Sample records for electronic devices

  1. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  2. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  3. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...

  4. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  5. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  6. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...

  7. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...

  8. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  9. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  10. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  11. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  12. Methods for synchronizing a countdown routine of a timer key and electronic device

    DOEpatents

    Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.

    2015-06-02

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  13. Graphene-Based Flexible and Stretchable Electronics.

    PubMed

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...

  15. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  16. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  17. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  18. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  19. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  20. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  1. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  2. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  3. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  4. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  5. Thermal electron-tunneling devices as coolers and amplifiers

    NASA Astrophysics Data System (ADS)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  6. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  7. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  8. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  9. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  10. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  11. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  12. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  13. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  14. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  15. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  16. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  17. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  18. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  19. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  20. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  1. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  2. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  3. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  4. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  5. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  6. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  7. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  8. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  9. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  10. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  11. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  12. Apparatus, system, and method for synchronizing a timer key

    DOEpatents

    Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A

    2014-04-22

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  13. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...

  14. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  15. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  16. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  17. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  18. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  19. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  20. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  1. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  2. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  3. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  4. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  5. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  6. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  7. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  8. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  9. Non-fullerene electron acceptors for organic photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  10. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  11. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  12. 78 FR 71643 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...

  13. System and method for interfacing large-area electronics with integrated circuit devices

    DOEpatents

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  14. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  15. Musculoskeletal impact of the use of various types of electronic devices on university students in Hong Kong: An evaluation by means of self-reported questionnaire.

    PubMed

    Woo, Eugenia H C; White, Peter; Lai, Christopher W K

    2016-12-01

    Despite the increasingly widespread popularity of electronic devices, there are limited comprehensive studies on the effects of usage and exposure to multiple electronic devices over extended periods of time. Therefore, this study explored the cumulative musculoskeletal implications of exposure to various electronic devices among university students. A self-reported questionnaire was administered in the university in Hong Kong and students provided information about the frequency and duration of electronic devices use, including computers, mobile phones and game consoles, and reported on any musculoskeletal pain or discomfort that may relate to electronic devices usage in the immediate 12 months prior to the survey date. A total of 503 university students (59% males and 41% females) aged 18-25 years completed the questionnaire. The results showed that 251 (49.9%) respondents reported upper limb musculoskeletal symptoms, particularly in the neck and shoulder regions. Among these, 155 (61.8%) indicated that their discomfort was related to electronic device usage. Statistically significant differences in exposure to electronic devices and musculoskeletal outcomes between genders were found (p < 0.05). The use of electronic devices and habitual postures were associated with musculoskeletal problems among university students in Hong Kong. This phenomenon highlights the urgent need for ergonomics education and recommendations to increase students' awareness of musculoskeletal wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  17. 78 FR 56245 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...

  18. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  19. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  20. A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles.

    PubMed

    Ismailov, Usein; Ismailova, Esma; Takamatsu, Seiichi

    2017-03-13

    Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.

  1. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  2. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices... States after importation of certain electronic imaging devices by reason of infringement of certain....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket...

  3. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  4. 49 CFR 220.311 - Railroad operating employees in deadhead status.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices... controlling locomotive may use an electronic device only if the employee is not using the device in such a way... controlling locomotive must have each electronic device turned off with any earpiece removed from the ear— (1...

  5. 77 FR 44671 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2904] Certain Wireless Consumer Electronics Devices and.... International Trade Commission has received a complaint entitled Certain Wireless Consumer Electronics Devices... importation, and the sale within the United States after importation of certain wireless consumer electronics...

  6. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov... mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  7. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  8. Extended write combining using a write continuation hint flag

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  9. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  10. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  11. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations

    NASA Astrophysics Data System (ADS)

    Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan

    2018-02-01

    Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.

  12. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  13. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  14. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  15. 49 CFR 220.315 - Operational tests and inspections; further restrictions on use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.315 Operational tests and inspections; further restrictions on use of electronic...

  16. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  17. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  18. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  19. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  20. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  1. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  2. Stuttering

    MedlinePlus

    ... to use over a long period of time. Electronic devices Some people who stutter use electronic devices to help control fluency. For example, one ... in unison with another person. In some people, electronic devices may help improve fluency in a relatively ...

  3. Encapsulation methods and dielectric layers for organic electrical devices

    DOEpatents

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  4. 75 FR 34484 - In the Matter of: Certain Portable Electronic Devices and Related Software; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... of certain portable electronic devices and related software by reason of infringement of certain... after importation of certain portable electronic devices or related software that infringe one or more...

  5. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  6. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  7. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  10. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-09

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.

  11. Modeling and Simulation for Particle Radiation Damage to Electronic and Opto-Electronic Devices

    DTIC Science & Technology

    2018-01-25

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0001 TR-2018-0001 MODELING & SIMULATION FOR PARTICLE RADIATION DAMAGE TO ELECTRONIC AND OPTO- ELECTRONIC DEVICES... Electronic and Opto- Electronic Devices 5a. CONTRACT NUMBER FA9453-14-1-0248 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Sanjay...nBp Diode Assuming the light is incident on the n-side of the photodiode, the drift-diffusion equation for the minority electron of the p-type

  12. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  13. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  14. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  15. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic conversion... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS...

  16. Cardiac implantable electronic device infection due to Mycobacterium species: a case report and review of the literature.

    PubMed

    Al-Ghamdi, Bandar; Widaa, Hassan El; Shahid, Maie Al; Aladmawi, Mohammed; Alotaibi, Jawaher; Sanei, Aly Al; Halim, Magid

    2016-08-24

    Infection of cardiac implantable electronic devices is a serious cardiovascular disease and it is associated with a high mortality. Mycobacterium species may rarely cause cardiac implantable electronic devices infection. We are reporting a case of miliary tuberculosis in an Arab patient with dilated cardiomyopathy and a cardiac resynchronization therapy-defibrillator device that was complicated with infection of his cardiac resynchronization therapy-defibrillator device. To our knowledge, this is the third case in the literature with such a presentation and all patients died during the course of treatment. This underscores the importance of early diagnosis and management. We also performed a literature review of reported cases of cardiac implantable electronic devices infection related to Mycobacterium species. Cardiac implantable electronic devices infection due to Mycobacterium species is an uncommon but a well-known entity. Early diagnosis and prompt management may result in a better outcome.

  17. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  18. The Jordy Electronic Magnification Device: Opinions, Observations, and Commentary

    ERIC Educational Resources Information Center

    Francis, Barry

    2005-01-01

    The Jordy electronic magnification device is one of a small number of electronic headborne devices designed to provide people with low vision the capability to perform near-range, intermediate-range, and distance viewing tasks. This report seeks to define the benefits of using the Jordy as a low vision device by people who are legally blind. The…

  19. Appendage mountable electronic devices conformable to surfaces

    DOEpatents

    Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu

    2017-01-24

    Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.

  20. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  1. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  2. Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2017-01-01

    Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 49 CFR 220.313 - Instruction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.313 Instruction. (a) Program... explanation of the following: (i) When a railroad operating employee must have personal electronic devices... supplies an electronic device to its railroad operating employees, when a railroad operating employee may...

  4. Novel hole transport materials for organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Shi, Jianmin; Forsythe, Eric; Morton, David

    2008-08-01

    Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.

  5. 75 FR 448 - In the Matter of: Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Systems, Including Software and Handheld Electronic Devices; Notice of Investigation AGENCY: U.S... software and handheld electronic devices, by reason of infringement of certain claims of U.S. Patent No 7... software and handheld electronic devices, that infringe one or more of claims 31-35, 38, 41, 51, 54, 56, 58...

  6. Electronics materials research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  7. A detachable electronic device for use with a long white cane to assist with mobility.

    PubMed

    O'Brien, Emily E; Mohtar, Aaron A; Diment, Laura E; Reynolds, Karen J

    2014-01-01

    Vision-impaired individuals often use a long white cane to assist them with gathering information about their surroundings. However, these aids are generally not used to detect obstacles above knee height. The purpose of this study is to determine whether a low-cost, custom-built electronic device clipped onto a traditional cane can provide adequate vibratory warning to the user of obstacles above knee height. Sixteen normally sighted blindfolded individuals participated in two mobility courses which they navigated using a normal white cane and a white cane with the electronic device attached. Of the 16 participants, 10 hit fewer obstacles, and 12 covered less ground with the cane when the electronic device was attached. Ten participants found navigating with the electronic device easier than just the white cane alone. However, the time taken on the mobility courses, the number of collisions with obstacles, and the area covered by participants using the electronic device were not significantly different (p > 0.05). A larger sample size is required to determine if the trends found have real significance. It is anticipated that additional information provided by this electronic device about the surroundings would allow users to move more confidently within their environment.

  8. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  9. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.

  10. Improved model for detection of homogeneous production batches of electronic components

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, L. A.; Orlov, V. I.; Stashkov, D. V.; Antamoshkin, A. N.; Masich, I. S.

    2017-10-01

    Supplying the electronic units of the complex technical systems with electronic devices of the proper quality is one of the most important problems for increasing the whole system reliability. Moreover, for reaching the highest reliability of an electronic unit, the electronic devices of the same type must have equal characteristics which assure their coherent operation. The highest homogeneity of the characteristics is reached if the electronic devices are manufactured as a single production batch. Moreover, each production batch must contain homogeneous raw materials. In this paper, we propose an improved model for detecting the homogeneous production batches of shipped lot of electronic components based on implementing the kurtosis criterion for the results of non-destructive testing performed for each lot of electronic devices used in the space industry.

  11. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  12. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...

  13. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...

  14. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  15. Sleep and use of electronic devices in adolescence: results from a large population-based study

    PubMed Central

    Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge

    2015-01-01

    Objectives Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. Design A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Setting Cross-sectional general community-based study. Participants 9846 adolescents from three age cohorts aged 16–19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Outcomes Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Results Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose–response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7–8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Conclusions Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. PMID:25643702

  16. What people know about electronic devices: A descriptive study

    NASA Astrophysics Data System (ADS)

    Kieras, D. E.

    1982-10-01

    Informal descriptive results on the nature of people's natural knowledge of electronic devices are presented. Expert and nonexpert subjects were given an electronic device to examine and describe orally. The devices ranged from familiar everyday devices, to those familiar only to the expert, to unusual devices unfamiliar even to an expert. College students were asked to describe everyday devices from memory. The results suggest that device knowledge consists of the major categories of what the device is for, how it is used, its structure in terms of subdevices, its physical layout, how it works, and its behavior. A preliminary theoretical framework for device knowledge is that it consists of a hierarchy of schemas, corresponding to a hierarchial decomposition of the device into subdevices, with each level containing the major categories of information.

  17. 49 CFR 220.309 - Permitted uses; exceptions to other restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices... an electronic device to refer to a railroad rule, special instruction, timetable, or other directive, if such use is authorized under a railroad operating rule or instruction. (b) An electronic device as...

  18. 78 FR 52211 - Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...

  19. 78 FR 16531 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Commission Determination Not To Review an Initial... certain electronic devices for capturing and transmitting images, and components thereof. The complaint...

