Sample records for electronic devices including

  1. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...

  2. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  3. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  4. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  5. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  6. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  7. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players...

  8. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  9. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  10. 75 FR 448 - In the Matter of: Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Systems, Including Software and Handheld Electronic Devices; Notice of Investigation AGENCY: U.S... software and handheld electronic devices, by reason of infringement of certain claims of U.S. Patent No 7... software and handheld electronic devices, that infringe one or more of claims 31-35, 38, 41, 51, 54, 56, 58...

  11. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  12. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  13. 75 FR 36678 - In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...

  14. Graphene-Based Flexible and Stretchable Electronics.

    PubMed

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. System and method for interfacing large-area electronics with integrated circuit devices

    DOEpatents

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  16. Electronic cigarette devices and oro-facial trauma (Literature review)

    NASA Astrophysics Data System (ADS)

    Ghazali, A. F.; Ismail, A. F.; Daud, A.

    2017-08-01

    Detrimental effects of cigarette smoking have been well described and recognized globally. With recent advancement of technology, electronic cigarette has been introduced and gained its popularity and became a global trend, especially among young adults. However, the safety of the electronic devices remains debatable. This paper aimed to compile and review the reported cases of oro-facial trauma related to the usage of electronic cigarette devices. A literature search was conducted using PubMed/Medline in December 2016. The search terms used were a combination of “oral trauma”, “dental trauma”, “oral injury” and “electronic cigarette”. The search included all abstract published from the inception of the database until December 2016. Abstract that was written in English, case report, letter to editors, clinical and human studies were included for analysis. All selected abstract were searched for full articles. A total of 8 articles were included for review. All of the articles were published in 2016 with mostly case reports. The sample size of the studies ranged from 1 to 15 patients. Seven of the included articles are from United States of America and one from Mexico. Our review concluded that the use of electronic cigarette devices posed not only a safety concern but also that the devices were mostly unregulated. There should be a recognized authority body to regulate the safety and standard of the electronic devices.

  17. 76 FR 18247 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers... importation of certain electronic devices, including mobile phones, mobile tablets, portable music players...

  18. Electrical and electronic devices and components: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.

  19. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R [Newton, MA

    2011-02-22

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  20. Optoelectronic devices utilizing materials having enhanced electronic transitions

    DOEpatents

    Black, Marcie R.

    2013-04-09

    An optoelectronic device that includes a material having enhanced electronic transitions. The electronic transitions are enhanced by mixing electronic states at an interface. The interface may be formed by a nano-well, a nano-dot, or a nano-wire.

  1. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; hide

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  2. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    PubMed

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  3. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  4. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ..., Including Mobile Phones and Components Thereof Notice of Receipt of Complaint; Solicitation of Comments... Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN... mobile phones and components thereof. The complaint names as respondents HTC Corporation of China and HTC...

  5. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers... mobile phones, mobile tablets, portable music players, and computers, and components thereof that...

  6. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  7. Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang

    2017-05-01

    Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.

  8. Self-similar and fractal design for stretchable electronics

    DOEpatents

    Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui

    2017-04-04

    The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.

  9. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  10. Compendium of Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.

    2007-01-01

    Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  11. Extended write combining using a write continuation hint flag

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  12. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  13. Sleep and use of electronic devices in adolescence: results from a large population-based study

    PubMed Central

    Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge

    2015-01-01

    Objectives Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. Design A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Setting Cross-sectional general community-based study. Participants 9846 adolescents from three age cohorts aged 16–19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Outcomes Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Results Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose–response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7–8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Conclusions Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. PMID:25643702

  14. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  15. Novel hole transport materials for organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Shi, Jianmin; Forsythe, Eric; Morton, David

    2008-08-01

    Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.

  16. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  17. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Facchetti, Antonio (Inventor); Suh, legal representative, Nae-Jeong (Inventor); Marks, Tobin J. (Inventor); Choi, Hyuk-Jin (Inventor); Wang, Zhiming (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  18. Appendage mountable electronic devices conformable to surfaces

    DOEpatents

    Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu

    2017-01-24

    Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.

  19. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  20. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    PubMed

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  1. Colleges Fight Fire With Electronics.

    ERIC Educational Resources Information Center

    College & University Business, 1968

    1968-01-01

    Description of various electronic fire detection and alarm systems is presented. Explanation of detective systems includes--(1) fixed-temperature and rate-of-rise heat sensitive devices, (2) smoke detective devices, (3) ionization systems, and (4) infrared and ultraviolet radiation devices. Each system type is evaluated in terms of operation,…

  2. 76 FR 41522 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-771] In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components... certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...

  3. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  4. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  5. Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.

  6. Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.

  7. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  8. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  9. Light shielding apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Richard Dean; Thom, Robert Anthony

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectablemore » to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.« less

  10. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  11. Tissue-electronics interfaces: from implantable devices to engineered tissues

    NASA Astrophysics Data System (ADS)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  12. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... music players, and computers by reason of infringement of various claims of United States Patent Nos. 6...

