 0 MK...a Handheld Terminal Unit (HTU), Portable Computer Unit (PCU), Transportable Computer Unit (TCU), and compatible NOI peripheral devices . All but the...CLASSIFICATION: ASARC-III, Jun 80, Standard. I I I AN/TIC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL

  15. Integrating a Hand Held computer and Stethoscope into a Fetal Monitor

    PubMed Central

    Ahmad Soltani, Mitra

    2009-01-01

    This article presents procedures for modifying a hand held computer or personal digital assistant (PDA) into a versatile device functioning as an electronic stethoscope for fetal monitoring. Along with functioning as an electronic stethoscope, a PDA can provide a useful information source for a medical trainee. Feedback from medical students, residents and interns suggests the device is well accepted by medical trainees. PMID:20165517

  16. Direct surgeon control of the computer in the operating room.

    PubMed

    Onceanu, Dumitru; Stewart, A James

    2011-01-01

    This paper describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the operating room. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer, and makes use of an existing surgical tool. The device was tested in comparison to a mouse and to verbal dictation.

  17. Rational design of metal-organic electronic devices: A computational perspective

    NASA Astrophysics Data System (ADS)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.

  18. Privacy and E-Books

    ERIC Educational Resources Information Center

    Chmara, Theresa

    2012-01-01

    The use of electronic reading devices has proliferated in the last few years. These reading devices appear to be particularly popular with young readers. A generation of students that has grown up with computers, cell phones, iPods, and other high-tech devices is more likely to embrace electronic book technology for both their educational and…

  19. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    PubMed

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  20. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    PubMed Central

    Rajan, Krishna; Garofalo, Erik

    2018-01-01

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC. PMID:29382050

  1. Controlling the Universe

    ERIC Educational Resources Information Center

    Evanson, Nick

    2004-01-01

    Basic electronic devices have been used to great effect with console computer games. This paper looks at a range of devices from the very simple, such as microswitches and potentiometers, up to the more complex Hall effect probe. There is a great deal of relatively straightforward use of simple devices in computer games systems, and having read…

  2. Multi-Functional UV-Visible-IR Nanosensors Devices and Structures

    DTIC Science & Technology

    2015-04-29

    Dual-Gate MOSFET System, Proceedings of the International Workshop on Computational Electronics, Nara, Japan, Society of Micro- and Nanoelectronics ...International Workshop on Computational Electronics, Nara, Japan, Society of Micro- and Nanoelectronics , 216-217 (2013); ISBN 978-3-901578-26-7 M. S...Raman Spectroscopy, Proceedings of the International Workshop on Computational Electronics, Nara, Japan, Society of Micro- and Nanoelectronics , 198

  3. Hearing Impairments. Tech Use Guide: Using Computer Technology.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    One of nine brief guides for special educators on using computer technology, this guide focuses on advances in electronic aids, computers, telecommunications, and videodiscs to assist students with hearing impairments. Electronic aids include hearing aids, telephone devices for the deaf, teletypes, closed captioning systems for television, and…

  4. Simple video format for mobile applications

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Miao, Zhourong; Li, Chung-Sheng

    2000-04-01

    With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.

  5. New Computational Approach to Electron Transport in Irregular Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey

    2009-03-01

    For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.

  6. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  7. Design of a Computer-Controlled, Random-Access Slide Projector Interface. Final Report (April 1974 - November 1974).

    ERIC Educational Resources Information Center

    Kirby, Paul J.; And Others

    The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…

  8. Enabling Self-Directed Computer Use for Individuals with Cerebral Palsy: A Systematic Review of Assistive Devices and Technologies

    ERIC Educational Resources Information Center

    Davies, T. Claire; Mudge, Suzie; Ameratunga, Shanthi; Stott, N. Susan

    2010-01-01

    Aim: The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods: Nine electronic databases were searched using keywords "computer", "software", "spastic",…

  9. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  10. On Emulation of Flueric Devices in Excitable Chemical Medium.

    PubMed

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  11. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  12. High-Fidelity Piezoelectric Audio Device

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  13. Server-Based and Server-Less Byod Solutions to Support Electronic Learning

    DTIC Science & Technology

    2016-06-01

    Knowledge Online NSD National Security Directive OS operating system OWA Outlook Web Access PC personal computer PED personal electronic device PDA...mobile devices, institute mobile device policies and standards, and promote the development and use of DOD mobile and web -enabled applications” (DOD...with an isolated BYOD web server, properly educated system administrators must carry out and execute the necessary, pre-defined network security

  14. Wearable wireless User Interface Cursor-Controller (UIC-C).

    PubMed

    Marjanovic, Nicholas; Kerr, Kevin; Aranda, Ricardo; Hickey, Richard; Esmailbeigi, Hananeh

    2017-07-01

    Controlling a computer or a smartphone's cursor allows the user to access a world full of information. For millions of people with limited upper extremities motor function, controlling the cursor becomes profoundly difficult. Our team has developed the User Interface Cursor-Controller (UIC-C) to assist the impaired individuals in regaining control over the cursor. The UIC-C is a hands-free device that utilizes the tongue muscle to control the cursor movements. The entire device is housed inside a subject specific retainer. The user maneuvers the cursor by manipulating a joystick imbedded inside the retainer via their tongue. The joystick movement commands are sent to an electronic device via a Bluetooth connection. The device is readily recognizable as a cursor controller by any Bluetooth enabled electronic device. The device testing results have shown that the time it takes the user to control the cursor accurately via the UIC-C is about three times longer than a standard computer mouse controlled via the hand. The device does not require any permanent modifications to the body; therefore, it could be used during the period of acute rehabilitation of the hands. With the development of modern smart homes, and enhancement electronics controlled by the computer, UIC-C could be integrated into a system that enables individuals with permanent impairment, the ability to control the cursor. In conclusion, the UIC-C device is designed with the goal of allowing the user to accurately control a cursor during the periods of either acute or permanent upper extremities impairment.

  15. Model Railroading and Computer Fundamentals

    ERIC Educational Resources Information Center

    McCormick, John W.

    2007-01-01

    Less than one half of one percent of all processors manufactured today end up in computers. The rest are embedded in other devices such as automobiles, airplanes, trains, satellites, and nearly every modern electronic device. Developing software for embedded systems requires a greater knowledge of hardware than developing for a typical desktop…

  16. Molecular electronics: The technology of sixth generation computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, M.T.; Miller, R.K.

    1987-01-01

    In February 1986, Japan began the 6th Generation project. At the 1987 Economic Summit in Venice, Prime Minister Yashuhiro Makasone opened the project to world collaboration. A project director suggests that the 6th Generation ''may just be a turning point for human society.'' The major rationale for building molecular electronic devices is to achieve advances in computational densities and speeds. Proposed chromophore chains for molecular-scale chips, for example, could be spaced closer than today's silicone elements by a factor of almost 100. This book describes the research and proposed designs for molecular electronic devices and computers. It examines specific potentialmore » applications and the relationship to molecular electronics to silicon technology and presents the first published survey of experts on research issues, applications, and forecast of future developments and also includes market forecast. An interesting suggestion of the survey is that the chemical industry may become a significant factor in the computer industry as the sixth generation unfolds.« less

  17. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  18. 76 FR 39121 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data, and Tablet..., portable music and data processing devices, and tablet computers. The complaint names as respondent Apple...

  19. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  20. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  1. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  2. Introduction to Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  3. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  4. 75 FR 3154 - Children's Products Containing Lead; Exemptions for Certain Electronic Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ..., some calculators, and certain computers or similar electronic learning products. 3. Certain Lead...: (1) Lead blended into the glass of cathode ray tubes, electronic components, and fluorescent tubes...

  5. CIRCUS--A digital computer program for transient analysis of electronic circuits

    NASA Technical Reports Server (NTRS)

    Moore, W. T.; Steinbert, L. L.

    1968-01-01

    Computer program simulates the time domain response of an electronic circuit to an arbitrary forcing function. CIRCUS uses a charge-control parameter model to represent each semiconductor device. Given the primary photocurrent, the transient behavior of a circuit in a radiation environment is determined.

  6. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  7. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  8. Electronics from the Bottom up: Strategies for Teaching Nanoelectronics at the Undergraduate Level

    ERIC Educational Resources Information Center

    Vaidyanathan, M.

    2011-01-01

    Nanoelectronics is an emerging area of electrical and computer engineering that deals with the current-voltage behavior of atomic-scale electronic devices. As the trend toward ever smaller devices continues, there is a need to update traditional undergraduate curricula to introduce electrical engineers to the fundamentals of the field. These…

  9. Theoretical and material studies of thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.

    1989-01-01

    Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.

  10. Assistive technology for memory support in dementia.

    PubMed

    Van der Roest, Henriëtte G; Wenborn, Jennifer; Pastink, Channah; Dröes, Rose-Marie; Orrell, Martin

    2017-06-11

    The sustained interest in electronic assistive technology in dementia care has been fuelled by the urgent need to develop useful approaches to help support people with dementia at home. Also the low costs and wide availability of electronic devices make it more feasible to use electronic devices for the benefit of disabled persons. Information Communication Technology (ICT) devices designed to support people with dementia are usually referred to as Assistive Technology (AT) or Electronic Assistive Technology (EAT). By using AT in this review we refer to electronic assistive devices. A range of AT devices has been developed to support people with dementia and their carers to manage their daily activities and to enhance safety, for example electronic pill boxes, picture phones, or mobile tracking devices. Many are commercially available. However, the usefulness and user-friendliness of these devices are often poorly evaluated. Although reviews of (electronic) memory aids do exist, a systematic review of studies focusing on the efficacy of AT for memory support in people with dementia is lacking. Such a review would guide people with dementia and their informal and professional carers in selecting appropriate AT devices. Primary objectiveTo assess the efficacy of AT for memory support in people with dementia in terms of daily performance of personal and instrumental activities of daily living (ADL), level of dependency, and admission to long-term care. Secondary objectiveTo assess the impact of AT on: users (autonomy, usefulness and user-friendliness, adoption of AT); cognitive function and neuropsychiatric symptoms; need for informal and formal care; perceived quality of life; informal carer burden, self-esteem and feelings of competence; formal carer work satisfaction, workload and feelings of competence; and adverse events. We searched ALOIS, the Specialised Register of the Cochrane Dementia and Cognitive Improvement Group (CDCIG), on 10 November 2016. ALOIS is maintained by the Information Specialists of the CDCIG and contains studies in the areas of dementia prevention, dementia treatment and cognitive enhancement in healthy people. We also searched the following list of databases, adapting the search strategy as necessary: Centre for Reviews and Dissemination (CRD) Databases, up to May 2016; The Collection of Computer Science Bibliographies; DBLP Computer Science Bibliography; HCI Bibliography: Human-Computer Interaction Resources; and AgeInfo, all to June 2016; PiCarta; Inspec; Springer Link Lecture Notes; Social Care Online; and IEEE Computer Society Digital Library, all to October 2016; J-STAGE: Japan Science and Technology Information Aggregator, Electronic; and Networked Computer Science Technical Reference Library (NCSTRL), both to November 2016; Computing Research Repository (CoRR) up to December 2016; and OT seeker; and ADEAR, both to February 2017. In addition, we searched Google Scholar and OpenSIGLE for grey literature. We intended to review randomised controlled trials (RCTs) and clustered randomised trials with blinded assessment of outcomes that evaluated an electronic assistive device used with the single aim of supporting memory function in people diagnosed with dementia. The control interventions could either be 'care (or treatment) as usual' or non-technological psychosocial interventions (including interventions that use non-electronic assistive devices) also specifically aimed at supporting memory. Outcome measures included activities of daily living, level of dependency, clinical and care-related outcomes (for example admission to long-term care), perceived quality of life and well-being, and adverse events resulting from the use of AT; as well as the effects of AT on carers. Two review authors independently screened all titles and abstracts identified by the search. We identified no studies which met the inclusion criteria. This review highlights the current lack of high-quality evidence to determine whether AT is effective in supporting people with dementia to manage their memory problems.

  11. In Sync with Science Teaching

    ERIC Educational Resources Information Center

    Scribner-MacLean, Michelle; Nikonchuk, Andrew; Kaplo, Patrick; Wall, Michael

    2006-01-01

    Science educators are often among the first to use emerging technologies in the classroom and laboratory. For the technologically savvy science teacher, the handheld computer is a terrific tool. A handheld computer is a portable electronic device that helps organize (via calendars, contact lists, to-do lists) and integrate electronic data…

  12. Psychiatrists’ Comfort Using Computers and Other Electronic Devices in Clinical Practice

    PubMed Central

    Fochtmann, Laura J.; Clarke, Diana E.; Barber, Keila; Hong, Seung-Hee; Yager, Joel; Mościcki, Eve K.; Plovnick, Robert M.

    2015-01-01

    This report highlights findings from the Study of Psychiatrists’ Use of Informational Resources in Clinical Practice, a cross-sectional Web- and paper-based survey that examined psychiatrists’ comfort using computers and other electronic devices in clinical practice. One-thousand psychiatrists were randomly selected from the American Medical Association Physician Masterfile and asked to complete the survey between May and August, 2012. A total of 152 eligible psychiatrists completed the questionnaire (response rate 22.2 %). The majority of psychiatrists reported comfort using computers for educational and personal purposes. However, 26 % of psychiatrists reported not using or not being comfortable using computers for clinical functions. Psychiatrists under age 50 were more likely to report comfort using computers for all purposes than their older counterparts. Clinical tasks for which computers were reportedly used comfortably, specifically by psychiatrists younger than 50, included documenting clinical encounters, prescribing, ordering laboratory tests, accessing read-only patient information (e.g., test results), conducting internet searches for general clinical information, accessing online patient educational materials, and communicating with patients or other clinicians. Psychiatrists generally reported comfort using computers for personal and educational purposes. However, use of computers in clinical care was less common, particularly among psychiatrists 50 and older. Information and educational resources need to be available in a variety of accessible, user-friendly, computer and non-computer-based formats, to support use across all ages. Moreover, ongoing training and technical assistance with use of electronic and mobile device technologies in clinical practice is needed. Research on barriers to clinical use of computers is warranted. PMID:26667248

  13. Psychiatrists' Comfort Using Computers and Other Electronic Devices in Clinical Practice.

    PubMed

    Duffy, Farifteh F; Fochtmann, Laura J; Clarke, Diana E; Barber, Keila; Hong, Seung-Hee; Yager, Joel; Mościcki, Eve K; Plovnick, Robert M

    2016-09-01

    This report highlights findings from the Study of Psychiatrists' Use of Informational Resources in Clinical Practice, a cross-sectional Web- and paper-based survey that examined psychiatrists' comfort using computers and other electronic devices in clinical practice. One-thousand psychiatrists were randomly selected from the American Medical Association Physician Masterfile and asked to complete the survey between May and August, 2012. A total of 152 eligible psychiatrists completed the questionnaire (response rate 22.2 %). The majority of psychiatrists reported comfort using computers for educational and personal purposes. However, 26 % of psychiatrists reported not using or not being comfortable using computers for clinical functions. Psychiatrists under age 50 were more likely to report comfort using computers for all purposes than their older counterparts. Clinical tasks for which computers were reportedly used comfortably, specifically by psychiatrists younger than 50, included documenting clinical encounters, prescribing, ordering laboratory tests, accessing read-only patient information (e.g., test results), conducting internet searches for general clinical information, accessing online patient educational materials, and communicating with patients or other clinicians. Psychiatrists generally reported comfort using computers for personal and educational purposes. However, use of computers in clinical care was less common, particularly among psychiatrists 50 and older. Information and educational resources need to be available in a variety of accessible, user-friendly, computer and non-computer-based formats, to support use across all ages. Moreover, ongoing training and technical assistance with use of electronic and mobile device technologies in clinical practice is needed. Research on barriers to clinical use of computers is warranted.

  14. System and Method for an Integrated Satellite Platform

    NASA Technical Reports Server (NTRS)

    Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)

    2018-01-01

    A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.

  15. Computer Vision Syndrome.

    PubMed

    Randolph, Susan A

    2017-07-01

    With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.

  16. Ultraviolet radiation emitted by lamps, TVs, tablets and computers: are there risks for the population?

    PubMed

    Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Malvestiti, Andrey Augusto

    2015-01-01

    The frequent human exposure to various types of indoor lamps, as well as other light sources (television monitors, tablets and computers), raises a question: are there risks for the population? In the present study the emission of UVA and UVB radiation by lamps and screens of electronic devices were measured in order to determine the safe distance between the emitting source and the individual. We concluded that the lamps and electronic devices do not emit ultraviolet radiation; so they pose no health risk for the population.

  17. Ultraviolet radiation emitted by lamps, TVs, tablets and computers: are there risks for the population?

    PubMed Central

    Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Malvestiti, Andrey Augusto

    2015-01-01

    The frequent human exposure to various types of indoor lamps, as well as other light sources (television monitors, tablets and computers), raises a question: are there risks for the population? In the present study the emission of UVA and UVB radiation by lamps and screens of electronic devices were measured in order to determine the safe distance between the emitting source and the individual. We concluded that the lamps and electronic devices do not emit ultraviolet radiation; so they pose no health risk for the population. PMID:26375236

  18. Two-Way Communication Using RFID Equipment and Techniques

    NASA Technical Reports Server (NTRS)

    Jedry, Thomas; Archer, Eric

    2007-01-01

    Equipment and techniques used in radio-frequency identification (RFID) would be extended, according to a proposal, to enable short-range, two-way communication between electronic products and host computers. In one example of a typical contemplated application, the purpose of the short-range radio communication would be to transfer image data from a user s digital still or video camera to the user s computer for recording and/or processing. The concept is also applicable to consumer electronic products other than digital cameras (for example, cellular telephones, portable computers, or motion sensors in alarm systems), and to a variety of industrial and scientific sensors and other devices that generate data. Until now, RFID has been used to exchange small amounts of mostly static information for identifying and tracking assets. Information pertaining to an asset (typically, an object in inventory to be tracked) is contained in miniature electronic circuitry in an RFID tag attached to the object. Conventional RFID equipment and techniques enable a host computer to read data from and, in some cases, to write data to, RFID tags, but they do not enable such additional functions as sending commands to, or retrieving possibly large quantities of dynamic data from, RFID-tagged devices. The proposal would enable such additional functions. The figure schematically depicts an implementation of the proposal for a sensory device (e.g., a digital camera) that includes circuitry that converts sensory information to digital data. In addition to the basic sensory device, there would be a controller and a memory that would store the sensor data and/or data from the controller. The device would also be equipped with a conventional RFID chipset and antenna, which would communicate with a host computer via an RFID reader. The controller would function partly as a communication interface, implementing two-way communication protocols at all levels (including RFID if needed) between the sensory device and the memory and between the host computer and the memory. The controller would perform power V

  19. Musculoskeletal impact of the use of various types of electronic devices on university students in Hong Kong: An evaluation by means of self-reported questionnaire.

    PubMed

    Woo, Eugenia H C; White, Peter; Lai, Christopher W K

    2016-12-01

    Despite the increasingly widespread popularity of electronic devices, there are limited comprehensive studies on the effects of usage and exposure to multiple electronic devices over extended periods of time. Therefore, this study explored the cumulative musculoskeletal implications of exposure to various electronic devices among university students. A self-reported questionnaire was administered in the university in Hong Kong and students provided information about the frequency and duration of electronic devices use, including computers, mobile phones and game consoles, and reported on any musculoskeletal pain or discomfort that may relate to electronic devices usage in the immediate 12 months prior to the survey date. A total of 503 university students (59% males and 41% females) aged 18-25 years completed the questionnaire. The results showed that 251 (49.9%) respondents reported upper limb musculoskeletal symptoms, particularly in the neck and shoulder regions. Among these, 155 (61.8%) indicated that their discomfort was related to electronic device usage. Statistically significant differences in exposure to electronic devices and musculoskeletal outcomes between genders were found (p < 0.05). The use of electronic devices and habitual postures were associated with musculoskeletal problems among university students in Hong Kong. This phenomenon highlights the urgent need for ergonomics education and recommendations to increase students' awareness of musculoskeletal wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.

    PubMed

    Batchelor, John C; Yeates, Stephen G; Casson, Alexander J

    2016-08-01

    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.

  1. Microfocus computed tomography in medicine

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.

    2018-02-01

    Recent advances in the field of high-frequency power schemes for X-ray devices allow the creation of high-resolution instruments. At the department of electronic devices and Equipment of the St. Petersburg State Electrotechnical University, a model of a microfocus computer tomograph was developed. Used equipment allows to receive projection data with an increase up to 100 times. A distinctive feature of the device is the possibility of implementing various schemes for obtaining projection data.

  2. Five Ways to Hack and Cheat with Bring-Your-Own-Device Electronic Examinations

    ERIC Educational Resources Information Center

    Dawson, Phillip

    2016-01-01

    Bring-your-own-device electronic examinations (BYOD e-exams) are a relatively new type of assessment where students sit an in-person exam under invigilated conditions with their own laptop. Special software restricts student access to prohibited computer functions and files, and provides access to any resources or software the examiner approves.…

  3. Prevalence of musculoskeletal pain in adolescents and association with computer and videogame use.

    PubMed

    Silva, Georgia Rodrigues Reis; Pitangui, Ana Carolina Rodarti; Xavier, Michele Katherine Andrade; Correia-Júnior, Marco Aurélio Valois; De Araújo, Rodrigo Cappato

    2016-01-01

    This study investigated the presence of musculoskeletal symptoms in high school adolescents from public schools and its association with electronic device use. The sample consisted of 961 boys and girls aged 14-19 years who answered a questionnaire regarding the use of computers and electronic games, and questions about pain symptoms and physical activity. Furthermore, anthropometric assessments of all volunteers were performed. The chi-squared test and a multiple logistic regression model were used for the inferential analysis. The presence of musculoskeletal pain symptoms was reported by 65.1% of the adolescents, being more prevalent in the thoracolumbar spine (46.9%), followed by pain in the upper limbs, representing 20% of complaints. The mean time of use for computers and electronic games was 1.720 and 583 minutes per week, respectively. The excessive use of electronic devices was demonstrated to be a risk factor for cervical and lumbar pain. Female gender was associated with the presence of pain in different body parts. Presence of a paid job was associated with cervical pain. A high prevalence of musculoskeletal pain in adolescents, as well as an increased amount of time using digital devices was observed. However, it was only possible to observe an association between the increased use of these devices and the presence of cervical and low back pain. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  5. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    ERIC Educational Resources Information Center

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  6. Digitizing Some Keywords.

    ERIC Educational Resources Information Center

    Lanham, Richard A.

    1989-01-01

    Traces the early history of the electronic digital computer and the viewpoints held concerning the computer from its inception to its present status. Highlights three key words ("mimesis,""topic," and "decorum") to develop the rhetoricality of the personal computer as a communications device. (KEH)

  7. High and low use of electronic media during nighttime before going to sleep: A comparative study between adolescents attending a morning or afternoon school shift.

    PubMed

    Arrona-Palacios, Arturo

    2017-12-01

    This study compared the effects of time spent on electronic media devices during nighttime before going to sleep on the sleep-wake cycle, daytime sleepiness, and chronotype in 568 Mexican students (288 girls, mean age = 14.08) attending a double school shift system (287 from morning shift and 281 from afternoon shift). Students completed anonymous self-report questionnaires. Results suggest that high exposure to an electronic media device may have an impact on their sleep-wake cycle, regardless of their school shift. Adolescents from the afternoon shift reported more time spent on devices. Those from the morning shift reported daytime sleepiness with the use of MP3 player, and from the afternoon shift with the use of computer, MP3 player, and television. Both school shifts reported an intermediate chronotype with all electronic media devices, but the afternoon shift with a tendency towards eveningness with the use of the computer, smartphone, and MP3 player. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  8. Prevalence of headache in adolescents and association with use of computer and videogames.

    PubMed

    Xavier, Michelle Katherine Andrade; Pitangui, Ana Carolina Rodarti; Silva, Georgia Rodrigues Reis; Oliveira, Valéria Mayaly Alves de; Beltrão, Natália Barros; Araújo, Rodrigo Cappato de

    2015-11-01

    The aim of this study was to determine the prevalence of headache in adolescents and its association with excessive use of electronic devices and games. The sample comprised 954 adolescents of both sexes (14 to 19 years) who answered a questionnaire about use of computers and electronic games, presence of headache and physical activity. The binary and multinomial logistic regression, with significance level of 5% was used for inferential analysis. The prevalence of headache was 80.6%. The excessive use of electronics devices proved to be a risk factor (OR = 1.21) for headache. Subjects aged between 14 and 16 years were less likely to report headache (OR = 0.64). Regarding classification, 17.9% of adolescents had tension-type headache, 19.3% had migraine and 43.4% other types of headache. The adolescents aged form 14 to 16 years had lower chance (OR ≤ 0.68) to report the tension-type headache and other types of headache. The excessive use of digital equipment, electronic games and attending the third year of high school proved to be risk factors for migraine-type development (OR ≥ 1.84). There was a high prevalence of headache in adolescents and high-time use of electronic devices. We observed an association between excessive use of electronic devices and the presence of headache, and this habit is considered a risk factor, especially for the development of migraine-type.