  20. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    DTIC Science & Technology

    2015-12-17

    temperature . New device architecture that utilizes cold-electron transport for ultra-low energy consumption electronics has been designed in a configuration...the oxygen has also been found important for the SiC>2 sputter deposition. The sputter was carried out at room temperature . Our optimized process...have been pursued for two electronic devices, 1) room- temperature single-electron transistors, and 2) ultralow energy consumption transistors. For

  1. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  2. Recent progress on thin-film encapsulation technologies for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  3. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices

    PubMed Central

    Campbell, Michael G.; Dincă, Mircea

    2017-01-01

    In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308

  4. Sketched Oxide Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    2012-02-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  5. Comparison between a disposable and an electronic PCA device for labor epidural analgesia.

    PubMed

    Sumikura, Hiroyuki; van de Velde, Marc; Tateda, Takeshi

    2004-01-01

    The aims of the present study were (1) to investigate if a disposable patient-controlled analgesia (PCA) device can be used for labor analgesia and (2) to evaluate the device by midwives and parturients. Forty healthy parturients were divided into two groups and received combined spinal epidural analgesia for labor pain relief. Following intrathecal administration of 3 mg ropivacaine and 1.5 microg sufentanil, either a disposable PCA device (Coopdech Syrinjector; Daiken Medical, Osaka, Japan) or an electronic PCA device (IVAC PCAM PCA Syringe Pump; Alaris, Basingstoke, UK) was connected to the epidural catheter, and 0.15% ropivacaine with sufentanil 0.75 microg/ml was used for continuous infusion and PCA. For an electronic PCA device, continuous infusion rate, bolus dose, lockout time, and hourly limit were set at 4 ml/h, 3 ml, 15 min, and 16 ml, respectively. For a disposable PCA device, continuous infusion rate, bolus dose, and an hourly limit were set at 4 ml/h, 3 ml, and 16 ml, respectively, but lockout function was not available. No differences were observed between the groups concerning demographic data, obstetric data, and outcome of labor. Anesthetic requirements (disposable, 9.7 +/- 4.7 ml/h; electronic, 8.2 +/- 4.0 ml/h) and VAS score during the delivery (disposable, 26 +/- 25; electronic, 21 +/- 22) were similar between the groups. Midwives praised the disposable PCA device as well as the electronic one. The present results imply that the disposable PCA device can be an alternative to the electronic PCA device for labor analgesia.

  6. Second-hand smoke exposure generated by new electronic devices (IQOS® and e-cigs) and traditional cigarettes: submicron particle behaviour in human respiratory system.

    PubMed

    Protano, C; Manigrasso, M; Avino, P; Sernia, S; Vitali, M

    2016-01-01

    Passive exposure profiles to submicronic particles (SMPs, 5.6-560 nm) of traditional cigarettes and new electronic commercial devices (e-cig and IQOS®, a new heat-not-burn smoking device) were compared. During smoking, SMPs released by traditional cigarettes resulted four-times higher than those released by electronic and heat-not-burn devices and remained high for at least one hour, while SMPs values returned immediately similar to background for electronic and heat-not-burn devices. In all experiments, approximately half of SMPs resulted so small to reach the alveolar region.

  7. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  8. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  9. Flexible and stretchable electronics for wearable healthcare devices and minimally invasive surgical tools

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lee, Mincheol; Lee, Hyunjae

    2016-05-01

    Recent advances in soft electronics have attracted great attention, largely due to their potential applications in personalized, bio-integrated healthcare devices. The mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs have presented many challenges, such as the low signalto- noise ratio of biosensors because of the incomplete integration of rigid devices with the body, inflammation and excessive immune responses of implanted stiff devices originated from friction and their foreign nature to biotic systems, and the considerable discomfort and consequent stress experienced by users when wearing/implanting these devices. Ultra-flexible and stretchable electronic devices are being highlighted due to their low system modulus and the intrinsic system-level softness that are important to solve these issues. Here, we describe our unique strategies for the nanomaterial synthesis and fabrication, their seamless assembly and integration, and the design and development of corresponding wearable healthcare devices and minimally invasive surgical tools. These bioelectronic systems fully utilize recent breakthroughs in unconventional soft electronics based on nanomaterials to address unsolved issues in clinical medicine and to provide new opportunities in the personalized healthcare.

  10. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  11. The Effect of Electronic Devices Self-Efficacy, Electronic Devices Usage and Information Security Awareness on Identity-Theft Anxiety Level

    ERIC Educational Resources Information Center

    Sanga, Sushma

    2016-01-01

    Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…

  12. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...

  13. 77 FR 49458 - Certain Mobile Electronic Devices Incorporating Haptics; Amendment of the Complaint and Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...

  14. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  15. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  16. 78 FR 73563 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...

  17. 77 FR 1083 - Certain Portable Electronic Devices and Related Software; Determination Not To Review Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-797] Certain Portable Electronic Devices and Related Software; Determination Not To Review Initial Determination Granting Motion To Amend the... the United States after importation of certain portable electronic devices and related software. 76 FR...

  18. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players...

  19. Tissue-electronics interfaces: from implantable devices to engineered tissues

    NASA Astrophysics Data System (ADS)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  1. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    PubMed

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  2. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  3. Carbon nanotube chemistry and assembly for electronic devices

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe

    2009-05-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).

  4. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  5. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  6. Solution processed molecular floating gate for flexible flash memories

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-10-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.

  7. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  8. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    PubMed

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  9. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  10. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R [Newton, MA

    2011-02-22

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  11. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R.

    2013-04-09

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  12. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide) deposits a significant amount of energy in a small volume, the energy density may suffice to thermally induce structural and/or electronic changes that disable the CNT. Research may be warranted to investigate this effect in detail.

  13. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  14. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.

    2016-03-01

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  15. Sleep and use of electronic devices in adolescence: results from a large population-based study.

    PubMed

    Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge

    2015-02-02

    Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Cross-sectional general community-based study. 9846 adolescents from three age cohorts aged 16-19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose-response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7-8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  17. 78 FR 14835 - Investigations: Terminations, Modifications and Rulings: Certain Consumer Electronics and Display...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ..., Modifications and Rulings: Certain Consumer Electronics and Display Devices and Products Containing Same AGENCY... the sale within the United States after importation of certain consumer electronics devices and..., Washington; LG Electronics, Inc. of Seoul, South Korea; LG Electronics, Mobilecomm U.S.A., Inc. of San Diego...

  18. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    PubMed

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less

  1. The rise of plastic bioelectronics.

    PubMed

    Someya, Takao; Bao, Zhenan; Malliaras, George G

    2016-12-14

    Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

  2. The rise of plastic bioelectronics

    NASA Astrophysics Data System (ADS)

    Someya, Takao; Bao, Zhenan; Malliaras, George G.

    2016-12-01

    Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.

  3. Electrical and electronic devices and components: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.

  4. Activating Students' Interest and Participation in Lectures and Practical Courses Using Their Electronic Devices

    ERIC Educational Resources Information Center

    Wijtmans, Maikel; van Rens, Lisette; van Muijlwijk-Koezen, Jacqueline E.

    2014-01-01

    Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and practical courses using these devices: multiple choice…

  5. Characterization of Novel Materials with Very Low Secondary Electron Emission Yield for Use in High-Power Microwave Devices

    NASA Astrophysics Data System (ADS)

    Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan

    2004-11-01

    Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.

  6. Thermo-Electron Ballistic Coolers or Heaters

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  7. Effectiveness of mobile electronic devices in weight loss among overweight and obese populations: a systematic review and meta-analysis.

    PubMed

    Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen

    2014-01-01

    Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such mHealth interventions in a real clinical setting.

  8. An examination of safety reports involving electronic flight bags and portable electronic devices

    DOT National Transportation Integrated Search

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  9. Negative differential resistance in GaN tunneling hot electron transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth

    Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.

  10. Molecular electronics with single molecules in solid-state devices.

    PubMed

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  11. Fabrication techniques and applications of flexible graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren

    2016-04-01

    In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).

  12. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  13. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  14. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; hide

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  15. Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits

    DTIC Science & Technology

    1993-02-10

    new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low

  16. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  17. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    DOEpatents

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  18. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less

  19. 17 CFR 23.202 - Daily trading records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...

  20. 17 CFR 23.202 - Daily trading records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...

  1. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  2. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    PubMed

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  3. Materials and processing approaches for foundry-compatible transient electronics.

    PubMed

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A

    2017-07-11

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  4. Materials and processing approaches for foundry-compatible transient electronics

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  5. Comprehensive photonics-electronics convergent simulation and its application to high-speed electronic circuit integration on a Si/Ge photonic chip

    NASA Astrophysics Data System (ADS)

    Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji

    2015-01-01

    We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.

  6. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  7. Adhesion and the Lamination/Failure of Stretchable Organic and Composite Organic/Inorganic Electronic Structures

    NASA Astrophysics Data System (ADS)

    Yu, Deying

    Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  8. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  9. Recent Advancements in Functionalized Paper-Based Electronics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Liu, Qian; Lu, Xiaonan; Xu, Jie

    2016-08-17

    Building electronic devices on ubiquitous paper substrates has recently drawn extensive attention due to its light weight, low cost, environmental friendliness, and ease of fabrication. Recently, a myriad of advancements have been made to improve the performance of paper electronics for various applications, such as basic electronic components, energy storage devices, generators, antennas, and electronic circuits. This review aims to summarize this progress and discuss different perspectives of paper electronics as well as the remaining challenges yet to be overcome in this field. Other aspects included in this review are the fundamental characteristics of paper, modification of paper with functional materials, and various methods for device fabrication.

  10. Theoretical and material studies of thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.

    1989-01-01

    Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.

  11. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  12. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  13. Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang

    2017-05-01

    Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.

  14. A Resource Manual for the Development and Evaluation of Special Programs for Exceptional Students. Volume III-F: Electronic Communication Devices for Visually Impaired Students.

    ERIC Educational Resources Information Center

    Broward County Schools, Fort Lauderdale, FL.

    Part of a series on special educaton procedures in Florida, the manual presents information for teachers of visually impaired students regarding the use of electronic communication devices. Each of four types of devices is profiled: closed circuit television (CCTV), compressed speech devices, typewriter attachments for the Optacon (a device that…

  15. Recent advances in self-assembled monolayers based biomolecular electronic devices.

    PubMed

    Arya, Sunil K; Solanki, Pratima R; Datta, Monika; Malhotra, Bansi D

    2009-05-15

    Self-assembled monolayers (SAMs) have aroused much interest due to their potential applications in biosensors, biomolecular electronics and nanotechnology. This has been largely attributed to their inherent ordered arrangement and controllable properties. SAMs can be formed by chemisorption of organic molecules containing groups like thiols, disulphides, amines, acids or silanes, on desired surfaces and can be used to fabricate biomolecular electronic devices. We focus on recent applications of organosulphur compounds (thiols) based SAMs to biomolecular electronic devices in the last about 3 years.

  16. Rational design of metal-organic electronic devices: A computational perspective

    NASA Astrophysics Data System (ADS)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.

  17. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  18. Compendium of Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.

    2007-01-01

    Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  19. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  20. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-796] Certain Electronic Digital Media... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd... Samsung. FOR FURTHER INFORMATION CONTACT: Cathy Chen, Office of the General Counsel, U.S. International...

