Sample records for electronic coupling constant

  1. Substitution and protonation effects on spin-spin coupling constants in prototypical aromatic rings: C6H6, C5H5N and C5H5P.

    PubMed

    Del Bene, Janet E; Elguero, José

    2006-08-01

    Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained. Copyright 2006 John Wiley & Sons, Ltd.

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less

  3. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less

  4. Verification of the electron/proton coupled mechanism for phenolic H-atom transfer using a triplet π,π ∗ carbonyl

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko

    2009-06-01

    Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.

  5. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  6. Interstate vibronic coupling constants between electronic excited states for complex molecules

    NASA Astrophysics Data System (ADS)

    Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne

    2018-03-01

    In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

  7. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  8. Electron-phonon superconductivity in YIn3

    NASA Astrophysics Data System (ADS)

    Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.

    2013-08-01

    First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.

  9. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar; Sauer, Stephan P. A., E-mail: sauer@kiku.dk

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing themore » changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.« less

  10. A DFT based ligand field model for magnetic exchange coupling in transition metal dimer complexes:. (ii) application to magnetic systems with more than one unpaired electron per site

    NASA Astrophysics Data System (ADS)

    Atanasov, M.; Daul, C. A.

    2003-11-01

    The DFT based ligand field model for magnetic exchange coupling proposed recently, has been extended to systems containing more than one unpaired electron per site. The guidelines for this extension are described using a model example - the complex (NH 3) 3Cr III(OH) 3Cr III (NH 3) 33+. The exchange Hamiltonian, H ex=-J 12S1S2 has been simplified using symmetry principles, i.e. utilizing the D 3h(C 3v) Cr III - dimer(site) symmetry. Both antiferro- and ferromagnetic exchange coupling constants are found to yield important contributions to the value of the (negative, antiferromagnetic) exchange coupling constant in good agreement with experiment.

  11. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  12. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory

    NASA Astrophysics Data System (ADS)

    Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter

    2000-09-01

    For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.

  13. Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles

    NASA Astrophysics Data System (ADS)

    Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick

    2017-06-01

    The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.

  14. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles

    PubMed Central

    Aruda, Kenneth O.; Tagliazucchi, Mario; Sweeney, Christina M.; Hannah, Daniel C.; Schatz, George C.; Weiss, Emily A.

    2013-01-01

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron–phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron–phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron–phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  15. Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System

    NASA Astrophysics Data System (ADS)

    Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.

    2018-05-01

    We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the

  16. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells.

    PubMed

    Hattori, Shigeki; Wada, Yuji; Yanagida, Shozo; Fukuzumi, Shunichi

    2005-07-06

    The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.

  17. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  18. Unconventional iron-based superconductor CsCa2Fe4As4F2: A first-principle study

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2018-05-01

    In the present work, we have investigated the structural and electronic properties of newly discovered iron based superconductor CsCa2Fe4As4F2 using first principles calculations. Analysis of the density of states at the Fermi level suggests that Fe-3d states have dominating contribution, and within these 3d states contribution of eg states is significant suggesting multi-band nature of this superconductor. The upper bound of superconducting transition temperature, estimated using electron-phonon coupling constant is found to be ˜2.6 K. To produce the experimental value of transition temperature (28.2 K), a 4-5 times increase in the electron-phonon constant is necessary, hinting that conventional electron-phonon coupling is not enough to explain the origin of superconductivity.

  19. The Coulomb based magneto-electric coupling in multiferroic tunnel junctions and granular multiferroics

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Beloborodov, I. S.

    2018-05-01

    We study magneto-electric effect in two systems: i) multiferroic tunnel junction (MFTJ) - magnetic tunnel junction with ferroelectric barrier and ii) granular multiferroic (GMF) in which ferromagnetic (FM) metallic grains embedded into ferroelectric matrix. We show that the Coulomb interaction influences the magnetic state of the system in several ways: i) through the spin-dependent part of the Coulomb interaction; ii) due to the Coulomb blockade effect suppressing electron hopping and therefore reducing magnetic coupling; and iii) through image forces and polarization screening that modify the barrier for electrons in MFTJ and GMF. We show that in the absence of spin-orbit or strain-mediated coupling magneto-electric effect appears in GMF and MFTJ. The Coulomb interaction depends on the dielectric properties of the system. For GMF it depends on the dielectric constant of FE matrix and for MFTJ on the dielectric constant of the FE barrier. Applying external electric field one can tune the dielectric constant and the Coulomb interaction. Thus, one can control magnetic state with electric field.

  20. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    NASA Astrophysics Data System (ADS)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  1. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  2. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-04-01

    We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron-phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron-phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress-strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron-phonon relaxation time due to its large electron-phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially ( 33%) smaller damage threshold and a large increase of the stress ( 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  3. Laser flash photolysis and CIDNP studies of steric effects on coupling rate constants of imidazolidine nitroxide with carbon-centered radicals, methyl isobutyrate-2-yl and tert-butyl propionate-2-yl.

    PubMed

    Zubenko, Dmitry; Tsentalovich, Yuri; Lebedeva, Nataly; Kirilyuk, Igor; Roshchupkina, Galina; Zhurko, Irina; Reznikov, Vladimir; Marque, Sylvain R A; Bagryanskaya, Elena

    2006-08-04

    Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) and laser flash photolysis (LFP) techniques have been used to measure rate constants for coupling between acrylate-type radicals and a series of newly synthesized stable imidazolidine N-oxyl radicals. The carbon-centered radicals under investigation were generated by photolysis of their corresponding ketone precursors RC(O)R (R = C(CH3)2-C(O)OCH3 and CH(CH3)-C(O)-OtBu) in the presence of stable nitroxides. The coupling rate constants kc for modeling studies of nitroxide-mediated polymerization (NMP) experiments were determined, and the influence of steric and electronic factors on kc values was addressed by using a Hammett linear free energy relationship. The systematic changes in kc due to the varied steric (Es,n) and electronic (sigmaL,n) characters of the substituents are well-described by the biparameter equation log(kc/M- 1s(-1)) = 3.52sigmaL,n + 0.47Es,n + 10.62. Hence, kc decreases with the increasing steric demand and increases with the increasing electron-withdrawing character of the substituents on the nitroxide.

  4. Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.

    2014-07-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.

  5. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  6. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  7. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    NASA Astrophysics Data System (ADS)

    Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen

    2015-06-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  8. Electron-phonon coupling in superconducting β-PdBi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2015-06-24

    We have studied the electronic, transport and vibrational properties of low temperature superconductor β-PdBi{sub 2}. The band manifold clearly demonstrates the 2D-layered structure with multiple gaps. The intersection of bands at E{sub F} in the Γ-P, Γ-N directions gives rise to complicated Fermi surface topology, which contains quite complicated multiple connected sheets, as well as hole and electron-like pockets. From the low temperature specific heat, we have estimated the electron-phonon coupling constant λ{sub el-ph} which has a very high value of 3.66. The vibrational properties clearly illustrates that the strong coupling makes the lattice unstable. The calculated properties confirm thatmore » β-PdBi{sub 2} is an intermediate coupling superconductor.« less

  9. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  10. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study.

    PubMed

    Sami, Selim; Haase, Pi A B; Alessandri, Riccardo; Broer, Ria; Havenith, Remco W A

    2018-04-19

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C 60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C 60 .

  11. Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study

    PubMed Central

    2018-01-01

    The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn–Sham method to calculate the electronic contribution to the dielectric constant for fullerene C60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C60. PMID:29561616

  12. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-10-16

    We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.

  13. Seeded Fault Bearing Experiments: Methodology and Data Acquisition

    DTIC Science & Technology

    2011-06-01

    electronics piezoelectric ( IEPE ) transducer. Constant current biased transducers require AC coupling for the output signal. The ICP-Type Signal...the outer race I/O input/output IEPE integral electronics piezoelectric LCD liquid crystal display P&D Prognostics and Diagnostics RMS root

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, A.; Burke, K.

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  15. Predicted NMR properties of noble gas hydride cations RgH +

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-12-01

    The NMR shielding constants and, for the first time, the spin-spin coupling constants of Rg and H in RgH + compounds for Rg = Ne, Ar, Kr, Xe have been investigated by non-relativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) methods. Electron-correlation effects have been furthermore calculated using SOPPA and CCSD at the non-relativistic level. The correlation effects are large on both parameters and opposite to the relativistic effects. The results indicate that both the relativistic and correlation effects need to be taken into account in a quantitative computations, especially in the case of the spin-spin coupling constants.

  16. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlík, Václav; Seibt, Joachim; Šanda, František

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less

  17. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So; Yanai, Takeshi; De Jong, Wibe A.

    Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less

  18. Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

    NASA Astrophysics Data System (ADS)

    Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu

    2016-07-01

    Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).

  19. Ab initio study of MF2 (M=Mn, Fe, Co, Ni) rutile-type compounds using the periodic unrestricted Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    de P. R. Moreira, Ibério; Dovesi, Roberto; Roetti, Carla; Saunders, Victor R.; Orlando, Roberto

    2000-09-01

    The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

  20. Method and apparatus for controlling pitch and flap angles of a wind turbine

    DOEpatents

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  1. Interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  2. Chemical and quantum simulation of electron transfer through a polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungar, L.W.; Voth, G.A.; Newton, M.D.

    1999-08-26

    Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less

  3. Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage

    PubMed Central

    Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.

    2012-01-01

    The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751

  4. Ab initio study of dynamical E × e Jahn-Teller and spin-orbit coupling effects in the transition-metal trifluorides TiF3, CrF3, and NiF3

    NASA Astrophysics Data System (ADS)

    Mondal, Padmabati; Opalka, Daniel; Poluyanov, Leonid V.; Domcke, Wolfgang

    2012-02-01

    Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF3, CrF3, and NiF3, which possess spatially doubly degenerate excited states (ME) of even spin multiplicities (M = 2 or 4). The ground states of TiF3, CrF3, and NiF3 are nondegenerate and exhibit minima of D3h symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF3 and CrF3 are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF3 is only partially quenched by JT coupling.

  5. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  6. Microwave emulations and tight-binding calculations of transport in polyacetylene

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.

  7. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  8. Kinks in the σ band of graphene induced by electron-phonon coupling.

    PubMed

    Mazzola, Federico; Wells, Justin W; Yakimova, Rositza; Ulstrup, Søren; Miwa, Jill A; Balog, Richard; Bianchi, Marco; Leandersson, Mats; Adell, Johan; Hofmann, Philip; Balasubramanian, T

    2013-11-22

    Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.

  9. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  10. Quantum size effects on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Gao, D.; Ray, A. K.

    2007-01-01

    Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.

  11. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming

    2012-01-01

    The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.

  12. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    NASA Astrophysics Data System (ADS)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2012-10-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing.

  13. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  14. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  15. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less

  16. On the electrodynamics of moving particles in a quasi flat spacetime with Lorentz violation and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Cruz, Cláudio Nassif

    2016-06-01

    This research aims to develop a new approach towards a consistent coupling of electromagnetic and gravitational fields, by using an electron that couples with a weak gravitational potential by means of its electromagnetic field. To accomplish this, we must first build a new model which provides the electromagnetic nature of both the mass and the energy of the electron, and which is implemented with the idea of γ-photon decay into an electron-positron pair. After this, we place the electron (or positron) in the presence of a weak gravitational potential given in the intergalactic medium, so that its electromagnetic field undergoes a very small perturbation, thus leading to a slight increase in the field’s electromagnetic energy density. This perturbation takes place by means of a tiny coupling constant ξ because gravity is a very weak interaction compared with the electromagnetic one. Thus, we realize that ξ is a new dimensionless universal constant, which reminds us of the fine structure constant α; however, ξ is much smaller than α because ξ takes into account gravity, i.e. ξ ∝G. We find ξ = V/c≅1.5302 × 10-22, where c is the speed of light and V ∝G(≅4.5876 × 10-14m/s) is a universal minimum speed that represents the lowest limit of speed for any particle. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks the Lorentz symmetry. The metric of the flat spacetime shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological scales (cosmological anti-gravity). The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained in agreement with the observational data.

  17. High pressure study on layered nitride superconductors

    NASA Astrophysics Data System (ADS)

    Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.

    2004-03-01

    Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, Li_0.5(THF)_yHfNCl and ZrNCl_0.7. The data have been analyzed in terms of MacMillan's theory, and electron-phonon coupling constant λ (=1.3), Coulomb pseudopotential μ^* (=0.31), and relevant phonon frequency (=630 cm-1) have been extracted. The obtained value of λ exceeds 1 in contrast with previous experimental and theoretical results. The present result indicates that, if the superconductivity is within a MacMillan scheme, it is mediated by high frequency phonons in a strong coupling regime.

  18. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  19. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    NASA Astrophysics Data System (ADS)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.

  20. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    NASA Astrophysics Data System (ADS)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  1. Analysis of the vibronic fine structure in circularly polarized emission spectra from chiral molecular aggregates.

    PubMed

    Spano, Frank C; Zhao, Zhen; Meskers, Stefan C J

    2004-06-08

    Using a Frenkel-exciton model, the degree of circular polarization of the luminescence (g(lum)) from one-dimensional, helical aggregates of chromophoric molecules is investigated theoretically. The coupling between the electronic excitation and a local, intramolecular vibrational mode is taken into account. Analytical expressions for the fluorescence band shape and g(lum) are presented for the case of strong and weak electronic coupling between the chromophoric units. Results are compared to those from numerical calculations obtained using the three particle approximation. g(lum) for the 0-0 vibronic band is found to be independent of the relative strength of electronic coupling between chromophores and excitation-vibration coupling. It depends solely on the number of coherently coupled molecules. In contrast, for the higher vibronic transitions[g(lum)] decreases with decreasing strength of the electronic coupling. In the limit of strong electronic coupling, [g(lum)] is almost constant throughout the series of vibronic transitions but for weak coupling [g(lum)] becomes vanishingly small for all vibronic transitions except for the 0-0 transition. The results are interpreted in terms of dynamic localization of the excitation during the zero point vibrational motion in the excited state of the aggregate. It is concluded that circular polarization measurements provide an independent way to determine the coherence size and bandwidth of the lowest exciton state for chiral aggregates. (c) 2004 American Institute of Physics.

  2. Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Haaranen, Mikko; Suhonen, Jouni

    2017-04-01

    Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was followed for 26 first-, second-, third-, fourth- and fifth-forbidden β- decays of odd-A nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the β -decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven evolution of the normalized β spectra was found to be quite universal, largely insensitive to the small changes in the nuclear mean field and the adopted residual many-body Hamiltonian producing the excitation spectra of the MQPM. This makes the comparison of experimental and theoretical electron spectra, coined "the spectrum-shape method" (SSM), a robust tool for extracting information on the effective values of the weak coupling constants. In this exploratory work two new experimentally interesting decays for the SSM treatment were discovered: the ground-state-to-ground-state decays of 99Tc and 87Rb. Comparing the experimental and theoretical spectra of these decays could shed light on the effective values of gA and gV for second- and third-forbidden nonunique decays. The measurable decay transitions of 135Cs and 137Cs, in turn, can be used to test the SSM in different many-body formalisms. The present work can also be considered as a (modest) step towards solving the gA problem of the neutrinoless double beta decay.

  3. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  4. Fine structure constant defines visual transparency of graphene.

    PubMed

    Nair, R R; Blake, P; Grigorenko, A N; Novoselov, K S; Booth, T J; Stauber, T; Peres, N M R; Geim, A K

    2008-06-06

    There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

  5. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE PAGES

    Sun, Cheng; Sprouster, David J.; Hattar, K.; ...

    2018-02-09

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  6. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng; Sprouster, David J.; Hattar, K.

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  7. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  8. Phonon assisted electronic transition in telluric acid ammonium phosphate single crystals

    NASA Astrophysics Data System (ADS)

    El-Muraikhi, M.; Kassem, M. E.; Al-Houty, L.

    The effect of gamma-irradiation on the absorption optical spectra of telluric acid ammonium phosphate single crystals (TAAP) has been studied, in the wave length of 200-600 nm, for samples irradiated by various doses up to 10 Mrad. The results show that the electron phonon coupling constant increases with the irradiation dose.

  9. Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles.

    PubMed

    Harris, Clifton; Kamat, Prashant V

    2010-12-28

    The electrodic behavior of platinum nanoparticles (2.8 nm diameter) and their role in influencing the photocatalytic behavior of CdSe quantum dots (3.4 nm diameter) has been evaluated by confining both nanoparticles together in heptane/dioctyl sulphosuccinate/water reverse micelles. The particles spontaneously couple together within the micelles via micellar exchange processes and thus facilitate experimental observation of electron transfer reactions inside the water pools. Electron transfer from CdSe to Pt is found to occur with a rate constant of 1.22 × 10(9) s(-1). With the use of methyl viologen (MV(2+)) as a probe molecule, the role of Pt in the photocatalytic process is established. Ultrafast oxidation of the photogenerated MV(+•) radicals indicates that Pt acts as an electron sink, scavenging electrons from MV(+•) with a rate constant of 3.1 × 10(9) s(-1). The electron transfer between MV(+•) and Pt, and a drastically lower yield of MV(+•) under steady state irradiation, confirms the ability of Pt nanoparticles to discharge electrons quickly. The kinetic details of photoinduced processes in CdSe-Pt assemblies and the electrodic behavior of Pt nanoparticles provide important information for the development of light energy conversion devices.

  10. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less

  11. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-01

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.

  12. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  13. Intraband Raman laser gain in a boron nitride coupled quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com

    2016-05-23

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  14. ESR imaging investigations of two-phase systems.

    PubMed

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  15. Experimental Search for a Heavy Electron

    DOE R&D Accomplishments Database

    Boley, C. D.; Elias, J. E.; Friedman, J. I.; Hartmann, G. C.; Kendall, H. W.; Kirk, P.N.; Sogard, M. R.; Van Speybroeck, L. P.; de Pagter, J. K.

    1967-09-01

    A search for a heavy electron of the type considered by Low and Blackmon has been made by studying the inelastic scattering of 5 BeV electrons from hydrogen. The search was made over a range of values of the mass of the heavy electron from 100 t0 1300 MeV. No evidence for such a particle was observed. Upper limits on the production cross sections were determined and employed to deducelimits on the values of the electron-photon-heavy electron coupling constant in Low and Blackmon=s theory.

  16. Determination of the strong coupling constant from jet rates in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hill, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuler, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2. It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant αs as a free parameter. The measured value, αs( MZ2) = 0.123 ± 0.018, is in agreement both with determinations from e+e- annihilation at LEP using the same observable and with the world average.

  17. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  18. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    PubMed

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  19. Experimental studies of fundamental issues in electron transfer through nanometer scale devices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiromichi

    Electron transfer reactions constitute many of the primary events in materials science, chemistry, physics, and biochemistry, e.g. the electron transport properties and photoexcited processes in solids and molecules, chemical reactions, corrosion, photosynthesis, respiration, and so forth. A self-assembled monolayer (SAM) film provides us with a unique environment not only to understand and manipulate the surface electronic properties of a solid, but also to control electron transfer processes at the interface. The first topic in this thesis describes the structure and electron tunneling characterization of alkanethiol SAMs on InP(100). Angle-resolved X-ray photoelectron spectroscopy was used to characterize the bonding of alkanethiols to n-InP surfaces and to measure the monolayer thickness. The results showed that the sulfur binds to In atoms on the surface, and provided film thicknesses of 6.4 A for C8H17SH, 11.1 A for C12H25SH, and 14.9 A for C16H 33SH, resulting in an average tilt angle of 55°. The analysis indicated that super-exchange coupling between the alkane chains plays an important role in defining electron tunneling barriers, especially for highly tilted chains. The second topic describes studies of cytochrome c bound to pure and mixed SAMs of o-terminated alkanethiol (terminated with pyridine, imidazole or nitrile groups) and alkanethiol on gold. Electrochemical methods are used to determine electron transfer rate constants of cytochrome c, and scanning tunneling microscopy to observe the cytochrome c on the SAM. Detailed analysis revealed direct association of the heme of cytochrome c with the terminal groups of the SAMs and a 'turning-over' of the electron transfer of cytochrome c from adiabatic to non-adiabatic regime. The third topic describes studies of oxidation and reduction of cytochrome c in solution through eleven different self-assembled monolayers (SAMs) on gold electrodes by cyclic voltammetry. Electron transfer rate constants of cytochrome c through the eleven SAMs ranged from ≤10-4 to ˜10-1 cm/sec. A strong correlation between the electron transfer rate constants and the hydrogen bonding ability of the SAM is identified. This correlation is discussed in terms of the dependence of the rate constant on the outer-sphere reorganization energy and the electronic coupling between the cytochrome and the differently terminated monolayer films.

  20. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr

    NASA Astrophysics Data System (ADS)

    Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.

    2018-03-01

    The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

  1. Jahn-Teller effect versus Hund's rule coupling in C60N-

    NASA Astrophysics Data System (ADS)

    Wehrli, S.; Sigrist, M.

    2007-09-01

    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1,…,5) . The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation which yields the linear t1u⊗Hg Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund’s rule coupling for N=2,3,4 . The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund’s rule coupling, which determines the spin state for N=2,3,4 . We calculate the low-spin-high-spin gap for N=2,3,4 as a function of the Hund’s rule coupling constant J . We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV . Using a finite value for J , we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund’s rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal.

  2. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  3. Long-Range Superexchange in Electron Transport Proteins

    NASA Astrophysics Data System (ADS)

    Gruschus, James Michael

    A new Hamiltonian model for the calculation of long-range electronic couplings in complex molecular systems is presented. These couplings make possible the electron transfers occurring at several critical steps in photosynthesis and respiration. The couplings studied are demonstrated to arise from a mechanism known as superexchange, where the electrons of the insulating medium are intimately involved in the delocalization of the donor wavefunction tail, allowing significant interaction with the acceptor at much greater separations than could be achieved were the medium absent. Superexchange phenomena in molecules of moderate complexity are first compared to couplings calculated with the model Hamiltonian, with very encouraging results. The method is then applied to several cytochrome c proteins where electron transfer has been measured between a zinc-substituted porphyrin and a ruthenium complex ligated to several sites at the protein surface. The calculated couplings are in unprecedented agreement with experiment. Novel, analytical derivatives of the superexchange coupling with respect to the orbital energies and interactions are then carried out on these proteins yielding the general, chemically relevant result that the entire three-dimensional zone between redox sites is important in mediating the superexchange coupling, in contrast to the prevailing assumption that the coupling can be characterized by a one-dimensional pathway consisting primarily of chains of bonded atoms. In addition, the derivatives provide the most comprehensive ever, atom-by -atom visualization of the superexchange process. Using AMBER molecular dynamics trajectories of the cytochrome c proteins, the effect of structural fluctuations on superexchange is examined. The calculated couplings show a substantial variability, a result contrary to the constant coupling implicit in most present-day transfer rate theory. Couplings are also calculated on surfaces enveloping several variants of cytochrome c, as well as plastocyanin, cytochrome b _5, and cytochrome c peroxidase. The surfaces reveal important clues as to which conformations of the electron transport protein complexes actually give rise to electron transfer, a subject of broad biological interest.

  4. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    DOE PAGES

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less

  5. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  6. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Bryan M.; Klein, Richard I.

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  7. Electron and lattice dynamics of transition metal thin films observed by ultrafast electron diffraction and transient optical measurements.