  9. A Computer-Based, Interactive Videodisc Job Aid and Expert System for Electron Beam Lithography Integration and Diagnostic Procedures.

    ERIC Educational Resources Information Center

    Stevenson, Kimberly

    This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…

  10. 78 FR 2912 - Prohibition on Personal Use of Electronic Devices on the Flight Deck

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ....C. 332(c)(7)(C)(i). In general, wireless telecommunications is the transfer of information between... personal wireless communications device or laptop computer for personal use while at their duty station on.... Personal Wireless Communications Device IV. Regulatory Notices and Analyses A. Regulatory Evaluation B...

  11. Handheld vs. laptop computers for electronic data collection in clinical research: a crossover randomized trial.

    PubMed

    Haller, Guy; Haller, Dagmar M; Courvoisier, Delphine S; Lovis, Christian

    2009-01-01

    To compare users' speed, number of entry errors and satisfaction in using two current devices for electronic data collection in clinical research: handheld and laptop computers. The authors performed a randomized cross-over trial using 160 different paper-based questionnaires and representing altogether 45,440 variables. Four data coders were instructed to record, according to a random predefined and equally balanced sequence, the content of these questionnaires either on a laptop or on a handheld computer. Instructions on the kind of device to be used were provided to data-coders in individual sealed and opaque envelopes. Study conditions were controlled and the data entry process performed in a quiet environment. The authors compared the duration of the data recording process, the number of errors and users' satisfaction with the two devices. The authors divided errors into two separate categories, typing and missing data errors. The original paper-based questionnaire was used as a gold-standard. The overall duration of the recording process was significantly reduced (2.0 versus 3.3 min) when data were recorded on the laptop computer (p < 0.001). Data accuracy also improved. There were 5.8 typing errors per 1,000 entries with the laptop compared to 8.4 per 1,000 with the handheld computer (p < 0.001). The difference was even more important for missing data which decreased from 22.8 to 2.9 per 1,000 entries when a laptop was used (p < 0.001). Users found the laptop easier, faster and more satisfying to use than the handheld computer. Despite the increasing use of handheld computers for electronic data collection in clinical research, these devices should be used with caution. They double the duration of the data entry process and significantly increase the risk of typing errors and missing data. This may become a particularly crucial issue in studies where these devices are provided to patients or healthcare workers, unfamiliar with computer technologies, for self-reporting or research data collection processes.

  12. Handheld vs. Laptop Computers for Electronic Data Collection in Clinical Research: A Crossover Randomized Trial

    PubMed Central

    Haller, Guy; Haller, Dagmar M.; Courvoisier, Delphine S.; Lovis, Christian

    2009-01-01

    Objective To compare users' speed, number of entry errors and satisfaction in using two current devices for electronic data collection in clinical research: handheld and laptop computers. Design The authors performed a randomized cross-over trial using 160 different paper-based questionnaires and representing altogether 45,440 variables. Four data coders were instructed to record, according to a random predefined and equally balanced sequence, the content of these questionnaires either on a laptop or on a handheld computer. Instructions on the kind of device to be used were provided to data-coders in individual sealed and opaque envelopes. Study conditions were controlled and the data entry process performed in a quiet environment. Measurements The authors compared the duration of the data recording process, the number of errors and users' satisfaction with the two devices. The authors divided errors into two separate categories, typing and missing data errors. The original paper-based questionnaire was used as a gold-standard. Results The overall duration of the recording process was significantly reduced (2.0 versus 3.3 min) when data were recorded on the laptop computer (p < 0.001). Data accuracy also improved. There were 5.8 typing errors per 1,000 entries with the laptop compared to 8.4 per 1,000 with the handheld computer (p < 0.001). The difference was even more important for missing data which decreased from 22.8 to 2.9 per 1,000 entries when a laptop was used (p < 0.001). Users found the laptop easier, faster and more satisfying to use than the handheld computer. Conclusions Despite the increasing use of handheld computers for electronic data collection in clinical research, these devices should be used with caution. They double the duration of the data entry process and significantly increase the risk of typing errors and missing data. This may become a particularly crucial issue in studies where these devices are provided to patients or healthcare workers, unfamiliar with Computer Technologies, for self-reporting or research data collection processes. PMID:19567799

  13. Adhesion and the Lamination/Failure of Stretchable Organic and Composite Organic/Inorganic Electronic Structures

    NASA Astrophysics Data System (ADS)

    Yu, Deying

    Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  14. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  15. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  16. Development of Novel Treatment Plan Verification Techniques for Prostate Intensity Modulation Arc Therapy

    DTIC Science & Technology

    2010-03-01

    is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate  VMAT  using  Electronic   Portal  Imaging  Device  (EPID)  and  onboard Cone beam Computed Tomography (CBCT).  The specific aims of this project

  17. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Alan F.; Modine, Normand A.; Lee, Stephen R.

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers tomore » optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority.« less

  18. The Physics of Information Technology

    NASA Astrophysics Data System (ADS)

    Gershenfeld, Neil

    2000-10-01

    The Physics of Information Technology explores the familiar devices that we use to collect, transform, transmit, and interact with electronic information. Many such devices operate surprisingly close to very many fundamental physical limits. Understanding how such devices work, and how they can (and cannot) be improved, requires deep insight into the character of physical law as well as engineering practice. The book starts with an introduction to units, forces, and the probabilistic foundations of noise and signaling, then progresses through the electromagnetics of wired and wireless communications, and the quantum mechanics of electronic, optical, and magnetic materials, to discussions of mechanisms for computation, storage, sensing, and display. This self-contained volume will help both physical scientists and computer scientists see beyond the conventional division between hardware and software to understand the implications of physical theory for information manipulation.

  19. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  20. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-01

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  1. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses.

    PubMed

    Lin, Yu-Pu; Bennett, Christopher H; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-07

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  2. A summary of the research program in the broad field of electronics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.

  3. Get SUNREL | Buildings | NREL

    Science.gov Websites

    ; means (a) copies of the computer program commonly known as SUNREL, and all of the contents of files accordance with the Documentation. 1.2 "Computer" means an electronic device that accepts computer." 1.4 "Licensee" means the Individual Licensee. 1.5 "Licensed Single Site"

  4. Diagnostic abilities of three-dimensional electronic axiography on the basis of ARCUSdigma device.

    PubMed

    Bakalczuk, Magdalena; Bozyk, Andrzej; Iwanek, Michał; Borowicz, Janusz; Sykut, Janusz; Kleinrok, Janusz

    2004-01-01

    The ARCUSdigma is an electronic facebow enabling presentation and graphic analysis of mandibular movements on the computer screen. A kinematic hinge axis of the mandible can be determined using this device. The paper presents the diagnostic potential of the ARCUSdigma in relation to programming an articulator according to individual parameters of mandibular movements of the patient and its application in the diagnosis of temporo-mandibular joints.

  5. Live broadcast of laparoscopic surgery to handheld computers.

    PubMed

    Gandsas, A; McIntire, K; Park, A

    2004-06-01

    Thanks to advances in computer power and miniaturization technology, portable electronic devices are now being used to assist physicians with various applications that extend far beyond Web browsing or sending e-mail. Handheld computers are used for electronic medical records, billing, coding, and to enable convenient access to electronic journals for reference purposes. The results of diagnostic investigations, such as laboratory results, study reports, and still radiographic pictures, can also be downloaded into portable devices for later view. Handheld computer technology, combined with wireless protocols and streaming video technology, has the added potential to become a powerful educational tool for medical students and residents. The purpose of this study was to assess the feasibility of transferring multimedia data in real time to a handheld computer via a wireless network and displaying them on the computer screens of clients at remote locations. A live laparoscopic splenectomy was transmitted live to eight handheld computers simultaneously through our institution's wireless network. All eight viewers were able to view the procedure and to hear the surgeon's comments throughout the entire duration of the operation. Handheld computer technology can play a key role in surgical education by delivering information to surgical residents or students when they are geographically distant from the actual event. Validation of this new technology by conducting clinical research is still needed to determine whether resident physicians or medical students can benefit from the use of handheld computers.

  6. Prediction and measurement results of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Danchenko, V.; Cliff, R. A.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1977-01-01

    Final results from the CMOS Radiation Effects Measurement (CREM) experiment flown on Explorer 55 are presented and discussed, based on about 15 months of observations and measurements. Conclusions are given relating to long-range annealing, effects of operating temperature on semiconductor performance in space, biased and unbiased P-MOS device degradation, unbiased n-channel device performance, changes in device transconductance, and the difference in ionization efficiency between Co-60 gamma rays and 1-Mev Van de Graaff electrons. The performance of devices in a heavily shielded electronic subsystem box within the spacecraft is evaluated and compared. Environment models and computational methods and their impact on device-degradation estimates are being reviewed to determine whether they permit cost-effective design of spacecraft.

  7. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  8. All-spin logic operations: Memory device and reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2018-02-01

    Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.

  9. Biotechnology

    NASA Image and Video Library

    2000-12-15

    NASA is looking to biological techniques that are millions of years old to help it develop new materials and nanotechnology for the 21st century. Sponsored by NASA, Jerzy Bernholc, a principal investigator in the microgravity materials science program and a physics professor at North Carolina State University, Bernholc works with very large-scale computations to model carbon molecules as they assemble themselves to form nanotubes. The strongest confirmed material known, nanotubes are much stronger than graphite, a more common material made of carbon, and weigh six times less than steel. Nanotubes have potential uses such as strain gauges, advanced electronic devices, amd batteries. The strength, light weight, and conductive qualities of nanotubes, shown in light blue in this computed electron distribution, make them excellent components of nanoscale devices. One way to conduct electricity to such devices is through contact with aluminum, shown in dark blue.

  10. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    NASA Astrophysics Data System (ADS)

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  11. High-Tech Conservation: Information-Age Tools Have Revolutionized the Work of Ecologists.

    ERIC Educational Resources Information Center

    Chiles, James R.

    1992-01-01

    Describes a new direction for conservation efforts influenced by the advance of the information age and the introduction of many technologically sophisticated information collecting devices. Devices include microscopic computer chips, miniature electronic components, and Earth-observation satellite. (MCO)

  12. Energy Efficient Digital Logic Using Nanoscale Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Lambson, Brian James

    Increasing demand for information processing in the last 50 years has been largely satisfied by the steadily declining price and improving performance of microelectronic devices. Much of this progress has been made by aggressively scaling the size of semiconductor transistors and metal interconnects that microprocessors are built from. As devices shrink to the size regime in which quantum effects pose significant challenges, new physics may be required in order to continue historical scaling trends. A variety of new devices and physics are currently under investigation throughout the scientific and engineering community to meet these challenges. One of the more drastic proposals on the table is to replace the electronic components of information processors with magnetic components. Magnetic components are already commonplace in computers for their information storage capability. Unlike most electronic devices, magnetic materials can store data in the absence of a power supply. Today's magnetic hard disk drives can routinely hold billions of bits of information and are in widespread commercial use. Their ability to function without a constant power source hints at an intrinsic energy efficiency. The question we investigate in this dissertation is whether or not this advantage can be extended from information storage to the notoriously energy intensive task of information processing. Several proof-of-concept magnetic logic devices were proposed and tested in the past decade. In this dissertation, we build on the prior work by answering fundamental questions about how magnetic devices achieve such high energy efficiency and how they can best function in digital logic applications. The results of this analysis are used to suggest and test improvements to nanomagnetic computing devices. Two of our results are seen as especially important to the field of nanomagnetic computing: (1) we show that it is possible to operate nanomagnetic computers at the fundamental thermodyanimic limits of computation and (2) we develop a nanomagnet with a unique shape that is engineered to significantly improve the reliability of nanomagnetic logic.

  13. Device Would Monitor Body Parameters Continuously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.

  14. Historical perspective on computer development and glossary of terms.

    PubMed

    Honeyman, J C; Dwyer, S J

    1993-01-01

    This article contains a concise history of the development of mechanical and electronic computers, descriptions of the milestones in software development, discussion of the introduction and adoption of computers in radiology, and a glossary of computer terms used frequently in radiology. One of the earliest devices designed to mechanize calculations was the calculating clock, built in 1623. The first programmable electronic computer, the ENIAC (electronic numerical integration and computer), was completed in 1945 at the University of Pennsylvania. Software has developed from early machine language through fourth-generation languages and graphic user interfaces used today. The computer was introduced to radiology initially in the 1960s in nuclear medicine and is now incorporated in many digital imaging modalities throughout radiology. The development of picture archiving and communication systems has resulted in the implementation of several totally digital departments of radiology.

  15. 48 CFR 2452.204-70 - Preservation of, and access to, contract records (tangible and electronically stored information...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or data storage). ESI devices and media include, but are not be limited to: (1) Computers (mainframe...) Personal data assistants (PDAs); (5) External data storage devices including portable devices (e.g., flash drive); and (6) Data storage media (magnetic, e.g., tape; optical, e.g., compact disc, microfilm, etc...

  16. 48 CFR 2452.204-70 - Preservation of, and access to, contract records (tangible and electronically stored information...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or data storage). ESI devices and media include, but are not be limited to: (1) Computers (mainframe...) Personal data assistants (PDAs); (5) External data storage devices including portable devices (e.g., flash drive); and (6) Data storage media (magnetic, e.g., tape; optical, e.g., compact disc, microfilm, etc...

  17. Smartphones as image processing systems for prosthetic vision.

    PubMed

    Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J

    2013-01-01

    The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.

  18. Compact Method for Modeling and Simulation of Memristor Devices

    DTIC Science & Technology

    2011-08-01

    single-valued equations. 15. SUBJECT TERMS Memristor, Neuromorphic , Cognitive, Computing, Memory, Emerging Technology, Computational Intelligence 16...resistance state depends on its previous state and present electrical biasing conditions, and when combined with transistors in a hybrid chip ...computers, reconfigurable electronics and neuromorphic computing [3,4]. According to Chua [4], the memristor behaves like a linear resistor with

  19. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Phones and Tablet Computers, and Components Thereof Institution of Investigation AGENCY: U.S... computers, and components thereof by reason of infringement of certain claims of U.S. Patent No. 5,570,369... mobile phones and tablet computers, and components thereof that infringe one or more of claims 1-3 and 5...

  20. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  1. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  2. The Future of Electronic Device Design: Device and Process Simulation Find Intelligence on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.

    1999-01-01

    We are on the path to meet the major challenges ahead for TCAD (technology computer aided design). The emerging computational grid will ultimately solve the challenge of limited computational power. The Modular TCAD Framework will solve the TCAD software challenge once TCAD software developers realize that there is no other way to meet industry's needs. The modular TCAD framework (MTF) also provides the ideal platform for solving the TCAD model challenge by rapid implementation of models in a partial differential solver.

  3. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    PubMed

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  4. Electronic Presentations in the Corporation: How Are They Being Used.

    ERIC Educational Resources Information Center

    Griffin, Robert E.; And Others

    This study measured the impact of electronic presentations on the business presenter. An electronic presentation was defined as a presentation which made use of a computer, presentation graphics software, and a projection device. A questionnaire was sent to 560 subjects (40% returned) randomly selected from a training and development consortium…

  5. Strategies to use tablet computers for collection of electronic patient-reported outcomes.

    PubMed

    Schick-Makaroff, Kara; Molzahn, Anita

    2015-01-22

    Mobile devices are increasingly being used for data collection in research. However, many researchers do not have experience in collecting data electronically. Hence, the purpose of this short report was to identify issues that emerged in a study that incorporated electronic capture of patient-reported outcomes in clinical settings, and strategies used to address the issues. The issues pertaining to electronic patient-reported outcome data collection were captured qualitatively during a study on use of electronic patient-reported outcomes in two home dialysis units. Fifty-six patients completed three surveys on tablet computers, including the Kidney Disease Quality of Life-36, the Edmonton Symptom Assessment Scale, and a satisfaction measure. Issues that arose throughout the research process were recorded during ethics reviews, implementation process, and data collection. Four core issues emerged including logistics of technology, security, institutional and financial support, and electronic design. Although use of mobile devices for data collection has many benefits, it also poses new challenges for researchers. Advance consideration of possible issues that emerge in the process, and strategies that can help address these issues, may prevent disruption and enhance validity of findings.

  6. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  7. Teleoperated robotic sorting system

    DOEpatents

    Roos, Charles E.; Sommer, Jr., Edward J.; Parrish, Robert H.; Russell, James R.

    2008-06-24

    A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.

  8. Teleoperated robotic sorting system

    DOEpatents

    Roos, Charles E.; Sommer, Edward J.; Parrish, Robert H.; Russell, James R.

    2000-01-01

    A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.

  9. Blind source computer device identification from recorded VoIP calls for forensic investigation.

    PubMed

    Jahanirad, Mehdi; Anuar, Nor Badrul; Wahab, Ainuddin Wahid Abdul

    2017-03-01

    The VoIP services provide fertile ground for criminal activity, thus identifying the transmitting computer devices from recorded VoIP call may help the forensic investigator to reveal useful information. It also proves the authenticity of the call recording submitted to the court as evidence. This paper extended the previous study on the use of recorded VoIP call for blind source computer device identification. Although initial results were promising but theoretical reasoning for this is yet to be found. The study suggested computing entropy of mel-frequency cepstrum coefficients (entropy-MFCC) from near-silent segments as an intrinsic feature set that captures the device response function due to the tolerances in the electronic components of individual computer devices. By applying the supervised learning techniques of naïve Bayesian, linear logistic regression, neural networks and support vector machines to the entropy-MFCC features, state-of-the-art identification accuracy of near 99.9% has been achieved on different sets of computer devices for both call recording and microphone recording scenarios. Furthermore, unsupervised learning techniques, including simple k-means, expectation-maximization and density-based spatial clustering of applications with noise (DBSCAN) provided promising results for call recording dataset by assigning the majority of instances to their correct clusters. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. The Need for Optical Means as an Alternative for Electronic Computing

    NASA Technical Reports Server (NTRS)

    Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.

  11. Issues of nanoelectronics: a possible roadmap.

    PubMed

    Wang, Kang L

    2002-01-01

    In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.

  12. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  13. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  14. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  15. Attention-Deficit/Hyperactivity Disorder and Lifestyle-Related Behaviors in Children

    PubMed Central

    Tong, Lian; Xiong, Xu; Tan, Hui

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with obesity in children. Lifestyle-related behaviors (external eating, screen time and physical inactivity) are well known to be associated with increased risk of obesity, but their associations with ADHD are unclear. The objectives of this study were to clarify the associations between ADHD symptoms in children and their associated lifestyle. A cross sectional study was carried out with a total of 785 primary students aged 9 to 13 years old and their parents were recruited by stratified random sampling from primary schools of China. The Cochran-Mantel-Haenszel (CMH) test was used to examine the relationships between ADHD symptoms and health related behaviors. We found that children with ADHD symptoms were likely to spend more time using a computer during school days; they were also more likely to eat while using a computer. These children were also more likely to eat while seated in a car, using a smart phone, using a computer at bedtime, and snacking before going to sleep than children without ADHD symptoms. An increased risk of obesity in children with ADHD symptoms was associated with the overuse of electronic devices, eating while using electronic devices, and delaying bedtimes to snack and use electronic devices. PMID:27658266

  16. An Exploratory Study on a Chest-Worn Computer for Evaluation of Diet, Physical Activity and Lifestyle

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Baranowski, Thomas; Fernstrom, John D.; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J.; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smartphones and tablets. As “always-on” miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases. PMID:25708374

  17. An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle.

    PubMed

    Sun, Mingui; Burke, Lora E; Baranowski, Thomas; Fernstrom, John D; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smart-phones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases.

  18. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical transport properties since such systems are halfmetallic in nature and promise the possibilities of spin injection and detection. The study was extended to dilute magnetic semiconducting nanowire system of Cd1-xMnxTe which possess both magnetic and semiconducting properties. In summary, the studies made in this thesis will offer a new understanding of spin transport behavior for future technology.

  19. The transforming effect of handheld computers on nursing practice.

    PubMed

    Thompson, Brent W

    2005-01-01

    Handheld computers have the power to transform nursing care. The roots of this power are the shift to decentralization of communication, electronic health records, and nurses' greater need for information at the point of care. This article discusses the effects of handheld resources, calculators, databases, electronic health records, and communication devices on nursing practice. The US government has articulated the necessity of implementing the use of handheld computers in healthcare. Nurse administrators need to encourage and promote the diffusion of this technology, which can reduce costs and improve care.

  20. Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code

    DTIC Science & Technology

    1979-06-01

    dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was

  1. Computer simulation of heterogeneous polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Kodali, Hari K.; Ganapathysubramanian, Baskar

    2012-04-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.

  2. The 3d International Workshop on Computational Electronics

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen M.

    1994-09-01

    The Third International Workshop on Computational Electronics (IWCE) was held at the Benson Hotel in downtown Portland, Oregon, on May 18, 19, and 20, 1994. The workshop was devoted to a broad range of topics in computational electronics related to the simulation of electronic transport in semiconductors and semiconductor devices, particularly those which use large computational resources. The workshop was supported by the National Science Foundation (NSF), the Office of Naval Research and the Army Research Office, as well as local support from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology Education. There were over 100 participants in the Portland workshop, of which more than one quarter represented research groups outside of the United States from Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the United Kingdom. There were a total 81 papers presented at the workshop, 9 invited talks, 26 oral presentations and 46 poster presentations. The emphasis of the contributions reflected the interdisciplinary nature of computational electronics with researchers from the Chemistry, Computer Science, Mathematics, Engineering, and Physics communities participating in the workshop.

  3. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  4. Evaluation of Hands-Free Devices for Space Habitat Maintenance Procedures

    NASA Technical Reports Server (NTRS)

    Hoffman, R. B.; Twyford, E.; Conlee, C. S.; Litaker, H. L.; Solemn, J. A.; Holden

    2007-01-01

    Currently, International Space Station (ISS) crews use a laptop computer to display procedures for performing onboard maintenance tasks. This approach has been determined to be suboptimal. A heuristic evaluation and two studies have been completed to test commercial off-the-shelf (COTS) "near-eye" heads up displays (HUDs) for support of these types of maintenance tasks. In both studies, subjects worked through electronic procedures to perform simple maintenance tasks. As a result of the Phase I study, three HUDs were down-selected to one. In the Phase II study, the HUD was compared against two other electronic display devices - a laptop computer and an e-book reader. Results suggested that adjustability and stability of the HUD display were the most significant acceptability factors to consider for near-eye displays. The Phase II study uncovered a number of advantages and disadvantages of the HUD relative to the laptop and e-book reader for interacting with electronic procedures.

  5. Computer-mediated communication and the Gallaudet University community: a preliminary report.

    PubMed

    Hogg, Nanette M; Lomicky, Carol S; Weiner, Stephen F

    2008-01-01

    The study examined the use of computer-mediated communication (CMC) among individuals involved in a conflict sparked by the appointment of an administrator as president-designate of Gallaudet University in 2006. CMC was defined as forms of communication used for transmitting (sharing) information through networks with digital devices. There were 662 survey respondents. Respondents reported overwhelmingly (98%) that they used CMC to communicate. Students and alumni reported CMC use in larger proportions than any other group. The favorite devices among all respondents were Sidekicks, stationary computers, and laptops. Half of all respondents also reported using some form of video device. Nearly all reported using e-mail; respondents also identified Web surfing, text messaging, and blogging as popular CMC activities. The authors plan another article reporting on computer and electronic technology use as a mechanism connecting collective identity to social movements.

  6. Bilayer avalanche spin-diode logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien; Fadel, Eric R.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  7. An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle

    USDA-ARS?s Scientific Manuscript database

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smartphones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we p...

  8. Investigations of optical and thermoelectric response of direct band gap Ca3XO (X = Si, Ge) anti-perovskites stabilized in cubic and orthorhombic phases

    NASA Astrophysics Data System (ADS)

    Mahmood, Q.; Ashraf, A.; Hassan, M.

    2018-02-01

    We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.

  9. The molecular electronic device and the biochip computer: present status.

    PubMed

    Haddon, R C; Lamola, A A

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization.