  13. Musculoskeletal impact of the use of various types of electronic devices on university students in Hong Kong: An evaluation by means of self-reported questionnaire.

    PubMed

    Woo, Eugenia H C; White, Peter; Lai, Christopher W K

    2016-12-01

    Despite the increasingly widespread popularity of electronic devices, there are limited comprehensive studies on the effects of usage and exposure to multiple electronic devices over extended periods of time. Therefore, this study explored the cumulative musculoskeletal implications of exposure to various electronic devices among university students. A self-reported questionnaire was administered in the university in Hong Kong and students provided information about the frequency and duration of electronic devices use, including computers, mobile phones and game consoles, and reported on any musculoskeletal pain or discomfort that may relate to electronic devices usage in the immediate 12 months prior to the survey date. A total of 503 university students (59% males and 41% females) aged 18-25 years completed the questionnaire. The results showed that 251 (49.9%) respondents reported upper limb musculoskeletal symptoms, particularly in the neck and shoulder regions. Among these, 155 (61.8%) indicated that their discomfort was related to electronic device usage. Statistically significant differences in exposure to electronic devices and musculoskeletal outcomes between genders were found (p < 0.05). The use of electronic devices and habitual postures were associated with musculoskeletal problems among university students in Hong Kong. This phenomenon highlights the urgent need for ergonomics education and recommendations to increase students' awareness of musculoskeletal wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sleep and use of electronic devices in adolescence: results from a large population-based study.

    PubMed

    Hysing, Mari; Pallesen, Ståle; Stormark, Kjell Morten; Jakobsen, Reidar; Lundervold, Astri J; Sivertsen, Børge

    2015-02-02

    Adolescents spend increasingly more time on electronic devices, and sleep deficiency rising in adolescents constitutes a major public health concern. The aim of the present study was to investigate daytime screen use and use of electronic devices before bedtime in relation to sleep. A large cross-sectional population-based survey study from 2012, the youth@hordaland study, in Hordaland County in Norway. Cross-sectional general community-based study. 9846 adolescents from three age cohorts aged 16-19. The main independent variables were type and frequency of electronic devices at bedtime and hours of screen-time during leisure time. Sleep variables calculated based on self-report including bedtime, rise time, time in bed, sleep duration, sleep onset latency and wake after sleep onset. Adolescents spent a large amount of time during the day and at bedtime using electronic devices. Daytime and bedtime use of electronic devices were both related to sleep measures, with an increased risk of short sleep duration, long sleep onset latency and increased sleep deficiency. A dose-response relationship emerged between sleep duration and use of electronic devices, exemplified by the association between PC use and risk of less than 5 h of sleep (OR=2.70, 95% CI 2.14 to 3.39), and comparable lower odds for 7-8 h of sleep (OR=1.64, 95% CI 1.38 to 1.96). Use of electronic devices is frequent in adolescence, during the day as well as at bedtime. The results demonstrate a negative relation between use of technology and sleep, suggesting that recommendations on healthy media use could include restrictions on electronic devices. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  16. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  17. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  18. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  19. Recent Advancements in Functionalized Paper-Based Electronics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Liu, Qian; Lu, Xiaonan; Xu, Jie

    2016-08-17

    Building electronic devices on ubiquitous paper substrates has recently drawn extensive attention due to its light weight, low cost, environmental friendliness, and ease of fabrication. Recently, a myriad of advancements have been made to improve the performance of paper electronics for various applications, such as basic electronic components, energy storage devices, generators, antennas, and electronic circuits. This review aims to summarize this progress and discuss different perspectives of paper electronics as well as the remaining challenges yet to be overcome in this field. Other aspects included in this review are the fundamental characteristics of paper, modification of paper with functional materials, and various methods for device fabrication.

  20. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  1. Telecommunicating in Tomorrow's World.

    ERIC Educational Resources Information Center

    Harkins, Judy

    1983-01-01

    Examples of new electronic devices used by deaf persons include electronic mail capabilities, teleprompters that can caption television live, and speech synthesis equipment. Consumers can establish and use assistive device centers to become familiar with the latest in technology. (CL)

  2. Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha; LaBel, Kenneth A.; Kniffin, Scott D.; Howard, James W., Jr.; Poivey, Christian; Ladbury, Ray L.; Buchner, Stephen P.; Xapsos, Michael; Reed, Robert A.; Sanders, Anthony B.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  3. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  4. 14 CFR 145.59 - Ratings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tubes, transistors, or similar devices, including capacitance type quantity gauges, system amplifiers... depends on the use of an electron tube transistor, or similar device, including supercharger, temperature...

  5. 14 CFR 145.59 - Ratings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tubes, transistors, or similar devices, including capacitance type quantity gauges, system amplifiers... depends on the use of an electron tube transistor, or similar device, including supercharger, temperature...

  6. 14 CFR 145.59 - Ratings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tubes, transistors, or similar devices, including capacitance type quantity gauges, system amplifiers... depends on the use of an electron tube transistor, or similar device, including supercharger, temperature...