    PubMed

    Nakamura, A; Shimojima, T; Nakano, M; Iwasa, Y; Ishizaka, K

    2016-11-01

    We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon interaction. By using the two-temperature model, the electron-phonon coupling constant ( g ) and the electron and lattice temperatures ( T e , T l ) are evaluated from UED, with which we simulate the transient optical transmittance. The simulation well agrees with the experimentally obtained transmittance data, except for the slight deviations at the initial photoexcitation and the relaxed quasi-equilibrium state. We also present the results similarly obtained for polycrystalline Au, Cu, and Mo thin films and demonstrate the electron and lattice dynamics occurring in metals with different electron-phonon coupling strengths.

  8. Multiband full-bandwidth anisotropic Eliashberg theory of interfacial electron-phonon coupling and high - Tc superconductivity in FeSe /SrTiO3

    NASA Astrophysics Data System (ADS)

    Aperis, Alex; Oppeneer, Peter M.

    2018-02-01

    We examine the impact of interfacial phonons on the superconducting state of FeSe /SrTiO3 developing a material's specific multiband, full bandwidth, and anisotropic Eliashberg theory for this system. Our self-consistent calculations highlight the importance of the interfacial electron-phonon interaction, which is hidden behind the seemingly weak-coupling constant λm=0.4 , in mediating the high Tc, and explain other puzzling experimental observations, such as the s -wave symmetry and replica bands. We discover that the formation of replica bands has a Tc decreasing effect that is nevertheless compensated by deep Fermi-sea Cooper pairing which has a Tc enhancing effect. We predict a strong-coupling dip-hump signature in the tunneling spectra due to the interfacial coupling.

  9. Properties of the new high Tc materials - An analysis based on fermiology

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Deutscher, G.; Wolf, S. A.

    1989-03-01

    A small value of the Fermi energy, E(f), in the new Tc oxides and its consequences are the subject of this study. It is shown that the small value of Ef allows separation of the electronic contribution to the heat capacity in the high-temperature region between E(f)kB and theta(D) to determine the value of the electron-phonon coupling constant lambda. The linear temperature dependence of the normal resistance is mainly due to a large anisotropy of the system. A small value of E(f) allows the lattice contribution to the thermal conductivity to play a dominant role. A strong electron-phonon coupling is manifested in the increase of the thermal conductivity in the region T lower than Tc, and the appearance of such coupling is also connected with a small value of E(f).

  10. Modeling and calculation of RKKY exchange coupling to explain Ti-vacancy-induced ferromagnetism in Ta-doped TiO2

    NASA Astrophysics Data System (ADS)

    Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito

    2017-12-01

    We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.

  11. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  12. Pressure-induced increase of exciton-LO-phonon coupling in a ZnCdSe/ZnSe quantum well

    NASA Astrophysics Data System (ADS)

    Guo, Z. Z.; Liang, X. X.; Ban, S. L.

    2003-07-01

    The possibility of pressure-induced increase of exciton-LO-phonon coupling in ZnCdSe/ZnSe quantum wells is studied. The ground state binding energies of the heavy hole excitons are calculated using a variational method with consideration of the electron-phonon interaction and the pressure dependence of the parameters. The results show that for quantum wells with intermediate well width, the exciton binding energy and the LO-phonon energy may coincide in the course of pressure increasing, resulting in the increase of exciton-LO-phonon coupling. It is also found that among the pressure-dependent parameters, the influence of the lattice constant is the most important one. The changes of both the effective masses and the dielectric constants have obvious effects on the exciton binding energy, but their influences are counterbalanced.

  13. Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.

    2018-06-01

    Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.

  14. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  15. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  16. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin

    We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.

  17. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  18. Wheelchair ergometer. Development of a prototype with electronic braking.

    PubMed

    Forchheimer, F; Lundberg, A

    1986-01-01

    A new wheelchair ergometer is described, which compensates for the pulsating character of the work by an automatic control system. This makes it possible to maintain a constant level of power during wheelchair work. An automatic control system has been integrated in an electronically braked bicycle ergometer, and a pedal unit from Rodby Electronic bicycle ergometer RE 820 has been coupled to a modified test wheelchair. With this device, the physical working capacity during submaximal circumstances can be tested in handicapped persons.

  19. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  20. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  1. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  2. On the Angular Dependence of the Vicinal Fluorine-Fluorine Coupling Constant in 1,2-Difluoroethane:  Deviation from a Karplus-like Shape.

    PubMed

    Provasi, Patricio F; Sauer, Stephan P A

    2006-07-01

    The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.

  3. Kinetics of photoinduced electron transfer between DNA bases and triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution of different pH's: proton-coupled electron transfer?

    PubMed

    Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita

    2012-11-08

    The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.

  4. Kinetics of Photoinduced Electron Transfer between DNA Bases and Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution of Different pH's: Proton-Coupled Electron Transfer?

    PubMed Central

    2012-01-01

    The kinetics of triplet state quenching of 3,3′,4,4′-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λmax = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are kq = 2.3 × 109 (4.7 < pH < 9.9), kq = 4.0 × 109 (3.5 < pH < 4.7), kq = 1.0 × 109 (4.7 < pH < 9.9), and kq = 4.0 × 108 M–1 s–1 (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto–enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ −59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer. PMID:23038981

  5. Ab initio study of cross-interface electron-phonon couplings in FeSe thin films on SrTiO 3 and BaTiO 3

    DOE PAGES

    Wang, Y.; Linscheid, A.; Berlijn, T.; ...

    2016-04-22

    We study the electron-phonon coupling strength near the interface of monolayer and bilayer FeSe thin films on SrTiO 3 , BaTiO 3 , and oxygen-vacant SrTiO 3 substrates, using ab initio methods. The calculated total electron-phonon coupling strength λ = 0.2 – 0.3 cannot account for the high T c ~ 70 K observed in these systems through the conventional phonon-mediated pairing mechanism. In all of these systems, however, we find that the coupling constant of a polar oxygen branch peaks at q = 0 with negligible coupling elsewhere, while the energy of this mode coincides with the offset energymore » of the replica bands measured recently by angle-resolved photoemission spectroscopy experiments. However, the integrated coupling strength for this mode from our current calculations is still too small to produce the observed high T c , even through the more efficient pairing mechanism provided by the forward scattering. Also, we arrive at the same qualitative conclusion when considering a checkerboard antiferromagnetic configuration in the Fe layer. In light of the experimental observations of the replica band feature and the relatively high T c of FeSe monolayers on polar substrates, our results point towards a cooperative role for the electron-phonon interaction, where the cross-interface interaction acts in conjunction with a purely electronic interaction. Finally, we discuss a few scenarios where the coupling strength obtained here may be enhanced.« less

  6. Structure and superconductivity in the ternary silicide CaAlSi

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Huang, Gui-Qin; Liu, Mei

    2007-06-01

    Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.

  7. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  8. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less

  9. Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; Aguayo, Aaron

    2005-03-01

    We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  10. Development of 50kV air-core transformer for electron gun static power source of 3MeV DC accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewangan, S.; Bakhtsingh, R.I.; Rajan, R.N.

    A 3 MeV, 10 mA DC Electron Beam Accelerator based on the capacitively coupled parallel-fed voltage multiplier in 6 kg/cm{sup 2} SF{sub 6} gas environment is under commissioning at Electron Beam Centre, Kharghar, Navi Mumbai. Electron Gun is situated at -3 MV terminal which requires a constant power for its anode and filament. Gun power source has been derived by suitably coupling the ac components present in the HV Multiplier column. An aircore step down transformer rated for 50kV/600V/120kHz floating at 3 MV to extract the required power for electron gun from high voltage column has been developed. The transformermore » has been operated for 7 kW, 1 MeV of electron beam in 6 kg/cm{sup 2} nitrogen gas environment. The paper describes briefly about the design aspects and test results. (author)« less

  11. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  12. Ultrasensitive Superconducting Transition Edge Sensors Based On Electron-Phonon Decoupling

    NASA Technical Reports Server (NTRS)

    Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop

    2011-01-01

    We have successfully fabricated the superconducting transition edge sensor (TES), bolometer technology that centers on the use of electron-phonon decoupling (EPD) to thermally isolate the bolometer. Along with material characterization for large format antenna coupled bolometer arrays, we present the initial test results of bolometer based on EPD designed for THz detection. We have selected a design approach that separates the two functions of photon absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated Molybdenum/Gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) Bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from Niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance and the time constant of these devices have been measured, and are consistent with our calculations. The device exhibits a single time constant at 0.1 K of approx.160 IlS, which is compatible with readout by a high-bandwidth single SQUID or a time domain SQUID multiplexer. The effects of thermal conductance and electrothermal feedback are major determinants of the time constant, but the electronic heat capacity also plays a major role. The NEP achieved in the device described above is 2.5x10(exp -17)W(gamma)Hz. Our plan is to demonstrate a reduction of the volume in the superconducting element to 5 microns x 5 microns in films of half the thickness at Tc = 60mK. By calculation, this new geometry corresponds to an NEP reduction of two orders of magnitude to 2.5x10(exp -19)W/(gamma)Hz, with a time constant of 130/ls.

  13. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    NASA Astrophysics Data System (ADS)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  14. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.

    PubMed

    Peters, William K; Tiwari, Vivek; Jonas, David M

    2017-11-21

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  15. Calibration of the fine-structure constant of graphene by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.

    2017-11-01

    One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.

  16. The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Derzsi, A.; Wilczek, S.; Trieschmann, J.; Mussenbrock, T.; Awakowicz, P.; Donkó, Z.; Schulze, J.

    2017-08-01

    In particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations of capacitively coupled plasmas (CCPs), the plasma-surface interaction is generally described by a simple model in which a constant secondary electron emission coefficient (SEEC) is assumed for ions bombarding the electrodes. In most PIC/MCC studies of CCPs, this coefficient is set to γ = 0.1, independent of the energy of the incident particle, the electrode material, and the surface conditions. Here, the effects of implementing energy-dependent secondary electron yields for ions, fast neutrals, and taking surface conditions into account in PIC/MCC simulations is investigated. Simulations are performed using self-consistently calculated effective SEECs, {γ }* , for ‘clean’ (e.g., heavily sputtered) and ‘dirty’ (e.g., oxidized) metal surfaces in single- and dual-frequency discharges in argon and the results are compared to those obtained by assuming a constant secondary electron yield of γ =0.1 for ions. In single-frequency (13.56 MHz) discharges operated under conditions of low heavy particle energies at the electrodes, the pressure and voltage at which the transition between the α- and γ-mode electron power absorption occurs are found to strongly depend on the surface conditions. For ‘dirty’ surfaces, the discharge operates in α-mode for all conditions investigated due to a low effective SEEC. In classical dual-frequency (1.937 MHz + 27.12 MHz) discharges {γ }* significantly increases with increasing low-frequency voltage amplitude, {V}{LF}, for dirty surfaces. This is due to the effect of {V}{LF} on the heavy particle energies at the electrodes, which negatively influences the quality of the separate control of ion properties at the electrodes. The new results on the separate control of ion properties in such discharges indicate significant differences compared to previous results obtained with different constant values of γ.

  17. Metallization and superconductivity in Ca-intercalated bilayer MoS2

    NASA Astrophysics Data System (ADS)

    Szczȱśniak, R.; Durajski, A. P.; Jarosik, M. W.

    2017-12-01

    A two-dimensional molybdenum disulfide (MoS2) has attracted significant interest recently due to its outstanding physical, chemical and optoelectronic properties. In this paper, using the first-principles calculations, the dynamical stability, electronic structure and superconducting properties of Ca-intercalated bilayer MoS2 are investigated. The calculated electron-phonon coupling constant implies that the stable form of investigated system is a strong-coupling superconductor (λ = 1.05) with a low value of critical temperature (TC = 13.3 K). Moreover, results obtained within the framework of the isotropic Migdal-Eliashberg formalism proved that Ca-intercalated bilayer MoS2 exhibits behavior that goes beyond the scope of the conventional BCS theory.

  18. Optical control of spin-dependent thermal transport in a quantum ring

    NASA Astrophysics Data System (ADS)

    Abdullah, Nzar Rauf

    2018-05-01

    We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, C. A.; Kohn, W.

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles.

  20. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    DOE PAGES

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; ...

    2016-12-08

    In this paper, we analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Finally, our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  1. Transport properties of layered Ba(Pb,Bi)O3 thin films

    NASA Astrophysics Data System (ADS)

    Hassink, G. W. J.; Munakata, K.; Hammond, R. H.; Beasley, M. R.

    2012-02-01

    Doped BaBiO3 is a 3D oxide superconductor with a maximum Tc of 30 K for Ba0.6K0.4BiO3. There has been a lot of discussion on whether this high Tc can be explained purely by electron-phonon coupling with a high coupling constant λ. In addition, the presence of real-space paired 6s^2 electrons in the parent compound raise intriguing questions about whether there is an electron-electron coupling interaction as well. This possible negative-U interaction might be used to implement the suggestion by Berg, Orgad and Kivelson [Phys.Rev.B 78, 094509] that for a two-layer system where one layer provides electron pairing interaction and the other layer is conducting, the whole can be superconducting with a high Tc. Here we discuss the transport properties of BaPbO3/BaBiO3 bilayers, where the BaBiO3 layer is thought to act as the pairing layer, while the BaPbO3 acts as the conducting layer. The transport behavior changes to insulating upon decreasing the metallic BaPbO3 layer thickness at values that single films are expected to still be metallic.

  2. Ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine and N-acetyltryptophan in aqueous solution: proton-coupled electron transfer versus electron transfer.

    PubMed

    Zhang, Ying; Yuan, Shuwei; Lu, Rong; Yu, Anchi

    2013-06-20

    We studied the ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine (AcTyr) and N-acetyltryptophan (AcTrp) in aqueous solution with femtosecond transient absorption spectroscopy. We found that the charge-transfer rate between Atto655 and AcTyr is about 240 times smaller than that between Atto655 and AcTrp. The pH value and D2O dependences of the excited-state decay kinetics of Atto655 in the presence of AcTyr and AcTrp reveal that the quenching of Atto655 fluorescence by AcTyr in aqueous solution is via a proton-coupled electron-transfer (PCET) process and that the quenching of Atto655 fluorescence by AcTrp in aqueous solution is via an electron-transfer process. With the version of the semiclassical Marcus ET theory, we derived that the electronic coupling constant for the PCET reaction between Atto655 and AcTyr in aqueous solution is 8.3 cm(-1), indicating that the PCET reaction between Atto655 and AcTyr in aqueous solution is nonadiabatic.

  3. Segmented AC-coupled readout from continuous collection electrodes in semiconductor sensors

    DOEpatents

    Sadrozinski, Hartmut F. W.; Seiden, Abraham; Cartiglia, Nicolo

    2017-04-04

    Position sensitive radiation detection is provided using a continuous electrode in a semiconductor radiation detector, as opposed to the conventional use of a segmented electrode. Time constants relating to AC coupling between the continuous electrode and segmented contacts to the electrode are selected to provide position resolution from the resulting configurations. The resulting detectors advantageously have a more uniform electric field than conventional detectors having segmented electrodes, and are expected to have much lower cost of production and of integration with readout electronics.

  4. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  5. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2012-08-01

    Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.

  6. Microwave Spectra of the Two Conformers of PROPENE-3-{d}_1 and a Semiexperimental Equilibrium Structure of Propene

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila

    2017-06-01

    FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).

  7. Studies on rock characteristics and timing of creep at selected landslide sites in Taiwan

    Treesearch

    Cheng-Yi Lee

    2000-01-01

    A study was conducted to investigate the causes of and rock characteristics at three landslide sites in the Tesngwen Reservoir watershed of southern Taiwan. Research methods used included the petrographic microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma spectroscope (ICP), constant head permeameter in triaxial...

  8. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  9. Fire and Brimstone: The Microbially Mediated Formation of Elemental Sulfur Nodules from an Isotope and Major Element Study in the Paleo-Dead Sea

    PubMed Central

    Bishop, Tom; Turchyn, Alexandra V.; Sivan, Orit

    2013-01-01

    We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The constant sulfur isotope composition of the nodule is consistent with formation in an ‘open system’. Iron concentrations in the gypsum increase toward the nodule, while manganese concentrations decrease, suggesting a redox boundary at the nodule-gypsum interface during aqueous phase diagenesis. We propose that sulfur nodules in the Lisan Formation are generated through bacterial sulfate reduction, which terminates at elemental sulfur. We speculate that the sulfate-saturated pore fluids, coupled with the low availability of an electron donor, terminates the trithionate pathway before the final two-electron reduction, producing thionites, which then disproportionate to form abundant elemental sulfur. PMID:24098403

  10. Coherent generation of symmetry-forbidden phonons by light-induced electron-phonon interactions in magnetite

    NASA Astrophysics Data System (ADS)

    Borroni, S.; Baldini, E.; Katukuri, V. M.; Mann, A.; Parlinski, K.; Legut, D.; Arrell, C.; van Mourik, F.; Teyssier, J.; Kozlowski, A.; Piekarz, P.; Yazyev, O. V.; Oleś, A. M.; Lorenzana, J.; Carbone, F.

    2017-09-01

    Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the ordering field are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3O4 ) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions.

  11. A variational theory of Hall effect of Anderson lattice model: Application to colossal magnetoresistance manganites (Re1-x Ax MnO3)

    NASA Astrophysics Data System (ADS)

    Panwar, Sunil; Kumar, Vijay; Singh, Ishwar

    2017-10-01

    An anomalous Hall constant RH has been observed in various rare earth manganites doped with alkaline earths namely Re1-xAxMnO3 (where Re = La, Pr, Nd etc., and A = Ca, Sr, Ba etc.) which exhibit colossal magnetoresistance (CMR), metal- insulator transition and many other poorly understood phenomena. We show that this phenomenon of anomalous Hall constant can be understood using two band (ℓ-b) Anderson lattice model Hamiltonian alongwith (ℓ-b) hybridization recently studied by us for manganites in the strong electron-lattice Jahn-Teller (JT) coupling regime an approach similar to the two - fluid models. We use a variational method in this work to study the temperature variation of Hall constant RH (T) in these compounds. We have already used this variational method to study the zero field electrical resistivity ρ (T) and magnetic susceptibility of doped CMR manganites. In the present study, we find that the Hall constant RH (T) reduces with increasing magnetic field parameters h&m and the metal-insulator transition temperature (Tρ) shifts towards higher temperature region. We have also observed the role of the model parameters e.g. local Coulomb repulsion U, Hund's rule coupling JH between eg spins and t2g spins, ferromagnetic nearest neighbor exchange coupling JF between t2g core spins and hybridization Vk between ℓ-polarons and d-electrons on Hall constant RH (T) of these materials at different magnetic fields. Here we find that RH (T) for a particular value of h and m shows a rapid initial increase, followed by a sharp peak at low temperature say 50 K in our case and a slow decrease at high temperatures, resembling with the key feature of many CMR compounds like La0.8Ba0.2 MnO3.The magnitude of RH (T) reduces and the anomaly (sharp peak) in RH becomes broader and shifts towards higher temperature region on increasing Vk or JH or doping x and even vanishes on further increasing these parameters. Our results of anomalous Hall constant (RH) have same qualitative behavior as the zero-field electrical resistivity. Moreover Hall Constant (RH) shows positive values indicating that the carriers in these manganites are holes.

  12. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  13. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less

  14. Is back-electron transfer process in Betaine-30 coherent?

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Scholes, Gregory D.

    2017-09-01

    The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.

  15. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays*1

    NASA Astrophysics Data System (ADS)

    Eah, Sang-Kee; Jaeger, Heinrich M.; Scherer, Norbert F.; Lin, Xiao-Min; Wiederrecht, Gary P.

    2004-03-01

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  16. Electron spin resonance of (CO 2 H)CH 2 CH 2 CH(CO 2 H) in irradiated glutaric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsfield, A.; Morton, J. R.; Whiffen, D. H.

    It is concluded from electron spin resonance spectra that the radical (CO 2 H)CH 2 CH 2 CH(CO 2 H) remains trapped in a glutaric acid crystal after gamma -irradiation. This radical is found in two different conformations. Approximate hyperfine coupling constants are given for each, although exact interpretation is hindered by the overlapping of spectra. Reasons for the formation of the two forms of the radical are discussed.

  17. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  18. Phase diagram of the Hubbard-Holstein model on a four-leg tube system at quarter filling

    NASA Astrophysics Data System (ADS)

    Reja, Sahinur; Nishimoto, Satoshi

    2018-06-01

    We derive an effective electronic Hamiltonian for the square lattice Hubbard-Holstein model (HHM) in the strong electron-electron (e -e ) and electron-phonon (e -p h ) coupling regime and under nonadiabatic conditions (t /ω0≤1 ), t and ω0 being the electron hopping and phonon frequency respectively. Using the density matrix renormalization-group method, we simulate this effective electronic model on a four-leg cylinder system at quarter filling and present a phase diagram in the g -U plane where g and U are the e -p h coupling constant and Hubbard on-site interaction respectively. For larger g , we find that a cluster of spins, i.e., phase separation (PS), gives way to a charge density wave (CDW) phase made of nearest-neighbor singlets which abruptly goes to another CDW phase as we increase U . But for smaller g , we find a metallic phase sandwiched between PS and the singlet CDW phase. This phase is characterized by a vanishing charge gap but a finite spin gap, suggesting a singlet superconducting phase.

  19. Investigation of the winds and electron concentration variability in the D region of the ionosphere by the partial-reflection radar technique

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1981-01-01

    The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter.

  20. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less

  1. Laser ablated hydantoin: A high resolution rotational study.

    PubMed

    Alonso, Elena R; Kolesniková, Lucie; Alonso, José L

    2017-09-28

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14 N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  2. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  3. THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchester IV, W. B.; Van der Holst, B.; Toth, G.

    2012-09-01

    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protonsmore » on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.« less

  4. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  5. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P.

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structuremore » with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.« less

  6. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    DOE PAGES

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, Fe IV(H 2O) 5O 2+ (hereafter Fe IV aqO 2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN) 3 2+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS 2–, phenothiazines, Co II(dmgBF 2) 2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generatedmore » ligand-modified products. Fe IV aqO 2+ oxidizes even Ce(III) (E 0 in 1 M HClO 4 = 1.7 V) with a rate constant greater than 10 4 M –1 s –1. In 0.10 M aqueous HClO 4 at 25 °C, the reactions of Os(phen) 3 2+ (k = 2.5 × 10 5 M –1 s –1), IrCl 6 3– (1.6 × 10 6), ABTS 2– (4.7 × 10 7), and Fe(cp)(C 5H 4CH 2OH) (6.4 × 10 7) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen) 3 2+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of Fe IV aqO 2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k 22 + E 0 Fe/0.059) = 17.2 ± 0.8, where k 22 and E 0 Fe are the self-exchange rate constant and reduction potential, respectively, for the Fe IV aqO 2+/Fe III aqO + couple. Comparison with literature work suggests k 22 < 10 –5 M –1 s –1 and thus E 0(Fe IV aqO 2+/Fe III aqO +) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E 0 (Fe IV aqO 2+, H +/Fe III aqOH 2+) ≥ 1.95 V.« less

  7. REVIEWS OF TOPICAL PROBLEMS: Helium-isotope mass-spectrometric method for studying tritium beta decay (idea, experiment, nuclear and molecular physics applications)

    NASA Astrophysics Data System (ADS)

    Akulov, Yuii A.; Mamyrin, Boris A.

    2003-11-01

    Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.

  8. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    PubMed Central

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  9. Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.

    2015-01-01

    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.