  10. Cross-sectional study of use of electronic media by secondary school students in Bangkok, Thailand.

    PubMed

    Kiatrungrit, Komsan; Hongsanguansri, Sirichai

    2014-08-01

    There is increasing concern about the negative psychological effects of excessive use of various electronic media by adolescents but the monitoring of these behaviors in low- and middle-income countries has some methodological flaws. Assess the use of all types of electronic media among secondary school students in Bangkok, Thailand. A stratified random sample of students from four schools in Bangkok completed a modified version of a questionnaire used in a major study in the United States. Among the 768 participants, 443 (57.7%) were female and 325 (42.3%) were male; their mean (sd) age was 15.4 (1.5) years. Almost all respondents had easy access to multiple types of electronic media; 94% had mobile phones, 77% had a television in their bedroom, and 47% had internet access in their bedroom. Over the prior day 39% had watched television shows or movies for more than 3 hours, 28% spent more than 3 hours on social networking sites, 25% listened to music for more than 3 hours, and 18% played computer games for more than 3 hours. Overall, 27% reported using electronic devices for more than 12 hours in the previous day. Only 19% reported parental rules about the use of electronic devices in the home that were regularly enforced. Time engaged in the various activities was not related to parental education or, with the exception of time playing computer games, to students' grade point average. Younger students and male students spent less time than older students and female students using these devices to engage in interactive social activities (e.g., talking on the phone or social networking), while male students spent much more time than female students playing games on the devices. Adolescents spend a substantial part of every single day using different types of electronic devices. Longitudinal studies with precise time logs of device usage and descriptions of the type of content accessed are needed to determine the extent to which these activities have negative (or positive) effects on the social and psychological development of adolescents.

  11. Cross-sectional study of use of electronic media by secondary school students in Bangkok, Thailand

    PubMed Central

    KIATRUNGRIT, Komsan; HONGSANGUANSRI, Sirichai

    2014-01-01

    Background There is increasing concern about the negative psychological effects of excessive use of various electronic media by adolescents but the monitoring of these behaviors in low- and middle-income countries has some methodological flaws. Aim Assess the use of all types of electronic media among secondary school students in Bangkok, Thailand. Methods A stratified random sample of students from four schools in Bangkok completed a modified version of a questionnaire used in a major study in the United States. Results Among the 768 participants, 443 (57.7%) were female and 325 (42.3%) were male; their mean (sd) age was 15.4 (1.5) years. Almost all respondents had easy access to multiple types of electronic media; 94% had mobile phones, 77% had a television in their bedroom, and 47% had internet access in their bedroom. Over the prior day 39% had watched television shows or movies for more than 3 hours, 28% spent more than 3 hours on social networking sites, 25% listened to music for more than 3 hours, and 18% played computer games for more than 3 hours. Overall, 27% reported using electronic devices for more than 12 hours in the previous day. Only 19% reported parental rules about the use of electronic devices in the home that were regularly enforced. Time engaged in the various activities was not related to parental education or, with the exception of time playing computer games, to students’ grade point average. Younger students and male students spent less time than older students and female students using these devices to engage in interactive social activities (e.g., talking on the phone or social networking), while male students spent much more time than female students playing games on the devices. Conclusion Adolescents spend a substantial part of every single day using different types of electronic devices. Longitudinal studies with precise time logs of device usage and descriptions of the type of content accessed are needed to determine the extent to which these activities have negative (or positive) effects on the social and psychological development of adolescents. PMID:25317008

  12. The molecular electronic device and the biochip computer: present status.

    PubMed Central

    Haddon, R C; Lamola, A A

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization. PMID:3856865

  13. 47 CFR 15.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... person or persons. Such a device may be used for auricular training in an education institution, for... electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval, or...

  14. Human computer confluence applied in healthcare and rehabilitation.

    PubMed

    Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen

    2012-01-01

    Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.

  15. Potential resource and toxicity impacts from metals in waste electronic devices.

    PubMed

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.

  16. Exploring TeleRobotics: A Radio-Controlled Robot

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2007-01-01

    Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…

  17. Controlling user access to electronic resources without password

    DOEpatents

    Smith, Fred Hewitt

    2017-08-22

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes obtaining an image from a communication device of a user. An individual and a landmark are identified within the image. Determinations are made that the individual is the user and that the landmark is a predetermined landmark. Access to a restricted computing resource is granted based on the determining that the individual is the user and that the landmark is the predetermined landmark. Other embodiments are disclosed.

  18. PLASMAP: an interactive computational tool for storage, retrieval and device-independent graphic display of conventional restriction maps.

    PubMed Central

    Stone, B N; Griesinger, G L; Modelevsky, J L

    1984-01-01

    We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096

  19. A light-stimulated synaptic device based on graphene hybrid phototransistor

    NASA Astrophysics Data System (ADS)

    Qin, Shuchao; Wang, Fengqiu; Liu, Yujie; Wan, Qing; Wang, Xinran; Xu, Yongbing; Shi, Yi; Wang, Xiaomu; Zhang, Rong

    2017-09-01

    Neuromorphic chips refer to an unconventional computing architecture that is modelled on biological brains. They are increasingly employed for processing sensory data for machine vision, context cognition, and decision making. Despite rapid advances, neuromorphic computing has remained largely an electronic technology, making it a challenge to access the superior computing features provided by photons, or to directly process vision data that has increasing importance to artificial intelligence. Here we report a novel light-stimulated synaptic device based on a graphene-carbon nanotube hybrid phototransistor. Significantly, the device can respond to optical stimuli in a highly neuron-like fashion and exhibits flexible tuning of both short- and long-term plasticity. These features combined with the spatiotemporal processability make our device a capable counterpart to today’s electrically-driven artificial synapses, with superior reconfigurable capabilities. In addition, our device allows for generic optical spike processing, which provides a foundation for more sophisticated computing. The silicon-compatible, multifunctional photosensitive synapse opens up a new opportunity for neural networks enabled by photonics and extends current neuromorphic systems in terms of system complexities and functionalities.

  20. A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people.

    PubMed

    Corralejo, Rebeca; Nicolás-Alonso, Luis F; Alvarez, Daniel; Hornero, Roberto

    2014-10-01

    The present study aims at developing and assessing an assistive tool for operating electronic devices at home by means of a P300-based brain-computer interface (BCI). Fifteen severely impaired subjects participated in the study. The developed tool allows users to interact with their usual environment fulfilling their main needs. It allows for navigation through ten menus and to manage up to 113 control commands from eight electronic devices. Ten out of the fifteen subjects were able to operate the proposed tool with accuracy above 77 %. Eight out of them reached accuracies higher than 95 %. Moreover, bitrates up to 20.1 bit/min were achieved. The novelty of this study lies in the use of an environment control application in a real scenario: real devices managed by potential BCI end-users. Although impaired users might not be able to set up this system without aid of others, this study takes a significant step to evaluate the degree to which such populations could eventually operate a stand-alone system. Our results suggest that neither the type nor the degree of disability is a relevant issue to suitably operate a P300-based BCI. Hence, it could be useful to assist disabled people at home improving their personal autonomy.

  1. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  2. Computer analysis of the negative differential resistance switching phenomenon of double-injection devices

    NASA Technical Reports Server (NTRS)

    Shieh, Tsay-Jiu

    1989-01-01

    By directly solving the semiconductor differential equations for the double-injection (DI) devices involving two interacting deep levels, the authors studied the negative differential resistance switching characteristic and its relationship with the device dimension, doping level, and dependence on the deep impurity profile. Computer simulation showed that although one can increase the threshold voltage by increasing the device length, the excessive holding voltage that would follow would put this device in a very limited application such as pulse power source. The excessive leakage current in the low conductance state also jeopardizes the attempt to use the device for any practical purpose. Unless there are new materials and deep impurities found that have a great differential hole and electron capture cross sections and a reasonable energy bandgap for low intrinsic carrier concentration, no big improvement in the fate of DI devices is expected in the near future.

  3. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  4. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  5. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  6. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  7. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  8. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less

  9. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  10. Computer-aided design and experimental investigation of a hydrodynamic device: the microwire electrode

    PubMed

    Fulian; Gooch; Fisher; Stevens; Compton

    2000-08-01

    The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.

  11. Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties

    NASA Astrophysics Data System (ADS)

    Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.

    2017-05-01

    Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

  12. Lithium battery fires: implications for air medical transport.

    PubMed

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  13. The Art of Electronics

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Hill, Winfield

    2015-04-01

    1. Foundations; 2. Bipolar transistors; 3. Field effect transistors; 4. Operational amplifiers; 5. Precision circuits; 6. Filters; 7. Oscillators and timers; 8. Low noise techniques and transimpedance; 9. Power regulation; 10. Digital electronics; 11. Programmable logic devices; 12. Logical interfacing; 13. Digital meets analog; 14. Computers, controllers, and data links; 15. Microcontrollers.

  14. 75 FR 1757 - Office of Special Education and Rehabilitative Services (OSERS); Overview Information; National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... as artificial intelligence or information technology devices, software, and systems. For more... in an accessible format (e.g., braille, large print, audiotape, or computer diskette) by contacting... electronic application, you may wish to print a copy of it for your records. After you electronically submit...

  15. Mobile Learning: A Framework and Evaluation

    ERIC Educational Resources Information Center

    Motiwalla, Luvai F.

    2007-01-01

    Wireless data communications in form of Short Message Service (SMS) and Wireless Access Protocols (WAP) browsers have gained global popularity, yet, not much has been done to extend the usage of these devices in electronic learning (e-learning). This project explores the extension of e-learning into wireless/handheld (W/H) computing devices with…

  16. Comparing Scanning Modes for Youths with Cerebral Palsy. Final Report.

    ERIC Educational Resources Information Center

    Ottenbacher, Kenneth J.; Angelo, Jennifer

    This study of 22 individuals (ages 13-20) with cerebral palsy investigated the use of scanning, an interface technique that allows access to assistive devices such as communication boards, electronic augmentative communication devices, and computers by using a pointer, either a finger or a cursor. This packet of information includes the findings…

  17. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  18. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    PubMed

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigating the need for clinicians to use tablet computers with a newly envisioned electronic health record.

    PubMed

    Saleem, Jason J; Savoy, April; Etherton, Gale; Herout, Jennifer

    2018-02-01

    The Veterans Health Administration (VHA) has deployed a large number of tablet computers in the last several years. However, little is known about how clinicians may use these devices with a newly planned Web-based electronic health record (EHR), as well as other clinical tools. The objective of this study was to understand the types of use that can be expected of tablet computers versus desktops. Semi-structured interviews were conducted with 24 clinicians at a Veterans Health Administration (VHA) Medical Center. An inductive qualitative analysis resulted in findings organized around recurrent themes of: (1) Barriers, (2) Facilitators, (3) Current Use, (4) Anticipated Use, (5) Patient Interaction, and (6) Connection. Our study generated several recommendations for the use of tablet computers with new health information technology tools being developed. Continuous connectivity for the mobile device is essential to avoid interruptions and clinician frustration. Also, making a physical keyboard available as an option for the tablet was a clear desire from the clinicians. Larger tablets (e.g., regular size iPad as compared to an iPad mini) were preferred. Being able to use secure messaging tools with the tablet computer was another consistent finding. Finally, more simplicity is needed for accessing patient data on mobile devices, while balancing the important need for adequate security. Published by Elsevier B.V.

  20. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  1. Optically programmable electron spin memory using semiconductor quantum dots.

    PubMed

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  2. TEACHING ENGINEERING DESIGN, A STUDY OF JOBSHOP.

    ERIC Educational Resources Information Center

    ENTWISLE, DORIS R.; HUGGINS, W.H.

    THE USE OF A COMPUTER PROGRAM BY ENGINEERING STUDENTS TO SIMULATE A JOB SHOP THAT MANUFACTURES ELECTRONIC DEVICES HAS INDICATED THAT SIMULATION METHODS OFFER REALISTIC ASSISTANCE IN TEACHING. EACH STUDENT IN THE STUDY SUBMITTED SPECIFICATIONS FOR A CIRCUIT DESIGN AND, FROM THE COMPUTER, RECEIVED PERFORMANCE ASSESSMENTS OF THE CIRCUIT WHICH…

  3. Computer Service Technician "COMPS." Curriculum Grant 1985.

    ERIC Educational Resources Information Center

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in computer service technology developed at Schoolcraft College, Livonia, Michigan. The program is designed to give students a strong background in the fundamentals of electricity, electronic devices, and basic circuits (digital and linear). The curriculum includes laboratory demonstrations of the…

  4. No Special Equipment Required: The Accessibility Features Built into the Windows and Macintosh Operating Systems make Computers Accessible for Students with Special Needs

    ERIC Educational Resources Information Center

    Kimball,Walter H.; Cohen,Libby G.; Dimmick,Deb; Mills,Rick

    2003-01-01

    The proliferation of computers and other electronic learning devices has made knowledge and communication accessible to people with a wide range of abilities. Both Windows and Macintosh computers have accessibility options to help with many different special needs. This documents discusses solutions for: (1) visual impairments; (2) hearing…

  5. Fundamental device design considerations in the development of disruptive nanoelectronics.

    PubMed

    Singh, R; Poole, J O; Poole, K F; Vaidya, S D

    2002-01-01

    In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.

  6. Data Collection with Linux in the Undergraduate Physics Lab

    NASA Astrophysics Data System (ADS)

    Ramey, R. Dwayne

    2004-11-01

    Electronic data devices such as photogates can greatly facilitate data collection in the undergraduate physics laboratory. Unfortunately, these devices have several practical drawbacks. While the photogates themselves are not particularly expensive, manufacturers of these devices have created intermediary hardware devices for data buffering and manipulation. These devices, while useful in some contexts, greatly increase the overall price of data collection and, through the use of proprietary software, limit the ability of the enduser to customize the software. As an alternative, I outline the procedure for establishing a computer-based data collection system that consists of opensource software and user constructed connections. The data collection system consists of the wiring needed to connect a data device to a computer and the software needed to collect and manipulate data. Data devices can be connected to a computer through either through the USB port or the gameport of a sound card. Software capable of collecting and manipulating the data from a photogate type device on a Linux system has been developed and will be discrussed. Results for typical undergraduate photogate based experiments will be shown, error limits and data collect rates will be discussed for both the gameport and USB connections.

  7. Quantum computing: a prime modality in neurosurgery's future.

    PubMed

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2012-11-01

    With each significant development in the field of neurosurgery, our dependence on computers, small and large, has continuously increased. From something as mundane as bipolar cautery to sophisticated intraoperative navigation with real-time magnetic resonance imaging-assisted surgical guidance, both technologies, however simple or complex, require computational processing power to function. The next frontier for neurosurgery involves developing a greater understanding of the brain and furthering our capabilities as surgeons to directly affect brain circuitry and function. This has come in the form of implantable devices that can electronically and nondestructively influence the cortex and nuclei with the purpose of restoring neuronal function and improving quality of life. We are now transitioning from devices that are turned on and left alone, such as vagus nerve stimulators and deep brain stimulators, to "smart" devices that can listen and react to the body as the situation may dictate. The development of quantum computers and their potential to be thousands, if not millions, of times faster than current "classical" computers, will significantly affect the neurosciences, especially the field of neurorehabilitation and neuromodulation. Quantum computers may advance our understanding of the neural code and, in turn, better develop and program implantable neural devices. When quantum computers reach the point where we can actually implant such devices in patients, the possibilities of what can be done to interface and restore neural function will be limitless. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics.

    PubMed

    Lima, Leandro R F; Hernández, Alexis R; Pinheiro, Felipe A; Lewenkopf, Caio

    2016-12-21

    Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.

  9. Association between electronic equipment in the bedroom and sedentary lifestyle, physical activity, and body mass index of children.

    PubMed

    Ferrari, Gerson Luis de Moraes; Araújo, Timóteo Leandro; Oliveira, Luis Carlos; Matsudo, Victor; Fisberg, Mauro

    2015-01-01

    To describe the association between electronic devices in the bedroom with sedentary time and physical activity, both assessed by accelerometry, in addition to body mass index in children from São Caetano do Sul. The sample consisted of 441 children. The presence of electronic equipment (television, personal computer, and videogames) in the bedroom was assessed by a questionnaire. For seven consecutive days, children used an accelerometer to objectively monitor the sedentary time and moderate-to-vigorous physical activity. Body mass index was categorized as suggested by the World Health Organization. Overall, 73.9%, 54.2% and 42.8% of children had TV, computer, and videogames in the bedroom, respectively, and spent an average of 500.7 and 59.1 min/day of sedentary time and moderate-to-vigorous physical activity. Of the children, 45.3% were overweight/obese. Girls with a computer in the bedroom (45 min/day) performed less moderate-to-vigorous physical activity than those without it (51.4 min/day). Similar results were observed for body mass index in boys. Moderate-to-vigorous physical activity was higher and body mass index was lower in children that had no electronic equipment in the bedroom. Presence of a computer (β=-4.798) and the combination TV+computer (β=-3.233) were negatively associated with moderate-to-vigorous physical activity. Videogames and the combinations with two or three electronic devices were positively associated with body mass index. Sedentary time was not associated with electronic equipment. Electronic equipment in the children's bedroom can negatively affect moderate-to-vigorous physical activity and body mass index regardless of gender, school, and annual family income, which can contribute to physical inactivity and childhood obesity. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  10. Integrated IMA (Information Mission Areas) IC (Information Center) Guide

    DTIC Science & Technology

    1989-06-01

    COMPUTER AIDED DESIGN / COMPUTER AIDED MANUFACTURE 8-8 8.3.7 LIQUID CRYSTAL DISPLAY PANELS 8-8 8.3.8 ARTIFICIAL INTELLIGENCE APPLIED TO VI 8-9 8.4...2 10.3.1 DESKTOP PUBLISHING 10-3 10.3.2 INTELLIGENT COPIERS 10-5 10.3.3 ELECTRONIC ALTERNATIVES TO PRINTED DOCUMENTS 10-5 10.3.4 ELECTRONIC FORMS...Optical Disk LCD Units Storage Image Scanners Graphics Forms Output Generation Copiers Devices Software Optical Disk Intelligent Storage Copiers Work Group

  11. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    NASA Astrophysics Data System (ADS)

    Demis, E. C.; Aguilera, R.; Sillin, H. O.; Scharnhorst, K.; Sandouk, E. J.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K.

    2015-05-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  12. Conduction at domain walls in oxide multiferroics

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  13. Conduction at domain walls in oxide multiferroics.

    PubMed

    Seidel, J; Martin, L W; He, Q; Zhan, Q; Chu, Y-H; Rother, A; Hawkridge, M E; Maksymovych, P; Yu, P; Gajek, M; Balke, N; Kalinin, S V; Gemming, S; Wang, F; Catalan, G; Scott, J F; Spaldin, N A; Orenstein, J; Ramesh, R

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  14. Computational Nanotechnology of Nanotubes, Composites, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation addresses carbon nanotubes, their mechanical and thermal properties, and their structure, as well as possible miniature devices which may be assembled in the future from carbon nanotubes.

  15. Choroideremia

    MedlinePlus

    ... in Your Area Stories of Hope Videos Resources Low Vision Specialists Retinal Physicians My Retina Tracker Registry Genetic ... a treatment is discovered, help is available through low-vision aids, including optical, electronic, and computer-based devices. ...

  16. 25 CFR 502.7 - Electronic, computer or other technologic aid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... other technologic aid means any machine or device that: (1) Assists a player or the playing of a game... not limited to, machines or devices that: (1) Broaden the participation levels in a common game; (2) Facilitate communication between and among gaming sites; or (3) Allow a player to play a game with or against...

  17. 25 CFR 502.7 - Electronic, computer or other technologic aid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other technologic aid means any machine or device that: (1) Assists a player or the playing of a game... not limited to, machines or devices that: (1) Broaden the participation levels in a common game; (2) Facilitate communication between and among gaming sites; or (3) Allow a player to play a game with or against...

  18. 25 CFR 502.7 - Electronic, computer or other technologic aid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other technologic aid means any machine or device that: (1) Assists a player or the playing of a game... not limited to, machines or devices that: (1) Broaden the participation levels in a common game; (2) Facilitate communication between and among gaming sites; or (3) Allow a player to play a game with or against...

  19. 25 CFR 502.7 - Electronic, computer or other technologic aid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... other technologic aid means any machine or device that: (1) Assists a player or the playing of a game... not limited to, machines or devices that: (1) Broaden the participation levels in a common game; (2) Facilitate communication between and among gaming sites; or (3) Allow a player to play a game with or against...

  20. 25 CFR 502.7 - Electronic, computer or other technologic aid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... other technologic aid means any machine or device that: (1) Assists a player or the playing of a game... not limited to, machines or devices that: (1) Broaden the participation levels in a common game; (2) Facilitate communication between and among gaming sites; or (3) Allow a player to play a game with or against...

  1. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  2. Handheld Computing

    DTIC Science & Technology

    2005-06-01

    company has devel- oped an exciting prototype technology: … that lets users of PDAs and similar mobile devices put data into their handheld systems...for a class of small, easily carried electronic devices used to store and retrieve infor- mation” [2], were at one time viewed as lit- tle more than...some of the many ways that PDA technology is currently being used within the DoD: • The Pocket-Sized Forward Entry Device (PFED) is a ruggedized PDA

  3. Green's function calculations for semi-infinite carbon nanotubes

    NASA Astrophysics Data System (ADS)

    John, D. L.; Pulfrey, D. L.

    2006-02-01

    In the modeling of nanoscale electronic devices, the non-equilibrium Green's function technique is gaining increasing popularity. One complication in this method is the need for computation of the self-energy functions that account for the interactions between the active portion of a device and its leads. In the one-dimensional case, these functions may be computed analytically. In higher dimensions, a numerical approach is required. In this work, we generalize earlier methods that were developed for tight-binding Hamiltonians, and present results for the case of a carbon nanotube.

  4. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  5. Spin voltage generation through optical excitation of complementary spin populations

    NASA Astrophysics Data System (ADS)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  6. Protein bioelectronics: a review of what we do and do not know

    NASA Astrophysics Data System (ADS)

    Bostick, Christopher D.; Mukhopadhyay, Sabyasachi; Pecht, Israel; Sheves, Mordechai; Cahen, David; Lederman, David

    2018-02-01

    We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.

  7. Description of a Mobile-based Electronic Informed Consent System Development.

    PubMed

    Hwang, Min-A; Kwak, In Ja

    2015-01-01

    Seoul National University Hospital constructed and implemented a computer-based informed consent system in December 2011. As of 2013, 30% of the informed consents were still filled out manually on paper. Patients and medical staff continuously suggested the implementation of a system for electronic informed consent using portable devices. Therefore, a mobile-based system for electronic informed consent was developed in 2013 to prevent the issues that arise with computer-based systems and paper informed consent. The rate of filling out electronic informed consent increased from 69% to 95% following the implementation of the mobile-based electronic informed consent. This construction of a mobile-based electronic informed consent system would be a good reference point for the development of a mobile-based Electronic Medical Record and for various mobile system environments in medical institutions.

  8. Digital optical computers at the optoelectronic computing systems center

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  9. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  10. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  11. Design optimization of beta- and photovoltaic conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.; Blum, A.; Fischer-Colbrie, E.

    1976-01-08

    This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less

  12. CDC Vital Signs: Alcohol Screening and Counseling

    MedlinePlus

    ... these services in state and community programs, using computers, smartphones, and other electronic devices. Help conduct community ... be made worse by drinking. Top of Page Science Behind the Issue MMWR Science Clips Related Pages ...

  13. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  14. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  15. Digital Media and Latino Families: New Channels for Learning, Parenting, and Local Organizing

    ERIC Educational Resources Information Center

    Fuller, Bruce; Lizárraga, José Ramon; Gray, James H.

    2015-01-01

    Latino families in America increasingly enjoy access to a dizzying array of content on a variety of electronic devices, from televisions and video games to personal computers and mobile devices. Bruce Fuller, José Ramón Lizárraga, James H. Gray raise pressing questions that face Latino families as they adopt technologies that both have the…

  16. A Study on Mobile Learning as a Learning Style in Modern Research Practice

    ERIC Educational Resources Information Center

    Joan, D. R. Robert

    2013-01-01

    Mobile learning is a kind of learning that takes place via a portable handheld electronic device. It also refers to learning via other kinds of mobile devices such as tablet computers, net-books and digital readers. The objective of mobile learning is to provide the learner the ability to assimilate learning anywhere and at anytime. Mobile devices…

  17. Numerical Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy

    2003-01-01

    Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.