  7. 14 CFR 145.59 - Ratings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tubes, transistors, or similar devices, including capacitance type quantity gauges, system amplifiers... depends on the use of an electron tube transistor, or similar device, including supercharger, temperature...

  8. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G [Madison, WI; Lagally, Max G [Madison, WI; Ma, Zhenqiang [Middleton, WI; Yuan, Hao-Chih [Lakewood, CO; Wang, Guogong [Madison, WI; Eriksson, Mark A [Madison, WI

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  9. Organic photovoltaic devices comprising solution-processed substituted metal-phthalocyanines and exhibiting near-IR photo-sensitivity

    DOEpatents

    McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.

    2016-11-29

    Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.

  10. Consumers' Use of Personal Electronic Devices in the Kitchen.

    PubMed

    Lando, Amy M; Bazaco, Michael C; Chen, Yi

    2018-02-23

    Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.

  11. Semiconductor millimeter wavelength electronics

    NASA Astrophysics Data System (ADS)

    Rosenbaum, F. J.

    1985-12-01

    This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.

  12. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Nonlinear optical devices: basic elements of a future optical digital computer?

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Müller, R.

    1989-08-01

    It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.

  13. Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2017-01-01

    Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 78 FR 20268 - Effective Date of Requirement for Premarket Approval for Three Class III Preamendments Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... methods: Electronic Submissions Submit electronic comments in the following way: Federal eRulemaking... effectiveness of the device but does not include descriptions of methods of manufacture or product composition... scientific literature [[Page 20272

  15. Feasibility of Bluetooth Data as a Surrogate Measure of Vehicle Operations : Technical Summary

    DOT National Transportation Integrated Search

    2012-10-01

    The widespread use of portable electronic devices among consumers has allowed new opportunities for traffic data collection. Many of these devices contain short-range Bluetooth radios in addition to other electronic equipment. The included Bluetooth ...

  16. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  17. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  18. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  19. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  20. Silicon Schottky Diode Safe Operating Area

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Campola, Michael J.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Phan, Anthony M.; LaBel, Kenneth A.

    2016-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  1. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  2. Electromagnetic interference from electronic devices used in the management of type 1 diabetes can impair the performance of an avalanche transceiver in search mode.

    PubMed

    Miller, Steven C M

    2015-06-01

    Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  3. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structural Assembly for Cold Plate Cooling

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A. (Inventor); Taddey, Edmund P. (Inventor)

    2014-01-01

    A device including a structural member having a heat spreader and an electronic device mounted directly to a first surface of the heat spreader of the structural member. The device also includes a cold plate mounted directly to the first surface of the heat spreader of the structural member.

  5. Reading aids for adults with low vision

    PubMed Central

    Virgili, Gianni; Acosta, Ruthy; Grover, Lori L; Bentley, Sharon A; Giacomelli, Giovanni

    2014-01-01

    Background The purpose of low-vision rehabilitation is to allow people to resume or to continue to perform daily living tasks, with reading being one of the most important. This is achieved by providing appropriate optical devices and special training in the use of residual-vision and low-vision aids, which range from simple optical magnifiers to high-magnification video magnifiers. Objectives To assess the effects of reading aids for adults with low vision. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 31 January 2013. We searched the reference lists of relevant articles and used the Science Citation Index to find articles that cited the included studies and contacted investigators and manufacturers of low-vision aids. We handsearched the British Journal of Visual Impairment from 1983 to 1999 and the Journal of Visual Impairment and Blindness from 1976 to 1991. Selection criteria This review includes randomised and quasi-randomised trials in which any device or aid used for reading had been compared to another device or aid in people aged 16 or over with low vision as defined by the study investigators. Data collection and analysis At least two authors independently assessed trial quality and extracted data. Main results We included nine small studies with a cross-over-like design (181 people overall) and one study with three parallel arms (243 participants) in the review. All studies reported the primary outcome, results for reading speed. Two studies including 92 participants found moderate- or low-quality evidence suggesting that reading speed is higher with stand-mounted electronic devices or electronic devices with the camera mounted in a ‘mouse’ than with optical magnifiers, which in these trials were generally stand-mounted or, less frequently, hand-held magnifiers or microscopic lenses. In another study of 20 participants there was moderate-quality evidence that optical devices are better than head-mounted electronic devices (four types). There was low-quality evidence from three studies (93 participants) that reading using head-mounted electronic devices is slower than with stand-based electronic devices. The technology of electronic devices may have changed and improved since these studies were conducted. One study suggested no difference between a diffractive spectacle-mounted magnifier and either refractive (15 participants) or aplanatic (15 participants) magnifiers. One study of 10 people suggested that several overlay coloured filters were no better and possibly worse than a clear filter. A parallel-arm study including 243 participants with age-related macular degeneration found that custom or standard prism spectacles were no different from conventional reading spectacles, although the data did not allow precise estimates of performance to be made. Authors' conclusions There is insufficient evidence on the effect of different types of low-vision aids on reading performance. It would be necessary to investigate which patient characteristics predict performance with different devices, including costly electronic devices. Better-quality research should also focus on assessing sustained long-term use of each device. Authors of studies testing several devices on the same person should consider design and reporting issues related to their sequential presentation and to the cross-over-like study design. PMID:24154864