  10. Non-Condon equilibrium Fermi’s golden rule electronic transition rate constants via the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi’s golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar modelmore » for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.« less

  11. Exploratory studies of new avenues to achieve high electromechanical response and high dielectric constant in polymeric materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng

    High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented by in situ preparation. High dielectric constant copper phthalocyanine oligomer and conductive polyaniline oligomer were successfully bonded to polyurethane backbone to form fully functionalized nano-phase polymers. Improvement of dispersibility of oligomers in polymer matrix makes the system self-organize the nanocomposites possessing oligomer nanophase (below 30nm) within the fully functionalized polymers. The resulting nanophase polymers significantly enhance the interface effect, which through the exchange coupling raises the dielectric response markedly above that expected from simple mixing rules for dielectric composites. Consequently, these nano-phase polymers offer a high dielectric constant (a dielectric constant near 1,000 at 20 Hz), improve the breakdown field and mechanical properties, and exhibit high electromechanical response. A longitudinal strain of more than -14% can be induced under a much reduced field, 23 V/mum, with an elastic energy density of higher than 1 J/cm3. The elastic modulus is as high as 100MPa, and a transverse strain is 7% under the same field. (Abstract shortened by UMI.)

  12. Electron-phonon coupling and thermal transport in the thermoelectric compound Mo 3Sb 7–xTe x

    DOE PAGES

    Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; ...

    2015-12-07

    Phonon properties of Mo 3Sb 7–xTe x (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phononmore » scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less

  13. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  14. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Kubas, Adam; Hoffmann, Felix; Heck, Alexander; Oberhofer, Harald; Elstner, Marcus; Blumberger, Jochen

    2014-03-01

    We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  15. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  16. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    NASA Astrophysics Data System (ADS)

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H.

    2014-08-01

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where "quantum" coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the "inverted regime" in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.

  17. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H., E-mail: millerwh@berkeley.edu

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where “quantum” coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation functionmore » framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the “inverted regime” in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.« less

  18. Calculation of spin-densities within the context of density functional theory. The crucial role of the correlation functional

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2005-09-01

    It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.

  19. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  20. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequencymore » further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.« less

  1. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  2. A physical model of the infrared-to-radio correlation in galaxies

    NASA Technical Reports Server (NTRS)

    Helou, G.; Bicay, M. D.

    1993-01-01

    We explore the implications of the IR-radio correlation in star-forming galaxies, using a simple physical model constrained by the constant global ratio q of IR to radio emission and by the radial falloff of this ratio in disks of galaxies. The modeling takes into account the diffusion, radiative decay, and escape of cosmic-ray electrons responsible for the synchrotron emission, and the full range of optical depths to dust-heating photons. We introduce two assumptions: that dust-heating photons and radio-emitting cosmic-ray electrons are created in constant proportion to each other as part of the star formation activity, and that gas and magnetic field are well coupled locally, expressed as B proportional to n exp beta, with beta between 1/3 and 2/3. We conclude that disk galaxies would maintain the observed constant ratio q under these assumptions if the disk scale height h(0) and the escape scale length l(esc) for cosmic-ray electrons followed a relation of the form l(esc) proportional to h(0) exp 1/2; the IR-to-radio ratio will then depend very weakly on interstellar density, and, therefore, on magnetic field strength or mean optical depth.

  3. Resonances in the cumulative reaction probability for a model electronically nonadiabatic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, J.; Bowman, J.M.

    1996-05-01

    The cumulative reaction probability, flux{endash}flux correlation function, and rate constant are calculated for a model, two-state, electronically nonadiabatic reaction, given by Shin and Light [S. Shin and J. C. Light, J. Chem. Phys. {bold 101}, 2836 (1994)]. We apply straightforward generalizations of the flux matrix/absorbing boundary condition approach of Miller and co-workers to obtain these quantities. The upper adiabatic electronic potential supports bound states, and these manifest themselves as {open_quote}{open_quote}recrossing{close_quote}{close_quote} resonances in the cumulative reaction probability, at total energies above the barrier to reaction on the lower adiabatic potential. At energies below the barrier, the cumulative reaction probability for themore » coupled system is shifted to higher energies relative to the one obtained for the ground state potential. This is due to the effect of an additional effective barrier caused by the nuclear kinetic operator acting on the ground state, adiabatic electronic wave function, as discussed earlier by Shin and Light. Calculations are reported for five sets of electronically nonadiabatic coupling parameters. {copyright} {ital 1996 American Institute of Physics.}« less

  4. High-pressure study of layered nitride superconductors

    NASA Astrophysics Data System (ADS)

    Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.

    2004-09-01

    Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, ZrNCl0.7 and Li0.5(THF)yHfNCl . The analysis of the data in terms of MacMillan’s theory indicated that the relevant phonon frequencies are low ( ≈50 and 100cm-1 , respectively), and that the electron-phonon coupling constant λ is larger than 3 in both compounds in sharp contrast with previous experimental and theoretical results. This result may suggest a possibility that other bosonic excitation than phonon additionally contributes to the pairing interaction in these materials.

  5. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  6. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    PubMed

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  7. Fragment-based Quantum Mechanical/Molecular Mechanical Simulations of Thermodynamic and Kinetic Process of the Ru2+-Ru3+ Self-Exchange Electron Transfer.

    PubMed

    Zeng, Xiancheng; Hu, Xiangqian; Yang, Weitao

    2012-12-11

    A fragment-based fractional number of electron (FNE) approach, is developed to study entire electron transfer (ET) processes from the electron donor region to the acceptor region in condensed phase. Both regions are described by the density-fragment interaction (DFI) method while FNE as an efficient ET order parameter is applied to simulate the electron transfer process. In association with the QM/MM energy expression, the DFI-FNE method is demonstrated to describe ET processes robustly with the Ru 2+ -Ru 3+ self-exchange ET as a proof-of-concept example. This method allows for systematic calculations of redox free energies, reorganization energies, and electronic couplings, and the absolute ET rate constants within the Marcus regime.

  8. Emission color tuning in AlQ3 complexes with extended conjugated chromophores.

    PubMed

    Pohl, Radek; Anzenbacher, Pavel

    2003-08-07

    [reaction: see text] A new method for the synthesis of 5-arylethynyl-8-hydroxyquinoline ligands using Sonogashira-Hagihara coupling was developed. The electronic nature of arylethynyl substituents affects the emission color and quantum yield of the resulting Al(III) complex. Photophysical properties of the metallocomplexes correspond to the electron-withdrawing/-donating character of the arylethynyl substituents. Optical properties of such Al(III) complexes correlate with the Hammett constant values of the respective substituents. This strategy offers a powerful tool for the preparation of electroluminophores with predictable photophysical properties.

  9. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-07

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  10. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  11. Constraint on the second functional derivative of the exchange-correlation energy

    NASA Astrophysics Data System (ADS)

    Joubert, D. P.

    2012-09-01

    Using the density functional adiabatic connection approach for an N-electron system it is shown that ? γ is the coupling constant that scales the electron-electron interaction strength. For the non-interacting Kohn-Sham Hamiltonian γ = 0 and for the fully interacting system γ = 1. ? is the Hartree plus exchange-correlation energy while f 0(r) and fγ(r) are the Fukui functions of the non-interacting and interacting systems, respectively. This identity can serve to test the internal self-consistency or quality of approximate functionals. The quality of some popular approximate exchange and correlation functionals are tested for a simple model system.

  12. Constructiveness and destructiveness of temperature in asymmetric quantum pseudo dot qubit system

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Jie; Song, Hai-Tao; Xiao, Jing-Lin

    2018-06-01

    By using the variational method of the Pekar type, we theoretically study the temperature effects on the asymmetric quantum pseudo dot qubit with a pseudoharmonic potential under an electromagnetic field. The numerical results are analyzed and discussed in detail and show that the relationships of the ground and first excited state energies, the electron oscillation period and the electron probability density in the superposition state of the ground state and the first-excited state with the temperature, the chemical potential, the pseudoharmonic potential, the electric field strength, the cyclotron frequency, the electron phonon coupling constant, the transverse and longitudinal effective confinement length, respectively.

  13. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  14. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-08-14

    The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less

  15. Investigation of two- and three-bond carbon-hydrogen coupling constants in cinnamic acid based compounds.

    PubMed

    Pierens, Gregory K; Venkatachalam, Taracad K; Reutens, David C

    2016-12-01

    Two- and three-bond coupling constants ( 2 J HC and 3 J HC ) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)-single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13 C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP-HSQMBC and the direct 13 C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3 J HC . However, the DFT method under estimated the 2 J HC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Magnetoimpedance and magnetodielectric properties of single phase 45PMN-20PFW-35PT ceramics

    NASA Astrophysics Data System (ADS)

    Ramachandran, B.; Sudarshan, N.; Rao, M. S. Ramachandra

    2010-05-01

    Phase pure and dense polycrystalline 45PMN-20PFW-35PT sample has been synthesized using a columbite precursor method. Structure and surface morphology of the samples were studied using x-ray diffraction and scanning electron microscope. The sample showed the expected reduction in dielectric constant and polarization (Pmax=17 μC/cm2) compared with that of the parent compound, 65PMN-35PT (Pmax=22 μC/cm2). The sample is also found to be paramagnetic, which is confirmed by magnetization measurements as a function of temperature and an applied magnetic field. The sample was also tested for magnetoelectric coupling by measuring its dielectric constant and impedance at different applied magnetic fields. The observed colossal negative magnetodielectrics (177%) and colossal positive magnetoimpedance (130%) effect at 7 MHz, which is due to piezoelectric radial vibration. This is an indirect confirmation of the coupling between the electric and magnetic order parameters.

  17. Scalar-tensor theory of gravitation with negative coupling constant

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  18. Imaginary parts of coupled electron and phonon propagators

    NASA Astrophysics Data System (ADS)

    Schwartzman, K.; Lawrence, W. E.

    1988-01-01

    Quasiparticle and phonon damping rates due to the electron-phonon and Coulomb interactions are obtained directly from the self-energy formalism of strong-coupling theory. This accounts for all processes involving phonon or quasiparticle decay into a single particle-hole pair, or quasiparticle decay by emission or absorption of a single real phonon. The two quasiparticle decay modes are treated on a common footing, without ad hoc separation, by accounting fully for the dynamics of the phonon propagator and the Coulomb vertex-the latter by expansion of the four-point Coulomb vertex function. The results are shown to be expressible in terms of only the physical (i.e., fully renormalized) energies and coupling constants, and are written in terms of spectral functions such as α2F(ω) and its generalizations. Expansion of these in powers of a phonon linewidth parameter distinguishes (in lowest orders) between quasiparticle decay modes involving real and virtual phonons. However, the simplest prescription for calculating decay rates involves an effective scattering amplitude in which this distinction is not made.

  19. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling.

    PubMed

    Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H

    2016-12-23

    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

  20. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  1. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki

    2018-07-01

    The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.

  2. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  3. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Treesearch

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  4. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation.

    PubMed

    Tanaka, Shigenori

    2016-12-07

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.

  5. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D/A interface can be higher than that to CT(1s) as expected from energy resonance arguments. We suggest a design principle in organic heterojunction solar cells: there must be strong electronic coupling between molecular excitons in the donor and hot CT excitons across the D/A interface.

  6. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  7. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  8. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  9. Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, inmore » an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.« less

  10. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  11. Theoretical studies of the electronic spectrum of tellurium monosulfide.

    PubMed

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2013-08-01

    Ab initio based multireference singles and doubles configuration interaction (MRDCI) study including spin-orbit coupling is carried out to explore the electronic structure and spectroscopic properties of tellurium monosulfide (TeS) molecule by employing relativistic effective core potentials (RECP) and suitable Gaussian basis sets of the constituent atoms. Potential energy curves correlating with the lowest and second dissociation limit are constructed and spectroscopic constants (T(e), r(e), and ω(e)) of several low-lying bound Λ-S electronic states up to 3.68 eV of energy are computed. The binding energies and electric dipole moments (μ(e)) of the ground and the low-lying excited Λ-S states are also computed. The effects of the spin-orbit coupling on the electronic spectrum of the species are studied in details and compared with the available data. The transition probabilities of some dipole-allowed and spin-forbidden transitions are computed and radiative lifetimes of some excited states at lowest vibrational level are estimated from the transition probability data. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. An Ab Initio Full Potential Fully Relativistic Study of the (0001) Surface of Double Hexagonal Close Packed Americium*

    NASA Astrophysics Data System (ADS)

    Gao, Da; Ray, Asok

    2007-03-01

    The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.

  13. Electron spin echo envelope modulation studies of the Cu(II)-substituted derivative of isopenicillin N synthase: A structural and spectroscopic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Jiang; Peisach, J.; Lijune Ming

    Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the simulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, A{sub iso}, for the remote {sup 14}N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that A{sub iso} is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of themore » ESSEM of Cu(II)IPNS in D{sub 2}O and H{sub 2}O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.« less

  14. THz Hot-Electron Photon Counter

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Sergeev, Andrei V.

    2004-01-01

    We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.

  15. Delocalized and localized states of eg electrons in half-doped manganites.

    PubMed

    Winkler, E L; Tovar, M; Causa, M T

    2013-07-24

    We have studied the magnetic behaviour of half-doped manganite Y0.5Ca0.5MnO3 in an extended range of temperatures by means of magnetic susceptibility, χ(T), and electron spin resonance (ESR) experiments. At high temperature the system crystallizes in an orthorhombic structure. The resistivity value, ρ ≃ 0.05 Ω cm at 500 K, indicates a metallic behaviour, while the Curie-Weiss dependence of χ(T) and the thermal evolution of the ESR parameters are very well described by a model that considers a system conformed by localized Mn(4+) cores, [Formula: see text], and itinerant, eg, electrons. The strong coupling between t2g and eg electrons results in an enhanced Curie constant and an FM Curie-Weiss temperature that overcomes the AFM interactions between the [Formula: see text] cores. A transition to a more distorted phase is observed at T ≈ 500 K and signatures of localization of the eg electrons appear in the χ(T) behaviour below 300 K. A new Curie-Weiss regime is observed, where the Curie-constant value is consistent with dimer formation. Based on mean-field calculations, the dimer formation is predicted as a function of the interaction strength between the t2g and eg electrons.

  16. Hierarchical coarse-graining model for photosystem II including electron and excitation-energy transfer processes.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2014-03-01

    We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  18. On the energy deposition into the plasma for an inverted fireball geometry

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  19. The fragment spin difference scheme for triplet-triplet energy transfer coupling

    NASA Astrophysics Data System (ADS)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-01

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  20. The optical properties of platinum and gold in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Linton, R. C.

    1972-01-01

    The optical constants of platinum and gold thin films have been determined in the spectral region of 40 to 200 nm by reflection measurements. The highly polarized continuum of synchrotron radiation emitted by the 240-MeV electron storage ring at the Physical Sciences Laboratory of the University of Wisconsin was used as a light source for the spectrum below 120 nm, while a windowless discharge lamp coupled to a normal incidence monochromator provided a source for the longer wavelengths. Optical constants were determined by a computer program based on iterative solutions to the Fresnel equations for reflection as a function of the angle of incidence.

  1. Magnetoelectric Coupling in CuO Nanoparticles for Spintronics Applications

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-05-01

    Multiferroic copper oxide (CuO) nanoparticles have been synthesized by colloidal synthesis method. The morphological, structural, magnetic, dielectric and magnetodielectric property has been investigated. The structural study reveals the monoclinic structure of CuO nanoparticles. Transmission electron microscopy images disclose that the size of the CuO nanoparticles is 18 nm and the synthesized nanoparticles are uniform in size and dispersion. Magnetic study tells the weak ferromagnetic character of CuO nanoparticles with coercivity and retentivity value 206 Oe and 0.060 emu/g respectively. Dielectric study confirms that the dielectric constant of CuO nanoparticles is around 1091 at low frequency. The magnetoelectric coupling in the synthesized CuO nanoparticles has been calculated by measuring magnetodielectric coupling coefficient.

  2. Base units of the SI, fundamental constants and modern quantum physics.

    PubMed

    Bordé, Christian J

    2005-09-15

    Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.

  3. Using Hyperfine Structure to Quantify the Effects of Substitution on the Electron Distribution Within a Pyridine Ring: a Study of 2-, 3-, and 4-PICOLYLAMINE

    NASA Astrophysics Data System (ADS)

    McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.

    2017-06-01

    The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.

  4. Study of electronic and magnetic properties of h-BN on Ni surfaces: A DFT approach

    NASA Astrophysics Data System (ADS)

    Sahoo, M. R.; Sahu, S.; Kushwaha, A. K.; Nayak, S.

    2018-04-01

    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and close-packedsurfaces of fcc-Ni(111). Electronic and magnetic properties of single layer hexagonal Boron Nitride (h-BN) on Ni (111) surface have been studied with density functional calculation. Since lattice constants of nickel surfaces are very close to that of h-BN, nickel acts as a good substrate. We found that the interaction between 2Pz - 3dz2 orbitals leads to change in electronic band structure as well as density of states which results spin polarization in h-BN.

  5. Magnetic moment evolution and spin freezing in doped BaFe2As2

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Ishii, Kenji; ...

    2017-08-14

    Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe 2As 2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe 2As 2, as well as the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.

  6. Gigatron microwave amplifier

    DOEpatents

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  7. Gigatron microwave amplifier

    DOEpatents

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  8. Comprehensive ab initio calculation and simulation on the low-lying electronic states of TlX (X = F, Cl, Br, I, and At).

    PubMed

    Zou, Wenli; Liu, Wenjian

    2009-03-01

    The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.

  9. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  10. Collisional-radiative nonequilibrium in partially ionized atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.; Soon, W. H.

    1989-01-01

    A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.

  11. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  12. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-01-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  13. Experimental determination of the effective strong coupling constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  14. Investigate the electrical and thermal properties of the low temperature resistant silver nanowire fabricated by two-beam laser technique

    NASA Astrophysics Data System (ADS)

    He, Gui-Cang; Dong, Xian-Zi; Liu, Jie; Lu, Heng; Zhao, Zhen-Sheng

    2018-05-01

    A two-beam laser fabrication technique is introduced to fabricate the single silver nanowire (AgNW) on polyethylene terephthalate (PET) substrate. The resistivity of the AgNW is (1.31 ± 0.05) × 10-7 Ω·m, which is about 8 times of the bulk silver resistivity (1.65 × 10-8 Ω·m). The AgNW electrical resistance is measured in temperature range of 10-300 K and fitted with the Bloch-Grüneisen formula. The fitting results show that the residue resistance is 153 Ω, the Debye temperature is 210 K and the electron-phonon coupling constant is (5.72 ± 0.24) × 10-8 Ω·m. Due to the surface scattering, the Debye temperature and the electron-phonon coupling constant are lower than those of bulk silver, and the residue resistance is bigger than that of bulk silver. Thermal conductivity of the single AgNW is calculated in the corresponding temperature range, which is the biggest at the temperature approaching the Debye temperature. The AgNW on PET substrate is the low temperature resistance material and is able to be operated stably at such a low temperature of 10 K.

  15. The mathematical modeling of the experiment on the determination of correlation coefficients in neutron beta-decay

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Zherebtsov, O. M.; Klyushnikov, G. N.

    2018-05-01

    An experiment on the measurement of the ratio of the axial coupling constant to the vector one is under development. The main idea of the experiment is to measure the values of A and B in the same setup. An additional measurement of the polarization is not necessary. The accuracy achieved to date in measuring λ is 2 × 10-3. It is expected that in the experiment the accuracy will be of the order of 10-4. Some particular problems of mathematical modeling concerning the experiment on the measurement of the ratio of the axial coupling constant to the vector one are considered. The force lines for the given tabular field of a magnetic trap are studied. The dependences of the longitudinal and transverse field non-uniformity coefficients on the coordinates are regarded. A special computational algorithm based on the law of a charged particle motion along a local magnetic force line is performed for the calculation of the electrons and protons motion time as well as for the evaluation of the total number of electrons colliding with the detector surface. The average values of the cosines of the angles with the coefficients of a, A and B have been estimated.

  16. Kny Coupling Constants and Form Factors from the Chiral Bag Model

    NASA Astrophysics Data System (ADS)

    Jeong, M. T.; Cheon, Il-T.

    2000-09-01

    The form factors and coupling constants for KNΛ and KNΣ interactions have been calculated in the framework of the Chiral Bag Model with vector mesons. Taking into account vector meson (ρ, ω, K*) field effects, we find -3.88 ≤ gKNΛ ≤ -3.67 and 1.15 ≤ gKNΣ ≤ 1.24, where the quark-meson coupling constants are determined by fitting the renormalized, πNN coupling constant, [gπNN(0)]2/4π = 14.3. It is shown that vector mesons make significant contributions to the coupling constants gKNΛ and gKNΣ. Our values are existing within the experimental limits compared to the phenomenological values extracted from the kaon photo production experiments.

  17. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal”more » family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, S.; Saha, J. K.; Chandra, R.

    The Rayleigh-Ritz variational technique with a Hylleraas basis set is being tested for the first time to estimate the structural modifications of a lithium atom embedded in a weakly coupled plasma environment. The Debye-Huckel potential is used to mimic the weakly coupled plasma environment. The wave functions for both the helium-like lithium ion and the lithium atom are expanded in the explicitly correlated Hylleraas type basis set which fully takes care of the electron-electron correlation effect. Due to the continuum lowering under plasma environment, the ionization potential of the system gradually decreases leading to the destabilization of the atom. Themore » excited states destabilize at a lower value of the plasma density. The estimated ionization potential agrees fairly well with the few available theoretical estimates. The variation of one and two particle moments, dielectric susceptibility and magnetic shielding constant, with respect to plasma density is also been discussed in detail.« less

  19. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  20. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  1. Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Minglang; Wang, Hao; Zhang, Guangping; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin

    2018-05-01

    The relationship between the molecular structure and the electronic transport properties of molecular junctions based on thiol-terminated oligoethers, which are obtained by replacing every third methylene unit in the corresponding alkanethiols with an oxygen atom, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias conductance depends strongly on the conformation of the oligoethers in the junction. Specifically, in the cases of trans-extended conformation, the oxygen-dominated transmission peaks are very sharp and well below the Fermi energy, EF, thus hardly affect the transmission around EF; the Au-S interface hybrid states couple with σ-bonds in the molecular backbone forming the conduction channel at EF, resulting in a conductance decay against the molecular length close to that for alkanethiols. By contrast, for junctions with oligoethers in helical conformations, some π-type oxygen orbitals coupling with the Au-S interface hybrid states contribute to the transmission around EF. The molecule-electrode electronic coupling is also enhanced at the non-thiol side due to the specific spatial orientation introduced by the twist of the molecular backbone. This leads to a much smaller conductance decay constant. Our findings highlight the important role of the molecular conformation of oligoethers in their electronic transport properties and are also helpful for the design of molecular wires with heteroatom-substituted alkanethiols.

  2. Electron transport in gold colloidal nanoparticle-based strain gauges.

    PubMed

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-08

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the 'regular island array model' that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy E(C). This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the E(C) values of these 14 nm NPs cannot be neglected in determining the β values.

  3. Electron transport in gold colloidal nanoparticle-based strain gauges

    NASA Astrophysics Data System (ADS)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  4. Electron paramagnetic resonance of a 10B-containing heterocyclic radical

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.

    2018-05-01

    Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.

  5. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  6. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  7. Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC.