  1. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  2. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  3. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  4. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  5. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  6. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Lettow, John S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  8. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  9. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Chen, Chuan-Hua (Inventor); Lettow, John S. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Crain, John M. (Inventor); Korkut, Sibel (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  10. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Crain, John M. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Lettow, John S. (Inventor); Korkut, Sibel A. (Inventor); Chen, Chuan-Hua (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  11. Printed electronics

    NASA Technical Reports Server (NTRS)

    Lettow, John S. (Inventor); Prud'Homme, Robert K. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  12. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    PubMed Central

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  13. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  14. Gamma-ray blind beta particle probe

    DOEpatents

    Weisenberger, Andrew G.

    2001-01-01

    An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

  15. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    NASA Astrophysics Data System (ADS)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  16. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  17. Unconventional transport in ultraclean graphene constriction devices

    NASA Astrophysics Data System (ADS)

    Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.

  18. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    NASA Astrophysics Data System (ADS)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  19. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    PubMed

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    PubMed

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  1. Collaborative Research: Fundamental studies of plasma control using surface embedded electronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Laxminarayan L.; PanneerChelvam, PremKumar; Levko, Dimtry

    2016-02-26

    The proposed study will investigate the effect of active electron injection of from electrode surfaces To the best of our knowledge, no such a study has ever been attempted even though it could lead to the formation of whole new classes of plasma based devices and systems. We are motivated by recent articles and simple theory which gives strong reason to believe that embedded electronic devices can be used to exert control over the SEE coefficient of semiconductor surfaces (and maybe other surface types as well). Furthermore, the research will explore how such sub-surface electronic devices can best be usedmore » to exert control over an associated plasma.« less

  2. Electronic cigarette devices and oro-facial trauma (Literature review)

    NASA Astrophysics Data System (ADS)

    Ghazali, A. F.; Ismail, A. F.; Daud, A.

    2017-08-01

    Detrimental effects of cigarette smoking have been well described and recognized globally. With recent advancement of technology, electronic cigarette has been introduced and gained its popularity and became a global trend, especially among young adults. However, the safety of the electronic devices remains debatable. This paper aimed to compile and review the reported cases of oro-facial trauma related to the usage of electronic cigarette devices. A literature search was conducted using PubMed/Medline in December 2016. The search terms used were a combination of “oral trauma”, “dental trauma”, “oral injury” and “electronic cigarette”. The search included all abstract published from the inception of the database until December 2016. Abstract that was written in English, case report, letter to editors, clinical and human studies were included for analysis. All selected abstract were searched for full articles. A total of 8 articles were included for review. All of the articles were published in 2016 with mostly case reports. The sample size of the studies ranged from 1 to 15 patients. Seven of the included articles are from United States of America and one from Mexico. Our review concluded that the use of electronic cigarette devices posed not only a safety concern but also that the devices were mostly unregulated. There should be a recognized authority body to regulate the safety and standard of the electronic devices.

  3. The epidemic of distraction.

    PubMed

    Weksler, Marc E; Weksler, Babette B

    2012-01-01

    Multitasking is a rapidly growing phenomenon affecting all segments of the population but is rarely as successful as its proponents believe. The use of mobile electronic devices contributes importantly to multitasking and cognitive overload. Although personal electronic devices provide many benefits, their adverse effects are frequently overlooked. Personal observation and a review of the scientific literature supports the view that overuse or misuse of personal electronic devices promotes cognitive overload, impairs multitasking and lowers performance at all ages but particularly in the elderly. This phenomenon appears to be rapidly increasing and threatens to become a tsunami as spreading electronic waves cause an 'epidemic of distraction'. Mobile electronic devices often bring benefits to their users in terms of rapid access to information. However, there is a dark side to the increasing addiction to these devices that challenges the health and well-being of the entire population, targeting, in particular, the aged and infirm. New approaches to information gathering can foster creativity if cognitive overload is avoided. Copyright © 2012 S. Karger AG, Basel.

  4. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  5. 77 FR 21584 - Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-836] Certain Consumer Electronics and Display... electronics and display devices and products containing same by reason of infringement of certain claims of U... importation, or the sale within the United States after importation of certain consumer electronics and...

  6. Electron guns and collectors developed at INP for electron cooling devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapa, A.N.; Shemyakin, A.V.

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  7. Remote detection of electronic devices

    DOEpatents

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  8. Materials and processing approaches for foundry-compatible transient electronics

    PubMed Central

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-01-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries. PMID:28652373

  9. Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics.

    PubMed

    Vohra, Akhil; Carmichael, R Stephen; Carmichael, Tricia Breen

    2016-10-11

    Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices.

  10. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  11. The Effects of the Removal of Electronic Devices for 48 Hours on Sleep in Elite Judo Athletes.

    PubMed

    Dunican, Ian C; Martin, David T; Halson, Shona L; Reale, Reid J; Dawson, Brian T; Caldwell, John A; Jones, Maddison J; Eastwood, Peter R

    2017-10-01

    This study examined the effects of evening use of electronic devices (i.e., smartphones, etc.) on sleep quality and next-day athletic and cognitive performance in elite judo athletes. Over 6 consecutive days and nights, 23 elite Australian judo athletes were monitored while attending a camp at the Australian Institute of Sport (AIS). In 14 athletes, all electronic devices were removed on days 3 and 4 (i.e., for 48 hours: the "device-restricted group"), whereas 9 were permitted to use their devices throughout the camp (the "control group"). All athletes wore an activity monitor (Readiband) continuously to provide measures of sleep quantity and quality. Other self-reported (diary) measures included time in bed, electronic device use, and rate of perceived exertion during training periods. Cognitive performance (Cogstate) and physical performance (single leg triple hop test) were also measured. When considering night 2 as a "baseline" for each group, removal of electronic devices on nights 3 and 4 (device-restricted group) resulted in no significant differences in any sleep-related measure between the groups. When comparing actigraphy-based measures of sleep to subjective measures, all athletes significantly overestimated sleep duration by 58 ± 85 minutes (p = 0.001) per night and underestimated time of sleep onset by 37 ± 72 minutes (p = 0.001) per night. No differences in physical or cognitive function were observed between the groups. This study has shown that the removal of electronic devices for a period of two nights (48 hours) during a judo camp does not affect sleep quality or quantity or influence athletic or cognitive performance.

  12. Collaborative designing and job satisfaction of airplane manufacturing engineers: A case study

    NASA Astrophysics Data System (ADS)

    Johnson, Michael David, Sr.

    The group III-nitride system of materials has had considerable commercial success in recent years in the solid state lighting (SSL) and power electronics markets. The need for high efficient general lighting applications has driven research into InGaN based blue light emitting diodes (LEDs), and demand for more efficient power electronics for telecommunications has driven research into AlGaN based high electron mobility transistors (HEMTs). However, the group III-nitrides material properties make them attractive for several other applications that have not received as much attention. This work focuses on developing group III-nitride based devices for novel applications. GaN is a robust, chemically inert, piezoelectric material, making it an ideal candidate for surface acoustic wave (SAW) devices designed for high temperature and/or harsh environment sensors. In this work, SAW devices based on GaN are developed for use in high temperature gas or chemical sensor applications. To increase device sensitivity, while maintaining a simple one-step photolithography fabrication process, devices were designed to operate at high harmonic frequencies. This allows for GHz regime operation without sub-micron fabrication. One potential market for this technology is continuous emissions monitoring of combustion gas vehicles. In addition to SAW devices, high electron mobility transistors (HEMTs) were developed. The epitaxial structure was characterized and the 2-D electron gas concentrations were simulated and compared to experimental results. Device fabrication processes were developed and are outlined. Fabricated devices were electrically measured and device performance is discussed.

  13. A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)

    DTIC Science & Technology

    2007-08-24

    Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and

  14. Samsung Licenses ORNL Transparent Superhydrophobic Glass Coating Technology for Electronic Devices

    ScienceCinema

    Aytug, Tolga

    2018-06-12

    Samsung Electronics has exclusively licensed optically clear superhydrophobic film technology from the Department of Energy’s Oak Ridge National Laboratory to improve the performance of glass displays on smartphones, tablets and other electronic devices.

  15. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  16. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  17. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    PubMed

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  19. 9 CFR 86.4 - Official identification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the ear); (iii) Malfunction of the electronic component of a radio frequency identification (RFID) device; or (iv) Incompatibility or inoperability of the electronic component of an RFID device with the management system or unacceptable functionality of the management system due to use of an RFID device. (2...

  20. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    DOEpatents

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  1. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.

    2011-07-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.

  2. GRC-2011-C-03754

    NASA Image and Video Library

    2007-09-26

    Molecular Electronics; Polymeric Films; Two-Terminal and Three-Terminal Devices Intended for the Development and/or Demonstration of Molecular Electronics Devices such as Field Effect Transistors, FETs

  3. Materials and applications of bioresorbable electronics

    NASA Astrophysics Data System (ADS)

    Huang, Xian

    2018-01-01

    Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework. Project supported by the National Natural Science Foundation of China (No. 61604108) and the Natural Science Foundation of Tianjin (No. 16JCYBJC40600).

  4. Calculation of the figure of merit for carbon nanotubes based devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2004-03-01

    The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.

  5. Transition metal oxides for organic electronics: energetics, device physics and applications.

    PubMed

    Meyer, Jens; Hamwi, Sami; Kröger, Michael; Kowalsky, Wolfgang; Riedl, Thomas; Kahn, Antoine

    2012-10-23

    During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  7. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.; Kuball, Martin

    2015-12-01

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  8. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  9. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  10. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  11. Attitudes of truck drivers and carriers on the use of electronic logging devices (ELDs) and harassment : [research brief

    DOT National Transportation Integrated Search

    2014-11-01

    Truck drivers and carrier personnel were interviewed on the use of electronic logging devices (ELDs) for keeping track of driving hours and whether these devices were used to harass drivers. This research examined the following issues: : Whether ...

  12. Colleges Fight Fire With Electronics.

    ERIC Educational Resources Information Center

    College & University Business, 1968

    1968-01-01

    Description of various electronic fire detection and alarm systems is presented. Explanation of detective systems includes--(1) fixed-temperature and rate-of-rise heat sensitive devices, (2) smoke detective devices, (3) ionization systems, and (4) infrared and ultraviolet radiation devices. Each system type is evaluated in terms of operation,…

  13. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  14. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    NASA Astrophysics Data System (ADS)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  15. Optical Potential Field Mapping System

    NASA Technical Reports Server (NTRS)

    Reid, Max B. (Inventor)

    1996-01-01

    The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.

  16. Transcap: A new integrated hybrid supercapacitor and electrolyte-gated transistor device (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Santato, Clara

    2015-10-01

    The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.

  17. Self-similar and fractal design for stretchable electronics

    DOEpatents

    Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui

    2017-04-04

    The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.