  6. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  7. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  8. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  9. 500(deg)C electronics for harsh environments

    NASA Technical Reports Server (NTRS)

    Sadwick, Laurence P.; Hwu, R. Jennifer; Chern, J. H. Howard; Lin, Ching-Hsu; Castillo, Linda Del; Johnson, Travis

    2005-01-01

    Solid state vacuum devices (SSVDs) are a relatively new class of electronic devices. Innosys is a leading producer of high frequency SSVDs for a number of applications, including RF communications. SSVDs combine features inherent to both solid state and vacuum transistors. Electron transport can be by solid state or vacuum or both. The focus of this talk is on thermionic SSVDs, in which the primary vacuum transport is by thermionically liberated electron emission.

  10. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  11. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  12. The design of electron and ion guns, beams, and collectors

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Herrmannsfeldt, William B.

    2004-01-01

    The well known `SLAC Electron Trajectory Program' (EGUN) has been ported to PCs and has been developed into a family of programs for the design and the optimization of particle optics devices including electron and ion guns, beam transport sections and collectors. We will discuss the application of these tools for the design and the optimization of the essential parts of EBIS/T devices. The discussion will include conditions in which restrictions in the reliability of simulations may occur due to the mathematical modeling and how to overcome them.

  13. Investigation of Basic Mechanisms of Radiation Effects in Carbon-Based Electronic Materials

    DTIC Science & Technology

    2017-06-01

    materials characterization, and carbon nanotube diodes, FET, and PZT-memory test device structures for electrical measurements. Pre - and post -irradiation...definition (Radiation exposure) Task 2) The grantee shall perform testing to include: - Radiation testing . May be multiple types. - Pre and post -rad...technologies for electronic devices. Experiential radiation testing has included exposure to 10 keV X-rays, 4 MeV protons, heavy ions, and Ultra

  14. Development and applications of transparent conductive nanocellulose paper

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  15. Electromechanical Devices and Controllers. Electronics Module 10. Instructor's Guide.

    ERIC Educational Resources Information Center

    Carter, Ed

    This module is the tenth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Six instructional units cover: electromechanical control devices; programmable logic controllers (PLC);…

  16. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  17. Reading aids for adults with low vision.

    PubMed

    Virgili, Gianni; Acosta, Ruthy; Bentley, Sharon A; Giacomelli, Giovanni; Allcock, Claire; Evans, Jennifer R

    2018-04-17

    The purpose of low-vision rehabilitation is to allow people to resume or to continue to perform daily living tasks, with reading being one of the most important. This is achieved by providing appropriate optical devices and special training in the use of residual-vision and low-vision aids, which range from simple optical magnifiers to high-magnification video magnifiers. To assess the effects of different visual reading aids for adults with low vision. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 12); MEDLINE Ovid; Embase Ovid; BIREME LILACS, OpenGrey, the ISRCTN registry; ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). The date of the search was 17 January 2018. This review includes randomised and quasi-randomised trials that compared any device or aid used for reading to another device or aid in people aged 16 or over with low vision as defined by the study investigators. We did not compare low-vision aids with no low-vision aid since it is obviously not possible to measure reading speed, our primary outcome, in people that cannot read ordinary print. We considered reading aids that maximise the person's visual reading capacity, for example by increasing image magnification (optical and electronic magnifiers), augmenting text contrast (coloured filters) or trying to optimise the viewing angle or gaze position (such as prisms). We have not included studies investigating reading aids that allow reading through hearing, such as talking books or screen readers, or through touch, such as Braille-based devices and we did not consider rehabilitation strategies or complex low-vision interventions. We used standard methods expected by Cochrane. At least two authors independently assessed trial quality and extracted data. The primary outcome of the review was reading speed in words per minute. Secondary outcomes included reading duration and acuity, ease and frequency of use, quality of life and adverse outcomes. We graded the certainty of the evidence using GRADE. We included 11 small studies with a cross-over design (435 people overall), one study with two parallel arms (37 participants) and one study with three parallel arms (243 participants). These studies took place in the USA (7 studies), the UK (5 studies) and Canada (1 study). Age-related macular degeneration (AMD) was the most frequent cause of low vision, with 10 studies reporting 50% or more participants with the condition. Participants were aged 9 to 97 years in these studies, but most were older (the median average age across studies was 71 years). None of the studies were masked; otherwise we largely judged the studies to be at low risk of bias. All studies reported the primary outcome: results for reading speed. None of the studies measured or reported adverse outcomes.Reading speed may be higher with stand-mounted closed circuit television (CCTV) than with optical devices (stand or hand magnifiers) (low-certainty evidence, 2 studies, 92 participants). There was moderate-certainty evidence that reading duration was longer with the electronic devices and that they were easier to use. Similar results were seen for electronic devices with the camera mounted in a 'mouse'. Mixed results were seen for head-mounted devices with one study of 70 participants finding a mouse-based head-mounted device to be better than an optical device and another study of 20 participants finding optical devices better (low-certainty evidence). Low-certainty evidence from three studies (93 participants) suggested no important differences in reading speed, acuity or ease of use between stand-mounted and head-mounted electronic devices. Similarly, low-certainty evidence from one study of 100 participants suggested no important differences between a 9.7'' tablet computer and stand-mounted CCTV in reading speed, with imprecise estimates (other outcomes not reported).Low-certainty evidence showed little difference in reading speed in one study with 100 participants that added electronic portable devices to preferred optical devices. One parallel-arm study in 37 participants found low-certainty evidence of higher reading speed at one month if participants received a CCTV at the initial rehabilitation consultation instead of a standard low-vision aids prescription alone.A parallel-arm study including 243 participants with AMD found no important differences in reading speed, reading acuity and quality of life between prism spectacles and conventional spectacles. One study in 10 people with AMD found that reading speed with several overlay coloured filters was no better and possibly worse than with a clear filter (low-certainty evidence, other outcomes not reported). There is insufficient evidence supporting the use of a specific type of electronic or optical device for the most common profiles of low-vision aid users. However, there is some evidence that stand-mounted electronic devices may improve reading speeds compared with optical devices. There is less evidence to support the use of head-mounted or portable electronic devices; however, the technology of electronic devices may have improved since the studies included in this review took place, and modern portable electronic devices have desirable properties such as flexible use of magnification. There is no good evidence to support the use of filters or prism spectacles. Future research should focus on assessing sustained long-term use of each device and the effect of different training programmes on its use, combined with investigation of which patient characteristics predict performance with different devices, including some of the more costly electronic devices.