  18. The technological obsolescence of the Brazilian eletronic ballot box.

    PubMed

    Camargo, Carlos Rogério; Faust, Richard; Merino, Eugênio; Stefani, Clarissa

    2012-01-01

    The electronic ballot box has played a significant role in the consolidation of Brazilian political process. It has enabled paper ballots extinction as a support for the elector's vote as well as for voting counting processes. It is also widely known that election automation has decisively collaborated to the legitimization of Brazilian democracy, getting rid of doubts about the winning candidates. In 1995, when the project was conceived, it represented a compromise solution, balancing technical efficiency and costs trade-offs. However, this architecture currently limits the ergonomic enhancements to the device operation, transportation, maintenance and storage. Nowadays are available in the market devices of reduced dimensions, based on novel computational architecture, namely tablet computers, which emphasizes usability, autonomy, portability, security and low power consumption. Therefore, the proposal under discussion is the replacement of the current electronic ballot boxes for tablet-based devices to improve the ergonomics aspects of the Brazilian voting process. These devices offer a plethora of integrated features (e.g., capacitive touchscreen, speakers, microphone) that enable highly usable and simple user interfaces, in addition to enhancing the voting process security mechanisms. Finally, their operational systems features allow for the development of highly secure applications, suitable to the requirements of a voting process.

  19. Investigation of Electronic Generation of Visual Images for Air Force Technical Training. Interim Report for Period May 1974-October 1975.

    ERIC Educational Resources Information Center

    Filinger, Ronald H.; Hall, Paul W.

    Because large scale individualized learning systems place excessive demands on conventional means of producing audiovisual software, electronic image generation has been investigated as an alternative. A prototype, experimental device, Scanimate-500, was designed and built by the Computer Image Corporation. It uses photographic, television, and…

  20. Computational Nanotechnology of Molecular Materials, Electronics and Machines

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.

  1. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  2. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    PubMed

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  3. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  4. Smart Technology in Lung Disease Clinical Trials.

    PubMed

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.

  5. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors

    NASA Astrophysics Data System (ADS)

    Weber, Walter M.; Mikolajick, Thomas

    2017-06-01

    Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.

  6. Programmable hardware for reconfigurable computing systems

    NASA Astrophysics Data System (ADS)

    Smith, Stephen

    1996-10-01

    In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.

  7. The application of computer assisted technologies (CAT) in the rehabilitation of cognitive functions in psychiatric disorders of childhood and adolescence.

    PubMed

    Srebnicki, Tomasz; Bryńska, Anita

    2016-01-01

    First applications of computer-assisted technologies (CAT) in the rehabilitation of cognitive deficits, including child and adolescent psychiatric disorders date back to the 80's last century. Recent developments in computer technologies, wide access to the Internet and vast expansion of electronic devices resulted in dynamic increase in therapeutic software as well as supporting devices. The aim of computer assisted technologies is the improvement in the comfort and quality of life as well as the rehabilitation of impaired functions. The goal of the article is the presentation of most common computer-assisted technologies used in the therapy of children and adolescents with cognitive deficits as well as the literature review of their effectiveness including the challenges and limitations in regard to the implementation of such interventions.

  8. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Development of an electronic manometer for intrapleural pressure monitoring.

    PubMed

    Krenke, Rafał; Guć, Maciej; Grabczak, Elżbieta Magdalena; Michnikowski, Marcin; Pałko, Krzysztof Jakub; Chazan, Ryszarda; Gólczewski, Tomasz

    2011-01-01

    Measurement of intrapleural pressure is useful during various pleural procedures. However, a pleural manometer is rarely available. The aim of this study was to (1) construct an electronic pleural manometer, (2) assess the accuracy of the measurements done with the new device, (3) calculate the costs of the manometer construction and (4) perform an initial evaluation of the device in a clinical setting. Only widely accessible elements were used to construct the device. A vascular pressure transducer was used to transform pressure into an electronic signal. Reliability of the measurements was evaluated in a laboratory setting in a prospective, single-blind manner by comparing the results with those measured by a water manometer. Functionality of the device was assessed during therapeutic thoracentesis. The cost of the new pleural manometer was calculated. We built a small, portable device which can precisely measure intrapleural pressure. The measurement results showed very high agreement with those registered with a water manometer (r = 0.999; p < 0.001). The initial evaluation of the electronic manometer during therapeutic thoracentesis showed it was easy to use. The total time needed for 6 measurements after withdrawal of different volumes of pleural fluid in 1 patient did not exceed 6 min. The total cost of the device was calculated to be <2,000 EUR. In the face of very limited offer of commercially available pleural manometers, it is possible to successfully construct a self-made, reliable, electronic pleural manometer at modest costs. The device is easy to use and enables data display and storage in the personal computer. Copyright © 2011 S. Karger AG, Basel.

  11. Does long time spending on the electronic devices affect the reading abilities? A cross-sectional study among Chinese school-aged children.

    PubMed

    He, Zhen; Shao, Shanshan; Zhou, Jie; Ke, Juntao; Kong, Rui; Guo, Shengnan; Zhang, Jiajia; Song, Ranran

    2014-12-01

    Home literacy environment (HLE) is one of most important modifiable risk factors to dyslexia. With the development in technology, we include the electronic devices usage at home, such as computers and televisions, to the definition of HLE and investigate its impact on dyslexia based on the on-going project of Tongji's Reading Environment and Dyslexia Study. The data include 5063 children, primary school students (grade 3-grade 6), from a middle-sized city in China. We apply the principal component analysis (PCA) to reduce the large dimension of variables in HLE, and find the first three components, denoted as PC1, PC2 and PC3, can explain 95.45% of HLE information. PC1 and PC2 demonstrate strong positive association with 'total time spending on electronic devices' and 'literacy-related activity', respectively. PC3 demonstrates strong negative association with 'restrictions on using electronic devices'. From the generalized linear model, we find that PC1 significantly increases the risk of dyslexia (OR = 1.043, 95% CI: 1.018-1.070), while PC2 significantly decreases the risk of dyslexia (OR = 0.839, 95% CI: 0.795-0.886). Therefore, reducing the total time spending on electronic devices and increasing the literacy-related activity would be the potential protective factors for dyslexic children in China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  13. NASA SBIR product catalog, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.

  14. Managing mapping data using commercial data base management software.

    USGS Publications Warehouse

    Elassal, A.A.

    1985-01-01

    Electronic computers are involved in almost every aspect of the map making process. This involvement has become so thorough that it is practically impossible to find a recently developed process or device in the mapping field which does not employ digital processing in some form or another. This trend, which has been evolving over two decades, is accelerated by the significant improvements in capility, reliability, and cost-effectiveness of electronic devices. Computerized mapping processes and devices share a common need for machine readable data. Integrating groups of these components into automated mapping systems requires careful planning for data flow amongst them. Exploring the utility of commercial data base management software to assist in this task is the subject of this paper. -Author

  15. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  16. Chemical Vapor Deposition Of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.

    1993-01-01

    Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.

  17. Bending induced electrical response variations in ultra-thin flexible chips and device modeling

    NASA Astrophysics Data System (ADS)

    Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder

    2017-09-01

    Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.

  18. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Li, G., E-mail: gli@clemson.edu

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less

  19. Final report for the DOE Early Career Award #DE-SC0003912

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Arthi

    This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less

  20. Highly-Parallel, Highly-Compact Computing Structures Implemented in Nanotechnology

    NASA Technical Reports Server (NTRS)

    Crawley, D. G.; Duff, M. J. B.; Fountain, T. J.; Moffat, C. D.; Tomlinson, C. D.

    1995-01-01

    In this paper, we describe work in which we are evaluating how the evolving properties of nano-electronic devices could best be utilized in highly parallel computing structures. Because of their combination of high performance, low power, and extreme compactness, such structures would have obvious applications in spaceborne environments, both for general mission control and for on-board data analysis. However, the anticipated properties of nano-devices mean that the optimum architecture for such systems is by no means certain. Candidates include single instruction multiple datastream (SIMD) arrays, neural networks, and multiple instruction multiple datastream (MIMD) assemblies.

  1. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  2. Interface induced spin-orbit interaction in silicon quantum dots and prospects of scalability

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Wai, Kok; Veldhorst, Menno; Hwang, Jason; Yang, Henry; Klimeck, Gerhard; Dzurak, Andrew; Rahman, Rajib

    A scalable quantum computing architecture requires reproducibility over key qubit properties, like resonance frequency, coherence time etc. Randomness in these properties would necessitate individual knowledge of each qubit in a quantum computer. Spin qubits hosted in Silicon (Si) quantum dots (QD) is promising as a potential building block for a large-scale quantum computer, because of their longer coherence times. The Stark shift of the electron g-factor in these QDs has been used to selectively address multiple qubits. From atomistic tight-binding studies we investigated the effect of interface non-ideality on the Stark shift of the g-factor in a Si QD. We find that based on the location of a monoatomic step at the interface with respect to the dot center both the sign and magnitude of the Stark shift change. Thus the presence of interface steps in these devices will cause variability in electron g-factor and its Stark shift based on the location of the qubit. This behavior will also cause varying sensitivity to charge noise from one qubit to another, which will randomize the dephasing times T2*. This predicted device-to-device variability is experimentally observed recently in three qubits fabricated at a Si/Si02 interface, which validates the issues discussed.

  3. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-06-02

    Electronics •Superconducting Wiring in LSI •One Wafer Computer •Josephson Devices •SQUID Devices Infrared Sensor Magnetic Sensor •Superconducting...Guinier- de Wolff monochromatic focusing camera (CoK* radiation) and with Philips APD-10 auto-powder diffractometer (CuKÄ radiation). Pure Si was used as...crystallized and smooth surface. The values indicated in Fig. 2 were the thickness monitored by a quartz oscillating sensor located near the

  4. Solution-Processed Carbon Nanotube True Random Number Generator.

    PubMed

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  5. Organic electronics: Battery-like artificial synapses

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua; Xia, Qiangfei

    2017-04-01

    Borrowing the operating principles of a battery, a three-terminal organic switch has been developed on a flexible plastic substrate. The device consumes very little power and can be used as an artificial synapse for brain-inspired computing.

  6. A/C Interface: The Electronic Toolbox. Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1985-01-01

    Discusses new solid-state transducers, arrays of nonspecific detectors, hardware and firmware computational elements, and other devices that are transforming modern analytical chemistry. Examples in which microelectroic sensors are used to solve 14 problems are included. (JN)

  7. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  8. Calculation of the figure of merit for carbon nanotubes based devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2004-03-01

    The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.

  9. A correlated nickelate synaptic transistor.

    PubMed

    Shi, Jian; Ha, Sieu D; Zhou, You; Schoofs, Frank; Ramanathan, Shriram

    2013-01-01

    Inspired by biological neural systems, neuromorphic devices may open up new computing paradigms to explore cognition, learning and limits of parallel computation. Here we report the demonstration of a synaptic transistor with SmNiO₃, a correlated electron system with insulator-metal transition temperature at 130°C in bulk form. Non-volatile resistance and synaptic multilevel analogue states are demonstrated by control over composition in ionic liquid-gated devices on silicon platforms. The extent of the resistance modulation can be dramatically controlled by the film microstructure. By simulating the time difference between postneuron and preneuron spikes as the input parameter of a gate bias voltage pulse, synaptic spike-timing-dependent plasticity learning behaviour is realized. The extreme sensitivity of electrical properties to defects in correlated oxides may make them a particularly suitable class of materials to realize artificial biological circuits that can be operated at and above room temperature and seamlessly integrated into conventional electronic circuits.

  10. Pilotless Airplanes

    DTIC Science & Technology

    1989-07-05

    FTD/SDAWS/Capt Craven Approved for public release; Distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGI- NAL FOREIGN TEXT WITHOUT ANY...and electronic computers also spurred advances in the field of pilotless airplanes. During this period the turbine jet engine underwent a very strong...Contains the Doppler radar frequency tracking device; alternator and flight-guidance computer ; the flight control box; the remote control receiver; the

  11. Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat

    2018-01-01

    The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.

  12. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less

  13. From nanoelectronics to nano-spintronics.

    PubMed

    Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming

    2011-01-01

    Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.

  14. Carbon footprint of electronic devices

    NASA Astrophysics Data System (ADS)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  15. Using quantum process tomography to characterize decoherence in an analog electronic device

    NASA Astrophysics Data System (ADS)

    Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville

    The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  16. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  17. Advanced technology and truth in advertising

    NASA Astrophysics Data System (ADS)

    Landauer, Rolf

    1990-09-01

    Most proposals for new technological approaches fail, and that is reasonable. Despite that, most of the technological proposals arising from basic science are promoted unhesitantly, with little attention to critical appraisal, even little opportunity for the presentation of criticism. We discuss several case histories related to devices intended to displace the transistor in computer logic. Our list includes devices using control of quantum mechanically coherent electron transmission, devices operating at a molecular level, and devices using nonlinear electromagnetic interaction. Neural networks are placed in a different category; something seems to be coming out of this field after several decades of effort.

  18. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literature.

  19. The future of computing

    NASA Astrophysics Data System (ADS)

    Simmons, Michelle

    2016-05-01

    Down-scaling has been the leading paradigm of the semiconductor industry since the invention of the first transistor in 1947. However miniaturization will soon reach the ultimate limit, set by the discreteness of matter, leading to intensified research in alternative approaches for creating logic devices. This talk will discuss the development of a radical new technology for creating atomic-scale devices which is opening a new frontier of research in electronics globally. We will introduce single atom transistors where we can measure both the charge and spin of individual dopants with unique capabilities in controlling the quantum world. To this end, we will discuss how we are now demonstrating atom by atom, the best way to build a quantum computer - a new type of computer that exploits the laws of physics at very small dimensions in order to provide an exponential speed up in computational processing power.

  20. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  1. Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Arshad, I.; Mahmood, Q.

    2017-11-01

    We report the structural, electronic, optical and thermoelectric (TE) properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites as a function of X cations belonging to the group IIA. The computations are done by using the most recently introduced modified Becke-Johnson potential. It has been observed that the cubic lattice constant increases as the cations change from Ca to Ba, consequently, the bulk modulus reduces. The bottom of conduction band shows strong hybridization between Pb-6p, O-2p and X-s states, in contrast, valence band maxima are mainly manufactured by Pb-6p states. The anti-perovskites exhibit narrow direct band gap that show an inverse relation to the static real dielectric constants that verifies Penn’s model. In addition, the X cations induced tuning of the absorption edge in the visible and the ultraviolet energy suggest optical device applications. The computed TE parameters have been found sensitive to the X cations and have been demonstrated to be best suited for the TE devices operating at high temperatures.

  2. Multilayered analog optical differentiating device: performance analysis on structural parameters.

    PubMed

    Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui

    2017-12-15

    Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.

  3. Nanoelectronics: Opportunities for future space applications

    NASA Technical Reports Server (NTRS)

    Frazier, Gary

    1995-01-01

    Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.

  4. Cloud Based Electronic Health Record Applications are Essential to Expeditionary Patient Care

    DTIC Science & Technology

    2017-05-01

    security46 and privacy concerns47). Privacy/Security Risks of Cloud Computing A quantitative study based on the preceding literature review...to medical IT wherever there is a Wi-Fi connection and a computing device (desktop, laptop , tablet, phone, etc.). In 2015 the DoD launched MiCare, a...Hosting Services: a Study on Students’ Acceptance,” Computers in Human Behavior, 2013. Takai, Teri. DoD CIO’s 10-Point Plan for IT Modernization

  5. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitra, Neepa

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  6. Bistable metamaterial for switching and cascading elastic vibrations

    PubMed Central

    Foehr, André; Daraio, Chiara

    2017-01-01

    The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663

  7. Carbon nanotube computer.

    PubMed

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  8. Computational Modeling of the Dielectric Barrier Discharge (DBD) Device for Aeronautical Applications

    DTIC Science & Technology

    2006-06-01

    electron energy equation are solved semi-implicitly in a sequential manner. Each of the governing equations is solved by casting them onto a tridiagonal ...actuator for different device configurations and operating parameters. This will provide the Air Force with a low cost, quick turn around...Atmosphere (ATM) (20:8). Initially, the applied potential difference on the electrodes must be great enough to initiate gas breakdown. While

  9. Digital Mammography with a Mosaic of CCD-Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1996-01-01

    The present invention relates generally to a mammography device and method and more particularly to a novel digital mammography device and method to detect microcalcifications of precancerous tissue. A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays. The novelty of this invention is that it provides a digital mammography device with large field coverage, high spatial resolution, scatter rejection, excellent contrast characteristics and lesion detectability under clinical conditions. This device also shields the patient from excessive radiation, can detect extremely small calcifications and allows manipulation and storage of the image.

  10. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    DOE PAGES

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...

    2016-08-05

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO 2 and SrTiO 3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~10 12 inch –2). Here, we systematicallymore » show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less

  11. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    PubMed

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  12. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  13. Design and implementation of a seamless and comprehensive integrated medical device interface system for outpatient electronic medical records in a general hospital.

    PubMed

    Choi, Jong Soo; Lee, Jean Hyoung; Park, Jong Hwan; Nam, Han Seung; Kwon, Hyuknam; Kim, Dongsoo; Park, Seung Woo

    2011-04-01

    Implementing an efficient Electronic Medical Record (EMR) system is regarded as one of the key strategies for improving the quality of healthcare services. However, the system's interoperability between medical devices and the EMR is a big barrier to deploying the EMR system in an outpatient clinical setting. The purpose of this study is to design a framework for a seamless and comprehensively integrated medical device interface system, and to develop and implement a system for accelerating the deployment of the EMR system. We designed and developed a framework that could transform data from medical devices into the relevant standards and then store them in the EMR. The framework is composed of 5 interfacing methods according to the types of medical devices utilized at an outpatient clinical setting, registered in Samsung Medical Center (SMC) database. The medical devices used for this study were devices that have microchips embedded or that came packaged with personal computers. The devices are completely integrated with the EMR based on SMC's long term IT strategies. First deployment of integrating 352 medical devices into the EMR took place in April, 2006, and it took about 48 months. By March, 2010, every medical device was interfaced with the EMR. About 66,000 medical examinations per month were performed taking up an average of 50GB of storage space. We surveyed users, mainly the technicians. Out of 73 that responded, 76% of the respondents replied that they were strongly satisfied or satisfied, 20% replied as being neutral and only 4% complained about the speed of the system, which was attributed to the slow speed of the old-fashioned medical devices and computers. The current implementation of the medical device interface system based on the SMC framework significantly streamlines the clinical workflow in a satisfactory manner. 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Evaluation of runaway-electron effects on plasma-facing components for NET

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  15. 76 FR 6496 - In the Matter of Certain Liquid Crystal Display Devices and Products Interoperable With the Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... notice of investigation named as respondents Sony Corporation of Tokyo, Japan; Sony Corporation of America of New York, New York; Sony Electronics Corporation of San Diego, California; and Sony Computer...

  16. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  17. Cancer-meter: measure and cure.

    PubMed

    Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh

    2017-05-01

    This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.

  18. CAE "FOCUS" for modelling and simulating electron optics systems: development and application

    NASA Astrophysics Data System (ADS)

    Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor

    2017-02-01

    Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.

  19. Market survey of fuel cells in Mexico: Niche for low power portable systems

    NASA Astrophysics Data System (ADS)

    Ramírez-Salgado, Joel; Domínguez-Aguilar, Marco A.

    This work provides an overview of the potential market in Mexico for portable electronic devices to be potentially powered by direct methanol fuel cells. An extrapolation method based on data published in Mexico and abroad served to complete this market survey. A review of electronics consumption set the basis for the future forecast and technology assimilation. The potential market for fuel cells for mobile phones in Mexico will be around 5.5 billion USD by 2013, considering a cost of 41 USD per cell in a market of 135 million mobile phones. Likewise, the market for notebook computers, PDAs and other electronic devices will likely grow in the future, with a combined consumption of fuel cell technology equivalent to 1.6 billion USD by 2014.

  20. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    PubMed Central

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  1. Integration of analytical instruments with computer scripting.

    PubMed

    Carvalho, Matheus C

    2013-08-01

    Automation of laboratory routines aided by computer software enables high productivity and is the norm nowadays. However, the integration of different instruments made by different suppliers is still difficult, because to accomplish it, the user must have knowledge of electronics and/or low-level programming. An alternative approach is to control different instruments without an electronic connection between them, relying only on their software interface on a computer. This can be achieved through scripting, which is the emulation of user operations (mouse clicks and keyboard inputs) on the computer. The main advantages of this approach are its simplicity, which enables people with minimal knowledge of computer programming to employ it, and its universality, which enables the integration of instruments made by different suppliers, meaning that the user is totally free to choose the devices to be integrated. Therefore, scripting can be a useful, accessible, and economic solution for laboratory automation.

  2. Computer calculation of device, circuit, equipment, and system reliability.

    NASA Technical Reports Server (NTRS)

    Crosby, D. R.

    1972-01-01

    A grouping into four classes is proposed for all reliability computations that are related to electronic equipment. Examples are presented of reliability computations in three of these four classes. Each of the three specific reliability tasks described was originally undertaken to satisfy an engineering need for reliability data. The form and interpretation of the print-out of the specific reliability computations is presented. The justification for the costs of these computations is indicated. The skills of the personnel used to conduct the analysis, the interfaces between the personnel, and the timing of the projects is discussed.

  3. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  4. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  5. Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    NASA Technical Reports Server (NTRS)

    Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.

    1987-01-01

    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.

  6. Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey

    2018-03-01

    The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.

  7. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    1988-02-23

    calculations or design examples are cited in this purely theoretical treatment, it is noted that experimental data from an on-board microprocessor controlled ...The requirements placed on the design of the semiconductor devices used in such systems can be divided into two groups : 1) Assure the requisite...describes a computer-aided approach to the design of resonant arrays that results in equal losses in the on and off states of such control devices. An

  8. Application of reduced order modeling techniques to problems in heat conduction, isoelectric focusing and differential algebraic equations

    NASA Astrophysics Data System (ADS)

    Mathai, Pramod P.

    This thesis focuses on applying and augmenting 'Reduced Order Modeling' (ROM) techniques to large scale problems. ROM refers to the set of mathematical techniques that are used to reduce the computational expense of conventional modeling techniques, like finite element and finite difference methods, while minimizing the loss of accuracy that typically accompanies such a reduction. The first problem that we address pertains to the prediction of the level of heat dissipation in electronic and MEMS devices. With the ever decreasing feature sizes in electronic devices, and the accompanied rise in Joule heating, the electronics industry has, since the 1990s, identified a clear need for computationally cheap heat transfer modeling techniques that can be incorporated along with the electronic design process. We demonstrate how one can create reduced order models for simulating heat conduction in individual components that constitute an idealized electronic device. The reduced order models are created using Krylov Subspace Techniques (KST). We introduce a novel 'plug and play' approach, based on the small gain theorem in control theory, to interconnect these component reduced order models (according to the device architecture) to reliably and cheaply replicate whole device behavior. The final aim is to have this technique available commercially as a computationally cheap and reliable option that enables a designer to optimize for heat dissipation among competing VLSI architectures. Another place where model reduction is crucial to better design is Isoelectric Focusing (IEF) - the second problem in this thesis - which is a popular technique that is used to separate minute amounts of proteins from the other constituents that are present in a typical biological tissue sample. Fundamental questions about how to design IEF experiments still remain because of the high dimensional and highly nonlinear nature of the differential equations that describe the IEF process as well as the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints. The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.

  9. Use of electronic microprocessor-based instrumentation by the U.S. geological survey for hydrologic data collection

    USGS Publications Warehouse

    Shope, William G.; ,

    1991-01-01

    The U.S. Geological Survey is acquiring a new generation of field computers and communications software to support hydrologic data-collection at field locations. The new computer hardware and software mark the beginning of the Survey's transition from the use of electromechanical devices and paper tapes to electronic microprocessor-based instrumentation. Software is being developed for these microprocessors to facilitate the collection, conversion, and entry of data into the Survey's National Water Information System. The new automated data-collection process features several microprocessor-controlled sensors connected to a serial digital multidrop line operated by an electronic data recorder. Data are acquired from the sensors in response to instructions programmed into the data recorder by the user through small portable lap-top or hand-held computers. The portable computers, called personal field computers, also are used to extract data from the electronic recorders for transport by courier to the office computers. The Survey's alternative to manual or courier retrieval is the use of microprocessor-based remote telemetry stations. Plans have been developed to enhance the Survey's use of the Geostationary Operational Environmental Satellite telemetry by replacing the present network of direct-readout ground stations with less expensive units. Plans also provide for computer software that will support other forms of telemetry such as telephone or land-based radio.

  10. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  11. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prior to procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses... components are those components which are designed primarily for emission control, or whose failure may... of design means any control system (i.e., computer software, electronic control system, emission...