  18. Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics

    NASA Astrophysics Data System (ADS)

    Cumby, Brad Lee

    Present day electronics are now taking on small form factors, unexpected uses, adaptability, and other features that only a decade ago were unimaginable even for most engineers. These electronic devices, such as tablets, smart phones, wearable sensors, and others, have further had a profound impact on how society interacts, works, maintains health, etc. To optimize electronics a growing trend has been to both minimize the physical space taken up by the individual electronic components as well as to maximize the number of functionalities in a single electronic device, forming a compact and efficient package. To accomplish this challenge in one step, many groups have used a design that has reconfigurable electromagnetic properties, maximizing the functionality density of the device. This would allow the replacement of multiple individual components into an integrated system that would achieve a similar result as the separate individual devices while taking up less space. For example, could a device have a reconfigurable antenna, allowing it optimal communication in various settings and across multiple communication bands, thus increasing functionality, range, and even reducing total device size. Thus far a majority of such reconfigurable devices involve connecting/disconnecting various physically static layouts to achieve a summation of individual components that give rise to multiple effects. However, this is not an ideal situation due to the fact that the individual components whether connected or not are taking up real-estate as well as electrical interference with adjacent connected components. This dissertation focuses on the reconfigurability of the metallic component of the electronic device, specifically microwave devices. This component used throughout this dissertation is that of an eutectic liquid metal alloy. The liquid metal allows the utilization of both the inherent compact form (spherical shape) of a liquid in the lowest energy state and the fact that it is resilient and shapeable to allow for reconfigurability. In this dissertation, first background information is given on the existing technology for reconfigurable microwave devices and the basic principles that these mechanisms are based upon. Then a new reconfigurable method is introduced that utilizes Laplace pressure. Materials that are associated with using liquid metals are discussed and an overall systematic view is given to provide a set of proof of concepts that are more applied and understandable by electronic designers and engineers. Finally a novel approach to making essential measurements of liquid metal microwave devices is devised and discussed. This dissertation encompasses a complete device design from materials used for fabrication, fabrication methods and measurement processes to provide a knowledge base for designing liquid metal microwave devices.

  19. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  20. Effects of electrode modification using calcium on the performance of alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.

    2013-06-01

    In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.

  1. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic position...

  2. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic position...

  3. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic position...

  4. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic position...

  5. 33 CFR 164.41 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electronic position fixing devices. 164.41 Section 164.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.41 Electronic position...

  6. Do surveys with paper and electronic devices differ in quality and cost? Experience from the Rufiji Health and demographic surveillance system in Tanzania.

    PubMed

    Mukasa, Oscar; Mushi, Hildegalda P; Maire, Nicolas; Ross, Amanda; de Savigny, Don

    2017-01-01

    Data entry at the point of collection using mobile electronic devices may make data-handling processes more efficient and cost-effective, but there is little literature to document and quantify gains, especially for longitudinal surveillance systems. To examine the potential of mobile electronic devices compared with paper-based tools in health data collection. Using data from 961 households from the Rufiji Household and Demographic Survey in Tanzania, the quality and costs of data collected on paper forms and electronic devices were compared. We also documented, using qualitative approaches, field workers, whom we called 'enumerators', and households' members on the use of both methods. Existing administrative records were combined with logistics expenditure measured directly from comparison households to approximate annual costs per 1,000 households surveyed. Errors were detected in 17% (166) of households for the paper records and 2% (15) for the electronic records (p < 0.001). There were differences in the types of errors (p = 0.03). Of the errors occurring, a higher proportion were due to accuracy in paper surveys (79%, 95% CI: 72%, 86%) compared with electronic surveys (58%, 95% CI: 29%, 87%). Errors in electronic surveys were more likely to be related to completeness (32%, 95% CI 12%, 56%) than in paper surveys (11%, 95% CI: 7%, 17%).The median duration of the interviews ('enumeration'), per household was 9.4 minutes (90% central range 6.4, 12.2) for paper and 8.3 (6.1, 12.0) for electronic surveys (p = 0.001). Surveys using electronic tools, compared with paper-based tools, were less costly by 28% for recurrent and 19% for total costs. Although there were technical problems with electronic devices, there was good acceptance of both methods by enumerators and members of the community. Our findings support the use of mobile electronic devices for large-scale longitudinal surveys in resource-limited settings.

  7. The Pattern of Electronic Game Use and Related Bodily Discomfort in Hong Kong Primary School Children

    ERIC Educational Resources Information Center

    Lui, Donald P. Y.; Szeto, Grace P. Y.; Jones, Alice Y. M.

    2011-01-01

    The present study examined the usage pattern of electronic game devices among primary school children in Hong Kong. Commonly used types of games devices were grouped into three main categories: large-screen/TV-based games, small handheld game devices and active game devices. A survey was conducted among 476 students in a local primary school, with…

  8. The damage equivalence of electrons, protons, and gamma rays in MOS devices

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.; Van Gunten, O.; August, L. S.; Jordan, T. M.

    1982-01-01

    The results of laboratory tests to determine the radiation damage effects induced on MOS devices from Co-60, electron, and proton radiation are reported. The tests are performed to establish the relationship between the Co-60 gamma rays and the level of damage to the MOS devices in regards to different damages which can be expected with the electron and particle bombardments experienced in space applications. CMOS devices were exposed to the Co-60 gamma rays, 1 MeV electrons, and 1 MeV protons while operating at 3, 10, and 15 V. The test data indicated that the Co-60 source was reliable for an initial evaluation of the electron damages up to 2 MeV charge. A correction factor was devised for transferring the Co-60 measurements to proton damages, independent of bias and transistor types, for any orbit or environment.

  9. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  10. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  11. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Yang, Jiping (Inventor); Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  12. Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.

  13. Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.

  14. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... Images, and Components Thereof; Receipt of Complaint; Solicitation of Comments Relating to the Public... Devices for Capturing and Transmitting Images, and Components Thereof, DN 2869; the Commission is... importation of certain electronic devices for capturing and transmitting images, and components thereof. The...

  15. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes, semiconductors and substrates compatible with low-temperature, flexible, and oxygenated and aromatic solvent-free fabrication. Materials and processes must be capable of future high volume production in order to enable low costs. In this thesis we explore several techniques to improve organic semiconductor device performance and enable new fabrication processes. In Chapter 2, I describe the integration of sub-optical-wavelength nanostructured electrodes that improve fill factor and power conversion efficiency in organic photovoltaic devices. Photovoltaic fill factor performance is one of the primary challenges facing organic photovoltaics because most organic semiconductors have poor charge mobility. Our electrical and optical measurements and simulations indicate that nanostructured electrodes improve charge extraction in organic photovoltaics. In Chapter 3, I describe a general method for maximizing the efficiency of organic photovoltaic devices by simultaneously optimizing light absorption and charge carrier collection. We analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of organic photovoltaic devices. This technique may be used to improve organic photovoltaic materials with low absorption, or short exciton diffusion and carrier-recombination lengths, opening up the device design space. In Chapter 4, I describe a process for high-quality graphene transfer onto chemically sensitive, weakly interacting organic semiconductor thin-films. Graphene is a promising flexible and highly transparent electrode for organic electronics; however, transferring graphene films onto organic semiconductor devices was previously impossible. We demonstrate a new transfer technique based on an elastomeric stamp coated with an fluorinated polymer release layer. We fabricate three classes of organic semiconductor devices: field effect transistors without high temperature annealing, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices.

  16. Testing methods and techniques: Testing electrical and electronic devices: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The methods, techniques, and devices used in testing various electrical and electronic apparatus are presented. The items described range from semiconductor package leak detectors to automatic circuit analyzer and antenna simulators for system checkout. In many cases the approaches can result in considerable cost savings and improved quality control. The testing of various electronic components, assemblies, and systems; the testing of various electrical devices; and the testing of cables and connectors are explained.

  17. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  18. Solid state photosensitive devices which employ isolated photosynthetic complexes

    DOEpatents

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  19. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  20. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  1. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  2. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  3. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  4. Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |

    Science.gov Websites

    , WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving

  5. 75 FR 36678 - In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...

  6. Electromagnetic interference from electronic devices used in the management of type 1 diabetes can impair the performance of an avalanche transceiver in search mode.

    PubMed

    Miller, Steven C M

    2015-06-01

    Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  8. Development and applications of transparent conductive nanocellulose paper

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  9. Teen Smoking

    MedlinePlus

    ... compare the cost of smoking with that of electronic devices, clothes or other teen essentials. Give your ... risks. Don't let your teen be fooled. Electronic cigarettes are battery-operated devices designed to look ...

  10. Cochlear Implants

    MedlinePlus

    ... newsroom@entnet.org . A cochlear implant is an electronic device that restores partial hearing to individuals with ... An internal component that consists of a small electronic device that is surgically implanted under the skin ...

  11. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Facchetti, Antonio (Inventor); Suh, legal representative, Nae-Jeong (Inventor); Marks, Tobin J. (Inventor); Choi, Hyuk-Jin (Inventor); Wang, Zhiming (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  12. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  13. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  14. Electronic neuron within a ganglion of a leech (Hirudo medicinalis).

    PubMed

    Aliaga, J; Busca, N; Minces, V; Mindlin, G B; Pando, B; Salles, A; Sczcupak, L

    2003-06-01

    We report the construction of an electronic device that models and replaces a neuron in a midbody ganglion of the leech Hirudo medicinalis. In order to test the behavior of our device, we used a well-characterized synaptic interaction between the mechanosensory, sensitive to pressure, (P) cell and the anteropagoda (because of the action potential shape) (AP) neuron. We alternatively stimulated a P neuron and our device connected to the AP neuron, and studied the response of the latter. The number and timing of the AP spikes were the same when the electronic parameters were properly adjusted. Moreover, after changes in the depolarization of the AP cell, the responses under the stimulation of both the biological neuron and the electronic device vary in a similar manner.

  15. Common Principles of Molecular Electronics and Nanoscale Electrochemistry.

    PubMed

    Bueno, Paulo Roberto

    2018-05-24

    The merging of nanoscale electronics and electrochemistry can potentially modernize the way electronic devices are currently engineered or constructed. It is well known that the greatest challenges will involve not only miniaturizing and improving the performance of mobile devices, but also manufacturing reliable electrical vehicles, and engineering more efficient solar panels and energy storage systems. These are just a few examples of how technological innovation is dependent on both electrochemical and electronic elements. This paper offers a conceptual discussion of this central topic, with particular focus on the impact that uniting physical and chemical concepts at a nanoscale could have on the future development of electroanalytical devices. The specific example to which this article refers pertains to molecular diagnostics, i.e., devices that employ physical and electrochemical concepts to diagnose diseases.

  16. Electronics for Extreme Environments

    NASA Astrophysics Data System (ADS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.

  17. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  18. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  19. Simulation of electron transport in quantum well devices

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Gullapalli, K. K.; Reddy, V. R.; Neikirk, D. P.

    1992-01-01

    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior.

  20. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  1. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.

  2. Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal

    ERIC Educational Resources Information Center

    Poggiali, Jennifer

    2016-01-01

    This essay proposes that librarians practice ethical consumption when purchasing electronic devices. Though librarians have long been engaged with environmentalism and social justice, few have suggested that such issues as e-waste and sweatshop labor should impact our decisions to acquire e-readers, tablets, and other electronics. This article…

  3. 78 FR 4418 - Electronic Submission Process for Requesting Export Certificates From the Center for Devices and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... (CDRH). The electronic process will help fulfill both the legislative and application time processing... Devices and Radiological Health (CDRH), Division of Small Manufacturers, International and Consumer... regulated by CDRH as a voluntary alternative to paper submissions. With electronic submissions, CDRH can...