    PubMed

    Tütüncü, H M; Baǧcı, S; Srivastava, G P; Akbulut, A

    2012-11-14

    We present results of ab initio theoretical investigations of the electronic structure, phonon dispersion relations, electron-phonon interaction and superconductivity in the rocksalt and tungsten-carbide phases of CrC. It is found that, compared to the stable tungsten-carbide phase, the metastable rocksalt phase is characterized by a much larger electronic density of states at the Fermi level. The phonon spectra of the rocksalt phase exhibit anomalies in the dispersion curves of both the transverse and longitudinal acoustic branches along the main symmetry directions. A combination of these characteristic electronic and phonon properties leads to an order of magnitude larger value of the electron-phonon coupling constant (λ = 2.66) for the rocksalt phase compared to that for the tungsten-carbide phase (λ = 0.24). Our calculations suggest that superconducting transition temperature values of 0.01 K and 25-35 K may be expected for the tungsten-carbide and rocksalt phases, respectively.

  8. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  9. Simultaneous gauche and anomeric effects in α-substituted sulfoxides.

    PubMed

    Freitas, Matheus P

    2012-09-07

    α-Substituted sulfoxides can experience both gauche and anomeric effects, since these compounds have the geometric requirements and strong electron donor and acceptor orbitals which are essential to make operative the hyperconjugative nature of these effects. Indeed, the title effects were calculated to take place for 1,3-oxathiane 3-oxide in polar solution, where dipolar effects are absent or at least minimized, while only the gauche effect is present in 2-fluorothiane 1-oxide. Since the fluorine atom is a suitable probe for structural analysis using NMR, the (1)J(CF) dependence on the rotation around the F-C-S═O dihedral angle of (fluoromethyl)methyl sulfoxide was evaluated; differently from 1,2-difluoroethane and fluoro(methoxy)methane, this coupling constant is at least not exclusively dependent on dipolar interactions (or on hyperconjugation). Because of the nonmonotonic behavior of the (1)J(CF) rotational profile, this coupling constant does not appear to be of significant diagnostic value for probing the conformations of α-fluoro sulfoxides.

  10. Calculation of exchange interaction for modified Gaussian coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2017-08-01

    A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots ( d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.

  11. Infrared spectroscopic study of CaFe0.7Co0.3O3

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.

    2017-08-01

    Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.

  12. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  13. The p-wave superconductivity in the presence of Rashba interaction in 2DEG

    PubMed Central

    Weng, Ke-Chuan; Hu, C. D.

    2016-01-01

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, −the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc. PMID:27459677

  14. Towards a global model of spin-orbit coupling in the halocarbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less

  15. Evidence for electron-based ion generation in radio-frequency ionization.

    PubMed

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  16. On the fine-structure constant in a plasma model of the fluctuating vacuum substratum

    NASA Technical Reports Server (NTRS)

    Cragin, B. L.

    1986-01-01

    The existence of an intimate connection between the quivering motion of electrons and positrons (Zitterbewegung), predicted by the Dirac equation, and the zero-point fluctuations of the vacuum is suggested. The nature of the proposed connection is discussed quantitatively, and an approximate self-consistency relation is derived, supplying a purely mathematical expression that relates the dimensionless coupling strengths (fine-structure constants) alpha sub e and alpha sub g of electromagnetism and gravity. These considerations provide a tentative explanation for the heretofore puzzling number 1/alpha sub e of about 137.036 and suggest that attempts to unify gravity with the electroweak and strong interactions will ultimately prove successful.

  17. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeYonker, Nathan J., E-mail: ndyonker@memphis.edu; Halfen, DeWayne T.; Ziurys, Lucy M.

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e},more » ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.« less

  18. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, lambda, and Fermi contact parameter, bF, in the ground X9Sigma- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  19. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7[sigma]+ electronic state. The vibration-rotation bands from v = 1 to 0 to v = 3 to 2 for MnH, and from v = 1 to 0 to v = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant [omega]e for MnH was found to be 1546. 84518(65) cm-1, the equilibrium rotational constant Be was found to be 5. 6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1. 7308601(47) ?. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 _m region using a Fourier transform spectrometer. Many bands were observed for the A'3?-X3? electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- X3?3 and [13. 3]4-X3?4 transitions in the spectrum of CoD. Analysis of the transitions with [delta][omega] = 0, ?1 provided more accurate values of spin-orbit splittings between [omega] = 4 and [omega] = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm-1 were recorded at a resolution of 0. 04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1[sigma]+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, [lambda], and Fermi contact parameter, bF, in the ground X9[sigma]- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  20. Graphene Plasmonics for Tunable Terahertz Metamaterials

    DTIC Science & Technology

    2011-10-01

    anomalous quantumHall effect15,16 andKlein tunnelling17,18 in electrical transport to a universal absorption constant19,20 and tunable interband ...electron scattering spectroscopy25,26 and inelastic scanning tunnelling microscopy27. However, the fundamental behaviour of light–plasmon coupling in...ribbon arrays. Here TCNP is the transmission coefficient at CNP and DT¼ T2 TCNP. The 2DT/TCNP spectra of a gated 4 mm sample (Vg¼22.0 V) for terahertz

  1. Many-body effects in electron liquids with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Simion, George E.

    The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.

  2. Electronic properties with and without electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Allen, Philip

    To decent approximation, electronic properties P of solids have a temperature dependence of the type ΔP(T) = Σ (dP/dωi) [ni(T) +1/2], where ωi is the frequency of the ith vibrational normal mode, and ni is the Bose-Einstein equilibrium occupation of the mode. The coupling constant (dP/dωi) comes from electron-phonon interactions. At T =0, the ``1/2'' gives the zero-point electron-phonon renormalization of the property P, and at T>ΘD, the total shift ΔP becomes linear in T, extrapolating toward ΔP =0 at T =0. This form of T-dependence arises from the adiabatic or Born-Oppenheimer approximation, where electrons essentially ``don't notice'' the time-dependence of thermal lattice fluctuations. In other words, the leading order theory for P is ΔP(T) = Σ (d2P/duiduj), responding to the thermal average mean square lattice displacement, as if it were static. There are two situations where non-adiabatic effects alter things. (1) In metals at low T, the thermal smearing kBT of the sharp Fermi edge gets small (ωi <

  3. Electronic and thermal properties of germanene and stanene by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.

    2016-03-01

    The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.

  4. Femtosecond dynamics of correlated many-body states in C60 fullerenes

    NASA Astrophysics Data System (ADS)

    Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal

    2016-11-01

    Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.

  5. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    PubMed

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  6. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  7. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  8. Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Constants of 1-Bromo-1-fluoroethane.

    PubMed

    Tatamitani; Kuwano; Fuchigami; Oe; Ogata

    1999-08-01

    The microwave spectrum of 1-bromo-1-fluoroethane, CHBrF-CH(3) and CHBrF-CH(2)D ((79/81)Br), has been studied for the first time from 8 to 41 GHz. A least-squares analysis of the observed a- and b-type transition frequencies gave rotational and centrifugal distortion constants and components of the bromine nuclear quadrupole coupling constant tensor in the principal axes system as follows: A = 8979.428(5) MHz, B = 2883.898(3) MHz, C = 2310.535(3) MHz, Delta(J) = 0.74(2) kHz, Delta(JK) = 2.49(3) kHz, Delta(K) = 5.3(5) kHz, delta(J) = 0.146(1) kHz, delta(K) = 2.75(4) kHz, chi(aa) = 493.49(29) MHz, chi(bb) - chi(cc) = -38.89(11) MHz, and ||chi(ab) || = 161.8(28) MHz for the CH(79)BrF-CH(3) species; A = 8979.257(5) MHz, B = 2859.072(3) MHz, C = 2294.572(3), Delta(J) = 0.76(2) kHz, Delta(JK) = 2.51(3) kHz, Delta(K) = 4.5(4) kHz, delta(J) = 0.145(1) kHz, delta(K) = 2.70(4) kHz, chi(aa) = 412.42(27) MHz, chi(bb) - chi(cc) = -32.56 (11) MHz, and ||chi(ab) || = 133.3(3) MHz for the CH(81)BrF-CH(3) species. The structural parameters are calculated from the 24 observed rotational constants, and electronic properties of the carbon-bromine bond in 1-bromo-1-fluoroethane are evaluated from the observed nuclear quadrupole coupling constants. These molecular properties are compared with those of other related molecules. The molecular structure of 1-bromo-1-fluoroethane is found to be very close to that of 1,1-difluoroethane except for the C-Br bond. Copyright 1999 Academic Press.

  9. Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Constants of 1-Bromo-1-fluoroethane

    NASA Astrophysics Data System (ADS)

    Tatamitani, Yoshio; Kuwano, Susumu; Fuchigami, Kiyokatu; Oe, Sumio; Ogata, Teruhiko

    1999-08-01

    The microwave spectrum of 1-bromo-1-fluoroethane, CHBrF-CH3 and CHBrF-CH2D (79/81Br), has been studied for the first time from 8 to 41 GHz. A least-squares analysis of the observed a- and b-type transition frequencies gave rotational and centrifugal distortion constants and components of the bromine nuclear quadrupole coupling constant tensor in the principal axes system as follows: A = 8979.428(5) MHz, B = 2883.898(3) MHz, C = 2310.535(3) MHz, ΔJ = 0.74(2) kHz, ΔJK = 2.49(3) kHz, ΔK = 5.3(5) kHz, δJ = 0.146(1) kHz, δK = 2.75(4) kHz, χaa = 493.49(29) MHz, χbb - χcc = -38.89(11) MHz, and ‖χab‖ = 161.8(28) MHz for the CH79BrF-CH3 species; A = 8979.257(5) MHz, B = 2859.072(3) MHz, C = 2294.572(3), ΔJ = 0.76(2) kHz, ΔJK = 2.51(3) kHz, ΔK = 4.5(4) kHz, δJ = 0.145(1) kHz, δK = 2.70(4) kHz, χaa = 412.42(27) MHz, χbb - χcc = -32.56 (11) MHz, and ‖χab‖ = 133.3(3) MHz for the CH81BrF-CH3 species. The structural parameters are calculated from the 24 observed rotational constants, and electronic properties of the carbon-bromine bond in 1-bromo-1-fluoroethane are evaluated from the observed nuclear quadrupole coupling constants. These molecular properties are compared with those of other related molecules. The molecular structure of 1-bromo-1-fluoroethane is found to be very close to that of 1,1-difluoroethane except for the C-Br bond.

  10. Synthesis and Photoluminescent Properties of Arylethynyl substituted 9,10-Anthraquinones

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Dass, Amala; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    A series of arylethynyl substituted anthraquinones were synthesized via Sonogashira coupling reactions of 2,7- dibromo-, 2,6-dibromo- and 2-bromoanthraquinone with para-substituted phenylacetylenes. While the redox properties of those compounds are almost insensitive to substitution, their absorption maxima are linearly related to the Hammett constants for electron donating and electron withdrawing groups separately. All compounds are photoluminescent both in solution (quantum yield of emission approximately 2%) and as solids. X-ray crystallographic characterization of 2,7-bisphenylethynyl anthraquinone indicates a monoclinic p2(l/n) space group and no indication for pi-overlap that would promote self-quenching. The emission maxima are red- shifted by both electron donating and electron withdrawing groups alike. The Stokes shifts of all compounds are significant and are correlated to the electronic properties of the substituents. The reduced forms of these compounds are also photoluminescent and the emission originates from the dihydroanthraquinone core.

  11. Low energy determination of the QCD strong coupling constant on the lattice

    DOE PAGES

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value α s( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  12. Ultrafast carrier dynamics in the large-magnetoresistance material WTe 2

    DOE PAGES

    Dai, Y. M.; Bowlan, J.; Li, H.; ...

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe 2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in,more » most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less

  13. Improved Limits on Spin-Mass Interactions

    NASA Astrophysics Data System (ADS)

    Lee, Junyi; Almasi, Attaallah; Romalis, Michael

    2018-04-01

    Very light particles with C P -violating couplings to ordinary matter, such as axions or axionlike particles, can mediate long-range forces between polarized and unpolarized fermions. We describe a new experimental search for such forces between unpolarized nucleons in two 250 kg Pb weights and polarized neutrons and electrons in a 3He -K comagnetometer located about 15 cm away. We place improved constraints on the products of scalar and pseudoscalar coupling constants, gpngsN<4.2 ×10-30 and gpegsN<1.7 ×10-30 (95% C.L.) for axionlike particle masses less than 10-6 eV , which represents an order of magnitude improvement over the best previous neutron laboratory limit.

  14. Real Space Imaging of the Microscopic Origins of the Ultrahigh Dielectric Constant in Polycrystalline CaCu 3Ti 4O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V; Shin, Junsoo; Veith, Gabriel M

    2005-01-01

    The origins of an ultrahigh dielectric constant in polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) were studied using the combination of impedance spectroscopy, electron microscopy, and scanning probe microscopy (SPM). Impedance spectra indicate that the transport properties in the 0.1 Hz-1 MHz frequency range are dominated by a single parallel resistive-capacitive (RC) element with a characteristic relaxation frequency of 16 Hz. dc potential distributions measurements by SPM illustrate that significant potential drops occur at the grain boundaries, which thus can be unambiguously identified as the dominant RC element. High frequency ac amplitude and phase distributions illustrate very weak grain boundary contrastmore » in SPM, indicative of strong capacitive coupling across the interfaces. These results demonstrate that the ultrahigh dielectric constant reported for polycrystalline CCTO materials is related to grain-boundary behavior.« less

  15. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  16. Development of Superconducting Transition Edge Sensors Based on Electron-Phonon Decoupling

    NASA Technical Reports Server (NTRS)

    Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop

    2010-01-01

    We have successfully fabricated a superconducting transition edge sensor (TES), bolometer that centers on the use of electron-phonon decoupling (EPD) for thermal isolation. We have selected a design approach that separates the two functions of far-infrared and THz radiative power absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated molybdenum/gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance (G) and the time constant for the different geometry device have been measured. For one such device, the measured G is 1.16 x 10(exp -10) W/K (plus or minus 0.61 x 10(exp- 10) W/K) at 60 mK, which corresponds to noise equivalent power (NEP) = 1.65 X 10(exp -18)W/vHz and time constant of approximately 5 microseconds.

  17. Electron attachment to the SF{sub 6} molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com; Kosarim, A. V.

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection ofmore » the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.« less

  18. Characterization of Non-Innocent Metal Complexes Using Solid-State NMR Spectroscopy: o-Dioxolene Vanadium Complexes

    PubMed Central

    Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.

    2012-01-01

    51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875

  19. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  20. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  1. Improved description of the 2 ν β β -decay and a possibility to determine the effective axial-vector coupling constant

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Dvornický, Rastislav; Štefánik, Dušan; Faessler, Amand

    2018-03-01

    An improved formalism of the two-neutrino double-beta decay (2 ν β β -decay) rate is presented, which takes into account the dependence of energy denominators on lepton energies via the Taylor expansion. Until now, only the leading term in this expansion has been considered. The revised 2 ν β β -decay rate and differential characteristics depend on additional phase-space factors weighted by the ratios of 2 ν β β -decay nuclear matrix elements with different powers of the energy denominator. For nuclei of experimental interest all phase-space factors are calculated by using exact Dirac wave functions with finite nuclear size and electron screening. For isotopes with measured 2 ν β β -decay half-life the involved nuclear matrix elements are determined within the quasiparticle random-phase approximation with partial isospin restoration. The importance of correction terms to the 2 ν β β -decay rate due to Taylor expansion is established and the modification of shape of single and summed electron energy distributions is discussed. It is found that the improved calculation of the 2 ν β β -decay predicts slightly suppressed 2 ν β β -decay background to the neutrinoless double-beta decay signal. Furthermore, an approach to determine the value of effective weak-coupling constant in nuclear medium gAeff is proposed.

  2. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters.

  4. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  5. Electronic structures and spectroscopic properties of CdI: MRCI+Q study including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Hua; Liu, Xiaohua; Zhao, Shutao; Liu, Yadong; Yan, Bing

    2018-01-01

    Cadmium iodide (CdI), which is a candidate for laser material in chemical lasing, has attracted considerable scientific interest. While the complete picture for electronic structure of CdI is still unclear, particularly for the interactions of excited states. In this paper, high-level configuration interaction method is applied to compute the low-lying electronic states of the lowest two dissociation limits (Cd(1S) + I(2P) and Cd(3P) + I(2P)). To ensure the accuracy, the Davidson correction, core-valence electronic correlations and spin-orbit coupling effects are also taken into account. The potential energy curves of the 14 Λ-S states and 30 Ω states obtained from those Λ-S states are calculated. On the basis of the computed potential energy curves, the spectroscopic constants of bound and quasibound states are determined, most of which have not been reported in existing studies. The calculated values of spin-orbit coupling matrix elements demonstrate that the B2Σ+1/2 state imposes a strong perturbation on ν‧> 0 vibrational level of C2Π1/2, which can explain the weak spectral intensity of C2Π1/2-X2Σ+1/2 observed in previous experiment. The transition dipole moments as well as the lifetimes are evaluated to predict the transition properties of B2Σ+1/2, C2Π1/2 and 22Π3/2 states.

  6. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  7. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    PubMed

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  8. Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly.

    PubMed

    Choi, Hyunbong; Santra, Pralay K; Kamat, Prashant V

    2012-06-26

    Manipulation of energy and electron transfer processes in a light harvesting assembly is an important criterion to mimic natural photosynthesis. We have now succeeded in sequentially assembling CdSe quantum dot (QD) and squaraine dye (SQSH) on TiO(2) film and couple energy and electron transfer processes to generate photocurrent in a hybrid solar cell. When attached separately, both CdSe QDs and SQSH inject electrons into TiO(2) under visible-near-IR irradiation. However, CdSe QD if linked to TiO(2) with SQSH linker participates in an energy transfer process. The hybrid solar cells prepared with squaraine dye as a linker between CdSe QD and TiO(2) exhibited power conversion efficiency of 3.65% and good stability during illumination with global AM 1.5 solar condition. Transient absorption spectroscopy measurements provided further insight into the energy transfer between excited CdSe QD and SQSH (rate constant of 6.7 × 10(10) s(-1)) and interfacial electron transfer between excited SQSH and TiO(2) (rate constant of 1.2 × 10(11) s(-1)). The synergy of covalently linked semiconductor quantum dots and near-IR absorbing squaraine dye provides new opportunities to harvest photons from selective regions of the solar spectrum in an efficient manner.

  9. Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene)

    NASA Astrophysics Data System (ADS)

    Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D.

    2010-04-01

    In this work, we combined an experimental technique and a detailed data analysis to investigate the influence of an applied pressure on the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene) (PPV). The dielectric constants were derived from polarized reflectance spectra recorded through a diamond anvil cell up to 50 kbar. The presence of the diamond anvils strongly affects measured spectra requiring the development in an optical model able to take all spurious effects into account. A parametric procedure was then applied to derive the complex dielectric constants for both polarizations as a function of pressure. A detailed analysis of their pressure dependence allows addressing the role of intermolecular interactions and electron-phonon coupling in highly oriented PPV.

  10. Long-range electron tunneling.

    PubMed

    Winkler, Jay R; Gray, Harry B

    2014-02-26

    Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.

  11. Asymmetric Marcus-Hush theory for voltammetry.

    PubMed

    Laborda, Eduardo; Henstridge, Martin C; Batchelor-McAuley, Christopher; Compton, Richard G

    2013-06-21

    The current state-of-the-art in modeling the rate of electron transfer between an electroactive species and an electrode is reviewed. Experimental studies show that neither the ubiquitous Butler-Volmer model nor the more modern symmetric Marcus-Hush model are able to satisfactorily reproduce the experimental voltammetry for both solution-phase and surface-bound redox couples. These experimental deviations indicate the need for revision of the simplifying approximations used in the above models. Within this context, models encompassing asymmetry are considered which include different vibrational and solvation force constants for the electroactive species. The assumption of non-adiabatic electron transfer is also examined. These refinements have provided more satisfactory models of the electron transfer process and they enable us to gain more information about the microscopic characteristics of the system by means of simple electrochemical measurements.

  12. Superradiance of cold atoms coupled to a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Hoffman, Jonathan; Tiesinga, Eite

    2011-06-01

    We investigate superradiance of an ensemble of atoms coupled to an integrated superconducting LC circuit. Particular attention is paid to the effect of inhomogeneous coupling constants. Combining perturbation theory in the inhomogeneity and numerical simulations, we show that inhomogeneous coupling constants can significantly affect the superradiant relaxation process. Incomplete relaxation terminating in “dark states” can occur, from which the only escape is through individual spontaneous emission on a much longer time scale. The relaxation dynamics can be significantly accelerated or retarded, depending on the distribution of the coupling constants. On the technical side, we also generalize the previously known propagator of superradiance for identical couplings in the completely symmetric sector to the full exponentially large Hilbert space.

  13. Electron-phonon effects in graphene and an armchair (10,10) single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Woods, Lilia Milcheva Rapatinska

    New effects due to the electron-phonon interaction in some low-dimensional tight-binding systems are discussed. A sheet of graphite (two-dimensional) and an armchair single wall carbon nanotube (SWNT) (quasi-one dimensional) are taken as examples. The geometrical structure and the linear dispersion of the energy with respect to the electron wave vector are expected to play a significant role. For the ordinary electron-phonon coupling which includes modulated hopping and linear electron-phonon interaction the matrix elements for both systems are derived in the context of a two parameter model for the phonon vibrational spectrum. It is found that they (for both structures) strongly depend on the geometry, display a deformation type of potential and are reduced by a factor of (1 - R), where R depends uniquely on the introduced phonon parameters. Next a new type of interaction is derived; it arises from the phonon modulation of the electron-electron interaction. After writing the matrix elements for the new Hamiltonian, the problem is considered in the context of many body physics. There are two contributions. One of them is the random phase approximation with one phonon line. The electron self-energy for it is calculated. It is shown that one might expect that this is not a large effect. Analytical expressions are obtained for the armchair single wall carbon nanotube. The exchange interaction in the one-phonon approximation is another term that arises and is also considered. One is able to write four new Feynman diagrams and derive an expression for -ImSk⃗ . The contribution from this type of coupling could be large and comparable to the one from the modulated hopping. These results are supported by numerical estimates of some characteristics of graphene and SWNT. The values of the electron-phonon coupling constant, lambda, and the electron lifetime, tau, are compared between the traditional electron-phonon interaction and the phonon modulated electron-electron interaction. Finally, for a perfect (defect-free) arm chair SWNT the diffusion thermopower and the phonon drag thermopower should be zero because of the complete symmetry of the energy bands of the system.

  14. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results formore » the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.« less

  15. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  16. Transient many-body instability in driven Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Triola, Christopher; Balatsky, Alexander

    The defining feature of a Dirac material (DM) is the presence of nodes in the low-energy excitation spectrum leading to a strong energy dependence of the density of states (DOS). The vanishing of the DOS at the nodal point implies a very low effective coupling constant which leads to stability of the node against electron-electron interactions. Non-equilibrium or driven DM, in which the DOS and hence the effective coupling can be controlled by external drive, offer a new platform for investigating collective instabilities. In this work, we discuss the possibility of realizing transient collective states in driven DMs. Motivated by recent pump-probe experiments which demonstrate the existence of long-lived photo-excited states in DMs, we consider an example of a transient excitonic instability in an optically-pumped DM. We identify experimental signatures of the transient excitonic condensate and provide estimates of the critical temperatures and lifetimes of these states for few important examples of DMs, such as single-layer graphene and topological-insulator surfaces.

  17. PARTIAL REVISION: ABSORPTION SPECTRUM AND QUANTUM STATES OF THE PRASEODYMIUM ION. I. SINGLE CRYSTALS OF PRASEODYMIUM CHLORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, E.V.; Sancier, K.M.; Freed, S.