  12. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  13. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  14. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  15. High-Tech Security Help.

    ERIC Educational Resources Information Center

    Flanigan, Robin L.

    2000-01-01

    Advocates embrace high-tech security measures as necessary to avoid Columbine-style massacres. Critics contend that school systems can go overboard, making students feel less safe and too closely scrutinized. Current electronic, biometric, and computer-mapping devices and school applications are discussed. Vendors are listed. (MLH)

  16. Development of the Internet-Enabled System for Exercise Telerehabilitation and Cardiovascular Training.

    PubMed

    Dedov, Vadim N; Dedova, Irina V

    2015-07-01

    Sustained exercise training could significantly improve patient rehabilitation and management of noncommunicable diseases in the community. This study aimed to develop a universal telecare system for delivery of exercise rehabilitation and cardiovascular training services at home. An innovative bilateral leg training device was equipped with an electronic system for the ongoing measurement of training activities with the device. A single-item parameter reflecting the intensity of training was monitored using several modern telecommunication technologies. According to the application protocol, eight volunteers first tried the device for 30-60 min to determine their personal training capacity. Then, they were provided with equipment to use at home for 4 weeks. Adherence to daily training was assessed by the number of training days per week, training intensity, and duration of training sessions. The system provided reliable recording of training activities with the device using (1) long-term data logging without an ongoing connection to the computer, (2) wireless monitoring and recording of training activities on a stand-alone computer, and (3) a secure cloud-based monitoring over the Internet connection using electronic devices, including smartphones. Overall analysis of recordings and phone feedbacks to participants took only approximately 5 h for the duration of study. This study, although of a pilot nature, described the comprehensive exercise telerehabilitation system integrating mobile training equipment with personalized training protocols and remote monitoring. A single-item electronic parameter of the system usage facilitated time-effective data management. Wireless connection allowed various locations of device application and several monitoring arrangements ranging from real-time monitoring to long-term recording of exercise activities. A cloud-based software platform enabled management of multiple users at distance. Implementation of this model may facilitate both accessibility and availability of personalized exercise telerehabilitation services. Further studies would validate it in the clinical and healthcare environment.

  17. Quantum Dots Based Rad-Hard Computing and Sensors

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Klimeck, G.; Leon, R.; Qiu, Y.; Toomarian, N.

    2001-01-01

    Quantum Dots (QDs) are solid-state structures made of semiconductors or metals that confine a small number of electrons into a small space. The confinement of electrons is achieved by the placement of some insulating material(s) around a central, well-conducting region. Thus, they can be viewed as artificial atoms. They therefore represent the ultimate limit of the semiconductor device scaling. Additional information is contained in the original extended abstract.

  18. PGMS: A Case Study of Collecting PDA-Based Geo-Tagged Malaria-Related Survey Data

    PubMed Central

    Zhou, Ying; Lobo, Neil F.; Wolkon, Adam; Gimnig, John E.; Malishee, Alpha; Stevenson, Jennifer; Sulistyawati; Collins, Frank H.; Madey, Greg

    2014-01-01

    Using mobile devices, such as personal digital assistants (PDAs), smartphones, tablet computers, etc., to electronically collect malaria-related field data is the way for the field questionnaires in the future. This case study seeks to design a generic survey framework PDA-based geo-tagged malaria-related data collection tool (PGMS) that can be used not only for large-scale community-level geo-tagged electronic malaria-related surveys, but also for a wide variety of electronic data collections of other infectious diseases. The framework includes two parts: the database designed for subsequent cross-sectional data analysis and the customized programs for the six study sites (two in Kenya, three in Indonesia, and one in Tanzania). In addition to the framework development, we also present our methods used when configuring and deploying the PDAs to 1) reduce data entry errors, 2) conserve battery power, 3) field install the programs onto dozens of handheld devices, 4) translate electronic questionnaires into local languages, 5) prevent data loss, and 6) transfer data from PDAs to computers for future analysis and storage. Since 2008, PGMS has successfully accomplished quite a few surveys that recorded 10,871 compounds and households, 52,126 persons, and 17,100 bed nets from the six sites. These numbers are still growing. PMID:25048377

  19. Device and method for measuring the energy content of hot and humid air streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, H. N.; Girod, G. F.; Kent, A. C.

    1985-12-24

    a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.

  20. QCAD simulation and optimization of semiconductor double quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltagesmore » in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.« less

  1. Self-excited oscillation and monostable operation of a bistable light emitting diode (BILED)

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Ogawa, Y.; Ito, H.; Inaba, H.

    1983-07-01

    A new simple opto-electronic bistable device has been obtained by combining a light emitting diode (LED) and a photodetector (PD) with electronic feedback using a broad bandpass filter. This has interesting dynamic characteristics which are expected to have such various applications as optical oscillators, optical pulse generators and optical pulsewidth modulators. The dynamic characteristics are represented by second-order nonlinear differential equations. In the analyses of these nonlinear systems, instead of numerical analyses with a computer, an approximate analytical method devised for this purpose has been used. This method has been used for investigating the characteristics of the proposed device quantitatively. These include the frequency of oscillations, pulsewidths and hysteresis. The results of the analyses agree approximately with experimentally observed values, thus the dynamic characteristics of the proposed device can be explained.

  2. Warpage Measurement of Thin Wafers by Reflectometry

    NASA Astrophysics Data System (ADS)

    Ng, Chi Seng; Asundi, Anand Krishna

    To cope with advances in the electronic and portable devices, electronic packaging industries have employed thinner and larger wafers to produce thinner packages/ electronic devices. As the thickness of the wafer decrease (below 250um), there is an increased tendency for it to warp. Large stresses are induced during manufacturing processes, particularly during backside metal deposition. The wafers bend due to these stresses. Warpage results from the residual stress will affect subsequent manufacturing processes. For example, warpage due to this residual stresses lead to crack dies during singulation process which will severely reorient the residual stress distributions, thus, weakening the mechanical and electrical properties of the singulated die. It is impossible to completely prevent the residual stress induced on thin wafers during the manufacturing processes. Monitoring of curvature/flatness is thus necessary to ensure reliability of device and its uses. A simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been developed and this project aims to take it to the next step for residual stress and full field surface shape measurement. The system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure slope and curvature. In this study, slope of the surface were obtain using the versatility of computer aided reflection grating method to manipulate and generate gratings in two orthogonal directions. The curvature and stress can be evaluated by performing a single order differentiation on slope data.

  3. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  4. Multi-scale predictive modeling of nano-material and realistic electron devices

    NASA Astrophysics Data System (ADS)

    Palaria, Amritanshu

    Among the challenges faced in further miniaturization of electronic devices, heavy influence of the detailed atomic configuration of the material(s) involved, which often differs significantly from that of the bulk material(s), is prominent. Device design has therefore become highly interrelated with material engineering at the atomic level. This thesis aims at outlining, with examples, a multi-scale simulation procedure that allows one to integrate material and device aspects of nano-electronic design to predict behavior of novel devices with novel material. This is followed in four parts: (1) An approach that combines a higher time scale reactive force field analysis with density functional theory to predict structure of new material is demonstrated for the first time for nanowires. Novel stable structures for very small diameter silicon nanowires are predicted. (2) Density functional theory is used to show that the new nanowire structures derived in 1 above have properties different from diamond core wires even though the surface bonds in some may be similar to the surface of bulk silicon. (3) Electronic structure of relatively large-scale germanium sections of realistically strained Si/strained Ge/ strained Si nanowire heterostructures is computed using empirical tight binding and it is shown that the average non-homogeneous strain in these structures drives their interesting non-conventional electronic characteristics such as hole effective masses which decrease as the wire cross-section is reduced. (4) It is shown that tight binding, though empirical in nature, is not necessarily limited to the material and atomic structure for which the parameters have been empirically derived, but that simple changes may adapt the derived parameters to new bond environments. Si (100) surface electronic structure is obtained from bulk Si parameters.

  5. Consumer Sleep Technologies: A Review of the Landscape.

    PubMed

    Ko, Ping-Ru T; Kientz, Julie A; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A; Watson, Nathaniel F

    2015-12-15

    To review sleep related consumer technologies, including mobile electronic device "apps," wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included "sleep technology," "sleep app," and "sleep monitoring." Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. © 2015 American Academy of Sleep Medicine.

  6. Medical Representatives' Intention to Use Information Technology in Pharmaceutical Marketing.

    PubMed

    Kwak, Eun-Seon; Chang, Hyejung

    2016-10-01

    Electronic detailing (e-detailing), the use of electronic devices to facilitate sales presentations to physicians, has been adopted and expanded in the pharmaceutical industry. To maximize the potential outcome of e-detailing, it is important to understand medical representatives (MRs)' behavior and attitude to e-detailing. This study investigates how information technology devices such as laptop computers and tablet PCs are utilized in pharmaceutical marketing, and it analyzes the factors influencing MRs' intention to use devices. This study has adopted and modified the theory of Roger's diffusion of innovation model and the technology acceptance model. To test the model empirically, a questionnaire survey was conducted with 221 MRs who were working in three multinational or eleven domestic pharmaceutical companies in Korea. Overall, 28% and 35% of MRs experienced using laptop computers and tablet PCs in pharmaceutical marketing, respectively. However, the rates were different across different groups of MRs, categorized by age, education level, position, and career. The results showed that MRs' intention to use information technology devices was significantly influenced by perceived usefulness in general. Perceived ease of use, organizational and individual innovativeness, and several MR characteristics were also found to have significant impacts. This study provides timely information about e-detailing devices to marketing managers and policy makers in the pharmaceutical industry for successful marketing strategy development by understanding the needs of MRs' intention to use information technology. Further in-depth study should be conducted to understand obstacles and limitations and to improve the strategies for better marketing tools.

  7. Signal processing: opportunities for superconductive circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, R.W.

    1985-03-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less

  8. Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots

    PubMed Central

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-01-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661

  9. Journal of Computational Electronics: Proceedings of the International Workshop on Computational Electronics (8th) (IWCE-8), Beckman Institute, University of Illinois, 15-18 October 2001. Volume 1, Issue 1-2

    DTIC Science & Technology

    2002-01-01

    the fully coupled electrical and optical sys- of carrier is assumed and the minority carriers are not tems in VCSELs (Oyafuso et al. 2000). separated...evolution times the cosine function in Mn 𔃺 5 ++.(1) weakly depends on the phase space variables. With the increase of the time, the cosine term...can also be applied in phase - coherent devices. Our approach is useful to To obtain S(0) we just have to integrate A Q2 over the study noise in a wide

  10. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  11. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    NASA Astrophysics Data System (ADS)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  12. 49 CFR 220.301 - Purpose and application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...

  13. 49 CFR 220.301 - Purpose and application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...

  14. 49 CFR 220.301 - Purpose and application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...

  15. 49 CFR 220.301 - Purpose and application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...

  16. 49 CFR 220.301 - Purpose and application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.301 Purpose and application. (a... or cellular phones) and laptop computers. (b) The applicability of this subpart is governed by § 220.3; this subpart, however, does not affect the use of working wireless communications pursuant to...

  17. Automotive Electronics. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  18. GRAPHIC INPUT TABLETS FOR PROGRAMMED INSTRUCTION.

    ERIC Educational Resources Information Center

    BOOKER, C.A., JR.; AND OTHERS

    TO FACILITATE STUDENT-COMPUTER COMMUNICATION IN PROGRAMED INSTRUCTION, A MODIFICATION OF THE RAND TABLET, WHICH CONVERTS POSITION INFORMATION INTO ELECTRICAL SIGNALS, IS PROPOSED. MANUFACTURE OF THE DEVICE WOULD BE MORE ECONOMICAL, AND THE ELECTRONICS PACKAGE, REDESIGNED WITH INTEGRATED CIRCUITS, WOULD BE SMALLER AND MORE FLEXIBLE. MODIFICATION OF…

  19. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ELECTRONIC RETIREMENT PROCESSING General Provisions § 850.103 Definitions. In this part— Agency means an... graphical image of a handwritten signature usually created using a special computer input device (such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means...

  20. Teaching Electronics and Laboratory Automation Using Microcontroller Boards

    ERIC Educational Resources Information Center

    Mabbott, Gary A.

    2014-01-01

    Modern microcontroller boards offer the analytical chemist a powerful and inexpensive means of interfacing computers and laboratory equipment. The availability of a host of educational materials, compatible sensors, and electromechanical devices make learning to implement microcontrollers fun and empowering. This article describes the advantages…

  1. Local Area Networks: Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E.

    1982-01-01

    Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…

  2. Data Destruction

    ERIC Educational Resources Information Center

    Bergren, Martha Dewey

    2005-01-01

    School nurses are caretakers of a vast amount of sensitive student and family health information. In schools, older computer hardware that previously stored education records is recycled for less demanding student and employee functions. Sensitive data must be adequately erased before electronic storage devices are reassigned or are discarded.…

  3. Experimental study of heavy-ion computed tomography using a scintillation screen and an electron-multiplying charged coupled device camera for human head imaging

    NASA Astrophysics Data System (ADS)

    Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu

    2016-03-01

    We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.

  4. Impacts of mobile tablet computing on provider productivity, communications, and the process of care.

    PubMed

    Schooley, Benjamin; Walczak, Steven; Hikmet, Neset; Patel, Nitin

    2016-04-01

    Health information technology investments continue to increase while the value derived from their implementation and use is mixed. Mobile device adoption into practice is a recent trend that has increased dramatically and formal studies are needed to investigate consequent benefits and challenges. The objective of this study is to evaluate practitioner perceptions of improvements in productivity, provider-patient communications, care provision, technology usability and other outcomes following the adoption and use of a tablet computer connected to electronic health information resources. A pilot program was initiated in June 2013 to evaluate the effect of mobile tablet computers at one health provider organization in the southeast United States. Providers were asked to volunteer for the evaluation and were each given a mobile tablet computer. A total of 42 inpatient and outpatient providers were interviewed in 2015 using a survey style questionnaire that utilized yes/no, Likert-style, and open ended questions. Each had previously used an electronic health record (EHR) system a minimum of one year outside of residency, and were regular users of personal mobile devices. Each used a mobile tablet computer in the context of their practice connected to the health system EHR. The survey results indicate that more than half of providers perceive the use of the tablet device as having a positive effect on patient communications, patient education, patient's perception of the provider, time spent interacting with patients, provider productivity, process of care, satisfaction with EHR when used together with the device, and care provision. Providers also reported feeling comfortable using the device (82.9%), would recommend the device to colleagues (69.2%), did not experience increased information security and privacy concerns (95%), and noted significant reductions in EHR login times (64.1%). Less than 25% of participants reported negative impacts on any of these areas as well as on time spent on order submission, note completion time, overall workload, patient satisfaction with care experience and patient outcomes. Gender, number of years in practice, practice type (general practitioner vs. specialist), and service type (inpatient/outpatient) were found to have a significant effect on perceptions of patient satisfaction, care process, and provider productivity. Providers found positive gains from utilizing mobile devices in overall productivity, improved communications with their patients, the process of care, and technology efficiencies when used in combination with EHR and other health information resources. Demographic and health care work environment play a role in how mobile technologies are integrated into practice by providers. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Use of Electronic Versus Print Textbooks by Chilean Dental Students: A National Survey.

    PubMed

    Aravena, Pedro Christian; Schulz, Karen; Parra, Annemarie; Perez-Rojas, Francisco; Rosas, Cristian; Cartes-Velásquez, Ricardo

    2017-03-01

    Electronic textbooks have become available in recent decades as replacements or alternatives for print versions. The aim of this descriptive cross-sectional study was to evaluate the use of electronic versus print textbooks by Chilean dental students. The target population was students from 14 Chilean dental schools. The questionnaire was adapted and translated to Spanish from a previous survey used in a similar study. It consisted of the following variables: preferred type, type used, frequency of use, source, electronic devices used to read, and disposal after use. The use of textbooks was analyzed and compared by gender and course (p≤0.05). The final sample consisted of 3,256 students (21.38±2.5 years of age, 50.8% women). Most of the participants reported using both types of texts, with most (63.9%) preferring print over electronic texts, including significantly more women (p<0.001) and first-year students (p<0.001). Most of the participants (82.8%), more women (p<0.001), and with variations over years of study (p<0.001) reported that they printed out their electronic texts, and 91.8% kept their printed material. Most of the students used electronic books on a daily basis (47.3%) or at least twice a week (30.7%). The main source of electronic textbooks was the Internet (43.8%). A personal computer was the most widely used device for reading electronic texts (95.0%), followed by a cell phone (46.4%) and a tablet (24.5%). Overall, these Chilean dental students preferred print over electronic textbooks, despite having available electronic devices.

  6. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  7. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  8. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  9. Density-Functional Theory description of transport in the single-electron transistor

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; Oliveira, Luiz N.

    The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.

  10. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping

    PubMed Central

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.

    2015-01-01

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215

  11. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  12. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    NASA Astrophysics Data System (ADS)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  14. Video Games: A Human Factors Guide to Visual Display Design and Instructional System Design

    DTIC Science & Technology

    1984-04-01

    Electronic video games have many of the same technological and psychological characteristics that are found in military computer-based systems. For...both of which employ video games as experimental stimuli, are presented here. The first research program seeks to identify and exploit the...characteristics of video games in the design of game-based training devices. The second program is designed to explore the effects of electronic video display

  15. A PC-based generator of surface ECG potentials for computer electrocardiograph testing.

    PubMed

    Franchi, D; Palagi, G; Bedini, R

    1994-02-01

    The system is composed of an electronic circuit, connected to a PC, whose outputs, starting from ECGs digitally collected by commercial interpretative electrocardiographs, simulate virtual patients' limb and chest electrode potentials. Appropriate software manages the D/A conversion and lines up the original short-term signal in a ring buffer to generate continuous ECG traces. The device also permits the addition of artifacts and/or baseline wanders/shifts on each lead separately. The system has been accurately tested and statistical indexes have been computed to quantify the reproduction accuracy analyzing, in the generated signal, both the errors induced on the fiducial point measurements and the capability to retain the diagnostic significance. The device integrated with an annotated ECG data base constitutes a reliable and powerful system to be used in the quality assurance testing of computer electrocardiographs.

  16. Multiscale examination and modeling of electron transport in nanoscale materials and devices

    NASA Astrophysics Data System (ADS)

    Banyai, Douglas R.

    For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device---sometimes consisting of hundreds of individual particles---and watch as a device 'turns on' and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

  17. eButton: A Wearable Computer for Health Monitoring and Personal Assistance

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Mao, Zhi-Hong; Chen, Yiran; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Jia, Wenyan

    2014-01-01

    Recent advances in mobile devices have made profound changes in people's daily lives. In particular, the impact of easy access of information by the smartphone has been tremendous. However, the impact of mobile devices on healthcare has been limited. Diagnosis and treatment of diseases are still initiated by occurrences of symptoms, and technologies and devices that emphasize on disease prevention and early detection outside hospitals are under-developed. Besides healthcare, mobile devices have not yet been designed to fully benefit people with special needs, such as the elderly and those suffering from certain disabilities, such blindness. In this paper, an overview of our research on a new wearable computer called eButton is presented. The concepts of its design and electronic implementation are described. Several applications of the eButton are described, including evaluating diet and physical activity, studying sedentary behavior, assisting the blind and visually impaired people, and monitoring older adults suffering from dementia. PMID:25340176

  18. Computational Nanotechnology of Materials, Electronics and Machines: Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2001-01-01

    This report presents the goals and research of the Integrated Product Team (IPT) on Devices and Nanotechnology. NASA's needs for this technology are discussed and then related to the research focus of the team. The two areas of focus for technique development are: 1) large scale classical molecular dynamics on a shared memory architecture machine; and 2) quantum molecular dynamics methodology. The areas of focus for research are: 1) nanomechanics/materials; 2) carbon based electronics; 3) BxCyNz composite nanotubes and junctions; 4) nano mechano-electronics; and 5) nano mechano-chemistry.

  19. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  20. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  1. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  2. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  3. NASA Wearable Technology CLUSTER 2013-2014 Report

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Dunne, Lucy; Zeagler, Clint; Martin, Tom; Pailes-Friedman, Rebecca

    2014-01-01

    Wearable technology has the potential to revolutionize the way humans interact with one another, with information, and with the electronic systems that surround them. This change can already be seen in the dramatic increase in the availability and use of wearable health and activity monitors. These devices continuously monitor the wearer using on-­-body sensors and wireless communication. They provide feedback that can be used to improve physical health and performance. Smart watches and head mounted displays are also receiving a great deal of commercial attention, providing immediate access to information via graphical displays, as well as additional sensing features. For the purposes of the Wearable Technology CLUSTER, wearable technology is broadly defined as any electronic sensing, human interfaces, computing, or communication that is mounted on the body. Current commercially available wearable devices primarily house electronics in rigid packaging to provide protection from flexing, moisture, and other contaminants. NASA mentors are interested in this approach, but are also interested in direct integration of electronics into clothing to enable more comfortable systems. For human spaceflight, wearable technology holds a great deal of promise for significantly improving safety, efficiency, autonomy, and research capacity for the crew in space and support personnel on the ground. Specific capabilities of interest include: Continuous biomedical monitoring for research and detection of health problems. Environmental monitoring for individual exposure assessments and alarms. Activity monitoring for responsive robotics and environments. Multi-modal caution and warning using tactile, auditory, and visual alarms. Wireless, hands-free, on-demand voice communication. Mobile, on-demand access to space vehicle and robotic displays and controls. Many technical challenges must be overcome to realize these wearable technology applications. For example, to make a wearable device that is both functional and comfortable for long duration wear, developers must strive to reduce electronic mass and volume while also addressing constraints imposed by the body attachment method. Depending on the application, the device must be placed in a location that the user can see and reach, and that provides the appropriate access to air and the wearer's skin. Limited power is available from body-­-worn batteries and heat must be managed to prevent discomfort. If the clothing is to be washed, there are additional durability and washability hurdles that traditional electronics are not designed to address. Finally, each specific capability has unique technical challenges that will likely require unique solutions. In addition to the technical challenges, development of wearable devices is made more difficult by the diversity of skills required and the historic lack of collaboration across domains. Wearable technology development requires expertise in textiles engineering, apparel design, software and computer engineering, electronic design and manufacturing, human factors engineering, and application-­-specific fields such as acoustics, medical devices, and sensing. Knowledge from each of these domains must be integrated to create functional and comfortable devices. For this reason, the diversity of knowledge and experience represented in the Wearable Technology is critical to overcoming the fundamental challenges in the field.

  4. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...

    2015-01-30

    In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  5. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-05-01

    We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.

  6. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.

    PubMed

    Lee, Yongkuk; Howe, Connor; Mishra, Saswat; Lee, Dong Sup; Mahmood, Musa; Piper, Matthew; Kim, Youngbin; Tieu, Katie; Byun, Hun-Soo; Coffey, James P; Shayan, Mahdis; Chun, Youngjae; Costanzo, Richard M; Yeo, Woon-Hong

    2018-05-22

    Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.

  7. Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation.

    PubMed

    Berger, Robert F

    2018-02-09

    In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.

    PubMed

    Zhang, Deming; Zeng, Lang; Cao, Kaihua; Wang, Mengxing; Peng, Shouzhong; Zhang, Yue; Zhang, Youguang; Klein, Jacques-Olivier; Wang, Yu; Zhao, Weisheng

    2016-08-01

    Artificial synaptic devices implemented by emerging post-CMOS non-volatile memory technologies such as Resistive RAM (RRAM) have made great progress recently. However, it is still a big challenge to fabricate stable and controllable multilevel RRAM. Benefitting from the control of electron spin instead of electron charge, spintronic devices, e.g., magnetic tunnel junction (MTJ) as a binary device, have been explored for neuromorphic computing with low power dissipation. In this paper, a compound spintronic device consisting of multiple vertically stacked MTJs is proposed to jointly behave as a synaptic device, termed as compound spintronic synapse (CSS). Based on our theoretical and experimental work, it has been demonstrated that the proposed compound spintronic device can achieve designable and stable multiple resistance states by interfacial and materials engineering of its components. Additionally, a compound spintronic neuron (CSN) circuit based on the proposed compound spintronic device is presented, enabling a multi-step transfer function. Then, an All Spin Artificial Neural Network (ASANN) is constructed with the CSS and CSN circuit. By conducting system-level simulations on the MNIST database for handwritten digital recognition, the performance of such ASANN has been investigated. Moreover, the impact of the resolution of both the CSS and CSN and device variation on the system performance are discussed in this work.