  4. Privacy and E-Books

    ERIC Educational Resources Information Center

    Chmara, Theresa

    2012-01-01

    The use of electronic reading devices has proliferated in the last few years. These reading devices appear to be particularly popular with young readers. A generation of students that has grown up with computers, cell phones, iPods, and other high-tech devices is more likely to embrace electronic book technology for both their educational and…

  5. Spectroscopic Studies of the Electronic Structure of Metal-Semiconductor and Vacuum-Semiconductor Interfaces.

    DTIC Science & Technology

    1982-12-31

    interfaces which are of importance in such semi- conductor devices as MOSFETS, CCD devices, photovoltaic devices, DD I jAN 73 1473 EDITION OF INOV 66 if...interfaces is interesting for the study of electrolytic cells . Our photoemission study reveals for the first time how the electronic structure of water

  6. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  7. 76 FR 23923 - Hazardous Materials: Restricting the Use of Cellular Phones by Drivers of Commercial Motor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... associated with the use of cellular (mobile) phones and electronic devices while operating a commercial motor... mobile communication device that falls under or uses any commercial mobile radio service, as defined in... restricting the use of mobile telephones and other distracting electronic devices by railroad operating...

  8. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  9. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  10. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    PubMed

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  11. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  12. Deformable devices with integrated functional nanomaterials for wearable electronics.

    PubMed

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-01-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  13. Deformable devices with integrated functional nanomaterials for wearable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  14. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    PubMed Central

    Rajan, Krishna; Garofalo, Erik

    2018-01-01

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC. PMID:29382050

  15. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650

  16. Molecular and nanoscale materials and devices in electronics.

    PubMed

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  17. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarillo-Herrero, Pablo

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulkmore » carriers in most TI compounds as well as degradation during device fabrication.« less

  18. Production of a large, quiescent, magnetized plasma

    NASA Technical Reports Server (NTRS)

    Landt, D. L.; Ajmera, R. C.

    1976-01-01

    An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.

  19. A DATA ACQUISITION SYSTEM FOR THE STUDY OF TRANSIENT RADIATION EFFECTS ON ELECTRONIC DEVICES. Paper 5 of FOURTH RADIATION EFFECTS SYMPOSIUM, SEPTEMBER 15-16, 1959, CINCINNATI, OHIO. GENERAL SESSION PAPERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochrane, D.O.; Graham, F.E.; Sauer, H.S.

    1961-10-31

    ning both the transient and permanent effects that an environment of the type created by a nuclear detonation or a pulsed reactor exerts on electronic devices, is described. The design of suitable test heads for containing the electronic devices is discussed. The design of a blockhouse for use near Ground Sero when evaluating components in a weapons environment is also discussed. (C.J.G.)

  20. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery.

    PubMed

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias.

  1. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery

    PubMed Central

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias. PMID:27269668

  2. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  3. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  4. The use of electronic devices for communication with colleagues and other healthcare professionals - nursing professionals' perspectives.

    PubMed

    Koivunen, Marita; Niemi, Anne; Hupli, Maija

    2015-03-01

    The aim of the study is to describe nursing professionals' experiences of the use of electronic devices for communication with colleagues and other healthcare professionals. Information and communication technology applications in health care are rapidly expanding, thanks to the fast-growing penetration of the Internet and mobile technology. Communication between professionals in health care is essential for patient safety and quality of care. Implementing new methods for communication among healthcare professionals is important. A cross-sectional survey was used in the study. The data were collected in spring 2012 using an electronic questionnaire with structured and open-ended questions. The target group comprised the nursing professionals (N = 567, n = 123) in one healthcare district who worked in outpatient clinics in publically funded health care in Finland. Nursing professionals use different electronic devices for communication with each other. The most often used method was email, while the least used methods were question-answer programmes and synchronous communication channels on the Internet. Communication using electronic devices was used for practical nursing, improving personnel competences, organizing daily operations and administrative tasks. Electronic devices may speed up the management of patient data, improve staff cooperation and competence and make more effective use of working time. The obstacles were concern about information security, lack of technical skills, unworkable technology and decreasing social interaction. According to our findings, despite the obstacles related to use of information technology, the use of electronic devices to support communication among healthcare professionals appears to be useful. © 2014 John Wiley & Sons Ltd.

  5. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  6. Silicon Carbide Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2006-01-01

    Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.

  7. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2013-10-08

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  8. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.

    PubMed

    Dey, D; Goswami, T

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  9. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  10. Anomalous single-electron transfer in common-gate quadruple-dot single-electron devices with asymmetric junction capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Ito, Masato

    2018-06-01

    In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.

  11. Stretchable polymer-based electronic device

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Davidson, James Courtney [Livermore, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K [Tracy, CA; Benett, William J [Livermore, CA; Tovar, Armando R [San Antonio, TX

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  12. GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing

    NASA Astrophysics Data System (ADS)

    Maradan, D.; Casparis, L.; Liu, T.-M.; Biesinger, D. E. F.; Scheller, C. P.; Zumbühl, D. M.; Zimmerman, J. D.; Gossard, A. C.

    2014-06-01

    We present measurements of the electron temperature using gate-defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.

  13. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  14. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    PubMed

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  16. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  17. Emission analysis of large number of various passenger electronic devices in aircraft

    NASA Astrophysics Data System (ADS)

    Schüür, Jens; Oppermann, Lukas; Enders, Achim; Nunes, Rafael R.; Oertel, Carl-Henrik

    2016-09-01

    The ever increasing use of PEDs (passenger or portable electronic devices) has put pressure on the aircraft industry as well as operators and administrations to reevaluate established restrictions in PED-use on airplanes in the last years. Any electronic device could cause electromagnetic interference to the electronics of the airplane, especially interference at receiving antennas of sensitive wireless navigation and communication (NAV/COM) systems. This paper presents a measurement campaign in an Airbus A320. 69 test passengers were asked to actively use a combination of about 150 electronic devices including many attached cables, preferentially with a high data load on their buses, to provoke maximal emissions. These emissions were analysed within the cabin as well as at the inputs of aircraft receiving antennas outside of the fuselage. The emissions of the electronic devices as well as the background noise are time-variant, so just comparing only one reference and one transmission measurement is not sufficient. Repeated measurements of both cases lead to a more reliable first analysis. Additional measurements of the absolute received power at the antennas of the airplane allow a good estimation of the real interference potential to aircraft NAV/COM systems. Although there were many measured emissions within the cabin, there were no disturbance signals detectable at the aircraft antennas.

  18. Frontiers of More than Moore in Bioelectronics and the Required Metrology Needs

    NASA Astrophysics Data System (ADS)

    Guiseppi-Elie, Anthony; Kotanen, Christian; Wilson, A. Nolan

    2011-11-01

    Silicon's intersection with biology is a premise inherent in Moore's prediction. Distinct from biologically inspired molecular logic and storage devices (more Moore) are the integration of solid state electronic devices with the soft condensed state of the body (more than Moore). Developments in biomolecular recognition events per sq. cm parallel those of Moore's Law. However, challenges continue in the area of "More than Moore". Two grand challenge problems must be addressed—the biocompatibility of synthetic materials with the myriad of tissue types within the human body and the interfacing of solid state micro- and nano-electronic devices with the electronics of biological systems. Electroconductive hydrogels have been developed as soft, condensed, biomimetic but otherwise inherently electronically conductive materials to address the challenge of interfacing solid state devices with the electronics of the body, which is predominantly ionic. Nano-templated interfaces via the oriented immobilization of single walled carbon nanotubes (SWCNTs) onto metallic electrodes have engendered reagentless, direct electron transfer between biological redox enzymes and solid state electrodes. In addressing these challenges, metrology needs and opportunities are found in such widely diverse areas as single molecule counting and addressing, sustainable power requirements such as the development of implantable biofuel cells for the deployment of implantable biochips, and new manufacturing paradigms to address plura-biology needs on solid state devices.

  19. Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.

    PubMed

    Batchelor, John C; Yeates, Stephen G; Casson, Alexander J

    2016-08-01

    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.

  20. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    PubMed Central

    Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.

    2015-01-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705

  1. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    PubMed

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  2. 3D Printed Stretchable Tactile Sensors.

    PubMed

    Guo, Shuang-Zhuang; Qiu, Kaiyan; Meng, Fanben; Park, Sung Hyun; McAlpine, Michael C

    2017-07-01

    The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human-machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Consumers' Use of Personal Electronic Devices in the Kitchen.

    PubMed

    Lando, Amy M; Bazaco, Michael C; Chen, Yi

    2018-02-23

    Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.

  4. Development and applications of transparent conductive nanocellulose paper

    PubMed Central

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  5. Electronic security device

    DOEpatents

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  6. Electronic security device

    DOEpatents

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  7. Devices That May Interfere with Pacemakers

    MedlinePlus

    ... Devices with risk Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ... the pulse generator Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ...

  8. Hyperpolarizable compounds and devices fabricated therefrom

    DOEpatents

    Therien, Michael J.; DiMagno, Stephen G.

    1998-01-01

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core.

  9. Safety of railroad employees' use of personal electronic devices

    DOT National Transportation Integrated Search

    2014-06-01

    This report describes two studies sponsored by the Federal Railroad Administration that examined distraction from personal electronic device (PED) usage among safety-critical railroad employees. Study I considered railroad rules, railroad efficiency ...

  10. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  11. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  12. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  13. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  14. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  15. Light shielding apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Richard Dean; Thom, Robert Anthony

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectablemore » to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.« less

  16. U.S. State and Federal Laws Targeting Distracted Driving

    PubMed Central

    Catherine Chase, J.D.

    2014-01-01

    Distracted driving has burgeoned with the proliferation of cell phones, global positioning systems and other in-vehicle and personal electronic devices. Annually more than 3,300 people are killed and an additional 400,000 are injured in the United States in distracted driving crashes. The United States (U.S.) federal and state governments have responded to this public health problem with policies and laws; however, a more comprehensive and more effective approach is still needed. Some restrictions on the use of electronic devices while driving by federal employees and some voluntary guidelines and recommendations have been issued. Public opinion polls show support for addressing the issue of distracted driving with state laws. The majority of states have laws banning text messaging while driving and prohibiting the use of an electronic device by teenage or novice drivers. Some states prohibit all drivers from using a hand-held cellphone. Currently no state has a total ban on the use of personal electronic devices while driving. Successful past traffic safety campaigns changing driver behavior have demonstrated the necessity to adopt a “three Es” approach of Enactment of a law, Education of the public about the law, and rigorous Enforcement of the law. Experience reveals that this approach, along with future federal regulation of in-vehicle electronic devices and the employment of technology to limit the use of electronic devices while driving, is needed to alter personal behavior in order to reduce distractions and keep drivers focused on the driving task. PMID:24776229

  17. U.s. State and federal laws targeting distracted driving.

    PubMed

    Catherine Chase, J D

    2014-01-01

    Distracted driving has burgeoned with the proliferation of cell phones, global positioning systems and other in-vehicle and personal electronic devices. Annually more than 3,300 people are killed and an additional 400,000 are injured in the United States in distracted driving crashes. The United States (U.S.) federal and state governments have responded to this public health problem with policies and laws; however, a more comprehensive and more effective approach is still needed. Some restrictions on the use of electronic devices while driving by federal employees and some voluntary guidelines and recommendations have been issued. Public opinion polls show support for addressing the issue of distracted driving with state laws. The majority of states have laws banning text messaging while driving and prohibiting the use of an electronic device by teenage or novice drivers. Some states prohibit all drivers from using a hand-held cellphone. Currently no state has a total ban on the use of personal electronic devices while driving. Successful past traffic safety campaigns changing driver behavior have demonstrated the necessity to adopt a "three Es" approach of Enactment of a law, Education of the public about the law, and rigorous Enforcement of the law. Experience reveals that this approach, along with future federal regulation of in-vehicle electronic devices and the employment of technology to limit the use of electronic devices while driving, is needed to alter personal behavior in order to reduce distractions and keep drivers focused on the driving task.