  18. Calculation of the figure of merit for carbon nanotubes based devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2004-03-01

    The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.

  19. Fabrication techniques and applications of flexible graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren

    2016-04-01

    In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).

  20. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    PubMed

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  1. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    NASA Astrophysics Data System (ADS)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.

  2. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less

  3. Interfacing with the Brain using Organic Electronics

    NASA Astrophysics Data System (ADS)

    Malliaras, George

    One of the most important scientific and technological frontiers of our time lies in the interface between electronics and the human brain. Interfacing the most advanced human engineering endeavor with nature's most refined creation promises to help elucidate aspects of the brain's working mechanism and deliver new tools for diagnosis and treatment of a host of pathologies including epilepsy and Parkinson's disease. Current solutions, however, are limited by the materials that are brought in contact with the tissue and transduce signals across the biotic/abiotic interface. The field of organic electronics has made available materials with a unique combination of attractive properties, including mechanical flexibility, mixed ionic/electronic conduction, enhanced biocompatibility, and capability for drug delivery. I will present examples of organic-based devices for recording and stimulation of brain activity, highlighting the connection between materials properties and device performance. I will show that organic electronic materials provide unparalleled opportunities to design devices that improve our understanding of brain physiology and pathology, and can be used to deliver new therapies.

  4. Use of the JPL Electronic Nose to detect leaks and spills in an enclosed environment

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A.; Homer, M. L.; Zhou, H.; Pelletier, C. C.; Manatt, K.; Jewell, A. D.; Kisor, A.; Shevade, A. V.; Lewis, C. R.; Taylor, C. J.; hide

    2006-01-01

    An electronic nose to be used as an air quality monitor in human habitats in space has been developed at the Jet Propulsion Laboratory. This device is capable of detecting, identifying and quantifying several organic and inorganic chemical species which might be present as contaminants in spacecraft air. The complete portable device, including sensors, electronics, and software for data analysis, has been extensively tested.

  5. Ultrafast and nanoscale diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.

    2016-10-01

    Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

  6. Consumer Sleep Technologies: A Review of the Landscape.

    PubMed

    Ko, Ping-Ru T; Kientz, Julie A; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A; Watson, Nathaniel F

    2015-12-15

    To review sleep related consumer technologies, including mobile electronic device "apps," wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included "sleep technology," "sleep app," and "sleep monitoring." Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. © 2015 American Academy of Sleep Medicine.

  7. Organic spintronic devices and methods for making the same

    DOEpatents

    Vardeny, Zee Valentine; Ndobe, Alex

    2014-09-23

    An organic spintronic photovoltaic device (100) having an organic electron active layer (102) functionally associated with a pair of electrodes (104, 106). The organic electron active layer (102) can include a spin active molecular radical distributed in the active layer (102) which increases spin-lattice relaxation rates within the active layer (102). The increased spin lattice relaxation rate can also influence the efficiency of OLED and charge mobility in FET devices.

  8. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  9. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  10. High temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1981-01-01

    The extension of the range of operating temperatures of electronic components and systems for planetary exploration is examined. In particular, missions which utilize balloon-borne instruments to study the Venusian and Jovian atmospheres are discussed. Semiconductor development and devices including power sources, ultrastable oscillators, transmitters, antennas, electromechanical devices, and deployment systems are addressed.

  11. Development and applications of transparent conductive nanocellulose paper

    PubMed Central

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  12. 76 FR 39121 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data, and Tablet..., portable music and data processing devices, and tablet computers. The complaint names as respondent Apple...