  9. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  10. Automatic Thermal Infrared Panoramic Imaging Sensor

    DTIC Science & Technology

    2006-11-01

    hibernation, in which power supply to the server computer , the wireless network hardware, the GPS receiver, and the electronic compass / tilt sensor...prototype. At the operator’s command on the client laptop, the receiver wakeup device on the server side will switch on the ATX power supply at the...server, to resume the power supply to all the APTIS components. The embedded computer will resume all of the functions it was performing when put

  11. 16 CFR 1200.2 - Definition of children's product.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... However, electronic devices such as CD players, DVD players, game consoles, book readers, digital media... fixtures (including, but not limited to: Rocking chairs, shelving units, televisions, digital music players... intended primarily for children 12 years of age or younger. (4) DVDs, Video Games, and Computer Products...

  12. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices

    DTIC Science & Technology

    2006-08-15

    approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an

  13. 49 CFR 395.16 - Electronic on-board recording devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transfer through wired and wireless methods to portable computers used by roadside safety assurance... the results of power-on self-tests and diagnostic error codes. (e) Date and time. (1) The date and... part. Wireless communication information interchange methods must comply with the requirements of the...

  14. 76 FR 64813 - Electronic Prescriptions for Controlled Substances Clarification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... employees' laptop computers and employee's mobile devices.\\9\\ Numerous recent news articles describe...,'' Office of Applied Studies, 2010 (NSDUH Series H-38A, HHS Publication No. SMA 10-4856), http://www.oas..., ``2009 Parents and Teens Attitude Tracking Study Report'' March 2, 2010. Increased Security Breaches...

  15. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.

    2013-05-01

    Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).

  16. Wibree: wireless communication technology

    NASA Astrophysics Data System (ADS)

    Fernandes e Fizardo, Trima Piedade

    2011-12-01

    Nowadays everywhere we come across electronic devices and now the world has become entirely mobile with so many new electronic equipments. The number of computing and telecommunications devices is increasing and consequently the focus on how to connect them to each other. The usual solution is to connect the device with cables or using infra red light to make file transfer and synchronizations possible but infrared light requires line of sight. To solve these problems a new technology,Wibree radio technology complements other local connectivity technologies, consuming only a fraction of the power compared to other radio technologies, enabling smaller and less costly implementations and being easy to integrate with Bluetooth solutions, Furthermore it can be also used to enable communication between several units such as small radio LANs.This paper focuses on why this technology has got large attention although there are pro's and con's with respect to other technologies.

  17. Is there a relationship between curvature and inductance in the Josephson junction?

    NASA Astrophysics Data System (ADS)

    Dobrowolski, T.; Jarmoliński, A.

    2018-03-01

    A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.

  18. EDITORIAL: Design and function of molecular and bioelectronics devices

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers from NGC2007. The NGC2007 meeting, which included two days of tutorials (Spring School) and a three day symposium, attracted approximately 400 participants from academic, industrial and governmental research institutions from 41 countries, and covered recent developments in the fabrication and functionality of nano-scale materials, devices and system architecture from advanced CMOS to molecular electronics, photonics, optoelectronics and magnetic materials and devices. The success of the conference would not have been possible without generous support from many sponsors and research institutions, especially from Arizona State University (conference host and co-organizer), International Science and Technology Center (ISTC), National Science Foundation (NSFT), Defense Advanced Research Agency (DARPA), Office of Naval Research, Army Research Office, Computational Chemistry List (CCL), Springer Publisher, City of Tempe, STMicroelectronics, Quarles & Brady LLP, Oak Ridge National Laboratory, Canadian Consulate in Phoenix, Salt River Project (SRP) and many other local, national and international and individual supporters. We would like to acknowledge the shared responsibility for this special issue of Nanotechnology on molecular and bioelectronics, and the highly professional support from Dr Nina Couzin, Dr Alex Wotherspoon and the Nanotechnology team from the IOP Publishing. We also acknowledge the exception made in allowing the publication of some material that is outside the normal scope of Nanotechnology.

  19. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers from NGC2007. The NGC2007 meeting, which included two days of tutorials (Spring School) and a three day symposium, attracted approximately 400 participants from academic, industrial and governmental research institutions from 41 countries, and covered recent developments in the fabrication and functionality of nano-scale materials, devices and system architecture from advanced CMOS to molecular electronics, photonics, optoelectronics and magnetic materials and devices. The success of the conference would not have been possible without generous support from many sponsors and research institutions, especially from Arizona State University (conference host and co-organizer), International Science and Technology Center (ISTC), National Science Foundation (NSFT), Defense Advanced Research Agency (DARPA), Office of Naval Research, Army Research Office, Computational Chemistry List (CCL), Springer Publisher, City of Tempe, STMicroelectronics, Quarles & Brady LLP, Oak Ridge National Laboratory, Canadian Consulate in Phoenix, Salt River Project (SRP) and many other local, national and international and individual supporters. We would like to acknowledge the shared responsibility for this special issue of Nanotechnology on molecular and bioelectronics, and the highly professional support from Dr Nina Couzin, Dr Alex Wotherspoon and the Nanotechnology team from the IOP Publishing. We also acknowledge the exception made in allowing the publication of some material that is outside the normal scope of Nanotechnology.

  20. The Validity and Reliability of an iPhone App for Measuring Running Mechanics.

    PubMed

    Balsalobre-Fernández, Carlos; Agopyan, Hovannes; Morin, Jean-Benoit

    2017-07-01

    The purpose of this investigation was to analyze the validity of an iPhone application (Runmatic) for measuring running mechanics. To do this, 96 steps from 12 different runs at speeds ranging from 2.77-5.55 m·s -1 were recorded simultaneously with Runmatic, as well as with an opto-electronic device installed on a motorized treadmill to measure the contact and aerial time of each step. Additionally, several running mechanics variables were calculated using the contact and aerial times measured, and previously validated equations. Several statistics were computed to test the validity and reliability of Runmatic in comparison with the opto-electronic device for the measurement of contact time, aerial time, vertical oscillation, leg stiffness, maximum relative force, and step frequency. The running mechanics values obtained with both the app and the opto-electronic device showed a high degree of correlation (r = .94-.99, p < .001). Moreover, there was very close agreement between instruments as revealed by the ICC (2,1) (ICC = 0.965-0.991). Finally, both Runmatic and the opto-electronic device showed almost identical reliability levels when measuring each set of 8 steps for every run recorded. In conclusion, Runmatic has been proven to be a highly reliable tool for measuring the running mechanics studied in this work.

  1. A review of the use of handheld computers in medical nutrition.

    PubMed

    Holubar, Stefan; Harvey-Banchik, Lillian

    2007-08-01

    Handheld computers, or personal digital assistants (PDAs), have been used to assist clinicians in medical nutrition since the early 1980s. The term PDA was originally applied to programmable calculators; over time, the capabilities of these devices were expanded to allow for the use of more complicated programs such as databases, spreadsheets, and electronic books. Slowly, the device evolved into what is more commonly thought of as a PDA, that is, a device such as a PalmOS (PalmSource, Inc, Tokyo, Japan) or PocketPC (Microsoft, Redmond, WA) unit. We present a review of the literature about the use of PDAs in medical nutrition, followed by a discussion of the different types of PDAs and mobile technologies that are commercially available. This is followed by a discussion of software applications that are currently available for use by nutrition clinicians, focusing on freeware applications. Finally, future technologies and applications are discussed.

  2. Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics

    NASA Astrophysics Data System (ADS)

    McMorrow, Julian

    The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.

  3. High-performance green semiconductor devices: materials, designs, and fabrication

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  4. Use of mobile devices in the emergency department: A scoping review.

    PubMed

    Dexheimer, Judith W; Borycki, Elizabeth M

    2015-12-01

    Electronic health records are increasingly used in regional health authorities, healthcare systems, hospitals, and clinics throughout North America. The emergency department provides care for urgent and critically ill patients. Over the past several years, emergency departments have become more computerized. Tablet computers and Smartphones are increasingly common in daily use. As part of the computerization trend, we have seen the introduction of handheld computers, tablets, and Smartphones into practice as a way of providing health professionals (e.g. physicians, nurses) with access to patient information and decision support in the emergency department. In this article, we present a scoping review and outline the current state of the research using mobile devices in the emergency departments. Our findings suggest that there is very little research evidence that supports the use of these mobile devices, and more research is needed to better understand and optimize the use of mobile devices. Given the prevalence of handheld devices, it is inevitable that more decision support, charting, and other activities will be performed on these devices. These developments have the potential to improve the quality and timeliness of care but should be thoroughly evaluated. © The Author(s) 2014.

  5. ELOPTA: a novel microcontroller-based operant device.

    PubMed

    Hoffman, Adam M; Song, Jianjian; Tuttle, Elaina M

    2007-11-01

    Operant devices have been used for many years in animal behavior research, yet such devices a regenerally highly specialized and quite expensive. Although commercial models are somewhat adaptable and resilient, they are also extremely expensive and are controlled by difficult to learn proprietary software. As an alternative to commercial devices, we have designed and produced a fully functional, programmable operant device, using a PICmicro microcontroller (Microchip Technology, Inc.). The electronic operant testing apparatus (ELOPTA) is designed to deliver food when a study animal, in this case a bird, successfully depresses the correct sequence of illuminated keys. The device logs each keypress and can detect and log whenever a test animal i spositioned at the device. Data can be easily transferred to a computer and imported into any statistical analysis software. At about 3% the cost of a commercial device, ELOPTA will advance behavioral sciences, including behavioral ecology, animal learning and cognition, and ethology.

  6. Parallel computation with molecular-motor-propelled agents in nanofabricated networks.

    PubMed

    Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V

    2016-03-08

    The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.

  7. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  8. Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf

    2018-02-01

    While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.

  9. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  10. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  11. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  12. Electronic Interests and Behaviours Associated with Gambling Problems

    ERIC Educational Resources Information Center

    Phillips, James G.; Ogeil, Rowan P.; Blaszczynski, Alex

    2012-01-01

    Multiple computing devices continue to develop capabilities that support online gambling, resulting in the need to evaluate the extent that this trend will contribute to gambling problems. A sample of 1,141 participants completed an online survey assessing interest in and difficulties limiting use of digital services. Questionnaire items measured…

  13. Augmented Reality in Education and Training

    ERIC Educational Resources Information Center

    Lee, Kangdon

    2012-01-01

    There are many different ways for people to be educated and trained with regard to specific information and skills they need. These methods include classroom lectures with textbooks, computers, handheld devices, and other electronic appliances. The choice of learning innovation is dependent on an individual's access to various technologies and the…

  14. Field Trip.

    ERIC Educational Resources Information Center

    Sanders, Bill

    1993-01-01

    Reports the results of a field trip to measure the intensity of electromagnetic fields generated by electronic devices in the home, in cars, at work, outside, and in places people visit during the day. Found that a person gets more intense exposure while working at a computer than by living next to an electrical substation. (MDH)

  15. Music, Technology, and an Evolving Curriculum.

    ERIC Educational Resources Information Center

    Moore, Brian

    1992-01-01

    Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…

  16. Electrocardiograms with pacemakers: accuracy of computer reading.

    PubMed

    Guglin, Maya E; Datwani, Neeta

    2007-04-01

    We analyzed the accuracy with which a computer algorithm reads electrocardiograms (ECGs) with electronic pacemakers (PMs). Electrocardiograms were screened for the presence of electronic pacing spikes. Computer-derived interpretations were compared with cardiologists' readings. Computer-drawn interpretations required revision by cardiologists in 61.3% of cases. In 18.4% of cases, the ECG reading algorithm failed to recognize the presence of a PM. The misinterpretation of paced beats as intrinsic beats led to multiple secondary errors, including myocardial infarctions in varying localization. The most common error in computer reading was the failure to identify an underlying rhythm. This error caused frequent misidentification of the PM type, especially when the presence of normal sinus rhythm was not recognized in a tracing with a DDD PM tracking the atrial activity. The increasing number of pacing devices, and the resulting number of ECGs with pacing spikes, mandates the refining of ECG reading algorithms. Improvement is especially needed in the recognition of the underlying rhythm, pacing spikes, and mode of pacing.

  17. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  18. SPORT-SPEAR Mark III Electronics (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Drawing List DL 135-678-00-RO and the drawings listed thereon provide the specifications for construction of the SPORT-SPEAR Mark III Electronics. SPORT stands for Smark Port. This device is an adapter for the SLAC BADC (Brilliant Analog to Digital Converter) providing up to 5 ports whereas the BADC and SPORT takes signals from experimental equipment and directs them to other equipment and micro computers for processing and storing. These units are housed in standard Camac crates.

  19. Laser Plasma Heating.

    DTIC Science & Technology

    The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)

  20. PGMS: a case study of collecting PDA-based geo-tagged malaria-related survey data.

    PubMed

    Zhou, Ying; Lobo, Neil F; Wolkon, Adam; Gimnig, John E; Malishee, Alpha; Stevenson, Jennifer; Sulistyawati; Collins, Frank H; Madey, Greg

    2014-09-01

    Using mobile devices, such as personal digital assistants (PDAs), smartphones, tablet computers, etc., to electronically collect malaria-related field data is the way for the field questionnaires in the future. This case study seeks to design a generic survey framework PDA-based geo-tagged malaria-related data collection tool (PGMS) that can be used not only for large-scale community-level geo-tagged electronic malaria-related surveys, but also for a wide variety of electronic data collections of other infectious diseases. The framework includes two parts: the database designed for subsequent cross-sectional data analysis and the customized programs for the six study sites (two in Kenya, three in Indonesia, and one in Tanzania). In addition to the framework development, we also present our methods used when configuring and deploying the PDAs to 1) reduce data entry errors, 2) conserve battery power, 3) field install the programs onto dozens of handheld devices, 4) translate electronic questionnaires into local languages, 5) prevent data loss, and 6) transfer data from PDAs to computers for future analysis and storage. Since 2008, PGMS has successfully accomplished quite a few surveys that recorded 10,871 compounds and households, 52,126 persons, and 17,100 bed nets from the six sites. These numbers are still growing. © The American Society of Tropical Medicine and Hygiene.

  1. Individual, social, and physical environment factors associated with electronic media use among children: sedentary behavior at home.

    PubMed

    Granich, Joanna; Rosenberg, Michael; Knuiman, Matthew W; Timperio, Anna

    2011-07-01

    Individual, home social and physical environment correlates of electronic media (EM) use among children were examined and pattern of differences on school and weekend days. Youth (n = 298) aged 11 to 12 years self-reported time spent using EM (TV, video/DVD, computer use, and electronic games) on a typical school and a weekend day, each dichotomized at the median to indicate heavy and light EM users. Anthropometric measurements were taken. Logistic regression examined correlates of EM use. In total, 87% of participants exceeded electronic media use recommendations of ≤ 2 hrs/day. Watching TV during breakfast (OR = 3.17) and after school (OR = 2.07), watching TV with mother (OR = 1.96), no rule(s) limiting time for computer game usage (OR = 2.30), having multiple (OR = 2.99) EM devices in the bedroom and BMI (OR = 1.15) were associated with higher odds of being heavy EM user on a school day. Boys (OR = 2.35) and participants who usually watched TV at midday (OR = 2.91) and late at night (OR = 2.04) had higher odds of being a heavy EM user on the weekend. Efforts to modify children's EM use should focus on a mix of intervention strategies that address patterns and reinforcement of TV viewing, household rules limiting screen time, and the presence of EM devices in the child's bedroom.

  2. Handheld computers in critical care.

    PubMed

    Lapinsky, S E; Weshler, J; Mehta, S; Varkul, M; Hallett, D; Stewart, T E

    2001-08-01

    Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment.

  3. Handheld computers in critical care

    PubMed Central

    Lapinsky, Stephen E; Weshler, Jason; Mehta, Sangeeta; Varkul, Mark; Hallett, Dave; Stewart, Thomas E

    2001-01-01

    Background Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Methods Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. Results During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. Conclusions The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment. PMID:11511337

  4. Electronic tools for infectious diseases and microbiology

    PubMed Central

    Burdette, Steven D

    2007-01-01

    Electronic tools for infectious diseases and medical microbiology have the ability to change the way the diagnosis and treatment of infectious diseases are approached. Medical information today has the ability to be dynamic, keeping up with the latest research or clinical issues, instead of being static and years behind, as many textbooks are. The ability to rapidly disseminate information around the world opens up the possibility of communicating with people thousands of miles away to quickly and efficiently learn about emerging infections. Electronic tools have expanded beyond the desktop computer and the Internet, and now include personal digital assistants and other portable devices such as cellular phones. These pocket-sized devices have the ability to provide access to clinical information at the point of care. New electronic tools include e-mail listservs, electronic drug databases and search engines that allow focused clinical questions. The goal of the present article is to provide an overview of how electronic tools can impact infectious diseases and microbiology, while providing links and resources to allow users to maximize their efficiency in accessing this information. Links to the mentioned Web sites and programs are provided along with other useful electronic tools. PMID:18978984

  5. Medical Representatives' Intention to Use Information Technology in Pharmaceutical Marketing

    PubMed Central

    Kwak, Eun-Seon

    2016-01-01

    Objectives Electronic detailing (e-detailing), the use of electronic devices to facilitate sales presentations to physicians, has been adopted and expanded in the pharmaceutical industry. To maximize the potential outcome of e-detailing, it is important to understand medical representatives (MRs)' behavior and attitude to e-detailing. This study investigates how information technology devices such as laptop computers and tablet PCs are utilized in pharmaceutical marketing, and it analyzes the factors influencing MRs' intention to use devices. Methods This study has adopted and modified the theory of Roger's diffusion of innovation model and the technology acceptance model. To test the model empirically, a questionnaire survey was conducted with 221 MRs who were working in three multinational or eleven domestic pharmaceutical companies in Korea. Results Overall, 28% and 35% of MRs experienced using laptop computers and tablet PCs in pharmaceutical marketing, respectively. However, the rates were different across different groups of MRs, categorized by age, education level, position, and career. The results showed that MRs' intention to use information technology devices was significantly influenced by perceived usefulness in general. Perceived ease of use, organizational and individual innovativeness, and several MR characteristics were also found to have significant impacts. Conclusions This study provides timely information about e-detailing devices to marketing managers and policy makers in the pharmaceutical industry for successful marketing strategy development by understanding the needs of MRs' intention to use information technology. Further in-depth study should be conducted to understand obstacles and limitations and to improve the strategies for better marketing tools. PMID:27895967

  6. Subjective impressions do not mirror online reading effort: concurrent EEG-eyetracking evidence from the reading of books and digital media.

    PubMed

    Kretzschmar, Franziska; Pleimling, Dominique; Hosemann, Jana; Füssel, Stephan; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias

    2013-01-01

    In the rapidly changing circumstances of our increasingly digital world, reading is also becoming an increasingly digital experience: electronic books (e-books) are now outselling print books in the United States and the United Kingdom. Nevertheless, many readers still view e-books as less readable than print books. The present study thus used combined EEG and eyetracking measures in order to test whether reading from digital media requires higher cognitive effort than reading conventional books. Young and elderly adults read short texts on three different reading devices: a paper page, an e-reader and a tablet computer and answered comprehension questions about them while their eye movements and EEG were recorded. The results of a debriefing questionnaire replicated previous findings in that participants overwhelmingly chose the paper page over the two electronic devices as their preferred reading medium. Online measures, by contrast, showed shorter mean fixation durations and lower EEG theta band voltage density--known to covary with memory encoding and retrieval--for the older adults when reading from a tablet computer in comparison to the other two devices. Young adults showed comparable fixation durations and theta activity for all three devices. Comprehension accuracy did not differ across the three media for either group. We argue that these results can be explained in terms of the better text discriminability (higher contrast) produced by the backlit display of the tablet computer. Contrast sensitivity decreases with age and degraded contrast conditions lead to longer reading times, thus supporting the conclusion that older readers may benefit particularly from the enhanced contrast of the tablet. Our findings thus indicate that people's subjective evaluation of digital reading media must be dissociated from the cognitive and neural effort expended in online information processing while reading from such devices.

  7. Subjective Impressions Do Not Mirror Online Reading Effort: Concurrent EEG-Eyetracking Evidence from the Reading of Books and Digital Media

    PubMed Central

    Kretzschmar, Franziska; Pleimling, Dominique; Hosemann, Jana; Füssel, Stephan; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias

    2013-01-01

    In the rapidly changing circumstances of our increasingly digital world, reading is also becoming an increasingly digital experience: electronic books (e-books) are now outselling print books in the United States and the United Kingdom. Nevertheless, many readers still view e-books as less readable than print books. The present study thus used combined EEG and eyetracking measures in order to test whether reading from digital media requires higher cognitive effort than reading conventional books. Young and elderly adults read short texts on three different reading devices: a paper page, an e-reader and a tablet computer and answered comprehension questions about them while their eye movements and EEG were recorded. The results of a debriefing questionnaire replicated previous findings in that participants overwhelmingly chose the paper page over the two electronic devices as their preferred reading medium. Online measures, by contrast, showed shorter mean fixation durations and lower EEG theta band voltage density – known to covary with memory encoding and retrieval – for the older adults when reading from a tablet computer in comparison to the other two devices. Young adults showed comparable fixation durations and theta activity for all three devices. Comprehension accuracy did not differ across the three media for either group. We argue that these results can be explained in terms of the better text discriminability (higher contrast) produced by the backlit display of the tablet computer. Contrast sensitivity decreases with age and degraded contrast conditions lead to longer reading times, thus supporting the conclusion that older readers may benefit particularly from the enhanced contrast of the tablet. Our findings thus indicate that people's subjective evaluation of digital reading media must be dissociated from the cognitive and neural effort expended in online information processing while reading from such devices. PMID:23405265

  8. Smart electronics and microengineering: the Australian focus

    NASA Astrophysics Data System (ADS)

    Hariz, Alex

    1998-04-01

    Integrated MEMS together with signal-conditioning electronics on the same chip appears to be the ultimate solution to realizing smart computer devices integratable into larger systems. This in principle will lead to systems with decentralized intelligence leading to applications in numerous fields. It is conceived that such devices would be the product of merging two mature technologies, that of microsensors and that of IC manufacture which is enjoying a well established success. Using common and suitable materials it is reasonable to expect a high degree of compatibility with little modification to standard processes. The various aspects of this co-integration will be analyzed and factors critical to the viability of the process, that go beyond mere technical feasibility will be highlighted. Australian research in this area is strong and continues to grow. We will pinpoint opportunities and constraints to the promising prospect of smart electronics and MEMS.

  9. Photonic band gap materials: towards an all-optical transistor

    NASA Astrophysics Data System (ADS)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  10. Design of inductive sensors for tongue control system for computers and assistive devices.

    PubMed

    Lontis, Eugen R; Struijk, Lotte N S A

    2010-07-01

    The paper introduces a novel design of air-core inductive sensors in printed circuit board (PCB) technology for a tongue control system. The tongue control system provides a quadriplegic person with a keyboard and a joystick type of mouse for interaction with a computer or for control of an assistive device. Activation of inductive sensors was performed with a cylindrical, soft ferromagnetic material (activation unit). Comparative analysis of inductive sensors in PCB technology with existing hand-made inductive sensors was performed with respect to inductance, resistance, and sensitivity to activation when the activation unit was placed in the center of the sensor. Optimisation of the activation unit was performed in a finite element model. PCBs with air-core inductive sensors were manufactured in a 10 layers, 100 microm and 120 microm line width technology. These sensors provided quality signals that could drive the electronics of the hand-made sensors. Furthermore, changing the geometry of the sensors allowed generation of variable signals correlated with the 2D movement of the activation unit at the sensors' surface. PCB technology for inductive sensors allows flexibility in design, automation of production and ease of possible integration with supplying electronics. The basic switch function of the inductive sensor can be extended to two-dimensional movement detection for pointing devices.

  11. Device for timing and power level setting for microwave applications

    NASA Astrophysics Data System (ADS)

    Ursu, M.-P.; Buidoş, T.

    2016-08-01

    Nowadays, the microwaves are widely used for various technological processes. The microwaves are emitted by magnetrons, which have strict requirements concerning power supplies for anode and filament cathodes, intensity of magnetic field, cooling and electromagnetic shielding. The magnetrons do not tolerate any alteration of their required voltages, currents and magnetic fields, which means that their output microwave power is fixed, so the only way to alter the power level is to use time-division, by turning the magnetron on and off by repetitive time patterns. In order to attain accurate and reproducible results, as well as correct and safe operation of the microwave device, all these requirements must be fulfilled. Safe, correct and reproducible operation of the microwave appliance can be achieved by means of a specially built electronic device, which ensures accurate and reproducible exposure times, interlocking of the commands and automatic switch off when abnormal operating conditions occur. This driving device, designed and realized during the completion of Mr.Ursu's doctoral thesis, consists of a quartz time-base, several programmable frequency and duration dividers, LED displays, sensors and interlocking gates. The active and passive electronic components are placed on custom-made PCB's, designed and made by means of computer-aided applications and machines. The driving commands of the electronic device are delivered to the magnetron power supplies by means of optic zero-passing relays. The inputs of the electronic driving device can sense the status of the microwave appliance. The user is able to enter the total exposure time, the division factor that sets the output power level and, as a novelty, the clock frequency of the time divider.