    1958-07-01

    In an analysis of term splitting in the absorption spectrum of 24 samples of praseodymium chloride, Judd (Proc. Roy. Soc. (London) A241, 414(1957)) found all but two of the authors' results to be constant with his. A discussion of reconciliation is presentrd, and the authors point out that the error is due to a mistake in descrimination between electronic transitions and the weak vibrationally coupled lines. (J.R.D.)

  18. Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures.

    PubMed

    van Ginkel, C G; van Haperen, A M; van der Togt, B

    2005-01-01

    Bromate, a weakly mutagenic oxidizing agent, exists in surface waters. The biodegradation of bromate was investigated by assessing the ability of mixed cultures of micro-organisms for utilization of bromate as electron acceptor and acetate as electron donor. Reduction of bromate was only observed at relatively low concentrations (<3.0 mM) in the absence of molecular oxygen. Under these conditions bromate was reduced stoichiometrically to bromide. Unadapted sludge from an activated sludge treatment plant and a digester reduced bromate without lag period at a constant rate. Using an enrichment culture adapted to bromate, it was demonstrated that bromate was a terminal electron acceptor for anaerobic growth. Approximately 50% of the acetate was utilized for growth with bromate by the enrichment culture. A doubling of 20 h was estimated from a logarithmic growth curve. Other electron acceptors, like perchlorate, chlorate and nitrate, were not reduced or at negligible rates by bromate-utilizing microorganisms.

  19. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  20. Indirect NMR spin-spin coupling constants in diatomic alkali halides

    NASA Astrophysics Data System (ADS)

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B.; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-01

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  1. Magnetoelectric coupling and electrical properties of inorganic-organic based LSMO - PVDF hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Debnath, Rajesh; Mandal, S. K.; Dey, P.; Nath, A.

    2018-04-01

    We have investigated strain mediated magnetoelectric coupling and ac electrical properties of 0.5La0.7Sr0.3MnO3-0.5 Polyvinylidene Fluoride nanocomposites at room temperature. The sample has been prepared through low temperature pyrophoric chemical process. The detailed study of X-ray diffraction pattern shows simultaneous co-existence of two phases of nanometric grains. Field emission scanning electron micrograph shows the absence of any phase segregation and good chemical homogeneity in composites. The magnetoelectric voltage is measured in both longitudinal and transverse direction at a frequency of 73 Hz. The magnetoelectric coefficient in transverse direction is found to ˜0.17 mV/cmOe and in longitudinal direction it is found to ˜0.08 mV/cmOe. With the application of dc magnetic field the real and imaginary part of impedance are increased where the dielectric constant has been decreased. Nyquist plots have been fitted using two parallel combinations of resistances - constant phase element circuits considering dominant role of grains and grain boundaries resistance in the conduction process of the sample.

  2. Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search.

    PubMed

    Skripnikov, L V

    2016-12-07

    A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions in terms of the electron electric dipole moment, eEDM, and dimensionless constant, k T,P , characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction. The ACME collaboration has recently improved limits on these quantities using a beam of ThO molecules in the electronic H 3 Δ 1 state [J. Baron et al., Science 343, 269 (2014)]. We apply the combined direct relativistic 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, E eff , parameter of the T,P-odd pseudoscalar-scalar interaction, W T,P , and hyperfine structure constant in Δ13 state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and k T,P constant. We have investigated the electron correlation for all of the 98 electrons of ThO simultaneously up to the level of the coupled cluster with single, double, and noniterative triple amplitudes, CCSD(T), theory. Contributions from iterative triple and noniterative quadruple cluster amplitudes for the valence electrons have been also treated. The obtained values are E eff = 79.9 GV/cm, W T,P = 113.1 kHz. The theoretical uncertainty of these values is estimated to be about two times smaller than that of our previous study [L. V. Skripnikov and A. V. Titov, J. Chem. Phys., 142, 024301 (2015)]. It was found that the correlation of the inner- and outer-core electrons contributes 9% to the effective electric field. The values of the molecule frame dipole moment of the Δ13 state and the H 3 Δ 1 →X 1 Σ + transition energy of ThO calculated within the same methods are in a very good agreement with the experiment.

  3. Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O((3)P) + H2(+)(X(2)Σg(+)) collisions.

    PubMed

    Gamallo, Pablo; Defazio, Paolo; González, Miguel; Paniagua, Miguel; Petrongolo, Carlo

    2015-09-28

    We present Born-Oppenheimer (BO) and Renner-Teller (RT) time dependent quantum dynamics studies of the reactions O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) and OH(X(2)Π) + H(+). We consider the OH2(+) X[combining tilde](2)A'' and Ã(2)A' electronic states that correlate with a linear (2)Π species. The electronic angular momenta operators L[combining circumflex] and L[combining circumflex](2) are considered in nonadiabatic coupled-channel calculations, where the associated RT effects are due to diagonal V(RT) potentials that add up to the PESs and to off-diagonal C(RT) couplings between the potential energy surfaces (PESs). Initial-state-resolved reaction probabilities PI, integral cross sections σI, and rate constants kI are obtained using recent ab initio PESs and couplings and the real wavepacket formalism. Because the PESs are strongly attractive, PI have no threshold energy and are large, σI decrease with collision energy, and kI depend little on the temperature. The X[combining tilde](2)A'' PES is up to three times more reactive than the Ã(2)A' PES and H2(+) rotational effects (j0 = 0, 1) are negligible. The diagonal V(RT) potentials are strongly repulsive at the collinearity and nearly halve all low-energy observables with respect to the BO ones. The off-diagonal C(RT) couplings are important at low partial waves, where they mix the X[combining tilde](2)A'' and Ã(2)A' states up to ∼20%. However, V(RT) effects predominate over the C(RT) ones that change at most by ∼19% the BO values of σI and kI. The reaction O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) is probably one of the most reactive atom + diatom collisions because its RT rate constant at room temperature is equal to 2.26 × 10(-10) cm(3) s(-1). Within the BO approximation, the present results agree rather well with recent quasiclassical and centrifugal-sudden data using the same PESs.

  4. Unconventional superconductivity in iron pnictides: Magnon mediated pairing

    NASA Astrophysics Data System (ADS)

    kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban

    2018-02-01

    We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.

  5. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    PubMed

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical impact of the attachment position of the spacer on the porphyrin on the electron transfer rate, and this strategy can represent a useful approach to develop molecular photonic devices for long-range charge separations.

  6. Effective bond orders from two-step spin–orbit coupling approaches: The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurice, Rémi, E-mail: remi.maurice@subatech.in2p3.fr; Montavon, Gilles; Réal, Florent

    2015-03-07

    The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakensmore » the covalent character of the bond in At{sub 2} even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.« less

  7. Manifestations of Dark matter and variation of the fundamental constants in atomic and astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2016-05-01

    Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].

  8. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  9. Magnetic properties and core electron binding energies of liquid water

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  10. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    PubMed

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  11. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    NASA Astrophysics Data System (ADS)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  12. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Durajski, A. P.; Jarosik, M. W.

    2018-04-01

    We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron-phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen-Cooper-Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.

  13. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  14. Constraining cosmologies with fundamental constants - I. Quintessence and K-essence

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.

    2013-01-01

    Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.

  15. The fifth electron in the fully reduced caa(3) from Thermus thermophilus is competent in proton pumping.

    PubMed

    Siletsky, Sergey A; Belevich, Ilya; Soulimane, Tewfik; Verkhovsky, Michael I; Wikström, Mårten

    2013-01-01

    The time-resolved kinetics of membrane potential generation coupled to oxidation of the fully reduced (five-electron) caa(3) cytochrome oxidase from Thermus thermophilus by oxygen was studied in a single-turnover regime. In order to calibrate the number of charges that move across the vesicle membrane in the different reaction steps, the reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) has been resolved upon photodissociation of CO from the mixed valence enzyme in the absence of oxygen. The reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) pair is resolved as a single transition with τ~40 μs. In the reaction of the fully reduced cytochrome caa(3) with oxygen, the first electrogenic phase (τ~30 μs) is linked to OO bond cleavage and generation of the P(R) state. The next electrogenic component (τ~50 μs) is associated with the P(R)→F transition and together with the previous reaction step it is coupled to translocation of about two charges across the membrane. The three subsequent electrogenic phases, with time constants of ~0.25 ms, ~1.4 ms and ~4 ms, are linked to the conversion of the binuclear center through the F→O(H)→E(H) transitions, and result in additional transfer of four charges through the membrane dielectric. This indicates that the delivery of the fifth electron from heme c to the binuclear center is coupled to pumping of an additional proton across the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.

    PubMed

    Belevich, Nikolai P; Bertsova, Yulia V; Verkhovskaya, Marina L; Baykov, Alexander A; Bogachev, Alexander V

    2016-02-01

    Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  18. Magnetic and structural studies of trivalent Co-substituted Cd-Mn ferrites

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; El-Kestawy, M.; Ghoneim, A. I.

    2016-05-01

    Series of polycrystalline Cd0.4Mn0.6CoxFe2-xO4 ferrites, 0≤x≤1, were prepared by solid state reaction method. The samples were characterized by inductive coupling plasma, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectra and vibrating sample magnetometry. This study proved that all samples have single-phase cubic spinel structure. The true lattice constant, saturation magnetization, magnetic moment and trend of grain size and IR band νA showed decrease against x, whereas the trend of crystallite size, threshold frequency, Debye temperature, IR bands ν1 and ν2 and force constants F1 and F2, coercivity, anisotropy constant and residual magnetization showed increase. The IR analysis proved existence of Fe2+, Co2+, Fe4+, Co4+ and/or Mn4+ ions amongst the crystal sublattices. The characteristic bands ν1 and ν2 and force constants F1 and F2 showed decrease versus the tetrahedral- and octahedral-site bond length, respectively. The strain, specific surface area, refractive index, velocity, jump rate and remnant magnetization proved dependence on Co3+ ion content x.

  19. A TWT upgrade to study wave-particle interactions in plasma

    NASA Astrophysics Data System (ADS)

    Doveil, Fabrice; Caetano de Sousa, Meirielen; Guyomarc'h, Didier; Kahli, Aissa; Elskens, Yves

    2015-11-01

    Beside industrial applications, Traveling Wave Tubes (TWT) are useful to mimic and study wave-particle interaction in plasma. We upgraded a TWT, whose slow wave structure is a 4 m long helix (diameter 3.4 cm, pitch 1 mm) of Be-Cu wire (diameter 0.6 mm) wrapped in insulating tape. The helix is inserted in a vacuum glass tube. At one end, an electron gun produces a beam propagating along the helix, radially confined by a constant axial magnetic field. Movable probes, capacitively coupled to the helix through the glass tube, launch and monitor waves generated by an arbitrary waveform generator at a few tens of MHz. At the other end of the helix, a trochoidal analyzer allows to reconstruct the electron distribution functions of the beam after its self-consistent interaction with the waves. Linear properties of the new device will be reported. The measured coupling coefficients of each probe with the helix are used to reconstruct the growth and saturation of a launched wave as it interacts with the electron beam. J-B. Faure and V. Long are thanked for their efficient help in designing and using a new way to build the helix.

  20. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  1. Theory for electron transfer from a mixed-valence dimer with paramagnetic sites to a mononuclear acceptor

    NASA Astrophysics Data System (ADS)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.

    1999-06-01

    Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.

  2. On the Foundation of Equipartition in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan

    2018-03-01

    A widely accepted paradigm is that equipartition (eqp) between the energy density of cosmic rays (CRs) and the energy density of the magnetic field cannot be sustained in supernova remnants (SNRs). However, our 3D hydrodynamic supercomputer simulations, coupled with a nonlinear diffusive shock acceleration model, provide evidence that eqp may be established at the end of the Sedov phase of evolution in which most SNRs spend the longest portions of their lives. We introduce the term “constant partition” for any constant ratio between the CR energy density and the energy density of the magnetic field in an SNR, while the term “equipartition” should be reserved for the case of approximately the same values of the energy density (also, it is constant partition in the order of magnitude) of ultra-relativistic electrons only (or CRs in total) and the energy density of the magnetic field. Our simulations suggest that this approximate constant partition exists in all but the youngest SNRs. We speculate that since evolved SNRs at the end of the Sedov phase of evolution can reach eqp between CRs and magnetic fields, they may be responsible for initializing this type of eqp in the interstellar medium. Additionally, we show that eqp between the electron component of CRs and the magnetic field may be used for calculating the magnetic field strength directly from observations of synchrotron emission from SNRs. The values of magnetic field strengths in SNRs given here are approximately 2.5 times lower than values calculated by Arbutina et al.

  3. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  4. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.

    2000-02-15

    This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c)more » 2000 The American Physical Society.« less

  5. Blinking suppression of CdTe quantum dots on epitaxial graphene and the analysis with Marcus electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Takuya; Tamai, Naoto, E-mail: tamai@kwansei.ac.jp; Kutsuma, Yasunori

    We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.

  6. Symmetry breaking in the planar configurations of disilicon tetrahalides: Pseudo-Jahn-Teller effect parameters, hardness and electronegativity.

    PubMed

    Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood

    2015-11-21

    CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the stabilization energies associated with the mixing of the distorted donor π(Si-Si)(b(u)) bonding and acceptor σ(Si-Si)*(b(u)) antibonding orbitals along the b2g bending distortions decrease from compound 1 to compound 4. This fact reasonably explains the increase of the Si-Si natural bond orders (nbo) on going from compound 1 to compound 4. With the increase of the Si-Si natural bond orders, the corresponding E(PJT) decreases from compound 1 to compound 4. Importantly, the variations of the global hardness (η) differences (Δ[η(C2h) - η(D2h)]) do not correlate with the trend observed for their corresponding total energy differences, justifying that the configurational properties of compounds 1-4 do not obey the maximum hardness principle. Interestingly, the trans-bent (C2h) configurations of compounds 1-4 are more electronegative than their corresponding planar (D2h) forms and the variations of their global electronegativity (χ) differences (Δ[χ(C2h) - χ(D2h)]) succeed in accounting for the decrease of the E(PJT) stabilization energies for the D2h → C2h conversion processes on going from compound 1 to compound 4.

  7. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  8. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  9. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-05-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s-1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications.

  10. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  11. Study of the charge dependence of the pion–nucleon coupling constant on the basis of data on low-energy nucleon–nucleon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net

    2016-01-15

    The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less

  12. Study of $$WW\\gamma $$ and $$WZ\\gamma $$ production in $pp$ collisions at $$\\sqrt{s} = {8} \\,{\\text {TeV}}$$ and search for anomalous quartic gauge couplings with the ATLAS experiment

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-09-25

    Our paper presents a study of WWγ and WZγ triboson production using events from proton–proton collisions at a centre-of-mass energy of √s=8TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb - 1 . The WWγ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos (e). Upper limits on the production cross-section of the e final state and the WWγ and WZγ final states containing an electron or a muon, two jets, a photon, and a neutrino (eνjjγ or μνjjγ) are also derived.more » The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. Our results are then interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which WWγ and WZγ production are sensitive.« less

  13. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    NASA Astrophysics Data System (ADS)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  14. Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Dagdigian, Paul J.; Alexander, Millard H.

    2013-03-01

    We report a theoretical investigation of the relaxation of the umbrella vibrational mode (the ν2 mode) of the CH3 molecule in its ground tilde{X}^2A_2^' ' } electronic state in collisions with helium. We have calculated a four-dimensional potential energy surface (PES) for the interaction between CH3 with different umbrella displacements and a helium atom, using a restricted open-shell coupled-cluster method with inclusion of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. With this PES we carried out full close-coupling scattering calculations including all CH3 umbrella-rotational levels with v2 ⩽ 3. To our knowledge, this work represents the first fully quantum calculations of ro-vibrational relaxation of a polyatomic. In more detail, we investigate propensities in the calculated ro-vibrational cross sections and the dependence on initial rotational excitation, as well as determining thermal rate constants. Overall, ro-vibrational relaxation is nearly two orders of magnitude less efficient than pure-rotational relaxation, with a noticeable dependence on the initial rotational level. We predict the room temperature v2 = 1 vibrational relaxation rate constant to be 5.4 × 10-12 cm3 molecule-1 s-1, compared to the rate constants for pure-rotational relaxation of the lower rotational levels (˜2.0 × 10-10 cm3 molecule-1 s-1).

  15. Fourier transform emission spectroscopy of the TiF radical in the 407 nm region

    NASA Astrophysics Data System (ADS)

    Imajo, Takashi; Kobayashi, Yuki; Nakashima, Yoshihiro; Tanaka, Keiichi; Tanaka, Takehiko

    2005-04-01

    Ultraviolet emission spectra of the TiF radical in the 407 nm region have been observed at a resolution of 0.04 cm -1 using a Fourier transform spectrometer. A new electronic assignment of 4Γ- X4Φ has been proposed. Rotational analysis has been obtained for the 0-0 and 1-1 vibrational bands of the 4Γ 5/2- X4Φ 3/2, 4Γ 9/2- X4Φ 7/2, and 4Γ 11/2- X4Φ 9/2 subbands and the 0-0 band of 4Γ 7/2- X4Φ 5/2. The lower state rotational and centrifugal distortion constants are consistent with the previous results [J. Mol. Spectrosc. 184 (1997) 186; J. Chem. Phys. 119 (2003) 9496], to the conformation that the lower state of the 407 nm band is the 4Φ ground electronic state. Rough estimates of the vibrational interval Δ G(1/2) and the spin-orbit coupling constant A in the 4Γ state were also obtained.

  16. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald; Solà, Joan; Nunes, Rafael C.

    2017-03-01

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance Λ CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level ≳ 3σ . Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the "micro-macro connection" (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).

  17. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory

    PubMed Central

    Bao, Junwei Lucas; Zhang, Xin

    2016-01-01

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727

  18. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-11-29

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C 2 F 4 ), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.

  19. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  20. Evidence of s-wave superconductivity in the noncentrosymmetric La7Ir3.

    PubMed

    Li, B; Xu, C Q; Zhou, W; Jiao, W H; Sankar, R; Zhang, F M; Hou, H H; Jiang, X F; Qian, B; Chen, B; Bangura, A F; Xu, Xiaofeng

    2018-01-12

    Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La 7 Ir 3 (T c  ~ 2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La 7 Ir 3 displays a moderately large electronic heat capacity (Sommerfeld coefficient γ n  ~ 53.1 mJ/mol K 2 ) and a significantly enhanced Kadowaki-Woods ratio (KWR ~32 μΩ cm mol 2 K 2 J -2 ) that is greater than the typical value (~10 μΩ cm mol 2 K 2 J -2 ) for strongly correlated electron systems. The upper critical field H c2 was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below T c reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant λ = 0.81 and the logarithmically averaged frequency ω ln  = 78.5 K, resulting in a theoretical T c  = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.

  1. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based upon temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity rho 300K of 12.0 muO-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6x10-8 O-cm K -1, a residual resistivity rhoo below 30 K of 0.78 muO-cm (corresponding to a residual resistivity ratio rho300K/rho 15K = 15), and the layers exhibit a superconducting transition temperature Tc = 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, xi|| = 18 nm and xi⊥ = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7+/-1.7 and 450+/-25 GPa. Transport electron/phonon coupling parameters and Eliashberg spectral functions alphatr2F(ho) are determined for Group-IV TM nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements. Transport electron/phonon coupling parameters lambdatr vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in lambda tr among the TM nitrides and the weak coupling in CeN are consistent with measured Tc values: 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and < 4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in alpha2F(ho), corresponding to regions in energy-space for which electrons couple to acoustic hoac and optical ho op phonon modes, are centered at ho ac = 33 and hoop = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15+/-0.1 for all four nitrides, indicating similar electron/phonon coupling strengths alphatr(h o) for both modes. Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically-unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134+/-0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density rho = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8+/-0.3, v011 = 9.1+/-0.3, and v111 = 9.1+/-0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585+/-30 GPa; the c44 elastic constant, 126+/-3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and rho, the VN c 12 elastic constant is 178+/-33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio nu = 0.29, and the anisotropic Poisson ratios nu001 = 0.23, nu011 = 0.30, and nu 111 = 0.29. The elastic stability criteria requires cubic crystals to resist [001] and [011] shears as well as isotropic compression or, equivalently, for G001 = (c11 -- c12)/2 > 0, G 011 = c44 > 0, and B = (c11 + 2c12)/3 > 0, in which G001 and G011 are directional shear moduli and B is the bulk modulus. Thus, NaCl-structure VN is elastically stable at room temperature. Structural phase transitions in epitaxial stoichiometric VN/MgO(011) thin films are investigated using temperature-dependent synchrotron XRD, SAED, resistivity measurements, HR-XTEM, and ab-initio molecular dynamics (AIMD). At room temperature, VN has the B1 NaCl structure. However, below Tc = 250 K, XRD and SAED results reveal forbidden (00 l) reflections of mixed parity associated with a non-centrosymmetric tetragonal structure. The intensities of the forbidden reflections increase with decreasing temperature following the scaling behavior I ∝ (T c - T)1/2. Resistivity measurements between 300 and 4 K consist of two linear regimes resulting from different electron/phonon coupling strengths in the cubic and tetragonal VN phases. The VN transport Eliashberg spectral function alpha2trF(ho), the product of the phonon density-of-states F(ho) and the transport electron/phonon coupling strength alpha2 tr(ho), is determined and used in combination with AIMD renormalized phonon dispersion relations to show that anharmonic vibrations stabilize the NaCl structure at T > Tc. Free-energy contributions due to vibrational entropy, often neglected in theoretical modeling, are essential for understanding the room-temperature stability of NaCl-structure VN, and of strongly anharmonic systems in general. (Abstract shortened by UMI.).

  2. Superconductivity in Doped sp3 Semiconductors: The Case of the Clathrates

    NASA Astrophysics Data System (ADS)

    Connétable, D.; Timoshevskii, V.; Masenelli, B.; Beille, J.; Marcus, J.; Barbara, B.; Saitta, A. M.; Rignanese, G.-M.; Mélinon, P.; Yamanaka, S.; Blase, X.

    2003-12-01

    We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant λ calculated from perturbative density functional theory. Further, the study of I8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp3 silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C60.

  3. Length-dependence of intramolecular electron transfer in σ-bonded rigid molecular rods: an ab initio molecular orbital study

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Karna, Shashi P.

    2002-01-01

    The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.

  4. Anti-correlated spectral motion in bisphthalocyanines: evidence for vibrational modulation of electronic mixing.

    PubMed

    Prall, Bradley S; Parkinson, Dilworth Y; Ishikawa, Naoto; Fleming, Graham R

    2005-12-08

    We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their interaction; the interplay of the various couplings creates unusual anti-correlated spectral motion in the two bands. Excited state relaxation dynamics are the same regardless of which transition is pumped, with decay time constants of 1.5 and 11 ps. The dynamics are analyzed using a three-state kinetic model after relaxation from one or two additional states faster than the experimental time resolution of 50-100 fs.

  5. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  6. An experiment to verify that the weak interactions satisfy the strong equivalence principle. [electron capture and gravitational potential

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1978-01-01

    The construction of a clock based on the beta decay process is proposed to test for any violations by the weak interaction of the strong equivalence principle bu determining whether the weak interaction coupling constant beta is spatially constant or whether it is a function of gravitational potential (U). The clock can be constructed by simply counting the beta disintegrations of some suitable source. The total number of counts are to be taken a measure of elapsed time. The accuracy of the clock is limited by the statistical fluctuations in the number of counts, N, which is equal to the square root of N. Increasing N gives a corresponding increase in accuracy. A source based on the electron capture process can be used so as to avoid low energy electron discrimination problems. Solid state and gaseous detectors are being considered. While the accuracy of this type of beta decay clock is much less than clocks based on the electromagnetic interaction, there is a corresponding lack of knowledge of the behavior of beta as a function of gravitational potential. No predictions from nonmetric theories as to variations in beta are available as yet, but they may occur at the U/sg C level.