  13. Solid state photosensitive devices which employ isolated photosynthetic complexes

    DOEpatents

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  14. Space Electronics: A Challenging World for Designers

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation provides an overview of: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) Hardening Approaches to Commercial CMOS Electronics (including device vulnerabilities).

  15. Does long time spending on the electronic devices affect the reading abilities? A cross-sectional study among Chinese school-aged children.

    PubMed

    He, Zhen; Shao, Shanshan; Zhou, Jie; Ke, Juntao; Kong, Rui; Guo, Shengnan; Zhang, Jiajia; Song, Ranran

    2014-12-01

    Home literacy environment (HLE) is one of most important modifiable risk factors to dyslexia. With the development in technology, we include the electronic devices usage at home, such as computers and televisions, to the definition of HLE and investigate its impact on dyslexia based on the on-going project of Tongji's Reading Environment and Dyslexia Study. The data include 5063 children, primary school students (grade 3-grade 6), from a middle-sized city in China. We apply the principal component analysis (PCA) to reduce the large dimension of variables in HLE, and find the first three components, denoted as PC1, PC2 and PC3, can explain 95.45% of HLE information. PC1 and PC2 demonstrate strong positive association with 'total time spending on electronic devices' and 'literacy-related activity', respectively. PC3 demonstrates strong negative association with 'restrictions on using electronic devices'. From the generalized linear model, we find that PC1 significantly increases the risk of dyslexia (OR = 1.043, 95% CI: 1.018-1.070), while PC2 significantly decreases the risk of dyslexia (OR = 0.839, 95% CI: 0.795-0.886). Therefore, reducing the total time spending on electronic devices and increasing the literacy-related activity would be the potential protective factors for dyslexic children in China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 48 CFR 2452.204-70 - Preservation of, and access to, contract records (tangible and electronically stored information...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or data storage). ESI devices and media include, but are not be limited to: (1) Computers (mainframe...) Personal data assistants (PDAs); (5) External data storage devices including portable devices (e.g., flash drive); and (6) Data storage media (magnetic, e.g., tape; optical, e.g., compact disc, microfilm, etc...

  17. 48 CFR 2452.204-70 - Preservation of, and access to, contract records (tangible and electronically stored information...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or data storage). ESI devices and media include, but are not be limited to: (1) Computers (mainframe...) Personal data assistants (PDAs); (5) External data storage devices including portable devices (e.g., flash drive); and (6) Data storage media (magnetic, e.g., tape; optical, e.g., compact disc, microfilm, etc...

  18. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  19. Low inductance power electronics assembly

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  20. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  1. A systematic review of portable electronic technology for health education in resource-limited settings.

    PubMed

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent on the development of culturally adapted and functional materials to be used on such devices.

  2. Preface to the special issue of Solid State Electronics EUROSOI/ULIS 2017

    NASA Astrophysics Data System (ADS)

    Nassiopoulou, Androula G.

    2018-05-01

    This special issue is devoted to selected papers presented at the EuroSOI-ULIS2017 international conference, held in Athens on 3-5 April 2017. EuroSOI-ULIS2017 Conference was mainly devoted to Si devices, which constitute the basic building blocks of any microelectronic circuit. It included papers on advanced Si technologies, novel nanoscale devices, advanced electronic materials and device architectures, mechanisms involved, test structures, substrate materials and technologies, modeling/simulation and characterization. Both CMOS and beyond CMOS devices were presented, covering the More Moore domain, as well as new functionalities in silicon-compatible nanostructures and innovative devices, representing the More than Moore domain (on-chip sensors, biosensors, energy harvesting devices, RF passives, etc.).

  3. Chemical Vapor Deposition Of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.

    1993-01-01

    Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.

  4. Recent Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Buchner, Stephen P.; Barth, Janet L.; Kniffen, Scott D.; Seidleck, Christina M.; Marshall, Cheryl J.; hide

    2001-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  5. Current Single Event Effects and Radiation Damage Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Kniffin, Scott D.; Poivey, Christian; Buchner, Stephen P.; Bings, John P.; Titus, Jeff L.

    2002-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects, total ionizing dose and proton-induced damage. Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs), and DC-DC converters, among others.

  6. Recent advances in flexible and wearable organic optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin

    2018-01-01

    Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).

  7. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    PubMed

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  9. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  10. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  11. 3D Printed Stretchable Tactile Sensors.

    PubMed

    Guo, Shuang-Zhuang; Qiu, Kaiyan; Meng, Fanben; Park, Sung Hyun; McAlpine, Michael C

    2017-07-01

    The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human-machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biofeedback With Implanted Blood-Pressure Device

    NASA Technical Reports Server (NTRS)

    Rischell, Robert E.

    1988-01-01

    Additional uses found for equipment described in "Implanted Blood-Pressure-Measuring Device" (GSC-13042). Implanted with device electronic circuitry that measures, interprets, and transmits data via inductive link through patient's skin to external receiver. Receiver includes audible alarm generator activated when patient's blood pressure exceeds predetermined threshold. Also included in receiver a blood-pressure display, recorder, or both, for use by patient or physician.