  18. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-01

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  19. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  20. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  1. Human research review of the TASER electronic control device.

    PubMed

    Ho, Jeffrey D; Dawes, Donald M; Heegaard, William G; Miner, James R

    2009-01-01

    TASER Electronic Control Devices have become mainstream methods of applying electricity to control unruly suspects. There has been speculation that they may be associated with worsening human physiology or death. The lay impressions that these devices are unsafe are not founded on known human research findings. This presentation briefly reviews the most pertinent human research on this subject.

  2. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, Scot

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  4. Shape‐Controlled, Self‐Wrapped Carbon Nanotube 3D Electronics

    PubMed Central

    Wang, Huiliang; Wang, Yanming; Tee, Benjamin C.‐K.; Kim, Kwanpyo; Lopez, Jeffrey; Cai, Wei

    2015-01-01

    The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low‐dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape‐memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature‐assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self‐wrapping onto any irregular shaped‐objects without degradations in device performance is demonstrated. PMID:27980972

  5. High power beta electron device - Beyond betavoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, William M.; Gentile, Charles A.

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  6. Electron-beam induced nano-etching of suspended graphene

    PubMed Central

    Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin

    2015-01-01

    Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495

  7. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  8. The effect of defects produced by electron irradiation on the electrical properties of graphene and MoS2

    NASA Astrophysics Data System (ADS)

    Rodriguez-Manzo, Julio Alejandro; Balan, Adrian; Nayor, Carl; Parkin, Will; Puster, Matthew; Johnson, A. T. Charlie; Drndic, Marija

    2015-03-01

    We present a study of the effects of the defects produced by electron irradiation on the electrical and crystalline properties of graphene and MoS2 monolayers. We realized back or side gated electrical devices from monolayer MoS2 or graphene crystals (triangles respectively hexagons) suspended on a 50nm SiNx m. The devices are exposed to electron irradiation inside a 200kV transmission electron microscope (TEM) and we perform in situ conductance measurements. The number of defects and the quality of the crystalline lattice obtained by diffraction are correlated with the observed decrease in mobility and conductivity of the devices. We observe a different behavior between MoS2 and graphene, and try to associate this with different models for conduction with defects. Finally, we use the TEM electron beam to tailor the macroscopic layers into ribbons to be used as the sensing element in MoS2 nanoribbon - nanopore devices for DNA detection and sequencing.

  9. High power beta electron device - Beyond betavoltaics

    DOE PAGES

    Ayers, William M.; Gentile, Charles A.

    2017-11-10

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  10. High power beta electron device - Beyond betavoltaics.

    PubMed

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  11. Direct writing of half-meter long CNT based fiber for flexible electronics.

    PubMed

    Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui

    2015-03-11

    Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.

  12. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  13. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  14. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  15. Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    McGrath, W. R.

    1995-01-01

    Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.

  16. Theoretical insights into multiscale electronic processes in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  17. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  18. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  19. Comparative ex vivo evaluation of two electronic percussive testing devices measuring the stability of dental implants.

    PubMed

    Geckili, Onur; Bilhan, Hakan; Cilingir, Altug; Bilmenoglu, Caglar; Ates, Gokcen; Urgun, Aliye Ceren; Bural, Canan

    2014-12-01

    A comparative ex vivo study was performed to determine electronic percussive test values (PTVs) measured by cabled and wireless electronic percussive testing (EPT) devices and to evaluate the intra- and interobserver reliability of the wireless EPT device. Forty implants were inserted into the vertebrae and forty into the pelvis of a steer, a safe distance apart. The implants were all 4.3 mm wide and 13 mm long, from the same manufacturer. PTV of each implant was measured by four different examiners, using both EPT devices, and compared. Additionally, the intra- and interobserver reliability of the wireless EPT device was evaluated. Statistically significant differences (P <0.05) were observed between PTVs made by the two EPT devices. PTVs measured by the wireless EPT device were significantly higher than the cabled EPT device (P <0.05), indicating lower implant stability. The intraobserver reliability of the wireless EPT device was evaluated as excellent for the measurements in type II bone and good-to-excellent in type IV bone; interobserver reliability was evaluated as fair-to-good in both bone types. The wireless EPT device gives PTVs higher than the cabled EPT device, indicating lower implant stability, and its inter- and intraobserver reliability is good and acceptable.

  20. Electronic and optoelectronic nano-devices based on carbon nanotubes.

    PubMed

    Scarselli, M; Castrucci, P; De Crescenzi, M

    2012-08-08

    The discovery and understanding of nanoscale phenomena and the assembly of nanostructures into different devices are among the most promising fields of material science research. In this scenario, carbon nanostructures have a special role since, in having only one chemical element, they allow physical properties to be calculated with high precision for comparison with experiment. Carbon nanostructures, and carbon nanotubes (CNTs) in particular, have such remarkable electronic and structural properties that they are used as active building blocks for a large variety of nanoscale devices. We review here the latest advances in research involving carbon nanotubes as active components in electronic and optoelectronic nano-devices. Opportunities for future research are also identified.

  1. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement

    PubMed Central

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.

    2014-01-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  2. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

    PubMed

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G

    2014-12-09

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.

  3. 75 FR 27264 - Video Device Competition; Implementation of Section 304 of the Telecommunications Act of 1996...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... and Consumer Electronics Equipment AGENCY: Federal Communications Commission. ACTION: Notice of... explore the potential for allowing any electronics manufacturer to offer smart video devices at retail...

  4. Hyperpolarizable compounds and devices fabricated therefrom

    DOEpatents

    Therien, M.J.; DiMagno, S.G.

    1998-07-21

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core. 13 figs.

  5. 76 FR 18247 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers... importation of certain electronic devices, including mobile phones, mobile tablets, portable music players...

  6. On the Properties and Design of Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  7. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    DOE PAGES

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; ...

    2017-02-21

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less

  8. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less

  9. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  10. SENSITIVE PRESSURE GAUGE

    DOEpatents

    Ball, W.P.

    1961-01-01

    An electron multiplier device is described. It has a plurality of dynodes between an anode and cathode arranged to measure pressure, temperature, or other environmental physical conditions that proportionately iinfuences the quantity of gas molecules between the dynodes. The output current of the device is influenced by the reduction in electron multiplication at the dynodes due to energy reducing collisions of the electrons with the gas molecules between the dynodes. More particularly, the current is inversely proportional to the quantity of gas molecules, viz., the gas pressure. The device is, hence, extremely sensitive to low pressures.

  11. Trends in solid state electronics, part 2

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1972-01-01

    Developments in the fields of semiconductors and magnetics are surveyed. Materials, devices, theory, and fabrication technology are discussed. Important events up until the present time are reported, and events are interpreted through historical perspective. A brief analysis of forces which have driven the development of today's electronic technology and some projections of present trends are given. More detailed discussions are presented for four areas of contemporary interest: amorphous semiconductors, bubble domain devices, charge-coupled devices, and electron and ion beam techniques. Beam addressed magnetic memories are reviewed to a lesser extent.

  12. Superlattice structure modeling and simulation of High Electron Mobility Transistor for improved performance

    NASA Astrophysics Data System (ADS)

    Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar

    2013-12-01

    Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.

  13. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    PubMed

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  14. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    NASA Astrophysics Data System (ADS)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  15. Evaluation of a hybrid pixel detector for electron microscopy.

    PubMed

    Faruqi, A R; Cattermole, D M; Henderson, R; Mikulec, B; Raeburn, C

    2003-04-01

    We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.

  16. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  17. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    NASA Astrophysics Data System (ADS)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  18. Application of Multipurpose Cadastre to Evaluate Energy Security of Land Parcel (Case Study: Gedung A and Gedung B, Institut Teknologi Sumatra)

    NASA Astrophysics Data System (ADS)

    Alif, S. M.; Nugroho, A. P.; Leksono, B. E.

    2018-03-01

    Energy security has one of its dimensions: Short-term energy security which focuses on the ability of the energy system to react promptly to sudden changes within the supply-demand balance. Non-energy components (such as land parcel) that comprise an energy system are analysed comprehensively with other component to measure energy security related to energy supply. Multipurpose cadastre which is an integrated land information system containing legal, physical, and cultural is used to evaluate energy (electrical energy) security of land parcel. The fundamental component of multipurpose cadastre used to evaluate energy security is attribute data which is the value of land parcel facilities. Other fundamental components (geographic control data, base map data, cadastral data) are used as position information and provide weight in room (part of land parcel) valuation. High value-room means the room is comfortable and/or used productively by its occupant. The method of valuation is by comparing one facility to other facilities. Facilities included in room valuation are relatively static items (such as chair, desk, and cabinet) except lamps and other electronic devices. The room value and number of electronic devices which consume electrical energy are correlated with each other. Consumption of electrical energy of electronic devices in the room with average value remains constant while consumption in other room needs to be evaluated to save the energy. The result of this research shows that room value correlate weakly with number of electronic device in corresponding room. It shows excess energy consumed in low-value room. Although numbers of electronic devices do not always mean the consumption of electrical energy and there are plenty electronic devices, it is recommended for occupant to be careful in utilizing electronic devices in low-value room to minimize energy consumption.

  19. Electrospinning for nano- to mesoscale photonic structures

    NASA Astrophysics Data System (ADS)

    Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.

    2017-08-01

    The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this process can be expected to grow rapidly and provide an alternative to traditional resource-intensive fabrication techniques.

  20. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    NASA Astrophysics Data System (ADS)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.

  1. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  2. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  3. A Master Trainer Class for Professionals in Teaching the UltraCane Electronic Travel Device

    ERIC Educational Resources Information Center

    Penrod, William; Corbett, Michael D.; Blasch, Bruce

    2005-01-01

    Electronic travel devices are used to transform information about the environment that would normally be perceived through the visual sense into a form that can be perceived by people who are blind or have low vision through another sense (Blasch, Long, & Griffin-Shirley, 1989). They are divided into two broad categories: primary devices and…

  4. Teachers' Perceptions of Web-Based Content with the Use of Electronic Devices in a Small Rural School District

    ERIC Educational Resources Information Center

    Johansen, Katrina A.