  7. Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.

    2013-02-01

    This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.

  8. Anisotropic Rabi model

    NASA Astrophysics Data System (ADS)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  9. Proceedings of the Annual Symposium on Frequency Control (38th) Held in Philadelphia, Pennsylvania on 29 May - 1 June 1984

    DTIC Science & Technology

    1984-06-01

    with that of 1. Introduction LiTaO3. The velocity is almost equal, but the coupling factor of LiNbO 3 is 1.3 times higher than that of Electronic devices...R.D. ’indlin, "An Introduction to zhe Mathematical 3 4 2 5 6 MidiPresent Mason (oa Bachmann Adams Kahan Theory of Vibrations of Elastic Plates...GHz ), and gives a good reproductibility of the dielectric constant er INTRODUCTION ( typically : 37 + 0,5 ). The extension to higher and higher

  10. Many-body instabilities and mass generation in slow Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Zhu, Jian-Xin; Migliori, Albert; Balatsky, Alexander V.

    2015-07-01

    Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum: the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model, we study the many-body instabilities of these systems and identify regions of parameter space in which the system exhibits spin density wave and charge density wave order.

  11. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  12. Electronic Transitions of Tungsten Monosulfide

    NASA Astrophysics Data System (ADS)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated spectroscopic constants of the ground and low-lying states are generally in good agreement with our experimental determination. This work represents the first experimental investigation of the electronic and molecular structure of the WS molecule.

  13. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    PubMed

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H 2 O 2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H 2 O 2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H 2 O 2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H 2 O 2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H 2 O 2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H 2 O 2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ( 17 O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H 2 O 2 .

  14. Examination of the formation process of pre-solvated and solvated electron in n-alcohol using femtosecond pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Toigawa, Tomohiro; Gohdo, Masao; Norizawa, Kimihiro; Kondoh, Takafumi; Kan, Koichi; Yang, Jinfeng; Yoshida, Yoichi

    2016-06-01

    The formation process of pre-solvated and solvated electron in methanol (MeOH), ethanol (EtOH), n-butanol (BuOH), and n-octanol (OcOH) were investigated using a fs-pulse radiolysis technique by observing the pre-solvated electron at 1400 nm. The formation time constants of the pre-solvated electrons were determined to be 1.2, 2.2, 3.1, and 6.3 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation time constants of the solvated electrons were determined to be 6.7, 13.6, 22.2, and 32.9 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation dynamics and structure of the pre-solvated and solvated electrons in n-alcohols were discussed based on relation between the obtained time constant and dielectric relaxation time constant from the view point of kinetics. The observed formation time constants of the solvated electrons seemed to be strongly correlated with the second component of the dielectric relaxation time constants, which are related to single molecule motion. On the other hand, the observed formation time constants of the pre-solvated electrons seemed to be strongly correlated with the third component of the dielectric relaxation time constants, which are related to dynamics of hydrogen bonds.

  15. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  16. Doping influence on Sm1 - x Th x OFeAs superconducting properties: Observation of the effect of intrinsic multiple Andreev reflections and determination of the superconducting parameters

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Zhigadlo, N. D.

    2014-04-01

    We studied SNS and S-N-S-N-...-S contacts (where S is a superconductor and N is a normal metal) formed by "break-junction" technique in polycrystalline Sm1 - x Th x OFeAs superconductor samples with critical temperatures T C = 34-45 K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm1 - x Th x OFeAs to be driven by intraband coupling, and (where V ij are the electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, N 2/ N 1, correspondingly, was roughly of an order. We estimated "solo" BCS-ratio values in a hypothetic case of zero interband coupling ( V i ≠ j = 0) for each condensate as 2ΔL, S/ k B T {C/L,S} ≤ 4.5. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan

    The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less

  18. High-Resolution Laser Spectroscopy of Free Radicals in Nearly Degenerate Electronic States

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2017-06-01

    Rovibronic structure of molecules in orbitally degenerate electronic states including Renner-Teller (RT) and Jahn-Teller (JT) active molecules has been extensively studied. Less is known about rotational structure of polyatomic molecules in nearly degenerate states, especially those with low (e.g., C_s) symmetry that are subject to the pseudo-Jahn-Teller (pJT) effect. In the case of free radicals, the unpaired electron further complicates energy levels by inducing spin-orbit (SO) and spin-rotation (SR) splittings. Asymmetric deuteration or methyl substitution of C_{3v} free radicals such as CH_3O, CaCH_3, and CaOCH_3 lowers the molecular symmetry, lifts the vibronic degeneracy, and reduces the JT effect to the pJT effect. New spectroscopic models are required to reproduce the rovibronic structure and simulate the experimentally obtained spectra of pJT-active free radicals. It has been found that rotational and fine-structure analysis of spectra involving nearly degenerate states may aid in vibronic analysis and interpretation of effective molecular constants. Especially, SO and Coriolis interactions that couple the two states can be determined accurately from fitting the experimental spectra. Coupling between the two electronic states also affects the intensities of rotational and vibronic transitions. The study on free radicals in nearly degenerate states provides a promising avenue of research which may bridge the gap between symmetry-induced degenerate states and the Born-Oppenheimer (BO) limit of unperturbed electronic states.

  19. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  20. Understanding Molecular Conduction: Old Wine in a New Bottle?

    NASA Astrophysics Data System (ADS)

    Ghosh, Avik

    2007-03-01

    Molecules provide an opportunity to test our understanding of fundamental non-equilibrium transport processes, as well as explore new device possibilities. We have developed a unified approach to nanoscale conduction, coupling bandstructure and electrostatics of the channel and contacts with a quantum kinetic theory of current flow. This allows us to describe molecular conduction at various levels of detail, -- from quantum corrected compact models, to semi-empirical models for quick physical insights, and `first-principles' calculations of current-voltage (I-V) characteristics with no adjustable parameters. Using this suite of tools, we can quantitatively explain various experimental I-Vs, including complex reconstructed silicon substrates. We find that conduction in most molecules is contact dominated, and limited by fundamental electrostatic and thermodynamic restrictions quite analogous to those faced by the silicon industry, barring a few interesting exceptions. The distinction between molecular and silicon electronics must therefore be probed at a more fundamental level. Ultra-short molecules are unique in that they possess large Coulomb energies as well as anomalous vibronic couplings with current flow -- in other words, strong non-equilibrium electron-electron and electron-phonon correlations. These effects yield prominent experimental signatures, but require a completely different modeling approach -- in fact, popular approaches to include correlation typically do not work for non-equilibrium. Molecules exhibit rich physics, including the ability to function both as weakly interacting current conduits (quantum wires) as well as strongly correlated charge storage centers (quantum dots). Theoretical treatment of the intermediate coupling regime is particularly challenging, with a large `fine structure constant' for transport that negates orthodox theories of Coulomb Blockade and phonon-assisted tunneling. It is in this regime that the scientific and technological merits of molecular conductors may need to be explored. For instance, the tunable quantum coupling of current flow in silicon transistors with engineered molecular scatterers could lead to devices that operate on completely novel principles.

  1. Dynamic Diglyme-Mediated Self-Assembly of Gold Nanoclusters.

    PubMed

    Compel, W Scott; Wong, O Andrea; Chen, Xi; Yi, Chongyue; Geiss, Roy; Häkkinen, Hannu; Knappenberger, Kenneth L; Ackerson, Christopher J

    2015-12-22

    We report the assembly of gold nanoclusters by the nonthiolate ligand diglyme into discrete and dynamic assemblies. To understand this surprising phenomenon, the assembly of Au20(SC2H4Ph)15-diglyme into Au20(SC2H4Ph)15-diglyme-Au20(SC2H4Ph)15 is explored in detail. The assembly is examined by high-angle annular dark field scanning transmission electron microscopy, size exclusion chromatography, mass spectrometry, IR spectroscopy, and calorimetry. We establish a dissociation constant for dimer to monomer conversion of 20.4 μM. Theoretical models validated by transient absorption spectroscopy predict a low-spin monomer and a high-spin dimer, with assembly enabled through weak diglyme oxygen-gold interactions. Close spatial coupling allows electron delocalization between the nanoparticle cores. The resulting assemblies thus possess optical and electronic properties that emerge as a result of assembly.

  2. Determination of the Goos-Hanchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum

    DOE PAGES

    Stenmark, Theodore; Word, R. C.; Konenkamp, R.

    2016-02-16

    Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410nm and 780nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. Furthermore, the electromagnetic field interaction at themore » boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.« less

  3. Electronically highly cubic conditions for Ru in α -RuCl3

    NASA Astrophysics Data System (ADS)

    Agrestini, S.; Kuo, C.-Y.; Ko, K.-T.; Hu, Z.; Kasinathan, D.; Vasili, H. B.; Herrero-Martin, J.; Valvidares, S. M.; Pellegrin, E.; Jang, L.-Y.; Henschel, A.; Schmidt, M.; Tanaka, A.; Tjeng, L. H.

    2017-10-01

    We studied the local Ru 4 d electronic structure of α -RuCl3 by means of polarization-dependent x-ray absorption spectroscopy at the Ru L2 ,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4 d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2 g orbitals is -12 ±10 meV, i.e., negligible as compared to the Ru 4 d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff=1/2 ground state. We have thus shown that as far as the Ru 4 d local properties are concerned, α -RuCl3 is an ideal candidate for the realization of Kitaev physics.

  4. Anthropics of aluminum-26 decay and biological homochirality

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2017-11-01

    Results of recent experiment reinstate feasibility to the hypothesis that biomolecular homochirality originates from beta decay. Coupled with hints that this process occurred extraterrestrially suggests aluminum-26 as the most likely source. If true, then its appropriateness is highly dependent on the half-life and energy of this decay. Demanding that this mechanism hold places new constraints on the anthropically allowed range for multiple parameters, including the electron mass, difference between up and down quark masses, the fine structure constant, and the electroweak scale. These new constraints on particle masses are tighter than those previously found. However, one edge of the allowed region is nearly degenerate with an existing bound, which, using what is termed here as `the principle of noncoincident peril', is argued to be a strong indicator that the fine structure constant must be an environmental parameter in the multiverse.

  5. Nano-scale Stripe Structures on FeTe Observed by Low-temperature STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, A.; Ukita, R.; Ekino, T.

    We have investigated the nano-scale stripe structures on a parent compound of the iron chalcogenide superconductor Fe1+dTe (d=0.033) by using low-temperature scanning tunneling microscopy (STM). The STM topographies and the dI/dV maps show clear stripe structures with the period of twice as large as the Te-Te atomic displacement (~0.76 nm = 2a0, a0 is lattice constant), in addition to weak modulation with the same period of lattice constant (~0.38 nm). The bias-voltage dependence of both STM topographies and dI/dV maps show the several kinds of the stripe structures. The 2a0 modulations are similar to the bicollinear spin order of the parent compound FeTe, indicating the possibility of the coupling with spin density wave and electronic structures.

  6. p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Ying; Jiang, Yun-Bao

    2002-04-01

    The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.

  7. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  8. Canonical phase diagrams of the 1D Falicov-Kimball model at T = O

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.

    1996-02-01

    The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.

  9. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo

    Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less

  10. Searching for dilaton dark matter with atomic clocks

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken

    2015-01-01

    We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.

  11. Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.

    PubMed

    Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo

    2017-10-09

    Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX 3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX 3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  13. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  14. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  15. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    PubMed

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  16. Record Low NEP in the Hot-Electron Titanium Nanobolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Olaya, David; Wei, Jian; Pereverzev, Sergey; Gershenson, Michael E.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.

    2006-01-01

    We are developing hot-electron superconducting transition-edge sensors (TES) capable of counting THz photons and operating at T = 0.3K. We fabricated superconducting Ti nanosensors with Nb contacts with a volume of approx. 3x10(exp -3) cu microns on planar Si substrate and have measured the thermal conductance due to the weak electron-phonon coupling in the material G = 4x10(exp -14) W/K at 0.3 K. The corresponding phonon-noise NEP = 3x10(exp -19) W/Hz(sup 1/2). Detection of single optical photons (1550nm and 670nm wavelength) has been demonstrated for larger devices and yielded the thermal time constants of 30 microsec at 145 mK and of 25 microsec at 190 mK. This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with (nu) > 1 THz where NEP approx. 3x10(exp -20) W/Hz(sup 1/2) is needed for spectroscopy in space.

  17. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  18. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    PubMed

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  19. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  20. The eΠ3g state of C2: A pathway to dissociation

    NASA Astrophysics Data System (ADS)

    Welsh, B. A.; Krechkivska, O.; Nauta, K.; Bacskay, G. B.; Kable, S. H.; Schmidt, T. W.

    2017-07-01

    The lowest 13 vibrational levels, v = 0-12, of the eΠ3g state of the C2 molecule have been measured by laser-induced fluorescence of new bands of the Fox-Herzberg system. The newly observed levels, v = 5-12, which span the eΠ3g electronic state up to and beyond the first dissociation threshold of C2, were analyzed to afford highly accurate molecular constants, including band origins, and rotational and spin-orbit constants. The spin-orbit coupling constants of the previously published lowest five levels are revised in sign and magnitude, requiring an overhaul of previously published molecular constants. The analysis is supported by high level ab initio calculations. Lifetimes of all observed levels were recorded and found to be in excellent agreement with ab initio predicted values up to v = 11. v = 12 was found to exhibit a much reduced lifetime and fluorescence quantum yield, which is attributed to the onset of predissociation. This brackets the dissociation energy of ground state XΣ+1g C2 between 6.1803 and 6.2553 eV, in agreement with the Active Thermochemical Tables.

  1. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments

    PubMed Central

    Volkán-Kacsó, Sándor; Marcus, Rudolph A.

    2015-01-01

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483

  2. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less

  4. Strong spin-lattice coupling in CrSiTe 3

    DOE PAGES

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; ...

    2015-03-19

    CrSiTe 3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe 3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of themore » phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  5. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  7. Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Raut, Subhajit; Babu, P. D.; Sharma, R. K.; Pattanayak, Ranjit; Panigrahi, Simanchalo

    2018-05-01

    We investigated the anomalous behaviour in the dielectric properties, occurring nearly at room temperature and at elevated temperatures (near the Neel temperature TN) of the polycrystalline samples of YFeO3 (YFO) ceramics. On the prepared YFO ceramics, the magnetic measurements showed the Neel temperature of YFO to be 650 K, below which the compound exhibited the weak ferromagnetic behaviour. X-ray photoelectron spectroscopy (XPS) shows the presence of Fe ions (Fe2+ and Fe3+ states) and also revealed the formation of the oxygen vacancies. The frequency dependence of the complex dielectric constant within the frequency domain of 100 Hz-1 MHz shows the presence of grain dominated dielectric relaxation over the thermal window of 300-373 K. The activation energy Eact.ɛ=0.611 eV extracted from the imaginary permittivity spectrum indicates the involvement of oxygen vacancies in the relaxation process. Above 493 K, the ac conductivity, complex impedance, and modulus studies revealed appreciable conduction and relaxation processes occurring in YFO ceramics with respective activation energies Eac t . σ=1.362 eV and Eac t . Z=1.345 eV , which suggests that the oxygen vacancies are also involved for the anomalous behaviour of the dielectric constant at elevated temperatures. The temperature dependent Raman spectroscopic measurements within the thermal window of 298-698 K showed anomalous variations of the line widths and frequencies of several Raman active modes above 473 K up to the vicinity of TN pointing towards the presence of admixtures of the electron-phonon and spin-phonon coupling in the system. A further study on the thermal variation of the B2g(4) mode frequency with [M(T)/MS]2 shows the occurrence of strong spin-phonon (s-p) coupling, while the line shape shows the presence of the Fano asymmetry, suggesting spin dependent electron-phonon (e-p) coupling in the system below TN.

  8. Predicting heterocyclic ring coupling constants through a conformational search of tetra-O-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard W. Hemingway

    1994-01-01

    A GMMX conformational search routine gives a family of conformations that reflects the Boltzmann-averaged heterocyclic ring conformation as evidenced by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  9. Predicting heterocyclic ring coupling constants through a conformational search of tetra-o-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard w. Hemingway

    1994-01-01

    A GMMXe conformational search routine gives a family a conformations that reflects the boltzmann-averaged heterocyclic ring conformation as evidence by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  10. Luminescence of the (O2(a(1)Δ(g)))2 collisional complex in the temperature range of 90-315 K: Experiment and theory.

    PubMed

    Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.

  11. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  12. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  13. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE PAGES

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...

    2017-03-17

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  14. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  15. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  16. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  17. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  18. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  19. Vicinal fluorine-fluorine coupling constants: Fourier analysis.

    PubMed

    San Fabián, J; Westra Hoekzema, A J A

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics

  20. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  1. Muon pair production at 52 GeV le radical s le 57 GeV using the AMY Detector at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacala, A.M.

    1989-01-01

    The reaction e{sup +}e{sup {minus}} {yields} {mu}{sup +}{mu}{sup {minus}} has been observed by the AMY Detector at 52 GeV {le} {radical}s {le} 57 GeV at the TRISTAN storage ring in Tsukuba, Japan. With an integrated luminosity of 18.6 pb{sup {minus}1}, this presents a new test of the standard model of the electroweak interactions in this previously unexplored energy region. The forward-backward charge asymmetry and the cross-section calculated at the various energies show agreement with the standard model predictions. The products of the vector and the axial-vector coupling constants of the electron and muon extracted from these measurements are also consistentmore » with theory. The data were combined at the average energy of {radical}s = 55.2 GeV. The measured asymmetry and cross-section are -34.4 {+-} 7.7% and 29.7 {+-} 2.1 pb respectively. This is in agreement with the standard model prediction of -28.3% for the asymmetry and 29.5 pb for the cross-section. The product of the axial couplings, g{sup e}{sub A}g{sup {mu}}{sub A} = 0.29 {+-} 0.07, and the product of the vector couplings, g{sup e}{sub V}g{sup {mu}}{sub V} = 0.01 {+-} 0.06, agree with the standard model predictions of 0.25 and .002 for these respective constants.« less

  2. Quark masses and strong coupling constant in 2+1 flavor QCD

    DOE PAGES

    Maezawa, Y.; Petreczky, P.

    2016-08-30

    We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less

  3. Theoretical predictions of the spectroscopic parameters in noble-gas molecules: HXeOH and its complex with water.

    PubMed

    Cukras, Janusz; Sadlej, Joanna

    2011-09-14

    We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies. This journal is © the Owner Societies 2011

  4. Ab-initio study of C15-type Laves phase superconductor LaRu2

    NASA Astrophysics Data System (ADS)

    Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur

    2017-01-01

    Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.

  5. Spin polarization transfer by the radical pair mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less

  6. Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions.

    PubMed

    Zhang, Qian; Liu, Longlong; Tao, Shuhui; Wang, Congyi; Zhao, Cezhou; González, César; Dappe, Yannick J; Nichols, Richard J; Yang, Li

    2016-10-12

    We have measured the single-molecule conductance of 1,n-alkanedithiol molecular bridges (n = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (n = 12) to 53 nS (n = 4), with a decay constant β n of 0.40 per methylene (-CH 2 ) group. This result is explained by a combination of density functional theory (DFT) and Keldysh-Green function calculations. The obtained decay, which is much lower than the one obtained for symmetric gold junctions, is related to the weak coupling at the molecule-graphene interface and the electronic structure of graphene. As a consequence, we show that using graphene nonsymmetric junctions and appropriate anchoring groups may lead to a much-lower decay constant and more-conductive molecular junctions at longer lengths.

  7. Millimeter Wave Spectroscopy and Equilibrium Structure Determination of Pyrimidine (m-C_4H_4N_2)

    NASA Astrophysics Data System (ADS)

    Heim, Zachary N.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2015-06-01

    Pyrimidine, the meta substituted dinitrogen analog of benzene, has been studied in the mm-wave region from 260 - 360 GHz, expanding on previous studies up to 337 GHz. The spectra of all four of the singly-substituted 13C and 15N isotopologues were observed in natural abundance. Samples of deuterium enriched pyrimidine were synthesized, giving access to several deuterium-substituted isotopologues. The experimental rotational constants have been corrected for vibration-rotation coupling and electron mass. The vibration-rotation corrections were calculated with an anharmonic frequency calculation at the CCSD[T]/ANO1 level using CFOUR. An equilibrium structure determination has been performed using the corrected rotational constants with the xrefit module of CFOUR. Several vibrational satellites of pyrimidine have also been studied. Their rotational constants have been compared to those obtained computationally. Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 233, 231-243 (2005). G. L. Blackman, R. D. Brown, F. R. Burden, J. Mol. Spectrosc. 35, 444-454 (1970). W. Caminati, D. Damiani, Chem. Phys. Lett. 179, 460-462 (1991).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, I.

    Various authors have previously studied the theory and practice of cavity testing, notably an extensive treatment by Powers [1] and Padamsee [2]. The advent of the digital Low Level RF (LLRF) electronics based on Field Programmable Logic Arrays (FPGA) provides various improvements over the rather complex systems used in the past as well as enabling new measurement techniques.In this document we reintroduce a technique that seems to have fallen out of practice in recent times, that is obtaining the coupling constant β through measurements from just one port, the reflected power port, of the directional coupler placed in front ofmore » the cavity.« less

  9. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  10. A Measurement Method for the Power Generation Characteristics of Piezoelectric Elements

    NASA Astrophysics Data System (ADS)

    Ichiki, Masaaki; Maeda, Ryutaro; Kitahara, Tokio

    The electrical and mechanical properties of piezoelectrics for power generation in wearable electronic devices were measured using an experimental apparatus. With a 40 N applied load, the peak output power of PZT system transducers was measured at 3 μW, comprising 1.8 V and 1.7 μA. The electro-mechanical coupling constant was measured at 0.53 using PZT in the same apparatus in short- and open-circuit conditions. It is possible to harness mW power by installing piezoelectric transducers on the soles of footwear, where the total weight of a human is applied most efficiently.

  11. Many-body instabilities and mass generation in slow Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Zhu, Jianxin; Migliori, Albert; Balatsky, Alexander

    2015-03-01

    Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum, the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model we study the many-body instabilities of these systems and identify regions of parameter space for which antiferromagnetic, ferromagnetic and charge density wave instabilities occur. Work Supported by USDOE BES E304.

  12. Electronic structure and magnetism of epitaxial Ni-Mn-Ga(-Co) thin films with partial disorder: a view across the phase transition

    NASA Astrophysics Data System (ADS)

    Schleicher, B.; Klar, D.; Ollefs, K.; Diestel, A.; Walecki, D.; Weschke, E.; Schultz, L.; Nielsch, K.; Fähler, S.; Wende, H.; Gruner, M. E.

    2017-11-01

    The influence of Co-doping in off-stoichiometric Ni-Mn-Ga and Ni-Mn-Ga-Co thin films on the magnetic coupling of the atoms is investigated with x-ray magnetic circular dichroism in both the martensitic as well as austenitic phase, respectively. Additionally, first principles calculations were performed to compare the experimentally obtained absorption spectra with theoretical predictions. Calculated exchange constants and density of states for the different atomic sites underline the large influence of chemical and magnetic order on the magnetocaloric properties of the material.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Analysis of the absorption spectra and spectral hole burning in zero-phonon lines of F+3 and N1 colour centres in LiF crystals

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Martyshkin, D. V.; Fedorov, V. V.