  13. Electronic security device

    DOEpatents

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  14. Electronic security device

    DOEpatents

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  15. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    PubMed

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  16. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  17. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    PubMed Central

    Rajan, Krishna; Garofalo, Erik

    2018-01-01

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC. PMID:29382050

  18. Stretchable inorganic nanomembrane electronics for healthcare devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin

    2015-05-01

    Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.

  19. Apparatus for in situ cleaning of carbon contaminated surfaces

    DOEpatents

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2004-08-10

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.

  20. Shape‐Controlled, Self‐Wrapped Carbon Nanotube 3D Electronics

    PubMed Central

    Wang, Huiliang; Wang, Yanming; Tee, Benjamin C.‐K.; Kim, Kwanpyo; Lopez, Jeffrey; Cai, Wei

    2015-01-01

    The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low‐dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape‐memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature‐assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self‐wrapping onto any irregular shaped‐objects without degradations in device performance is demonstrated. PMID:27980972

  1. Electronic Flight Bag (EFB) 2015 Industry Survey.

    DOT National Transportation Integrated Search

    2015-10-01

    This document provides an overview of Electronic Flight Bag (EFB) hardware and software capabilities, including portable electronic devices (PEDs) used as EFBs, as of July 2015. This document updates and replaces the Volpe Centers previous EFB ind...

  2. Facial trauma caused by electronic cigarette explosion.

    PubMed

    Vaught, Brian; Spellman, Joseph; Shah, Anil; Stewart, Alexander; Mullin, David

    2017-03-01

    Electronic cigarettes are increasingly popular as a supposed safer alternative to tobacco cigarettes or a smoking cessation tool. Research and debate have focused primarily on possible adverse effects caused by the inhaled aerosol produced by electronic cigarettes and on smoking cessation efficacy. Few reports in the medical literature describe injuries secondary to device malfunction. We present a case of electronic cigarette explosion, with a projectile fracturing the patient's right naso-orbital-ethmoid complex and anterior and posterior frontal sinus tables, with frontal sinus outflow tract involvement. The patient underwent combined open and endoscopic repair, including open reduction internal fixation, with reconstitution and preservation of the frontal sinus and frontal sinus outflow tract. Additionally, we review the available data on electronic cigarette malfunction-including fires, explosions, associated injuries, and possible reasons for device malfunction-and discuss new 2016 U.S. Food and Drug Administration regulations pertaining to electronic cigarettes.

  3. Thermal Transport in Diamond Films for Electronics Thermal Management

    DTIC Science & Technology

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH...general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil...Signature// JOHN D. BLEVINS, Program Manager ROSS W. DETTMER, Chief Devices for Sensing Branch Devices for Sensing Branch Aerospace Components

  4. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  5. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  6. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  7. Effectiveness of mobile electronic devices in weight loss among overweight and obese populations: a systematic review and meta-analysis.

    PubMed

    Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen

    2014-01-01

    Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such mHealth interventions in a real clinical setting.

  8. Development of Novel Treatment Plan Verification Techniques for Prostate Intensity Modulation Arc Therapy

    DTIC Science & Technology

    2010-03-01

    is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate  VMAT  using  Electronic   Portal  Imaging  Device  (EPID)  and  onboard Cone beam Computed Tomography (CBCT).  The specific aims of this project

  9. Electronic circuit for measuring series connected electrochemical cell voltages

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2000-01-01

    An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

  10. Surface plasmon-enhanced photovoltaic device

    DOEpatents

    Kostecki, Robert; Mao, Samuel

    2014-10-07

    Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.

  11. Electrodes mitigating effects of defects in organic electronic devices

    DOEpatents

    Heller, Christian Maria Anton [Albany, NY

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  12. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide) deposits a significant amount of energy in a small volume, the energy density may suffice to thermally induce structural and/or electronic changes that disable the CNT. Research may be warranted to investigate this effect in detail.

  13. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  14. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes, semiconductors and substrates compatible with low-temperature, flexible, and oxygenated and aromatic solvent-free fabrication. Materials and processes must be capable of future high volume production in order to enable low costs. In this thesis we explore several techniques to improve organic semiconductor device performance and enable new fabrication processes. In Chapter 2, I describe the integration of sub-optical-wavelength nanostructured electrodes that improve fill factor and power conversion efficiency in organic photovoltaic devices. Photovoltaic fill factor performance is one of the primary challenges facing organic photovoltaics because most organic semiconductors have poor charge mobility. Our electrical and optical measurements and simulations indicate that nanostructured electrodes improve charge extraction in organic photovoltaics. In Chapter 3, I describe a general method for maximizing the efficiency of organic photovoltaic devices by simultaneously optimizing light absorption and charge carrier collection. We analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of organic photovoltaic devices. This technique may be used to improve organic photovoltaic materials with low absorption, or short exciton diffusion and carrier-recombination lengths, opening up the device design space. In Chapter 4, I describe a process for high-quality graphene transfer onto chemically sensitive, weakly interacting organic semiconductor thin-films. Graphene is a promising flexible and highly transparent electrode for organic electronics; however, transferring graphene films onto organic semiconductor devices was previously impossible. We demonstrate a new transfer technique based on an elastomeric stamp coated with an fluorinated polymer release layer. We fabricate three classes of organic semiconductor devices: field effect transistors without high temperature annealing, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices.