  12. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  13. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  14. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  15. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    NASA Astrophysics Data System (ADS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-02-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  16. Influence of electronic apex locators and a gutta-percha heating device on implanted cardiac devices: an in vivo study.

    PubMed

    Moraes, A P; Silva, E J; Lamas, C C; Portugal, P H; Neves, A A

    2016-06-01

    To evaluate the potential for electromagnetic interference (EMI) of electronic apex locators (EALs) and a gutta-percha heating device (HD) in patients with implantable cardiac pacemakers (ICPs) or cardioverter-defibrillators (ICDs). Two types of EALs (Romiapex A-15 and Novapex) and a HD (Touch'n Heat) were tested in patients followed in an outpatient clinic for cardiac arrhythmias. The heart rhythm was monitored on a computer screen during all experimental phases. After baseline data collection, the patient held each appliance (turned on) for 30 s, simulating their clinical use. If background noise was detected on the cardiac monitor, the sensitivity of the ICP/ICD was lowered by the cardiologist to evaluate the intensity of the detected EMI. Twelve patients were evaluated (5 female and 7 male), and in nine instances, background noise in their cardiac devices related to the use of the endodontic devices was detected (6 patients). After lowering the sensitivity of the cardiac implants, three patients had more severe EMI in six instances, including pauses in ICP function. The presence of a symptomatic or asymptomatic pause was related to the patient's underlying heart rhythm. The HD device produced background noise more often compared to EALs. These were associated with more severe types of EMI. The EALs and gutta-percha HD were capable of causing background noise detection or pauses in cardiac implants in vivo. The use of electronic dental devices nearby patients with cardiac implants should be carefully considered in clinical practice. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. An Inexpensive, Open-Source USB Arduino Data Acquisition Device for Chemical Instrumentation.

    PubMed

    Grinias, James P; Whitfield, Jason T; Guetschow, Erik D; Kennedy, Robert T

    2016-07-12

    Many research and teaching labs rely on USB data acquisition devices to collect voltage signals from instrumentation. However, these devices can be cost-prohibitive (especially when large numbers are needed for teaching labs) and require software to be developed for operation. In this article, we describe the development and use of an open-source USB data acquisition device (with 16-bit acquisition resolution) built using simple electronic components and an Arduino Uno that costs under $50. Additionally, open-source software written in Python is included so that data can be acquired using nearly any PC or Mac computer with a simple USB connection. Use of the device was demonstrated for a sophomore-level analytical experiment using GC and a CE-UV separation on an instrument used for research purposes.

  18. Three-terminal resistive switching memory in a transparent vertical-configuration device

    NASA Astrophysics Data System (ADS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  19. A Mobile Virtual Butler to Bridge the Gap between Users and Ambient Assisted Living: A Smart Home Case Study

    PubMed Central

    Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António

    2014-01-01

    Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc. PMID:25102342

  20. A mobile Virtual Butler to bridge the gap between users and ambient assisted living: a Smart Home case study.

    PubMed

    Costa, Nuno; Domingues, Patricio; Fdez-Riverola, Florentino; Pereira, António

    2014-08-06

    Ambient Intelligence promises to transform current spaces into electronic environments that are responsive, assistive and sensitive to human presence. Those electronic environments will be fully populated with dozens, hundreds or even thousands of connected devices that share information and thus become intelligent. That massive wave of electronic devices will also invade everyday objects, turning them into smart entities, keeping their native features and characteristics while seamlessly promoting them to a new class of thinking and reasoning everyday objects. Although there are strong expectations that most of the users' needs can be fulfilled without their intervention, there are still situations where interaction is required. This paper presents work being done in the field of human-computer interaction, focusing on smart home environments, while being a part of a larger project called Aging Inside a Smart Home. This initiative arose as a way to deal with a large scourge of our country, where lots of elderly persons live alone in their homes, often with limited or no physical mobility. The project relies on the mobile agent computing paradigm in order to create a Virtual Butler that provides the interface between the elderly and the smart home infrastructure. The Virtual Butler is receptive to user questions, answering them according to the context and knowledge of the AISH. It is also capable of interacting with the user whenever it senses that something has gone wrong, notifying next of kin and/or medical services, etc. The Virtual Butler is aware of the user location and moves to the computing device which is closest to the user, in order to be always present. Its avatar can also run in handheld devices keeping its main functionality in order to track user when s/he goes out. According to the evaluation carried out, the Virtual Butler is assessed as a very interesting and loved digital friend, filling the gap between the user and the smart home. The evaluation also showed that the Virtual Butler concept can be easily ported to other types of possible smart and assistive environments like airports, hospitals, shopping malls, offices, etc.

  1. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  2. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  3. Electronic behavioral interventions for headache: a systematic review.

    PubMed

    Minen, Mia Tova; Torous, John; Raynowska, Jenelle; Piazza, Allison; Grudzen, Corita; Powers, Scott; Lipton, Richard; Sevick, Mary Ann

    2016-01-01

    There is increasing interest in using electronic behavioral interventions as well as mobile technologies such as smartphones for improving the care of chronic disabling diseases such as migraines. However, less is known about the current clinical evidence for the feasibility and effectiveness of such behavioral interventions. To review the published literature of behavioral interventions for primary headache disorders delivered by electronic means suitable for use outside of the clinician's office. An electronic database search of PubMed, PsycINFO, and Embase was conducted through December 11, 2015. All eligible studies were systematically reviewed to examine the modality in which treatment was delivered (computer, smartphone, watch and other), types of behavioral intervention delivered (cognitive behavioral therapy [CBT], biofeedback, relaxation, other), the headache type being treated, duration of treatment, adherence, and outcomes obtained by the trials to examine the overall feasibility of electronic behavioral interventions for headache. Our search produced 291 results from which 23 eligible articles were identified. Fourteen studies used the internet via the computer, 2 used Personal Digital Assistants, 2 used CD ROM and 5 used other types of devices. None used smartphones or wearable devices. Four were pilot studies (N ≤ 10) which assessed feasibility. For the behavioral intervention, CBT was used in 11 (48 %) of the studies, relaxation was used in 8 (35 %) of the studies, and biofeedback was used in 5 (22 %) of the studies. The majority of studies (14/23, 61 %) used more than one type of behavioral modality. The duration of therapy ranged from 4-8 weeks for CBT with a mean of 5.9 weeks. The duration of other behavioral interventions ranged from 4 days to 60 months. Outcomes measured varied widely across the individual studies. Despite the move toward individualized medicine and mHealth, the current literature shows that most studies using electronic behavioral intervention for the treatment of headache did not use mobile devices. The studies examining mobile devices showed that the behavioral interventions that employed them were acceptable to patients. Data are limited on the dose required, long term efficacy, and issues related to the security and privacy of this health data. This study was registered at the PROSPERO International Prospective Register of Systematic Reviews (CRD42015032284) (Prospero, 2015).

  4. SCUT: clinical data organization for physicians using pen computers.

    PubMed Central

    Wormuth, D. W.

    1992-01-01

    The role of computers in assisting physicians with patient care is rapidly advancing. One of the significant obstacles to efficient use of computers in patient care has been the unavailability of reasonably configured portable computers. Lightweight portable computers are becoming more attractive as physician data-management devices, but still pose a significant problem with bedside use. The advent of computers designed to accept input from a pen and having no keyboard present a usable computer platform to enable physicians to perform clinical computing at the bedside. This paper describes a prototype system to maintain an electronic "scut" sheet. SCUT makes use of pen-input and background rule checking to enhance patient care. GO Corporation's PenPoint Operating System is used to implement the SCUT project. PMID:1483012

  5. Ocular Tolerance of Contemporary Electronic Display Devices.

    PubMed

    Clark, Andrew J; Yang, Paul; Khaderi, Khizer R; Moshfeghi, Andrew A

    2018-05-01

    Electronic displays have become an integral part of life in the developed world since the revolution of mobile computing a decade ago. With the release of multiple consumer-grade virtual reality (VR) and augmented reality (AR) products in the past 2 years utilizing head-mounted displays (HMDs), as well as the development of low-cost, smartphone-based HMDs, the ability to intimately interact with electronic screens is greater than ever. VR/AR HMDs also place the display at much closer ocular proximity than traditional electronic devices while also isolating the user from the ambient environment to create a "closed" system between the user's eyes and the display. Whether the increased interaction with these devices places the user's retina at higher risk of damage is currently unclear. Herein, the authors review the discovery of photochemical damage of the retina from visible light as well as summarize relevant clinical and preclinical data regarding the influence of modern display devices on retinal health. Multiple preclinical studies have been performed with modern light-emitting diode technology demonstrating damage to the retina at modest exposure levels, particularly from blue-light wavelengths. Unfortunately, high-quality in-human studies are lacking, and the small clinical investigations performed to date have failed to keep pace with the rapid evolutions in display technology. Clinical investigations assessing the effect of HMDs on human retinal function are also yet to be performed. From the available data, modern consumer electronic displays do not appear to pose any acute risk to vision with average use; however, future studies with well-defined clinical outcomes and illuminance metrics are needed to better understand the long-term risks of cumulative exposure to electronic displays in general and with "closed" VR/AR HMDs in particular. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:346-354.]. Copyright 2018, SLACK Incorporated.

  6. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    PubMed

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  7. United States Air Force High School Apprenticeship Program. 1990 Program Management Report. Volume 3

    DTIC Science & Technology

    1991-04-18

    User Guide Shelly Knupp 73 Computer-Aided Design (CAD) Area Christopher O’Dell 74 Electron Beam Lithography Suzette Yu 68 Flight Dynamics Laboratory 75...fabrication. I Mr. Ed Davis, for the background knowledge of device processes and I information on electron beam lithography . Captain Mike Cheney, for...researcher may write gates on to the wafer by a process called lithography . This is the most crucial and complex part of the process. Two types of proven

  8. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less

  9. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally, the software was extended to investigate if the digital tomosynthesis dataset could be used in an adaptive radiotherapy regimen through the use of the Pinnacle treatment planning software to recalculate dose delivered. The feasibility study showed that the megavoltage CBDT visually agreed with corresponding megavoltage computed tomography images. The comparative study showed that the best compromise between imaging quality and imaging dose is obtained when 11 projection images, acquired over an imaging angle of 40°, are used with the filtered back-projection algorithm. DART was successfully used to register reference and daily image sets to within 1 mm in-plane and 2.5 mm out of plane. The DART platform was also effectively used to generate updated files that the Pinnacle treatment planning system used to calculate updated dose in a rigidly shifted patient. These doses were then used to calculate a cumulative dose distribution that could be used by a physician as reference to decide when the treatment plan should be updated. In conclusion, this study showed that a software solution is possible to extend existing electronic portal imaging devices to function as cone-beam digital tomosynthesis devices and achieve daily requirement for image guided intensity modulated radiotherapy treatments. The DART platform also has the potential to be used as a part of adaptive radiotherapy solution.

  10. Aesthetics in Young Children's Lives: From Music Technology Curriculum Perspective

    ERIC Educational Resources Information Center

    Ko, Chia-Hui; Chou, Mei-Ju

    2013-01-01

    Music technology is a term commonly used to refer to electronic form of the musical arts, particularly devices and computer software that enable the facilitation, playback, recording, composition, storage, and performance of various musical compositions. There has been a growing awareness of the importance of aesthetics in early childhood…

  11. 78 FR 49323 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Information Collection Request (ICR) abstracted below will be forwarded to the Office of Management and Budget... for clearance by OMB as required by the PRA. Title: Electronic Device Distraction: Test of Peer to... consoles, personal computers, etc.) is known to be a factor in some accidents and suspected of being the...

  12. Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance

    ERIC Educational Resources Information Center

    Orndorff, Harold N., III.

    2015-01-01

    This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…

  13. 41 CFR Appendix A to Part 60 - 300-Guidelines on a Contractor's Duty To Provide Reasonable Accommodation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include providing adaptive hardware and software for computers, electronic visual aids, braille devices, talking calculators, magnifiers, audio recordings and braille or large-print materials. For persons with... vision or hearing impaired, e.g., by making an announcement available in braille, in large print, or on...

  14. The Electronic Revolution in the Classroom: Promise or Threat?

    ERIC Educational Resources Information Center

    Hechinger, Fred M.; And Others

    Three authorities in the field of education offer their views on the technological revolution in instructional materials. Fred Hechinger, education editor of the New York Times, discusses the range of devices available, from film strips to computers. He feels that industry is oversold on the future of educational technology, both because of the…

  15. An Assessment of Remote Laboratory Experiments in Radio Communication

    ERIC Educational Resources Information Center

    Gampe, Andreas; Melkonyan, Arsen; Pontual, Murillo; Akopian, David

    2014-01-01

    Today's electrical and computer engineering graduates need marketable skills to work with electronic devices. Hands-on experiments prepare students to deal with real-world problems and help them to comprehend theoretical concepts and relate these to practical tasks. However, shortage of equipment, high costs, and a lack of human resources for…

  16. List processing software for the LeCroy 1821 Segment Manager Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, T.; Moore, C.; Pordes, R.

    1987-05-01

    Many experiments at Fermilab now include some FASTBUS electronics in their data readout. The software reported in this paper provides general support for the LeCroy 1821 interface. The list processing device drivers allow FASTBUS data to be read out efficiently into the Fermilab Computing Department supported data acquisition systems.

  17. 76 FR 71980 - SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Device and Radiological Health's (CDRH's) denial of a premarket approval application (PMA) for the... Committee: To provide advice and recommendations to the Agency on scientific disputes between CDRH and... EES and CDRH may be made to the docket on or before December 7, 2011. Submit electronic comments to...

  18. An Introduction to the Memristor

    ERIC Educational Resources Information Center

    Atkin, Keith

    2013-01-01

    In recent years there has been a revolution in electronics, with a variety of physical phenomena being utilized in the construction of new types of memory circuits for computer application. A device which has had an increasing role is the memristor, whose description and properties have so far had little mention in physics education. This paper…

  19. Economics of End-of-Life Materials Recovery: A Study of Small Appliances and Computer Devices in Portugal.

    PubMed

    Ford, Patrick; Santos, Eduardo; Ferrão, Paulo; Margarido, Fernanda; Van Vliet, Krystyn J; Olivetti, Elsa

    2016-05-03

    The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.

  20. Advances/applications of MAGIC and SOS

    NASA Astrophysics Data System (ADS)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  1. Your Higgs number - how fundamental physics is connected to technology and societal revolutions

    NASA Astrophysics Data System (ADS)

    Lidström, Suzy; Allen, Roland E.

    2015-03-01

    Fundamental physics, as exemplified by the recently discovered Higgs boson, often appears to be completely disconnected from practical applications and ordinary human life. But this is not really the case, because science, technology, and human affairs are profoundly integrated in ways that are not immediately obvious. We illustrate this by defining a ``Higgs number'' through overlapping activities. Following three different paths, which end respectively in applications of the World Wide Web, digital photography, and modern electronic devices, we find that most people have a Higgs number of no greater than 3. Specific examples chosen for illustration, with their assigned Higgs numbers, are: LHC experimentalists employing the Worldwide Computing Grid (0) - Timothy Berners-Lee (1) - Marissa Mayer, of Google and Yahoo, and Sheryl Sandberg, of Facebook (2) - users of all web-based enterprises (3). CMS and ATLAS experimentalists (0) - particle detector developers (1) - inventors of CCDs and active-pixel sensors (2) - users of digital cameras and camcorders (3). Philip Anderson (0) - John Bardeen (1) - Jack Kilby (2) - users of personal computers, mobile phones, and all other modern electronic devices (3).

  2. Negative capacitance in a ferroelectric-dielectric heterostructure for ultra low-power computing

    NASA Astrophysics Data System (ADS)

    Salahuddin, Sayeef

    2012-10-01

    Introduction: It is now well recognized that energy dissipation in microchips may ultimately restrict device scaling - the downsizing of physical dimensions that has fuelled the fantastic growth of microchip industry so far. However, energy dissipation in electronic devices has even bigger consequences. Use of electronic equipments in our daily life is increasing exponentially. As a result, energy dissipation in electronic devices is expected to play an increasingly significant role in terms of national energy needs [1-6]. But there is a fundamental limit to how much the dissipation can be reduced in transistors that is in the heart of almost all electronic devices. Conventional transistors are thermally activated. A barrier is created that blocks the current and then the barrier height is modulated to control the current flow. This modulation of the barrier changes the number of electrons exponentially following the Boltzmann factor exp(qV/kT). This in turn means that to change the current by one order of magnitude at least a voltage of 2.3kT/q (that translates into 60 mV at room temperature) is necessary. In practice, a voltage many times this limit of 60 mV has to be applied to obtain a good ON current to OFF current ratio. Because this comes from the Boltzmann factor that is a fundamental nature of how electrons are distributed in energy, it is not possible to reduce the supply voltage in conventional transistors below a certain point, while still maintaining a healthy ON/OFF ratio that is necessary for robust operation. On the other hand, continuous down scaling is putting even larger number of devices in the same area thus increasing the energy dissipation density beyond controllable and sustainable limits. This has been termed as the Boltzmann's Tyranny [2] and it has been predicted that unless new principles are found based on fundamentally new physics, the transistors will die a thermal death [4].

  3. Atomically Thin Femtojoule Memristive Device

    DOE PAGES

    Zhao, Huan; Dong, Zhipeng; Tian, He; ...

    2017-10-25

    The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary-type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. In this paper, the formation of conductive filaments in a material medium with sub-nanometer thickness formed through the oxidation of atomically thin two-dimensionalmore » boron nitride is studied. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. Finally, these ultralow energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.« less

  4. Atomistic- and Meso-Scale Computational Simulations for Developing Multi-Timescale Theory for Radiation Degradation in Electronic and Optoelectronic Devices

    DTIC Science & Technology

    2017-02-13

    3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2016-0161 12. DISTRIBUTION / AVAILABILITY...RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy 22 Approved for public release; distribution is unlimited. ... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0161 TR-2016-0161 ATOMISTIC- AND MESO-SCALE COMPUTATIONAL SIMULATIONS FOR DEVELOPING MULTI-TIMESCALE THEORY FOR

  5. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  6. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  7. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  8. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.

  9. A Project Course Sequence in Innovation and Commercialization of Medical Devices.

    PubMed

    Eberhardt, Alan W; Tillman, Shea; Kirkland, Brandon; Sherrod, Brandon

    2017-07-01

    There exists a need for educational processes in which students gain experience with design and commercialization of medical devices. This manuscript describes the implementation of, and assessment results from, the first year offering of a project course sequence in Master of Engineering (MEng) in Design and Commercialization at our institution. The three-semester course sequence focused on developing and applying hands-on skills that contribute to product development to address medical device needs found within our university hospital and local community. The first semester integrated computer-aided drawing (CAD) as preparation for manufacturing of device-related components (hand machining, computer numeric control (CNC), three-dimensional (3D) printing, and plastics molding), followed by an introduction to microcontrollers (MCUs) and printed circuit boards (PCBs) for associated electronics and control systems. In the second semester, the students applied these skills on a unified project, working together to construct and test multiple weighing scales for wheelchair users. In the final semester, the students applied industrial design concepts to four distinct device designs, including user and context reassessment, human factors (functional and aesthetic) design refinement, and advanced visualization for commercialization. The assessment results are described, along with lessons learned and plans for enhancement of the course sequence.

  10. Performance analysis and simulation of vertical gallium nitride nanowire transistors

    NASA Astrophysics Data System (ADS)

    Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas

    2018-06-01

    Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.

  11. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.

    PubMed

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-05-09

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.

  12. Multilevel Resistance Programming in Conductive Bridge Resistive Memory

    NASA Astrophysics Data System (ADS)

    Mahalanabis, Debayan

    This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing.

  13. Standards for the Analysis and Processing of Surface-Water Data and Information Using Electronic Methods

    USGS Publications Warehouse

    Sauer, Vernon B.

    2002-01-01

    Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.

  14. Mobile Tablet Use among Academic Physicians and Trainees

    PubMed Central

    Sclafani, Joseph; Tirrell, Timothy F.

    2014-01-01

    The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961

  15. Device and method to enhance availability of cluster-based processing systems

    NASA Technical Reports Server (NTRS)

    Lupia, David J. (Inventor); Ramos, Jeremy (Inventor); Samson, Jr., John R. (Inventor)

    2010-01-01

    An electronic computing device including at least one processing unit that implements a specific fault signal upon experiencing an associated fault, a control unit that generates a specific recovery signal upon receiving the fault signal from the at least one processing unit, and at least one input memory unit. The recovery signal initiates specific recovery processes in the at least one processing unit. The input memory buffers input data signals input to the at least one processing unit that experienced the fault during the recovery period.

  16. Scaling vectors of attoJoule per bit modulators

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.

  17. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  18. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  19. Preface

    NASA Astrophysics Data System (ADS)

    Jackman, R. B.

    2003-03-01

    It is not an exaggeration to say that over the past forty years solid-state electronic devices have revolutionized working practices and the way leisure time is spent. The semiconductor at the heart of the vast majority of these electronic devices is silicon. Predictions that new semiconductors will be required to enable the pace of the electronics revolution to be kept at its present level are regularly made, but silicon device engineers just keep coming up with ways to make silicon devices better and better. It is the year 1990, and reliable chemical vapour deposition (CVD) techniques for the formation of large area films of diamond have been demonstrated in a number of research laboratories around the world. The first major international conferences on the growth, properties and potential applications for diamond, now available in a form useful to device engineers for the first time, have taken place. A survey of the basic properties of diamond suggests that it is an ideal material for electronics. It has a wide bandgap (5.5 eV, indirect), high saturated carrier velocities and carrier mobilities (and electrons and holes have similar values), a high electric field breakdown strength, low dielectric constant, high thermal conductivity and high visible-infrared radiation transparency. Many potential applications can, and have been proposed, including high power and high frequency electronic devices. When the resilience of diamond to high levels of radiation or heat, and the prospect of a negative electron affinity surface are also considered, many more applications come to mind such as high temperature or radiation hard electronics, radiation detectors, optoelectronic devices and cold cathodes. At this time, diamond films grown on non-diamond substrates are polycrystalline, and highly defective, but high purity single crystal material is considered `just around the corner'. There is even a naturally occurring dopant, boron, to enable p-type diamond to be produced and surely it is only a matter of months before n-type material is realized. Researchers can be found talking to the media about future computers that will have within them semiconducting chips made of diamond early in the new century. Let us now move to the present, the year 2003. Diamond films grown on non-diamond substrates are still polycrystalline, although far less defective. Single crystal material is available, but not in large areas since it is produced through the homoepitaxial growth of a high purity layer on a (relatively) cheap, but small, substrate. The only dopant that all laboratories can master is still boron, but at least three labs have reliably generated n-type conductivity through the incorporation of phosphorus, although the donor level formed is deep at around 0.6 eV (nor is boron shallow, forming an acceptor level at 0.37 eV). There are no mass market active diamond electronic devices for sale, and certainly no computers with diamond-based chips at their heart. Why? Well perhaps the early predictions were simply too ambitious. Ten or so years is not a long time in terms of the development of a new semiconductor. Also the predictors were far too ready to dismiss silicon. This article is being written on a Macintosh laptop computer, whose base can get too hot for the lap after prolonged use! Silicon for high temperature electronics? Well yes, if you introduce silicon-on-insulator (SOI) technology as Motorola have done. The level of investment required for even the most basic semiconductor fabrication facility is measured in billions of US dollars. New semiconductors will not be used within mass production environments unless they offer not just incremental improvements, but major steps forward, and do so reliably. It can be argued that it was the need for microwave devices that emerged with modern communications that gave III-V semiconductors their breakthrough, not the prospect of an improved computer. In this new century those working in the field of diamond electronics have become more realistic in their ambitions, and with this realism have come many successes, even though they are on a smaller scale than originally predicted. You can buy active electronic devices based upon CVD diamond, but they are aimed at niche markets. For this reason, many of the multi-national companies no longer support programmes in diamond electronics, but in their place are plenty of medium and small enterprises for whom niche markets are just fine. Optoelectronic devices and radiation detectors, in particular, have been produced with performance levels that are commercially useful. For example, aspects of my own work at UCL have led to the commercial introduction of deep UV diamond-based photodetectors, and CEA in Paris have introduced a range of radiation detectors that are being purchased for use within the nuclear industry. This is not to say that mass market applications for diamond will not emerge, it is simply that if they do they are likely to be where diamond enables a new technology, not an incremental improvement to an existing one. Perhaps the exciting new topic of quantum computing could be just such a technology in 10-20 years time. Equally exciting is the integration of electronics with biological materials, and nano-biotechnology could perhaps be a major application area for diamond-based devices in the future. All future developments of diamond electronics will be underpinned by fundamental insight into the way that the diamond grows, its properties and the physics controlling the operation of device structures. Whilst many CVD methods have been used to grow diamond, micowave plasma enhanced CVD has proved to be the most effective for the growth of high purity material. Until recently growth rates were limited to around 1 µm h-1, making the material fairly costly to produce. This can now be increased to beyond 50 µm h-1 making even the highest quality diamond substrates commercially accessible for many applications. The electronic properties of the material have also been improving dramatically over the last few months, such that it is possible to produce CVD material with carrier mobilities that surpass the best natural diamonds (see for example, Science (2002) 297 1670). This special issue of Semiconductor Science and Technology is dedicated to surveying recent developments in diamond electronics that are being enabled by these improvements in growth. Most of this special issue addresses crystalline diamond. However, two articles have been included on diamond-like carbon (DLC), to give the reader some insight into the properties and applications of this related, but different, material. In fact DLC is not a single material, but is a fully constrained network of sp2 and sp3 carbon (sometimes with hydrogen), where the sp2 and sp3 ratio, and hence the materials properties, can be varied. The issue begins with an article on the electronic properties of diamond; doping diamond is then considered. The fascinating observation that hydrogen terminated diamond surfaces display p-type conductivity is then discussed, followed by some diamond processing issues and electronic device fabrication. Papers on properties and applications follow. At the end of the issue are two largely theoretical papers submitted by Johann Prins. These papers are thought provoking, but make some very controversial claims. They are included here so that the reader can consider the approach developed within these two associated papers, perhaps thinking how this impacts upon their own work, even if the end conclusions remain open to debate. Indeed, it is hoped that this debate will be opened up through their publication, enabling this area of thought to be more widely explored and critically examined. Optical picture of a homoepitaxial film Figure 1. Optical picture of a homoepitaxial film grown at a rate of more than 50 µm h-1. Figure 1 is an optical picture of a homoepitaxial film grown in my laboratories at UCL at a rate of more than 50 µm h-1. It is included for no scientific or technical reason, nor is it our best layer. It is simply included as a beautiful picture, and to remind us that not all good things have to be for a commercial application! It has been a pleasure working with the authors and IOPP in bringing together this special issue. I hope you, the reader, find it useful.