    2010-09-01

    The temperature dependences and mechanisms of broadening of zero-phonon lines of F+3 (488 nm) and N1 (523 nm) colour centres in LiF crystals are investigated. The results obtained make it possible to determine the quadratic electronic—vibrational coupling constant for N1 colour centres. The experimental data on the spectral hole burning in zero-phonon lines of F+3 and N1 colour centres indicate that the latter are positively charged.

  14. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    PubMed Central

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O⋯H⋯N potential energy surface and the influence of proton vibrational excited states. PMID:21919508

  15. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.

  16. Fourier transform emission spectra and deperturbation analysis of the A2Π - X2Σ+ and B2Σ+ - X2Σ+ electronic transitions of ZnH

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahdi; Shayesteh, Alireza

    2017-10-01

    A discharge-furnace emission source was used to generate the A2Π → X2Σ+ and B2Σ+ → X2Σ+ spectra of ZnH radical. High resolution emission spectra were recorded with a Fourier transform spectrometer, and several bands have been assigned for the 64ZnH major isotopologue. The data span the v″ = 0-6 levels of the X2Σ+ ground state, the v‧ = 0-3 levels of the A2Π state, and the v‧ = 0-2 levels of the B2Σ+ state, extending to high rotational quantum numbers near and above the dissociation asymptote of the ground state. Large local perturbations were observed in the A2Π and B2Σ+ electronic states, and a deperturbation analysis was carried out using a single Hamiltonian matrix that includes 2Π and 2Σ+ matrix elements, as well as off-diagonal elements coupling vibrational levels of the two electronic states. Band constants and Dunham coefficients were obtained for the A2Π and B2Σ+ excited states by least-squares-fitting of all the experimental data. The equilibrium vibrational constants ωe and ωexe have been determined to be 1907.528(4) and 38.674(2) cm-1, respectively, for the A2Π state, and 1021.135(94) and 17.725(80) cm-1, for the B2Σ+ state, and the equilibrium Zn-H distances (re) are 1.511662(2) Å and 2.26805(7) Å for the A2Π and B2Σ+ states, respectively. The RKR potential curves were constructed for the A2Π and B2Σ+ states, and vibrational radial overlap integrals were computed. The off-diagonal matrix elements coupling the electronic wavefunctions of the A2Π and B2Σ+ states, i.e., a+ and b, were determined to be 228 ± 3 cm-1 and 0.73 ± 0.01, respectively, for the ZnH molecule.

  17. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts.

    PubMed

    Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G

    2017-04-11

    The Co 4 O 4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2 (IV) 2 cubane. We demonstrate that the Co(III) 2 (IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III) 2 (IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4 O 4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O-O bond formation.

  18. In situ characterization of cofacial Co(IV) centers in Co 4O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts

    DOE PAGES

    Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan; ...

    2017-03-27

    The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less

  19. Significance of distinct electron-correlation effects in determining the (P ,T )-odd electric dipole moment of 171Yb

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Singh, Yashpal

    2017-06-01

    The parity and time-reversal violating electric dipole moment (EDM) of 171Yb is calculated accounting for the electron-correlation effects over the Dirac-Hartree-Fock method in the relativistic Rayleigh-Schrödinger many-body perturbation theory, with the second- [MBPT(2) method] and third-order [MBPT(3) method] approximations, and two variants of all-order relativistic many-body approaches, in the random phase approximation (RPA) and coupled-cluster (CC) method with singles and doubles (CCSD method) framework. We consider electron-nucleus tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM) interactions as the predominant sources that induce EDM in a diamagnetic atomic system. Our results from the CCSD method to EDM (da) of 171Yb due to the T-PT and NSM interactions are found to be da=4.85 (6 ) ×10-20<σ > CT|e | cm and da=2.89 (4 ) ×10-17S /(|e |fm3) , respectively, where CT is the T-PT coupling constant and S is the NSM. These values differ significantly from the earlier calculations. The reason for the same has been attributed to large correlation effects arising through non-RPA type of interactions among the electrons in this atom that are observed by analyzing the differences in the RPA and CCSD results. This has been further scrutinized from the MBPT(2) and MBPT(3) results and their roles have been demonstrated explicitly.

  20. Quasiparticle interference in unconventional 2D systems.

    PubMed

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  1. REVIEW ARTICLE: Phonons and magnetoelectric interactions in Ni3V2O8

    NASA Astrophysics Data System (ADS)

    Yildirim, T.; Vergara, L. I.; Íñiguez, Jorge; Musfeldt, J. L.; Harris, A. B.; Rogado, N.; Cava, R. J.; Yen, F.; Chaudhury, R. P.; Lorenz, B.

    2008-10-01

    We present a detailed study of the zone-center phonons and magnetoelectric interactions in Ni3V2O8. Using combined neutron scattering, polarized infrared (IR) measurements and first-principles LDA+U calculations, we successfully assigned all IR-active modes, including eleven B2u phonons which can induce the observed spontaneous electric polarization. We also calculated the Born-effective charges and the IR intensities which are in surprisingly good agreement with the experimental data. Among the eleven B2u phonons, we find that only a few of them can actually induce a significant dipole moment. The exchange interactions up to a cutoff of 6.5 Å are also calculated within the LDA+U approach with different values of U for Ni, V and O atoms. We find that LSDA (i.e. U = 0) gives excellent results concerning the optimized atomic positions, bandgap and phonon energies. However, the magnitudes of the exchange constants are too large compared to the experimental Curie-Weiss constant, Θ. Including U for Ni corrects the magnitude of the superexchange constants but opens a too large electronic bandgap. We observe that including correlation at the O site is very important to get simultaneously the correct phonon energies, bandgap and exchange constants. In particular, the nearest and next-nearest exchange constants along the Ni-spine sites result in incommensurate spin ordering with a wavevector that is consistent with the experimental data. Our results also explain how the antiferromagnetic coupling between sublattices in the b and c directions is consistent with the relatively small observed value of Θ. We also find that, regardless of the values of U used, we always get the same five exchange constants that are significantly larger than the rest. Finally, we discuss how the B2u phonons and the spin structure combine to yield the observed spontaneous polarization. We present a simple phenomenological model which shows how trilinear (and quartic) couplings of one (or two) phonons to two spin operators perturbatively affects the magnon (i.e. electromagnon) and phonon energies.

  2. Influence of ablation impurities on blunt body re-entry ionization

    NASA Technical Reports Server (NTRS)

    Schexnayder, C. J., Jr.; Evans, J. S.

    1974-01-01

    Electron density profiles which include the effect of an ablated sodium impurity were computed for the boundary layer on a blunt-nosed body re-entering the atmosphere at 7.62 km/sec. Profiles are computed from the nose to a distance of four diameters along the RAM C-payload. A finite-difference, laminar, nonequilibrium chemistry boundary-layer program was used. Comparison of theory with S-band diagnostic antenna results, electron concentration deduced from X- and C-band attenuation data, and Langmuir probe data at several different aft body locations show that agreement is good at high altitude. At the lower altitudes there is disagreement between theory and S-band antenna data where the apparent discrepancy is attributed to the three-body recombination rate constant used for deionization of sodium coupled with the effect of angle of attack.

  3. Graphene bolometer with thermoelectric readout and capacitive coupling to an antenna

    NASA Astrophysics Data System (ADS)

    Skoblin, Grigory; Sun, Jie; Yurgens, August

    2018-02-01

    We report on a prototype graphene radiation detector based on the thermoelectric effect. We used a split top gate to create a p-n junction in the graphene, thereby making an effective thermocouple to read out the electronic temperature in the graphene. The electronic temperature is increased due to the AC currents induced in the graphene from the incoming radiation, which is first received by an antenna and then directed to the graphene via the top-gate capacitance. With the exception of the constant DC voltages applied to the gate, the detector does not need any bias and is therefore very simple to use. The measurements showed a clear response to microwaves at 94 GHz with the signal being almost temperature independent in the 4-100 K temperature range. The optical responsivity reached ˜700 V/W.

  4. Electron-Phonon Systems on a Universal Quantum Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James

    We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less

  5. A magnetic resonance study of MoS(2) fullerene-like nanoparticles.

    PubMed

    Panich, A M; Shames, A I; Rosentsveig, R; Tenne, R

    2009-09-30

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS(2) nanoparticles. Spectra of bulk 2H-MoS(2) samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS(2) reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS(2) exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS(2) ones.

  6. A magnetic resonance study of MoS2 fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Shames, A. I.; Rosentsveig, R.; Tenne, R.

    2009-09-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS2 nanoparticles. Spectra of bulk 2H-MoS2 samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS2 reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS2 exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS2 ones.

  7. Design of a side coupled standing wave accelerating tube for NSTRI e-Linac

    NASA Astrophysics Data System (ADS)

    Zarei, S.; Abbasi Davani, F.; Lamehi Rachti, M.; Ghasemi, F.

    2017-09-01

    The design and construction of a 6 MeV electron linear accelerator (e-Linac) was defined in the Institute of Nuclear Science and Technology (NSTRI) for cargo inspection and medical applications. For this accelerator, a side coupled standing wave tube resonant at a frequency of 2998.5 MHZ in π/2 mode was selected. In this article, the authors provide a step-by-step explanation of the process of the design for this tube. The design and simulation of the accelerating and coupling cavities were carried out in five steps; (1) separate design of the accelerating and coupling cavities, (2) design of the coupling aperture between the cavities, (3) design of the entire structure for resonance at the nominal frequency, (4) design of the buncher, and (5) design of the power coupling port. At all design stages, in addition to finding the dimensions of the cavity, the impact of construction tolerances and simulation errors on the electromagnetic parameters were investigated. The values obtained for the coupling coefficient, coupling constant, quality factor and capture efficiency are 2.11, 0.011, 16203 and 36%, respectively. The results of beam dynamics study of the simulated tube in ASTRA have yielded a value of 5.14 π-mm-mrad for the horizontal emittance, 5.06 π-mm-mrad for the vertical emittance, 1.17 mm for the horizontal beam size, 1.16 mm for the vertical beam size and 1090 keV for the energy spread of the output beam.

  8. Dirac field and gravity in NC SO(2,3)_\\star model

    NASA Astrophysics Data System (ADS)

    Gočanin, Dragoljub; Radovanović, Voja

    2018-03-01

    Action for the Dirac spinor field coupled to gravity on noncommutative (NC) Moyal-Weyl spacetime is obtained without prior knowledge of the metric tensor. We emphasize gauge origins of gravity and its interaction with fermions by demonstrating that a classical action invariant under SO(2, 3) gauge transformations can be exactly reduced to the Dirac action in curved spacetime after breaking the original symmetry down to the local Lorentz SO(1, 3) symmetry. The commutative SO(2, 3) invariant action can be straightforwardly deformed via Moyal-Weyl \\star -product to its NC SO(2,3)_\\star invariant version which can be expanded perturbatively in powers of the deformation parameter using the Seiberg-Witten map. The NC gravity-matter couplings in the expansion arise as an effect of the gauge symmetry breaking. We calculate in detail the first order NC correction to the classical Dirac action in curved spacetime and show that it does not vanish. Moreover, linear NC effects are apparent even in flat spacetime. We analyse NC deformation of the Dirac equation, Feynman propagator and dispersion relation for electrons in Minkowski spacetime and conclude that constant NC background acts as a birefringent medium for electrons propagating in it.

  9. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  10. Electrical Coupling Between Glial Cells in the Rat Retina

    PubMed Central

    Ceelen, Paul W.; Lockridge, Amber; Newman, Eric A.

    2008-01-01

    The strength of electrical coupling between retinal glial cells was quantified with simultaneous whole-cell current-clamp recordings from astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell pairs in the acutely isolated rat retina. Experimental results were fit and space constants determined using a resistive model of the glial cell network that assumed a homogeneous two-dimensional glial syncytium. The effective space constant (the distance from the point of stimulation to where the voltage falls to 1/e) equaled 12.9, 6.2, and 3.7 µm, respectively for astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell coupling. The addition of 1 mM Ba2+ had little effect on network space constants, while 0.5 mM octanol shortened the space constants to 4.7, 4.4, and 2.6 µm for the three types of coupling. For a given distance separating cell pairs, the strength of coupling showed considerable variability. This variability in coupling strength was reproduced accurately by a second resistive model of the glial cell network (incorporating discrete astrocytes spaced at varying distances from each other), demonstrating that the variability was an intrinsic property of the glial cell network. Coupling between glial cells in the retina may permit the intercellular spread of ions and small molecules, including messengers mediating Ca2+ wave propagation, but it is too weak to carry significant K+ spatial buffer currents. PMID:11424187

  11. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  12. Sigma meson in vacuum and nuclear matter

    NASA Astrophysics Data System (ADS)

    Menchaca-Maciel, M. C.; Morones-Ibarra, J. R.

    2013-04-01

    We have obtained the value of the interaction constant g σππ that adjusts the values obtained in the E791 Collaboration at Fermilab and BES Collaboration at the Beijing Electron Positron Collider experiments. To get this we have used the concept of critical width to make compatible the parameters obtained from the Breit-Wigner formula and those obtained from the density function. Also, the total width and effective mass modification of the sigma meson in nuclear matter has been studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in-medium effect of sigma-omega mixing. We have considered, for completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases with respect to its value in vacuum and that the contribution of the sigma-omega mixing effect on the mass shift is relevant.

  13. Tuning the dispersion of multiwall carbon nanotubes in co-continuous polymer blends: a generic approach

    NASA Astrophysics Data System (ADS)

    Bose, Suryasarathi; Bhattacharyya, Arup R.; Khare, Rupesh A.; Kulkarni, Ajit R.; Umasankar Patro, T.; Sivaraman, P.

    2008-08-01

    Melt-mixed blends of polyamide 6 and acrylonitrile-butadiene-styrene (PA6/ABS) with multiwall carbon nanotubes (MWNTs) were prepared with the intention to develop conducting composites. A generic strategy, namely specific interactions combined with reactive coupling, was adopted to facilitate and to retain the 'network-like' structure of MWNTs during melt-mixing. This was facilitated by the sodium salt of 6-amino hexanoic acid (Na-AHA) and certain phosphonium based modifiers, where it was envisaged that these modifiers would establish specific interactions (either 'cation-π' or 'π-π' ) with the 'π-electron' clouds of MWNTs, as well as restricting them in the PA6 phase of the blends via reactive coupling. This route eventually led to a remarkable increase in the electrical conductivity and dielectric constant in the blends with MWNTs. Raman, FTIR and TEM investigations further supported these observations.

  14. Robust synchronization in fiber laser arrays.

    PubMed

    Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  15. Search for bosonic super-WIMP interactions with the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-12-01

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  16. Solid-state (55)Mn NMR spectroscopy of bis(μ-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II.

    PubMed

    Ellis, Paul D; Sears, Jesse A; Yang, Ping; Dupuis, Michel; Boron, Thaddeus T; Pecoraro, Vincent L; Stich, Troy A; Britt, R David; Lipton, Andrew S

    2010-12-01

    We have examined the antiferromagneticly coupled bis(μ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.

  17. Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFe O3

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Smita; Shyam, Priyank; Bag, Rabindranath; Shirolkar, Mandar M.; Kumar, Jitender; Kaur, Harleen; Singh, Surjeet; Awasthi, A. M.; Kulkarni, Sulabha

    2017-07-01

    In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFe O3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

  18. Spatially selective hydrogen irradiation of dilute nitride semiconductors: a brief review

    NASA Astrophysics Data System (ADS)

    Felici, Marco; Pettinari, Giorgio; Biccari, Francesco; Capizzi, Mario; Polimeni, Antonio

    2018-05-01

    We provide a brief survey of the most recent results obtained by performing spatially selective hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy gap, refractive index, electron effective mass) properties of the material in the growth plane, with a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—which have shown the ability to emit single photons—can also be deterministically coupled with photonic crystal microcavities, proving their inherent suitability to act as integrated light sources in complex nanophotonic devices.

  19. Constraints on the {omega}- and {sigma}-meson coupling constants with dibaryons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faessler, A.; Buchmann, A.J.; Krivoruchenko, M.I.

    The effect of narrow dibaryon resonances on basic nuclear matter properties and on the structure of neutron stars is investigated in mean-field theory and in relativistic Hartree approximation. The existence of massive neutron stars imposes constraints on the coupling constants of the {omega} and {sigma} mesons with dibaryons. In the allowed region of the parameter space of the coupling constants, a Bose condensate of the light dibaryon candidates d{sub 1}(1920) and d{sup {prime}}(2060) is stable against compression. This proves the stability of the ground state of heterophase nuclear matter with a Bose condensate of light dibaryons. {copyright} {ital 1997} {italmore » The American Physical Society}« less

  20. Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131

    2006-01-01

    We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less

  1. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  2. A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.

    PubMed

    Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang

    2011-07-01

    A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.

  3. Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Shadangi, Keshab Chandra; Rout, G. C.

    2017-05-01

    The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.

  4. Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran.

    PubMed

    Johnson, Justin C; Akdag, Akin; Zamadar, Matibur; Chen, Xudong; Schwerin, Andrew F; Paci, Irina; Smith, Millicent B; Havlas, Zdeněk; Miller, John R; Ratner, Mark A; Nozik, Arthur J; Michl, Josef

    2013-04-25

    In order to identify optimal conditions for singlet fission, we are examining the photophysics of 1,3-diphenylisobenzofuran (1) dimers covalently coupled in various ways. In the two dimers studied presently, the coupling is weak. The subunits are linked via the para position of one of the phenyl substituents, in one case (2) through a CH2 linker and in the other (3) directly, but with methyl substituents in ortho positions forcing a nearly perpendicular twist between the two joint phenyl rings. The measurements are accompanied with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Although in neat solid state, 1 undergoes singlet fission with a rate constant higher than 10(11) s(-1); in nonpolar solutions of 2 and 3, the triplet formation rate constant is less than 10(6) s(-1) and fluorescence is the only significant event following electronic excitation. In polar solvents, fluorescence is weaker because the initial excited singlet state S1 equilibrates by sub-nanosecond charge transfer with a nonemissive dipolar species in which a radical cation of 1 is attached to a radical anion of 1. Most of this charge transfer species decays to S0, and some is converted into triplet T1 with a rate constant near 10(8) s(-1). Experimental uncertainties prevent an accurate determination of the number of T1 excitations that result when a single S1 excitation changes into triplet excitation. It would be one if the charge-transfer species undergoes ordinary intersystem crossing and two if it undergoes the second step of two-step singlet fission. The triplet yield maximizes below room temperature to a value of roughly 9% for 3 and 4% for 2. Above ∼360 K, some of the S1 molecules of 3 are converted into an isomeric charge-transfer species with a shorter lifetime, possibly with a twisted intramolecular charge transfer (TICT) structure. This is not observed in 2.

  5. Towards room-temperature superconductivity in low-dimensional C60 nanoarrays: An ab initio study

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan; Liu, Dan; Berber, Savas; Tománek, David

    2018-04-01

    We propose to raise the critical temperature Tc for superconductivity in doped C60 molecular crystals by increasing the electronic density of states at the Fermi level N (EF) and thus the electron-phonon coupling constant in low-dimensional C60 nanoarrays. We consider both electron and hole dopings and present numerical results for N (EF) , which increases with the decreasing bandwidth of the partly filled hu- and t1 u-derived frontier bands with the decreasing coordination number of C60. Whereas a significant increase in N (EF) occurs in two-dimensional (2D) arrays of doped C60 intercalated in-between graphene layers, we propose that the highest-Tc values approaching room temperature may occur in bundles of nanotubes filled by one-dimensional (1D) arrays of externally doped C60 or La @C60 or in diluted three-dimensional (3D) crystals where quasi-1D arrangements of C60 form percolation paths.

  6. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  7. Analysis of electron transfer processes across liquid/liquid interfaces: estimation of free energy of activation using diffuse boundary model.

    PubMed

    Harinipriya, S; Sangaranarayanan, M V

    2006-01-31

    The evaluation of the free energy of activation pertaining to the electron-transfer reactions occurring at liquid/liquid interfaces is carried out employing a diffuse boundary model. The interfacial solvation numbers are estimated using a lattice gas model under the quasichemical approximation. The standard reduction potentials of the redox couples, appropriate inner potential differences, dielectric permittivities, as well as the width of the interface are included in the analysis. The methodology is applied to the reaction between [Fe(CN)6](3-/4-) and [Lu(biphthalocyanine)](3+/4+) at water/1,2-dichloroethane interface. The rate-determining step is inferred from the estimated free energy of activation for the constituent processes. The results indicate that the solvent shielding effect and the desolvation of the reactants at the interface play a central role in dictating the free energy of activation. The heterogeneous electron-transfer rate constant is evaluated from the molar reaction volume and the frequency factor.

  8. Electrochemical and theoretical analysis of the reactivity of shikonin derivatives: dissociative electron transfer in esterified compounds.

    PubMed

    Armendáriz-Vidales, Georgina; Frontana, Carlos

    2014-09-07

    An electrochemical and theoretical analysis of a series of shikonin derivatives in aprotic media is presented. Results showed that the first electrochemical reduction signal is a reversible monoelectronic transfer, generating a stable semiquinone intermediate; the corresponding E(I)⁰ values were correlated with calculated values of electroaccepting power (ω(+)) and adiabatic electron affinities (A(Ad)), obtained with BH and HLYP/6-311++G(2d,2p) and considering the solvent effect, revealing the influence of intramolecular hydrogen bonding and the substituting group at position C-2 in the experimental reduction potential. For the second reduction step, esterified compounds isobutyryl and isovalerylshikonin presented a coupled chemical reaction following dianion formation. Analysis of the variation of the dimensionless cathodic peak potential values (ξ(p)) as a function of the scan rate (v) functions and complementary experiments in benzonitrile suggested that this process follows a dissociative electron transfer, in which the rate of heterogeneous electron transfer is slow (~0.2 cm s(-1)), and the rate constant of the chemical process is at least 10(5) larger.

  9. Quantum and spectral properties of the Labyrinth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yuki, E-mail: takahasy@math.uci.edu

    2016-06-15

    We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show that the spectrum of this model, which is known to be a product of two Cantor sets, is an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model and show that it is absolutely continuous with respect to Lebesgue measure for almost all values of coupling constants in the small coupling regime.

  10. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlHallak, M.; Chamoun, N.; Physikalisches Institut der Universität Bonn,Nußalle 12, D-53115 Bonn

    We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.

  12. Epoxidation with Possibilities: Discovering Stereochemistry in Organic Chemistry via Coupling Constants

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Yan, Zhiqing; Xiao, Xiao

    2017-01-01

    A one-day laboratory epoxidation experiment, requiring no purification, is described, wherein the students are given an "unknown" stereoisomer of 3-hexen-1-ol, and use [superscript 1]H NMR coupling constants to determine the stereochemistry of their product. From this they work backward to determine the stereochemistry of their starting…

  13. Photo-driven electron transfer from the highly reducing excited state of naphthalene diimide radical anion to a CO 2 reduction catalyst within a molecular triad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Jose F.; La Porte, Nathan T.; Mauck, Catherine M.