    2016-01-01

    Technology has become an unavoidable part of a teachers' academic experience. In this technological world of evolving electronic devices, knowledge of how teachers perceive the value of web-based content and chosen devices as a medium for teaching and learning is imperative when making curriculum decisions. This study explored teachers'…

  5. Spin injection and transport in semiconductor and metal nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.

  6. Views of patients and professionals about electronic multicompartment medication devices: a qualitative study

    PubMed Central

    Hall, Jill; Bond, Christine; Kinnear, Moira; McKinstry, Brian

    2016-01-01

    Objectives To explore the perceived acceptability, advantages and disadvantages of electronic multicompartment medication devices. Design Qualitative study using 8 focus groups and 10 individual semistructured interviews. Recordings were transcribed and analysed thematically. Strategies were employed to ensure the findings were credible and trustworthy. Participants and setting Community pharmacists (n=11), general practitioners (n=9), community nurses (n=12) and social care managers (n=8) were recruited from the National Health Service (NHS) and local authority services. Patients (n=15) who were current conventional or electronic multicompartment medication device users or had medication adherence problems were recruited from community pharmacies. 3 informal carers participated. Results Electronic multicompartment medication devices which prompt the patient to take medication may be beneficial for selected individuals, particularly those with cognitive impairment, but who are not seriously impaired, provided they have a good level of dexterity. They may also assist individuals where it is important that medication is taken at fixed time intervals. These are likely to be people who are being supported to live alone. No single device suited everybody; smaller/lighter devices were preferred but their usefulness was limited by the small number/size of storage compartments. Removing medications was often challenging. Transportability was an important factor for patients and carers. A carer's alert if medication is not taken was problematic with multiple barriers to implementation and no consensus as to who should receive the alert. There was a lack of enthusiasm among professionals, particularly among pharmacists, due to concerns about responsibility and funding for devices as well as ensuring devices met regulatory standards for storage and labelling. Conclusions This study provides indicators of which patients might benefit from an electronic multicompartment medication device as well as the kinds of features to consider when matching a patient with a device. It also highlights other considerations for successful implementation including issues of responsibility, regulation and funding. PMID:27798025

  7. Ultra-slim flexible glass for roll-to-roll electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Garner, Sean; Glaesemann, Scott; Li, Xinghua

    2014-08-01

    As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.

  8. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  9. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... cases for portable electronic devices. The complaint names as respondents Global Digital Star Industry... the United States, competitive conditions in the United States economy, the production of like or...

  10. 25 CFR 547.2 - What are the definitions for this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...

  11. 25 CFR 547.2 - What are the definitions for this part?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...

  12. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  13. Telecommunicating in Tomorrow's World.

    ERIC Educational Resources Information Center

    Harkins, Judy

    1983-01-01

    Examples of new electronic devices used by deaf persons include electronic mail capabilities, teleprompters that can caption television live, and speech synthesis equipment. Consumers can establish and use assistive device centers to become familiar with the latest in technology. (CL)

  14. Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha; LaBel, Kenneth A.; Kniffin, Scott D.; Howard, James W., Jr.; Poivey, Christian; Ladbury, Ray L.; Buchner, Stephen P.; Xapsos, Michael; Reed, Robert A.; Sanders, Anthony B.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  15. Electroactive polymer-based devices for e-textiles in biomedicine.

    PubMed

    Carpi, Federico; De Rossi, Danilo

    2005-09-01

    This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.

  16. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  17. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  18. 500(deg)C electronics for harsh environments

    NASA Technical Reports Server (NTRS)

    Sadwick, Laurence P.; Hwu, R. Jennifer; Chern, J. H. Howard; Lin, Ching-Hsu; Castillo, Linda Del; Johnson, Travis

    2005-01-01

    Solid state vacuum devices (SSVDs) are a relatively new class of electronic devices. Innosys is a leading producer of high frequency SSVDs for a number of applications, including RF communications. SSVDs combine features inherent to both solid state and vacuum transistors. Electron transport can be by solid state or vacuum or both. The focus of this talk is on thermionic SSVDs, in which the primary vacuum transport is by thermionically liberated electron emission.

  19. Center for High-Frequency Microelectronics

    DTIC Science & Technology

    1992-08-31

    34 IEEE Transactions on Electron Devices, 38, No. 6, pp. 1324-1333, June 1991. 185. C. C. Chen, R. K. Mains and G. I. Haddad, " High - Power Generation in...Weiss, J. Hu and W.-P. Hong, "Electronic 0 Properties of Power High Electron Mobility Transistors," Conference on Ballistic Electrons for Transistors...method at higher frequencies than previously believed. - Calculations of high - power generation modes in Si IMPATT devices in the 100-200 GHz range have

  20. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  1. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    PubMed

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  2. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  3. Mechanical flip-chip for ultra-high electron mobility devices

    DOE PAGES

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; ...

    2015-09-22

    In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. Thismore » approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.« less

  4. The meniscus-guided deposition of semiconducting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaodan; Shaw, Leo; Gu, Kevin

    The electronic devices that play a vital role in our daily life are primarily based on silicon and are thus rigid, opaque, and relatively heavy. However, new electronics relying on polymer semiconductors are opening up new application spaces like stretchable and self-healing sensors and devices, and these can facilitate the integration of such devices into our homes, our clothing, and even our bodies. So, while there has been tremendous interest in such technologies, the widespread adoption of these organic electronics requires low-cost manufacturing techniques. Fortunately, the realization of organic electronics can take inspiration from a technology developed since the beginningmore » of the Common Era: printing. Here, this review addresses the critical issues and considerations in the printing methods for organic electronics, outlines the fundamental fluid mechanics, polymer physics, and deposition parameters involved in the fabrication process, and provides future research directions for the next generation of printed polymer electronics.« less

  5. The meniscus-guided deposition of semiconducting polymers

    DOE PAGES

    Gu, Xiaodan; Shaw, Leo; Gu, Kevin; ...

    2018-02-07

    The electronic devices that play a vital role in our daily life are primarily based on silicon and are thus rigid, opaque, and relatively heavy. However, new electronics relying on polymer semiconductors are opening up new application spaces like stretchable and self-healing sensors and devices, and these can facilitate the integration of such devices into our homes, our clothing, and even our bodies. So, while there has been tremendous interest in such technologies, the widespread adoption of these organic electronics requires low-cost manufacturing techniques. Fortunately, the realization of organic electronics can take inspiration from a technology developed since the beginningmore » of the Common Era: printing. Here, this review addresses the critical issues and considerations in the printing methods for organic electronics, outlines the fundamental fluid mechanics, polymer physics, and deposition parameters involved in the fabrication process, and provides future research directions for the next generation of printed polymer electronics.« less

  6. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device

    NASA Astrophysics Data System (ADS)

    Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein

    2017-07-01

    An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.

  7. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  8. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  9. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  10. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  11. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and retrieval...

  12. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and retrieval...

  13. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and retrieval...

  14. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and retrieval...

  15. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and retrieval...

  16. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  17. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.

  18. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  19. Ag2S atomic switch-based `tug of war' for decision making

    NASA Astrophysics Data System (ADS)

    Lutz, C.; Hasegawa, T.; Chikyow, T.

    2016-07-01

    For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f

  20. Amplified Thermionic Cooling Using Arrays of Nanowires

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu

    2007-01-01

    A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision

  1. A photovoltaic device structure based on internal electron emission.

    PubMed

    McFarland, Eric W; Tang, Jing

    2003-02-06

    There has been an active search for cost-effective photovoltaic devices since the development of the first solar cells in the 1950s (refs 1-3). In conventional solid-state solar cells, electron-hole pairs are created by light absorption in a semiconductor, with charge separation and collection accomplished under the influence of electric fields within the semiconductor. Here we report a multilayer photovoltaic device structure in which photon absorption instead occurs in photoreceptors deposited on the surface of an ultrathin metal-semiconductor junction Schottky diode. Photoexcited electrons are transferred to the metal and travel ballistically to--and over--the Schottky barrier, so providing the photocurrent output. Low-energy (approximately 1 eV) electrons have surprisingly long ballistic path lengths in noble metals, allowing a large fraction of the electrons to be collected. Unlike conventional cells, the semiconductor in this device serves only for majority charge transport and separation. Devices fabricated using a fluorescein photoreceptor on an Au/TiO2/Ti multilayer structure had typical open-circuit photovoltages of 600-800 mV and short-circuit photocurrents of 10-18 micro A cm(-2) under 100 mW cm(-2) visible band illumination: the internal quantum efficiency (electrons measured per photon absorbed) was 10 per cent. This alternative approach to photovoltaic energy conversion might provide the basis for durable low-cost solar cells using a variety of materials.

  2. Mobile technology in radiology resident education.

    PubMed

    Korbage, Aiham C; Bedi, Harprit S

    2012-06-01

    The authors hypothesized that ownership of a mobile electronic device would result in more time spent learning radiology. Current trends in radiology residents' studying habits, their use of electronic and printed radiology learning resources, and how much of the funds allotted to them are being used toward printed vs electronic education tools were assessed in this study. A survey study was conducted among radiology residents across the United States from June 13 to July 5, 2011. Program directors listed in the Association of Program Directors in Radiology e-mail list server received an e-mail asking for residents to participate in an online survey. The questionnaire consisted of 12 questions and assessed the type of institution, the levels of training of the respondents, and book funds allocated to residents. It also assessed the residents' study habits, access to portable devices, and use of printed and electronic radiology resources. Radiology residents are adopters of new technologies, with 74% owning smart phones and 37% owning tablet devices. Respondents spend nearly an equal amount of time learning radiology from printed textbooks as they do from electronic resources. Eighty-one percent of respondents believe that they would spend more time learning radiology if provided with tablet devices. There is considerable use of online and electronic resources and mobile devices among the current generation of radiology residents. Benefits, such as more study time, may be obtained by radiology programs that incorporate tablet devices into the education of their residents. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Imaging Electron Motion in a Few Layer MoS2 Device

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Wang, K.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2017-06-01

    Ultrathin sheets of MoS2 are a newly discovered 2D semiconductor that holds great promise for nanoelectronics. Understanding the pattern of current flow will be crucial for developing devices. In this talk, we present images of current flow in MoS2 obtained with a Scanned Probe Microscope (SPM) cooled to 4 K. We previously used this technique to image electron trajectories in GaAs/AlGaAs heterostructures and graphene. The charged SPM tip is held just above the sample surface, creating an image charge inside the device that scatters electrons. By measuring the change in resistance ΔR while the tip is raster scanned above the sample, an image of electron flow is obtained. We present images of electron flow in an MoS2 device patterned into a hall bar geometry. A three-layer MoS2 sheet is encased by two hBN layers, top and bottom, and patterned into a hall-bar with multilayer graphene contacts. An SPM image shows the current flow pattern from the wide contact at the end of the device for a Hall density n = 1.3×1012 cm-2. The SPM tip tends to block flow, increasing the resistance R. The pattern of flow was also imaged for a narrow side contact on the sample. At density n = 5.4×1011 cm-2; the pattern seen in the SPM image is similar to the wide contact. The ability to image electron flow promises to be very useful for the development of ultrathin devices from new 2D materials.