  20. Electronic trigger for capacitive touchscreen and extension of ISO 15781 standard time lag measurements to smartphones

    NASA Astrophysics Data System (ADS)

    Bucher, François-Xavier; Cao, Frédéric; Viard, Clément; Guichard, Frédéric

    2014-03-01

    We present in this paper a novel capacitive device that stimulates the touchscreen interface of a smartphone (or of any imaging device equipped with a capacitive touchscreen) and synchronizes triggering with the DxO LED Universal Timer to measure shooting time lag and shutter lag according to ISO 15781:2013. The device and protocol extend the time lag measurement beyond the standard by including negative shutter lag, a phenomenon that is more and more commonly found in smartphones. The device is computer-controlled, and this feature, combined with measurement algorithms, makes it possible to automatize a large series of captures so as to provide more refined statistical analyses when, for example, the shutter lag of "zero shutter lag" devices is limited by the frame time as our measurements confirm.

  1. Building devices from colloidal quantum dots.

    PubMed

    Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V

    2016-08-26

    The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. Copyright © 2016, American Association for the Advancement of Science.

  2. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  3. Detecting the Use of Intentionally Transmitting Personal Electronic Devices Onboard Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Woods, Randy; Ely, Jay J.; Vahala, Linda

    2003-01-01

    The need to detect unauthorized usage of intentionally transmitting portable electronic devices (PEDs) onboard commercial aircraft is growing, while still allowing passengers to use selected unintentionally transmitting devices, such as laptop computers and CD players during non-critical stages of flight. The following paper presents an installed system for detecting PEDs over multiple frequency bands. Additionally, the advantages of a fixed verses mobile system are discussed. While data is presented to cover the frequency range of 20 MHz to 6.5 GHz, special attention was given to the Cellular/PCS bands as well as Bluetooth and the FRS radio bands. Measurement data from both the semi-anechoic and reverberation chambers are then analyzed and correlated with data collected onboard a commercial aircraft to determine the dominant mode of coupling inside the passenger cabin of the aircraft versus distance from the source. As a final check of system feasibility, several PEDs transmission signatures were recorded and compared with the expected levels.

  4. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-09-19

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  5. Optical bistability for optical signal processing and computing

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.; Gibbs, H. M.

    1985-02-01

    Optical bistability (OB) is a phenomenon in which a nonlinear medium responds to an optical input beam by changing its transmission abruptly from one value to another. A 'nonlinear medium' is a medium in which the index of refraction depends on the incident light intensity. A device is said to be optically bistable if two stable output states exist for the same value of the input. Optically bistable devices can perform a number of logic functions related to optical memory, optical transistor, optical discriminator, optical limiter, optical oscillator, and optical gate. They also have the potential for subpicosecond switching, greatly exceeding the capability of electronics. This potential is one of several advantages of optical data processing over electronic processing. Other advantages are greater immunity to electromagnetic interference and crosstalk, and highly parallel processing capability. The present investigation is mainly concerned with all-optical etalon devices. The considered materials, include GaAs, ZnS and ZnSe, CuCl, InSb, InAs, and CdS.

  6. Consumer Sleep Technologies: A Review of the Landscape

    PubMed Central

    Ko, Ping-Ru T.; Kientz, Julie A.; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A.; Watson, Nathaniel F.

    2015-01-01

    Objective: To review sleep related consumer technologies, including mobile electronic device “apps,” wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. Methods: We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included “sleep technology,” “sleep app,” and “sleep monitoring.” Results: Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Conclusions: Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. Citation: Ko PR, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med 2015;11(12):1455–1461. PMID:26156958

  7. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  8. The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)

    2002-01-01

    NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.

  9. Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers.

    PubMed

    Thompson, Damien; Nijhuis, Christian A

    2016-10-18

    This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.

  10. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan

    Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less

  11. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.

    PubMed

    Miao, Yipu; Merz, Kenneth M

    2015-04-14

    We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications.

  12. Hybrid Circuit QED with Electrons on Helium

    NASA Astrophysics Data System (ADS)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  13. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    NASA Astrophysics Data System (ADS)

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-09-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces.

  14. Advanced interdisciplinary undergraduate program: light engineering

    NASA Astrophysics Data System (ADS)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  15. Real-time encoding and compression of neuronal spikes by metal-oxide memristors

    PubMed Central

    Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis

    2016-01-01

    Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces. PMID:27666698

  16. Development and functional demonstration of a wireless intraoral inductive tongue computer interface for severely disabled persons.

    PubMed

    N S Andreasen Struijk, Lotte; Lontis, Eugen R; Gaihede, Michael; Caltenco, Hector A; Lund, Morten Enemark; Schioeler, Henrik; Bentsen, Bo

    2017-08-01

    Individuals with tetraplegia depend on alternative interfaces in order to control computers and other electronic equipment. Current interfaces are often limited in the number of available control commands, and may compromise the social identity of an individual due to their undesirable appearance. The purpose of this study was to implement an alternative computer interface, which was fully embedded into the oral cavity and which provided multiple control commands. The development of a wireless, intraoral, inductive tongue computer was described. The interface encompassed a 10-key keypad area and a mouse pad area. This system was embedded wirelessly into the oral cavity of the user. The functionality of the system was demonstrated in two tetraplegic individuals and two able-bodied individuals Results: The system was invisible during use and allowed the user to type on a computer using either the keypad area or the mouse pad. The maximal typing rate was 1.8 s for repetitively typing a correct character with the keypad area and 1.4 s for repetitively typing a correct character with the mouse pad area. The results suggest that this inductive tongue computer interface provides an esthetically acceptable and functionally efficient environmental control for a severely disabled user. Implications for Rehabilitation New Design, Implementation and detection methods for intra oral assistive devices. Demonstration of wireless, powering and encapsulation techniques suitable for intra oral embedment of assistive devices. Demonstration of the functionality of a rechargeable and fully embedded intra oral tongue controlled computer input device.

  17. Ionization effects and linear stability in a coaxial plasma device

    NASA Astrophysics Data System (ADS)

    Kurt, Erol; Kurt, Hilal; Bayhan, Ulku

    2009-03-01

    A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.

  18. Orientation selectivity in a multi-gated organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Lonjaret, Thomas; Fairfield, Jessamyn A.; Malliaras, George G.

    2016-06-01

    Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology.

  19. K-12 Marketplace Sees Major Flow of Venture Capital

    ERIC Educational Resources Information Center

    Ash, Katie

    2012-01-01

    The flow of venture capital into the K-12 education market has exploded over the past year, reaching its highest transaction values in a decade in 2011, industry observers say. They attribute that rise to such factors as a heightened interest in educational technology; the decreasing cost of electronic devices such as tablet computers, laptops,…

  20. Teaching Adults with Moderate Intellectual Disability ATM Use via the "iPod"

    ERIC Educational Resources Information Center

    Scott, Renee; Collins, Belva; Knight, Victoria; Kleinert, Harold

    2013-01-01

    Money management can increase independence and access to communities for individuals with disabilities. Although research on computer-based instruction for teaching banking skills to students with intellectual disability is established, the use of portable electronic devices (e.g., iPod) has not been evaluated. iPods may be an effective, portable,…

  1. 1988-2000 Long-Range Plan for Technology of the Texas State Board of Education.

    ERIC Educational Resources Information Center

    Texas State Board of Education, Austin.

    This plan plots the course for meeting educational needs in Texas through such technologies as computer-based systems, devices for storage and retrieval of massive amounts of information, telecommunications for audio, video, and information sharing, and other electronic media devised by the year 2000 that can help meet the instructional and…

  2. Investigating the Determinants and Age and Gender Differences in the Acceptance of Mobile Learning

    ERIC Educational Resources Information Center

    Wang, Yi-Shun; Wu, Ming-Cheng; Wang, Hsiu-Yuan

    2009-01-01

    With the proliferation of mobile computing technology, mobile learning (m-learning) will play a vital role in the rapidly growing electronic learning market. M-learning is the delivery of learning to students anytime and anywhere through the use of wireless Internet and mobile devices. However, acceptance of m-learning by individuals is critical…

  3. Interactive Whiteboards in Early Childhood Mathematics: Strategies for Effective Implementation in Pre-K-Grade 3

    ERIC Educational Resources Information Center

    Linder, Sandra M.

    2012-01-01

    Teachers are using technological innovations--including interactive whiteboards--in pre-K-grade 3 classrooms across the country. An IWB is a wall-mounted, touch-sensitive flat screen. When connected to a computer (or another electronic device) and a projector, it displays enlarged instructional content (such as a math word problem, pictures or…

  4. Measured and Predicted Radiation-Induced Currents in Semirigid Coaxial Cables.

    DTIC Science & Technology

    1977-10-11

    plasma focus device. Semirigid cables of different size, material, and impedance were tested. Minute gaps and conductor flashings were found to be dominant factors affecting cable response. Response predictions provided by the MCCABE computer code closely correlated with the experimental measurements. Design of low-response semirigid cables matching the metal and dielectric electron emission is discussed.

  5. Using Technology To Combat Truancy. Number 10 in a Series of CTC Trust Publications.

    ERIC Educational Resources Information Center

    Haigh, Gerald

    The 14 City Technology Colleges (CTCs) opened so far in Great Britain are achieving an average attendance rate of between 90 percent and 97 percent. This high level of attendance has been assisted by the use of electronic registration (role taking) devices, including smart cards, portable computers, and optical readers. This report compares…

  6. Monitoring Therapy Adherence of Tuberculosis Patients by using Video-Enabled Electronic Devices

    PubMed Central

    Story, Alistair; Garfein, Richard S.; Hayward, Andrew; Rusovich, Valiantsin; Dadu, Andrei; Soltan, Viorel; Oprunenco, Alexandru; Collins, Kelly; Sarin, Rohit; Quraishi, Subhi; Sharma, Mukta; Migliori, Giovanni Battista; Varadarajan, Maithili

    2016-01-01

    A recent innovation to help patients adhere to daily tuberculosis (TB) treatment over many months is video (or virtually) observed therapy (VOT). VOT is becoming increasingly feasible as mobile telephone applications and tablet computers become more widely available. Studies of the effectiveness of VOT in improving TB patient outcomes are being conducted. PMID:26891363

  7. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  8. A comparative analysis of electronic and molecular quantum dot cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umamahesvari, H., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com; Ajitha, D., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com

    This paper presents a comparative analysis of electronic quantum-dot cellular automata (EQCA) and Magnetic quantum dot Cellular Automata (MQCA). QCA is a computing paradigm that encodes and processes information by the position of individual electrons. To enhance the high dense and ultra-low power devices, various researches have been actively carried out to find an alternative way to continue and follow Moore’s law, so called “beyond CMOS technology”. There have been several proposals for physically implementing QCA, EQCA and MQCA are the two important QCAs reported so far. This paper provides a comparative study on these two QCAs.

  9. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Xiao, Jun; Wang, Hailong; Ye, Ziliang; Zhu, Hanyu; Zhao, Mervin; Wang, Yuan; Zhao, Jianhua; Yin, Xiaobo; Zhang, Xiang

    2016-07-01

    Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory. Recently, atomic membranes of transition metal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing. A variety of valleytronic devices such as valley filters and valves have been proposed, and optical valley excitation has been observed. However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin-valley locking in TMDC monolayers. We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.

  10. Smartphone, tablet computer and e-reader use by people with vision impairment.

    PubMed

    Crossland, Michael D; Silva, Rui S; Macedo, Antonio F

    2014-09-01

    Consumer electronic devices such as smartphones, tablet computers, and e-book readers have become far more widely used in recent years. Many of these devices contain accessibility features such as large print and speech. Anecdotal experience suggests people with vision impairment frequently make use of these systems. Here we survey people with self-identified vision impairment to determine their use of this equipment. An internet-based survey was advertised to people with vision impairment by word of mouth, social media, and online. Respondents were asked demographic information, what devices they owned, what they used these devices for, and what accessibility features they used. One hundred and thirty-two complete responses were received. Twenty-six percent of the sample reported that they had no vision and the remainder reported they had low vision. One hundred and seven people (81%) reported using a smartphone. Those with no vision were as likely to use a smartphone or tablet as those with low vision. Speech was found useful by 59% of smartphone users. Fifty-one percent of smartphone owners used the camera and screen as a magnifier. Forty-eight percent of the sample used a tablet computer, and 17% used an e-book reader. The most frequently cited reason for not using these devices included cost and lack of interest. Smartphones, tablet computers, and e-book readers can be used by people with vision impairment. Speech is used by people with low vision as well as those with no vision. Many of our (self-selected) group used their smartphone camera and screen as a magnifier, and others used the camera flash as a spotlight. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  11. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  12. Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp

    2015-02-23

    Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less

  13. Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices.

    PubMed

    Kim, Hyungjun; Goddard, William A; Jang, Seung Soon; Dichtel, William R; Heath, James R; Stoddart, J Fraser

    2009-03-12

    Donor-acceptor binding of the pi-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) with the pi-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519-525; Nature 2007, 445, 414-417) and nanoelectromechanical systems. The rate of CBPQT(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT(4+) ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of approximately 10(-7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments.

  14. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    NASA Astrophysics Data System (ADS)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  15. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.

  16. Wearable Electronics and Smart Textiles: A Critical Review

    PubMed Central

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-01-01

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy. PMID:25004153

  17. Wearable electronics and smart textiles: a critical review.

    PubMed

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-07-07

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  18. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  19. EDITORIAL: Moore and more progress in electronics and photonics Moore and more progress in electronics and photonics

    NASA Astrophysics Data System (ADS)

    Meyyappan, Meyya

    2009-10-01

    This year marks the 20th volume of Nanotechnology, the first journal dedicated to the emerging field of nanotechnology, pre-empting the US National Nanotechnology Initiative (NNI) by ten years. Throughout the evolution and revolution of nanomaterials and devices, Nanotechnology has been at the forefront. The journal's first article on nanoelectronics reported research on electronic transport through three- dimensionally confined semiconductor quantum dots by Professor Mark Reed, now Editor-in-Chief, and his colleagues at the time at Texas Instruments in Dallas (Reed M A, Randall J N and Luscombe J H 1990 Nanotechnology 1 63-6). In the first decade of the journal, papers on nanoelectronics were scarce and primarily reported research on resonant tunnelling devices, transport in quantum dots and other III-V devices. With the ability to produce single-walled carbon nanotubes (SWCNTs) and semiconducting nanowires on patterned substrates using CVD and similar techniques, nanoscale electronics and photonics flourished. A pioneering contribution by Collins et al (Collins P G, Bando H and Zettl A 1998 Nanotechnology 9 153-7) discussed conductivity measurements on SWCNTs using scanning tunnelling microscopy. In the same issue, Fritzsche et al (Fritzsche W, Böhm Unger E and Köhler J M 1998 Nanotechnology 9 177-3) discussed making electrical contacts to a single molecule, another early contribution in molecular electronics. There have been numerous interesting and trend-setting articles. My personal favourite is an article from Hewlett-Packard researchers Greg Snider, Phil Kuekes and Stan Williams (2004 Nanotechnology 15 881-91) discussing an approach to building a defect-tolerant computer out of defective configurable FETs and switches. The construction of defect-free materials, devices and components may well begin to pose an obstacle to nanotechnology, so this pioneering article exhibits extraordinary foresight in attempting to construct a useful machine from defective parts. The field of optoelectronics and photonics has been benefiting from the ability to synthesize semiconducting nanowires and quantum dots. Advances in light-emitting diodes, photodetectors, nanolasers, solar cells, and field emission devices have been abundantly reported in the journal. The future of these devices depends on our ability to control the size, orientation and properties of one- and zero-dimensional materials. The forecast for electronics and photonics has vastly underestimated developments, with predictions such as 'future computers will weigh no less than 1.5 tons'. Over the past twenty years, the number of transistors on a chip has risen from just 1 million to 2 billion, and is still increasing. Now the biggest question is: what will take over from Moore's law in about a decade? This question has been driving the research agenda in electronics across the industrial and academic world. The first answer appears to be integrating other functional components with logic and memory such as miniature camera modules, GPS, accelerometers, biometric identification, health monitoring systems, etc. Such integration is actively being pursued by industry. In contrast, a lot of new research is still driven by material innovations, for example, carbon nanotube based electronics. Rudimentary devices and circuits using SWCNTs have been demonstrated to outperform silicon devices of comparable size. However, controlling the chirality and diameter of SWCNTs is still a problem, as is the manufacture of 300-400 mm wafers with over 5-10 billion transistors, and all of this assumes that continuing on the path of CMOS but using a different material is the right approach in the first place. In the meantime, silicon and germanium in the form of nanowires may make their way into electronics. Then there is molecular electronics where conducting organic molecules could now become the heart of electronic components, although the precision and controllability of electrical contact with molecules remain challenging. The journal Nanotechnology has grown with the field, from a modest four issues per year for several years to what is now a weekly publication with a dedicated section to electronics and photonics. We look forward to more and more of your highest-quality papers.

  20. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    PubMed

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-09

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.

  1. Computer hardware for radiologists: Part 2.

    PubMed

    Indrajit, Ik; Alam, A

    2010-11-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future.

  2. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  3. Computational Nanotechnology of Materials, Devices, and Machines: Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Kwak, Dolhan (Technical Monitor)

    2000-01-01

    The mechanics and chemistry of carbon nanotubes have relevance for their numerous electronic applications. Mechanical deformations such as bending and twisting affect the nanotube's conductive properties, and at the same time they possess high strength and elasticity. Two principal techniques were utilized including the analysis of large scale classical molecular dynamics on a shared memory architecture machine and a quantum molecular dynamics methodology. In carbon based electronics, nanotubes are used as molecular wires with topological defects which are mediated through various means. Nanotubes can be connected to form junctions.

  4. System for Cooling of Electronic Components

    NASA Astrophysics Data System (ADS)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  5. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  6. Electron tubes for industrial applications

    NASA Astrophysics Data System (ADS)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.

  7. Prolegomena to the field

    NASA Astrophysics Data System (ADS)

    Chen, Su Shing; Caulfield, H. John

    1994-03-01

    Adaptive Computing, vs. Classical Computing, is emerging to be a field which is the culmination during the last 40 and more years of various scientific and technological areas, including cybernetics, neural networks, pattern recognition networks, learning machines, selfreproducing automata, genetic algorithms, fuzzy logics, probabilistic logics, chaos, electronics, optics, and quantum devices. This volume of "Critical Reviews on Adaptive Computing: Mathematics, Electronics, and Optics" is intended as a synergistic approach to this emerging field. There are many researchers in these areas working on important results. However, we have not seen a general effort to summarize and synthesize these results in theory as well as implementation. In order to reach a higher level of synergism, we propose Adaptive Computing as the field which comprises of the above mentioned computational paradigms and various realizations. The field should include both the Theory (or Mathematics) and the Implementation. Our emphasis is on the interplay of Theory and Implementation. The interplay, an adaptive process itself, of Theory and Implementation is the only "holistic" way to advance our understanding and realization of brain-like computation. We feel that a theory without implementation has the tendency to become unrealistic and "out-of-touch" with reality, while an implementation without theory runs the risk to be superficial and obsolete.

  8. Multi-Agent Methods for the Configuration of Random Nanocomputers

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2004-01-01

    As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.

  9. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    PubMed

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  10. Synthetic biology: insights into biological computation.

    PubMed

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and biotechnological applications, but also affords a greater understanding of biological systems.

  11. Electric Current Flow Through Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Gaspard, Mallory

    In modern nanotechnology, two-dimensional atomic network structures boast promising applications as nanoscale circuit boards to serve as the building blocks of more sustainable and efficient, electronic devices. However, properties associated with the network connectivity can be beneficial or deleterious to the current flow. Taking a computational approach, we will study large uniform networks, as well as large random networks using Kirchhoff's Equations in conjunction with graph theoretical measures of network connectedness and flows, to understand how network connectivity affects overall ability for successful current flow throughout a network. By understanding how connectedness affects flow, we may develop new ways to design more efficient two-dimensional materials for the next generation of nanoscale electronic devices, and we will gain a deeper insight into the intricate balance between order and chaos in the universe. Rensselaer Polytechnic Institute, SURP Institutional Grant.

  12. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...

    2018-02-14

    Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID requiredmore » for real applications/device prototyping.« less

  13. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.

    Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID requiredmore » for real applications/device prototyping.« less

  14. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.

  15. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  16. Computational test bench and flow chart for wavefront sensors

    NASA Astrophysics Data System (ADS)

    Abecassis, Úrsula V.; de Lima Monteiro, Davies W.; Salles, Luciana P.; Stanigher, Rafaela; Borges, Euller

    2014-05-01

    The wavefront reconstruction diagram has come to supply the need in literature of an ampler vision over the many methods and optronic devices used for the reconstruction of wavefronts and to show the existing interactions between those. A computational platform has been developed using the diagram's orientation for the taking of decision over the best technique and the photo sensible and electronic structures to be implemented. This work will be directed to an ophthalmological application in the development of an instrument of help for the diagnosis of optical aberrations of the human eye.

  17. Radiology education 2.0--on the cusp of change: part 1. Tablet computers, online curriculums, remote meeting tools and audience response systems.

    PubMed

    Bhargava, Puneet; Lackey, Amanda E; Dhand, Sabeen; Moshiri, Mariam; Jambhekar, Kedar; Pandey, Tarun

    2013-03-01

    We are in the midst of an evolving educational revolution. Use of digital devices such as smart phones and tablet computers is rapidly increasing among radiologists who now regularly use them for medical, technical, and administrative tasks. These electronic tools provide a wide array of new tools to the radiologists allowing for faster, more simplified, and widespread distribution of educational material. The utility, future potential, and limitations of some these powerful tools are discussed in this article. Published by Elsevier Inc.

  18. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device

    PubMed Central

    Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung

    2015-01-01

    A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems. PMID:25955658

  19. Dopant atoms as quantum components in silicon nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  20. Wearable ear EEG for brain interfacing

    NASA Astrophysics Data System (ADS)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

Top