    2017-01-01

    The naphthalene-1,4:5,8-bis(dicarboximide) radical anion (NDI -˙), which is easily produced by mild chemical or electrochemical reduction (-0.5 Vvs.SCE), can be photoexcited at wavelengths as long as 785 nm, and has an excited state (NDI -˙*) oxidation potential of -2.1 Vvs.SCE, making it a very attractive choice for artificial photosynthetic systems that require powerful photoreductants, such as CO 2 reduction catalysts. However, once an electron is transferred from NDI -˙* to an acceptor directly bound to it, a combination of strong electronic coupling and favorable free energy change frequently make the back electron transfer rapid. To mitigate this effect, we havemore » designed a molecular triad system comprising an NDI -˙ chromophoric donor, a 9,10-diphenylanthracene (DPA) intermediate acceptor, and a Re(dmb)(CO) 3carbon dioxide reduction catalyst, where dmb is 4,4'-dimethyl-2,2'-bipyridine, as the terminal acceptor. Photoexcitation of NDI -˙ to NDI -˙* is followed by ultrafast reduction of DPA to DPA -˙, which then rapidly reduces the metal complex. The overall time constant for the forward electron transfer to reduce the metal complex is τ = 20.8 ps, while the time constant for back-electron transfer is six orders of magnitude longer, τ = 43.4 μs. Achieving long-lived, highly reduced states of these metal complexes is a necessary condition for their use as catalysts. The extremely long lifetime of the reduced metal complex is attributed to careful tuning of the redox potentials of the chromophore and intermediate acceptor. The NDI -˙–DPA fragment presents many attractive features for incorporation into other photoinduced electron transfer assemblies directed at the long-lived photosensitization of difficult-to-reduce catalytic centers.« less

  14. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  15. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  16. Theory of Valence Transition

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Takano, F.

    1981-01-01

    The valence transition phenomena occurring in rare-earth compounds are studied by using the periodic Anderson model with the electron-phonon coupling. This electron-phonon interaction G is treated in the Hartree-Fock approximation. The Coulomb repulsion U between f-electrons on the same site is taken to be ∞, and the decoupling method of Roth is used for the higher order Green function considering the mixing interaction to be small. We put the condition that the total number of electrons is a constant, and calculate the numbers of f- and d-electrons as functions of the original energy of f-electron by using the Green functions. The first order transition is shown to occur if G ≳ (1/2)W, where W is the width of the original d-band. The energy of f-electron at which the insulator and the metallic phase have the same ground state energy is calculated asɛc ≃ (1/2)(G-(1/2)W) + (2V^2/W) log |(G-W/2)/(G+W/2)|- (V^2/8W) log | (G-W/2)(G-(3/2)W) |. The magnetic susceptibilities of both phases are also calculated, but the result is not good, showing the decoupling method used here is not appropriate for the calculation of magnetic properties.

  17. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE PAGES

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...

    2017-12-08

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  18. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  19. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  20. Model for calorimetric measurements in an open quantum system

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay

    2018-05-01

    We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.

  1. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices

    PubMed Central

    Hurand, S.; Jouan, A.; Feuillet-Palma, C.; Singh, G.; Biscaras, J.; Lesne, E.; Reyren, N.; Barthélémy, A.; Bibes, M.; Villegas, J. E.; Ulysse, C.; Lafosse, X.; Pannetier-Lecoeur, M.; Caprara, S.; Grilli, M.; Lesueur, J.; Bergeal, N.

    2015-01-01

    The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. PMID:26244916

  2. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  3. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  4. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  5. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    PubMed

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  6. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  7. Tests of Transport Theory and Reduced Impurity Influx with Highly Radiative Plasmas in TFTR

    NASA Astrophysics Data System (ADS)

    Hill, K. W.

    1997-11-01

    The electron and ion temperature profiles in beam-heated plasmas were observed to be remarkably invariant when radiative losses were increased significantly through gas puffing of high-Z impurities (argon, krypton, xenon) in the Tokamak Fusion Test Reactor. Without impurity puffing, radiative losses accounted for typically only ~ 25\\char'45 of the input power and the radiation profile was strongly peaked at the plasma edge, where the dominant carbon impurity was not fully stripped. At central electron temperatures, T_eo, of ~ 6 keV, trace concentrations of krypton and xenon (n_z/ne ~ 10-3) generated flat and centrally peaked radiation profiles respectively, and a significant fraction of the input power (45-100\\char'45 ) was lost through radiation. This loss provided a nearly ideal technique for studying local heat transport in tokamaks because it perturbed the net heating profile strongly and in a measureable way, with little effect on the density and the beam deposition profiles. In supershot plasmas, Ti >> T_e, the ion temperature profile remained constant, or even increased modestly, as the radiated power fraction was increased to 75-90\\char'45 with krypton and xenon. This observation is surprising because ion-electron coupling is the dominant power loss term for the ions in the core of supershot plasmas, and the central Ti would have decreased a factor of two if the local ion thermal diffusivity had remained constant at its value without impurity puffing. In L-mode plasmas where ion-electron power coupling is a smaller term in the power balance, the electron temperature during impurity puffing also changed only ~ 10-15\\char'45 even as the net power flow through the electrons was decreased by a factor of ~ 3. The ``stiffness" of the temperature profiles to net input power is supportive of transport mechanisms which have a marginal-stability character. Preliminary comparisons of the temperature changes with predictions of the IFS/PPPL transport model,(M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hammett, Phys. Plasmas 2, 2381 (1995)) which has strong marginal-stability behavior, are reasonable; more detailed comparisons are in progress. Use of high-Z radiators did not impair fusion performance, confirming they can be used to reduce the heat flux to the plasma facing components with minimal ion dilution. At input power level s of 30-33 MW, enhanced radiation through krypton and xenon puffing eliminated serious carbon influx (carbon ``blooms") which occurred in comparable plasmas without impurity puffing.

  8. [Planar molecular arrangements aid the design of MHC class II binding peptides].

    PubMed

    Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L

    2017-01-01

    The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

  9. A cosmic Ray Muon Experiment: a Way to Teach Standard Model of Particles at Community Colleges

    NASA Astrophysics Data System (ADS)

    Barazandeh, C.; Gutarra-Leon, A.; Rivas, R.; Glaser, H.; Majewski, W.

    2016-11-01

    This experiment is an example of research for early undergraduate students and of its benefits and challenges as an accessible strategy for community colleges, in the spirit of the report on improving undergraduate STEM education from the US President's Council of Advisors on Science and Technology. The goals of this project include measuring average low- energy muon flux, day/night flux difference, time dilation, energy spectra of electrons and muons in arbitrary units, muon decay curve, average lifetime of muons. From the lifetime data we calculate the weak coupling constant gw, electric charge e and the Higgs energy density.

  10. Optically probing the fine structure of a single Mn atom in an InAs quantum dot.

    PubMed

    Kudelski, A; Lemaître, A; Miard, A; Voisin, P; Graham, T C M; Warburton, R J; Krebs, O

    2007-12-14

    We report on the optical spectroscopy of a single InAs/GaAs quantum dot doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A0 whose effective spin J=1 is significantly perturbed by the quantum dot potential and its associated strain field. The spin interaction with photocarriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of mueV, but vanishingly small for electrons.

  11. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  12. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS 2 on Metal Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhequan; Chen, Liang; Yoon, Mina

    2016-11-08

    In this paper, we investigate the role of interfacial electronic properties on the phonon transport in two-dimensional MoS 2 adsorbed on metal substrates (Au and Sc) using first-principles density functional theory and the atomistic Green’s function method. Our study reveals that the different degree of orbital hybridization and electronic charge distribution between MoS 2 and metal substrates play a significant role in determining the overall phonon–phonon coupling and phonon transmission. The charge transfer caused by the adsorption of MoS 2 on Sc substrate can significantly weaken the Mo–S bond strength and change the phonon properties of MoS 2, which resultmore » in a significant change in thermal boundary conductance (TBC) from one lattice-stacking configuration to another for same metallic substrate. In a lattice-stacking configuration of MoS 2/Sc, weakening of the Mo–S bond strength due to charge redistribution results in decrease in the force constant between Mo and S atoms and substantial redistribution of phonon density of states to low-frequency region which affects overall phonon transmission leading to 60% decrease in TBC compared to another configuration of MoS 2/Sc. Strong chemical coupling between MoS 2 and the Sc substrate leads to a significantly (~19 times) higher TBC than that of the weakly bound MoS 2/Au system. Our findings demonstrate the inherent connection among the interfacial electronic structure, the phonon distribution, and TBC, which helps us understand the mechanism of phonon transport at the MoS 2/metal interfaces. Finally, the results provide insights for the future design of MoS 2-based electronics and a way of enhancing heat dissipation at the interfaces of MoS 2-based nanoelectronic devices.« less

  13. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    PubMed

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  14. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    PubMed

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron-intramolecular-vibration interactions in positively charged phenanthrene-edge-type hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kato, Takashi; Yamabe, Tokio

    2004-02-01

    Electron-phonon interactions in positively charged phenanthrene-edge-type hydrocarbons such as phenanthrene, chrysene, and picene are studied. The C-C stretching modes around 1500 cm-1 and the low-frequency modes around 500 cm-1 strongly couple to the highest occupied molecular orbitals (HOMO) in phenanthrene-edge-type hydrocarbons. The total electron-phonon coupling constants for the monocations (lHOMO) of 0.251, 0.135, and 0.149 eV for phenanthrene, chrysene, and picene, respectively, are estimated to be larger than those of 0.130, 0.107, and 0.094 eV for anthracene, tetracene, and pentacene, respectively. The phase patterns difference between the HOMO localized on carbon atoms which are located at the molecular edge in acene-edge-type hydrocarbons and the delocalized HOMO in phenanthrene-edge-type hydrocarbons is the main reason for the result. Strengths of orbital interactions between two neighboring carbon atoms in the HOMO become weaker with an increase in molecular size because the electron density on each carbon atom in the HOMO becomes smaller with an increase in molecular size in phenanthrene-edge-type hydrocarbons. On the other hand, the frontier orbitals of acene-edge-type hydrocarbons have somewhat nonbonding characters and thus cannot strongly couple to the totally symmetric vibrational modes compared with the frontier orbitals of phenanthrene-edge-type hydrocarbons. This is the reason why the lHOMO value for phenanthrene-edge-type hydrocarbons decreases with an increase in molecular size more significantly than that for acene-edge-type hydrocarbons, and the reason why the lHOMO value for polyphenanthrene with C2v geometry (0.033 eV) is estimated to be similar to that for polyacene (0.036 eV). The reorganization energies between the neutral molecules and the corresponding monocations for phenanthrene-edge-type hydrocarbons with large molecular size are estimated to be larger than those for acene-edge-type hydrocarbons with large molecular size.

  16. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    PubMed

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  17. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    PubMed

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  18. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratiomore » monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k{sub 2} and k{sub 3} close to one another.« less

  19. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    PubMed

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  20. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klain, Kimberly L.

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set ofmore » multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the individual coupling coefficients from measurement: unlike the symmetrical cases, only the product of the values can be obtained. A method is proposed utilizing MCNP6 tally ratios to separate the coupling coefficients for such systems. This work provides insight into the behavior of asymmetrically-coupled systems as the separation distance between the two cores is changed and also as the asymmetry is increased. As the asymmetry increases, both the slower and the faster observable prompt neutron decay constants increase in magnitude. The coupling time constants are determined from the measured decay constants. As the separation distance increases, both coupling coefficients decrease as expected. Based on these findings, an effective computational method utilizing MCNP6 and the Rossialpha technique can be applied to the prediction of asymmetrical coupled system measurements.« less

  1. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  2. Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field.

    PubMed

    Zhu, Yue; Gao, Yuheng; Rodocker, Shane; Savukov, Igor; Hilty, Christian

    2018-06-06

    We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1 H and 19 F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19 F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.

  3. Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO

    NASA Astrophysics Data System (ADS)

    Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.

    2002-03-01

    The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.

  4. Radon monitor wins Healthy House Award

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    du Pont, P.

    The winning entry was a system for measuring radon gas in homes. The system, called E-Perm and manufactured by Rad-Elec, Inc. of Germantown, MD, uses a replaceable electret detector, rather than charcoal, to sense the decay of radon. The electret is a Teflon disk about 1.5 inches in diameter that is seated in a canister 3 inches in diameter and 2.5 inches high. In the absence of any outside influences, the electret maintains a constant voltage, making it a type of electrostatic battery. After entering the canister, radon gas decays, giving off high-energy positive ions called alpha particles. The alphamore » particles dissipate their energy within a couple of centimeters of air and produce electrons as they knock into air molecules. The E-Perm system measures the presence of these electrons as a changes in the voltage potential across the electret.« less

  5. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  6. Phonon-driven electron scattering and magnetothermoelectric effect in two-dimensional tin selenide

    NASA Astrophysics Data System (ADS)

    Yang, Kaike; Ren, Ji-Chang; Qiu, Hongfei; Wang, Jian-Sheng

    2018-02-01

    The bulk tin selenide (SnSe) is the best thermoelectric material currently with the highest figure-of-merit due to strong phonon-phonon interactions. We investigate the effect of electron-phonon coupling (EPC) on the transport properties of a two-dimensional (2D) SnSe sheet. We demonstrate that EPC plays a key role in the scattering rate when the constant relaxation time approximation is deficient. The EPC strength is especially large in contrast to that of pristine graphene. The scattering rate depends sensitively on the system temperatures and the carrier densities when the Fermi energy approaches the band edge. We also investigate the magnetothermoelectric effect of the 2D SnSe. It is found that at low temperatures there is enormous magnetoelectrical resistivity and magnetothermal resistivity above 200%, suggesting possible potential applications in device design. Our results agree qualitatively well with the experimental data.

  7. Enhancement of the performance of GaN IMPATT diodes by negative differential mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Yang, Lin’an, E-mail: layang@xidian.edu.cn; Chen, Qing

    2016-05-15

    A theoretical analysis of high-efficiency punch-through operation GaN-based terahertz IMPATT diodes has been carried out in this paper. It is shown that the negative differential mobility (NDM) characteristics of GaN coupled with the space charge effect acting as a self-feedback system can markedly increase the drift velocity of injection carriers, and thereby enhance diode performance under appropriate external RF voltage. The behavior of traveling electrons in the transit zone is investigated in detail. It is found that the IMPATT diode with a punch-through structure operating in the NDM mode exhibits superior characteristics compared with the equivalent diode operating in themore » Si-like constant mobility mode. In particular, the NDM-mode diode can tolerate a larger RF voltage swing than that operating in constant mobility mode. Numerical simulation results reveal that the highest efficiency of 26.6% and maximum RF power of 2.29 W can be achieved for the NDM-mode diode at a frequency of 225 GHz. A highest efficiency of 19.0% and maximum RF power of 1.58 W are obtained for the diode with constant mobility.« less

  8. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn{sub 2}Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronto, Jairo, E-mail: jairotronto@ufv.br; Pinto, Frederico G.; Costa, Liovando M. da

    2015-01-15

    A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermalmore » treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made. • Thermal treatment above 120 °C causes partially breakdown of the LDH structure. • ESR results indicated a polaron response characteristic of electron conductivity.« less

  9. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  10. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling† †Electronic supplementary information (ESI) available: Experimental details, UV/Vis/NIR spectra for 2–8, additional magnetic data for 4–8, crystallographic data, selected bond distances, and crystallographic information files (CIFs) for 1, 2·0.4THF, 3·2.5THF, 4·2.5THF, and 5·2.9MeCN (CCDC 1414648–1414652). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02725j

    PubMed Central

    DeGayner, Jordan A.; Jeon, Ie-Rang

    2015-01-01

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N′,N′′,N′′′-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2–)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = –1.64(1) and –2.16(2) cm–1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3–˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3–˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3–˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = –626(7), –157(7), –307(9), and –396(16) cm–1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M–L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3–˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm–1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal–radical coupling trends across a transmetallic series of complexes. PMID:29435213

  11. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  12. Existence of ground state of an electron in the BDF approximation

    NASA Astrophysics Data System (ADS)

    Sok, Jérémy

    2014-05-01

    The Bogoliubov-Dirac-Fock (BDF) model allows us to describe relativistic electrons interacting with the Dirac sea. It can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons are neglected. This paper treats the case of an electron together with the Dirac sea in the absence of any external field. Such a system is described by its one-body density matrix, an infinite rank, self-adjoint operator. The parameters of the model are the coupling constant α > 0 and the ultraviolet cut-off Λ > 0: we consider the subspace of squared integrable functions made of the functions whose Fourier transform vanishes outside the ball B(0, Λ). We prove the existence of minimizers of the BDF energy under the charge constraint of one electron and no external field provided that α, Λ-1 and α log(Λ) are sufficiently small. The interpretation is the following: in this regime the electron creates a polarization in the Dirac vacuum which allows it to bind. We then study the non-relativistic limit of such a system in which the speed of light tends to infinity (or equivalently α tends to zero) with αlog(Λ) fixed: after rescaling and translation the electronic solution tends to a Choquard-Pekar ground state.

  13. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  14. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  15. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    PubMed

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  16. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  17. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  18. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  19. The variation of the fine-structure constant from disformal couplings

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  20. The variation of the fine-structure constant from disformal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with themore » current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.« less

  1. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    NASA Astrophysics Data System (ADS)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  2. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  3. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  4. Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Millard; Dagdigian, Paul J.

    Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less

  5. Synthesis, structural elucidation, solvatochromism and spectroscopic properties of some azo dyes derived from 6-chloro-4-hydroxyquinoline-2(1H)-one

    NASA Astrophysics Data System (ADS)

    Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.

    2016-03-01

    Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.

  6. Infrared spectroscopy of the ν1 + ν4 and 3ν4 bands of the nitrate radical

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Fujimori, Ryuji; Ishiwata, Takashi

    2018-05-01

    High-resolution Fourier transform infrared spectra of the ν1 + ν4 and 3ν4 bands of 14NO3 were observed in the 1414 and 1174 cm-1 regions, respectively, and the corresponding ones of 15NO3 in the 1407 and 1159 cm-1 regions, respectively, and analyzed as E‧-A2‧ bands. The rotational constants of the upper states of 14NO3 are determined to be 0.457584 and 0.46089 cm-1 for ν1 + ν4 and 3ν4, respectively, consistent with the vibrational assignment. Effective Coriolis coupling constants of the ground electronic state are partly explained by vibronic interaction from the B2E‧ state, and a large change (37% decrease) in the value of the ν1 + ν4 state compared with that of the ν4 state is attributed to a mixing with the ν3 + ν4 state (1492 cm-1) through vibrational anharmonicity.

  7. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim

    2017-11-01

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.

  8. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  9. Gap solitons in PT-symmetric optical lattices with higher-order diffraction.

    PubMed

    Ge, Lijuan; Shen, Ming; Ma, Chunlan; Zang, Taocheng; Dai, Lu

    2014-12-01

    The existence and stability of gap solitons are investigated in the semi-infinite gap of a parity-time (PT)-symmetric periodic potential (optical lattice) with a higher-order diffraction. The Bloch bands and band gaps of this PT-symmetric optical lattice depend crucially on the coupling constant of the fourth-order diffraction, whereas the phase transition point of this PT optical lattice remains unchangeable. The fourth-order diffraction plays a significant role in destabilizing the propagation of dipole solitons. Specifically, when the fourth-order diffraction coupling constant increases, the stable region of the dipole solitons shrinks as new regions of instability appear. However, fundamental solitons are found to be always linearly stable with arbitrary positive value of the coupling constant. We also investigate nonlinear evolution of the PT solitons under perturbation.

  10. Intraprotein Electron Transfer in Inducible Nitric Oxide Synthase Holoenzyme

    PubMed Central

    Feng, Changjian; Dupont, Andrea L.; Nahm, Nickolas J.; Spratt, Donald E.; Hazzard, James T.; Weinberg, J. Brice; Guillemette, J. Guy; Tollin, Gordon; Ghosh, Dipak K.

    2008-01-01

    Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated oxyFMN construct of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present [Feng et al. (2006) J. Am. Chem. Soc. 128, 3808-3811]. Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 s-1 and 35 ± 3 s-1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS (nNOS) holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in nNOS. PMID:18830722

  11. Understanding the role of A-site and B-site cations on piezoelectric instability in lead--free (1-x) BaTiO3 -- xA(Cu1/3Nb2/3)O3 (A = Sr, Ca, Ba) solid solutions

    NASA Astrophysics Data System (ADS)

    Maurya, Deepam; Zhou, Yuan; Priya, Shashank

    2013-03-01

    This study provides fundamental understanding of the enhanced piezoelectric instability in lead-free piezoelectric (1-x) BaTiO3-xA(Cu1/3Nb2/3) O3(A: Sr, Ba and Ca and x = 0.0-0.03) solid solutions. These compositions were found to exhibit large longitudinal piezoelectric constant (d33) of ~330 pC/N and electromechanical planar coupling constant (kp) ~ 46% at room temperature. The X-ray diffraction coupled with atomic pair distribution functions (PDF)s indicated increase in local polarization. Raman scattering and electron paramagnetic resonance (EPR) analysis revealed that substitutions on A and B-site both substantially perturbed the local octahedral dynamics and resulted in localized nano polar regions with lower symmetry. The presence of nano domains and local structural distortions smears the Curie peak resulting in diffuse order-disorder type phase transitions. The effect of these distortions on the variations in physical property was modeled and analyzed within the context of nanodomains and phase transitions. *spriya@vt.edu The financial support from National Science Foundation and Office of Basic Energy Science, Department of Energy (Microscopy analysis) is gratefully acknowledged. The authors would also like to acknowledge the support from KIMS (new piezoelectric)

  12. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.

    PubMed

    Lawrence, Katie N; Johnson, Merrell A; Dolai, Sukanta; Kumbhar, Amar; Sardar, Rajesh

    2015-07-21

    Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.

  13. Surface roughness scattering of electrons in bulk mosfets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less

  14. Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-10-01

    Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. Contribution of relativistic quantum chemistry to electron’s electric dipole moment for CP violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, M., E-mail: minoria@tmu.ac.jp; Gopakumar, G., E-mail: gopakumargeetha@gmail.com; Hada, M., E-mail: hada@tmu.ac.jp

    The search for the electric dipole moment of the electron (eEDM) is important because it is a probe of Charge Conjugation-Parity (CP) violation. It can also shed light on new physics beyond the standard model. It is not possible to measure the eEDM directly. However, the interaction energy involving the effective electric field (E{sub eff}) acting on an electron in a molecule and the eEDM can be measured. This quantity can be combined with E{sub eff}, which is calculated by relativistic molecular orbital theory to determine eEDM. Previous calculations of E{sub eff} were not sufficiently accurate in the treatment ofmore » relativistic or electron correlation effects. We therefore developed a new method to calculate E{sub eff} based on a four-component relativistic coupled-cluster theory. We demonstrated our method for YbF molecule, one of the promising candidates for the eEDM search. Using very large basis set and without freezing any core orbitals, we obtain a value of 23.1 GV/cm for E{sub eff} in YbF with an estimated error of less than 10%. The error is assessed by comparison of our calculations and experiments for two properties relevant for E{sub eff}, permanent dipole moment and hyperfine coupling constant. Our method paves the way to calculate properties of various kinds of molecules which can be described by a single-reference wave function.« less

  16. 1,2-Difluoroethane: the angular dependance on 1J(CF) coupling constants is independent of hyperconjugation.

    PubMed

    Freitas, Matheus P; Bühl, Michael; O'Hagan, David

    2012-02-28

    1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012

  17. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  18. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  19. Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.

    2005-08-15

    Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less

  20. Theoretical characterization of charge transport in chromia (α-Cr2O3)

    NASA Astrophysics Data System (ADS)

    Iordanova, N.; Dupuis, M.; Rosso, K. M.

    2005-08-01

    Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.

Top