  4. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  5. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  6. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  7. Multidimensional materials and device architectures for future hybrid energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  8. Soft bioelectronics using nanomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjae; Kim, Dae-Hyeong

    2016-09-01

    Recently, soft bioelectronics has attracted significant attention because of its potential applications in biointegrated healthcare devices and minimally invasive surgical tools. Mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs, however, causes many challenges in materials and device designs of bio-integrated devices. Intrinsically soft hybrid materials comprising twodimensional nanomaterials are utilized to solve these issues. In this paper, we describe soft bioelectronic devices based on graphene synthesized by a chemical vapor deposition process. These devices have unique advantages over rigid electronics, particularly in biomedical applications. The functionalized graphene is hybridized with other nanomaterials and fabricated into high-performance sensors and actuators toward wearable and minimally invasive healthcare devices. Integrated bioelectronic systems constructed using these devices solve pending issues in clinical medicine while providing new opportunities in personalized healthcare.

  9. A Microcontroller Operated Device for the Generation of Liquid Extracts from Conventional Cigarette Smoke and Electronic Cigarette Aerosol.

    PubMed

    Anderson, Chastain A; Bokota, Rachael E; Majeste, Andrew E; Murfee, Walter L; Wang, Shusheng

    2018-01-18

    Electronic cigarettes are the most popular tobacco product among middle and high schoolers and are the most popular alternative tobacco product among adults. High quality, reproducible research on the consequences of electronic cigarette use is essential for understanding emerging public health concerns and crafting evidence based regulatory policy. While a growing number of papers discuss electronic cigarettes, there is little consistency in methods across groups and very little consensus on results. Here, we describe a programmable laboratory device that can be used to create extracts of conventional cigarette smoke and electronic cigarette aerosol. This protocol details instructions for the assembly and operation of said device, and demonstrates the use of the generated extract in two sample applications: an in vitro cell viability assay and gas-chromatography mass-spectrometry. This method provides a tool for making direct comparisons between conventional cigarettes and electronic cigarettes, and is an accessible entry point into electronic cigarette research.

  10. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  11. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  12. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  13. Surface roughness scattering of electrons in bulk mosfets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less

  14. Recent advances in flexible and wearable organic optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin

    2018-01-01

    Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).

  15. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  16. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  17. Synaptic behaviors of a single metal-oxide-metal resistive device

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Jun; Kim, Guk-Bae; Lee, Kyoobin; Kim, Ki-Hong; Yang, Woo-Young; Cho, Soohaeng; Bae, Hyung-Jin; Seo, Dong-Seok; Kim, Sang-Il; Lee, Kyung-Jin

    2011-03-01

    The mammalian brain is far superior to today's electronic circuits in intelligence and efficiency. Its functions are realized by the network of neurons connected via synapses. Much effort has been extended in finding satisfactory electronic neural networks that act like brains, i.e., especially the electronic version of synapse that is capable of the weight control and is independent of the external data storage. We demonstrate experimentally that a single metal-oxide-metal structure successfully stores the biological synaptic weight variations (synaptic plasticity) without any external storage node or circuit. Our device also demonstrates the reliability of plasticity experimentally with the model considering the time dependence of spikes. All these properties are embodied by the change of resistance level corresponding to the history of injected voltage-pulse signals. Moreover, we prove the capability of second-order learning of the multi-resistive device by applying it to the circuit composed of transistors. We anticipate our demonstration will invigorate the study of electronic neural networks using non-volatile multi-resistive device, which is simpler and superior compared to other storage devices.

  18. Development of an electronic manometer for intrapleural pressure monitoring.

    PubMed

    Krenke, Rafał; Guć, Maciej; Grabczak, Elżbieta Magdalena; Michnikowski, Marcin; Pałko, Krzysztof Jakub; Chazan, Ryszarda; Gólczewski, Tomasz

    2011-01-01

    Measurement of intrapleural pressure is useful during various pleural procedures. However, a pleural manometer is rarely available. The aim of this study was to (1) construct an electronic pleural manometer, (2) assess the accuracy of the measurements done with the new device, (3) calculate the costs of the manometer construction and (4) perform an initial evaluation of the device in a clinical setting. Only widely accessible elements were used to construct the device. A vascular pressure transducer was used to transform pressure into an electronic signal. Reliability of the measurements was evaluated in a laboratory setting in a prospective, single-blind manner by comparing the results with those measured by a water manometer. Functionality of the device was assessed during therapeutic thoracentesis. The cost of the new pleural manometer was calculated. We built a small, portable device which can precisely measure intrapleural pressure. The measurement results showed very high agreement with those registered with a water manometer (r = 0.999; p < 0.001). The initial evaluation of the electronic manometer during therapeutic thoracentesis showed it was easy to use. The total time needed for 6 measurements after withdrawal of different volumes of pleural fluid in 1 patient did not exceed 6 min. The total cost of the device was calculated to be <2,000 EUR. In the face of very limited offer of commercially available pleural manometers, it is possible to successfully construct a self-made, reliable, electronic pleural manometer at modest costs. The device is easy to use and enables data display and storage in the personal computer. Copyright © 2011 S. Karger AG, Basel.

  19. Total-dose radiation effects data for semiconductor devices (1989 supplement)

    NASA Technical Reports Server (NTRS)

    Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.

    1990-01-01

    Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.

  20. Design and Evaluation of a Protocol to Assess Electronic Travel Aids for Persons Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Havik, Else M.; Steyvers, Frank J. J. M.; van der Velde, Hanneke; Pinkster, J. Christiaan; Kooijman, Aart C.

    2010-01-01

    This study evaluated a protocol that was developed to assess how beneficial electronic travel aids are for persons who are visually impaired. Twenty persons with visual impairments used an electronic travel device (Trekker) for six weeks to conform to the protocol, which proved useful in identifying successful users of the device. (Contains 2…

  1. Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses

    PubMed Central

    Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828

  2. Innovative, wearable snap connector technology for improved device networking in electronic garments

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Lee, Kang S.; Gans, Eric; Winterhalter, Carole A.; Jannson, Tomasz P.

    2007-04-01

    This paper discusses Physical Optics Corporation's (POC) wearable snap connector technology that provides for the transfer of data and power throughout an electronic garment (e-garment). These connectors resemble a standard garment button and can be mated blindly with only one hand. Fully compatible with military clothing, their application allows for the networking of multiple electronic devices and an intuitive method for adding/removing existing components from the system. The attached flexible cabling also permits the rugged snap connectors to be fed throughout the standard webbing found in military garments permitting placement in any location within the uniform. Variations of the snap electronics/geometry allow for integration with USB 2.0 devices, RF antennas, and are capable of transferring high bandwidth data streams such as the 221 Mbps required for VGA video. With the trend towards providing military officers with numerous electronic devices (i.e., heads up displays (HMD), GPS receiver, PDA, etc), POC's snap connector technology will greatly improve cable management resulting in a less cumbersome uniform. In addition, with electronic garments gaining widespread adoption in the commercial marketplace, POC's technology is finding applications in such areas as sporting good manufacturers and video game technology.

  3. Recent advances in molecular electronics based on carbon nanotubes.

    PubMed

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  4. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films

    NASA Astrophysics Data System (ADS)

    Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo

    2014-06-01

    Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.

  5. Server-Based and Server-Less Byod Solutions to Support Electronic Learning

    DTIC Science & Technology

    2016-06-01

    Knowledge Online NSD National Security Directive OS operating system OWA Outlook Web Access PC personal computer PED personal electronic device PDA...mobile devices, institute mobile device policies and standards, and promote the development and use of DOD mobile and web -enabled applications” (DOD...with an isolated BYOD web server, properly educated system administrators must carry out and execute the necessary, pre-defined network security

  6. Tetrakis(1-imidazolyl) borate (BIM4) based zwitterionic and related molecules used as electron injection layers

    DOEpatents

    Li, Huaping; Xu, Yunhua; Bazan, Guillermo C

    2013-02-05

    Tetrakis(1-imidazolyl)borate (BIm4) based zwitterionic and/or related molecules for the fabrication of PLEDs is provided. Device performances with these materials approaches that of devices with Ba/Al cathodes for which the cathode contact is ohmic. Methods of producing such materials, and electron injection layers and devices containing these materials are also provided.

  7. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-06

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.

  8. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    University of Illinois

    2009-04-21

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  9. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC

    2012-06-12

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  10. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne

    2014-06-17

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  11. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne

    2016-12-06

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  12. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOEpatents

    Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne

    2015-08-11

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  13. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  14. Self-correcting electronically scanned pressure sensor

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  15. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  16. Preface to the special issue of Solid State Electronics EUROSOI/ULIS 2017

    NASA Astrophysics Data System (ADS)

    Nassiopoulou, Androula G.

    2018-05-01

    This special issue is devoted to selected papers presented at the EuroSOI-ULIS2017 international conference, held in Athens on 3-5 April 2017. EuroSOI-ULIS2017 Conference was mainly devoted to Si devices, which constitute the basic building blocks of any microelectronic circuit. It included papers on advanced Si technologies, novel nanoscale devices, advanced electronic materials and device architectures, mechanisms involved, test structures, substrate materials and technologies, modeling/simulation and characterization. Both CMOS and beyond CMOS devices were presented, covering the More Moore domain, as well as new functionalities in silicon-compatible nanostructures and innovative devices, representing the More than Moore domain (on-chip sensors, biosensors, energy harvesting devices, RF passives, etc.).

  17. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  18. Frugal Droplet Microfluidics Using Consumer Opto-Electronics.

    PubMed

    Frot, Caroline; Taccoen, Nicolas; Baroud, Charles N

    2016-01-01

    The maker movement has shown how off-the-shelf devices can be combined to perform operations that, until recently, required expensive specialized equipment. Applying this philosophy to microfluidic devices can play a fundamental role in disseminating these technologies outside specialist labs and into industrial use. Here we show how nanoliter droplets can be manipulated using a commercial DVD writer, interfaced with an Arduino electronic controller. We couple the optical setup with a droplet generation and manipulation device based on the "confinement gradients" approach. This device uses regions of different depths to generate and transport the droplets, which further simplifies the operation and reduces the need for precise flow control. The use of robust consumer electronics, combined with open source hardware, leads to a great reduction in the price of the device, as well as its footprint, without reducing its performance compared with the laboratory setup.

  19. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  20. Hot-Electron Photon Counters for Detecting Terahertz Photons

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; Sergeyev, Andrei

    2005-01-01

    A document proposes the development of hot-electron photon counters (HEPCs) for detecting terahertz photons in spaceborne far-infrared astronomical instruments. These would be superconducting- transition-edge devices: they would contain superconducting bridges that would have such low heat capacities that single terahertz photons would cause transient increases in their electron temperatures through the superconducting- transition range, thereby yielding measurable increases in electrical resistance. Single devices or imaging arrays of the devices would be fabricated as submicron-sized bridges made from films of disordered Ti (which has a superconducting- transition temperature of .0.35 K) between Nb contacts on bulk silicon or sapphire substrates. In operation, these devices would be cooled to a temperature of .0.3 K. The proposed devices would cost less to fabricate and operate, relative to integrating bolometers of equal sensitivity, which must be operated at a temperature of approx. = 0.1 K.

Top