  15. Methods and devices for measuring orbital angular momentum states of electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorran, Benjamin J.; Harvey, Tyler R.

    A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less

  16. The Effects of the Removal of Electronic Devices for 48 Hours on Sleep in Elite Judo Athletes.

    PubMed

    Dunican, Ian C; Martin, David T; Halson, Shona L; Reale, Reid J; Dawson, Brian T; Caldwell, John A; Jones, Maddison J; Eastwood, Peter R

    2017-10-01

    This study examined the effects of evening use of electronic devices (i.e., smartphones, etc.) on sleep quality and next-day athletic and cognitive performance in elite judo athletes. Over 6 consecutive days and nights, 23 elite Australian judo athletes were monitored while attending a camp at the Australian Institute of Sport (AIS). In 14 athletes, all electronic devices were removed on days 3 and 4 (i.e., for 48 hours: the "device-restricted group"), whereas 9 were permitted to use their devices throughout the camp (the "control group"). All athletes wore an activity monitor (Readiband) continuously to provide measures of sleep quantity and quality. Other self-reported (diary) measures included time in bed, electronic device use, and rate of perceived exertion during training periods. Cognitive performance (Cogstate) and physical performance (single leg triple hop test) were also measured. When considering night 2 as a "baseline" for each group, removal of electronic devices on nights 3 and 4 (device-restricted group) resulted in no significant differences in any sleep-related measure between the groups. When comparing actigraphy-based measures of sleep to subjective measures, all athletes significantly overestimated sleep duration by 58 ± 85 minutes (p = 0.001) per night and underestimated time of sleep onset by 37 ± 72 minutes (p = 0.001) per night. No differences in physical or cognitive function were observed between the groups. This study has shown that the removal of electronic devices for a period of two nights (48 hours) during a judo camp does not affect sleep quality or quantity or influence athletic or cognitive performance.

  17. Emission analysis of large number of various passenger electronic devices in aircraft

    NASA Astrophysics Data System (ADS)

    Schüür, Jens; Oppermann, Lukas; Enders, Achim; Nunes, Rafael R.; Oertel, Carl-Henrik

    2016-09-01

    The ever increasing use of PEDs (passenger or portable electronic devices) has put pressure on the aircraft industry as well as operators and administrations to reevaluate established restrictions in PED-use on airplanes in the last years. Any electronic device could cause electromagnetic interference to the electronics of the airplane, especially interference at receiving antennas of sensitive wireless navigation and communication (NAV/COM) systems. This paper presents a measurement campaign in an Airbus A320. 69 test passengers were asked to actively use a combination of about 150 electronic devices including many attached cables, preferentially with a high data load on their buses, to provoke maximal emissions. These emissions were analysed within the cabin as well as at the inputs of aircraft receiving antennas outside of the fuselage. The emissions of the electronic devices as well as the background noise are time-variant, so just comparing only one reference and one transmission measurement is not sufficient. Repeated measurements of both cases lead to a more reliable first analysis. Additional measurements of the absolute received power at the antennas of the airplane allow a good estimation of the real interference potential to aircraft NAV/COM systems. Although there were many measured emissions within the cabin, there were no disturbance signals detectable at the aircraft antennas.

  18. Flexible energy-storage devices: design consideration and recent progress.

    PubMed

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 33: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  20. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 25: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in the module:…

  1. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  2. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  3. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  4. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  5. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.

  6. Stretchable electronics for wearable and high-current applications

    NASA Astrophysics Data System (ADS)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  7. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  8. Over-voltage protection system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Song; Dong, Dong; Lai, Rixin

    An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less

  9. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  10. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films

    NASA Astrophysics Data System (ADS)

    Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo

    2014-06-01

    Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.

  11. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron-acceptor (p)-doped and electron-donor (n)-doped, nanometer- thick semiconductor layers.

  12. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.

  13. Consumer Sleep Technologies: A Review of the Landscape

    PubMed Central

    Ko, Ping-Ru T.; Kientz, Julie A.; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A.; Watson, Nathaniel F.

    2015-01-01

    Objective: To review sleep related consumer technologies, including mobile electronic device “apps,” wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. Methods: We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included “sleep technology,” “sleep app,” and “sleep monitoring.” Results: Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Conclusions: Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. Citation: Ko PR, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med 2015;11(12):1455–1461. PMID:26156958

  14. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    ScienceCinema

    Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States

    2017-12-09

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ‘wavy’ buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  15. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    NASA Astrophysics Data System (ADS)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  16. Relativistic electron beam device

    DOEpatents

    Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

    1975-07-01

    A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

  17. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... of that patent? Please discuss theories in law, equity, and the public interest, and identify which... attachments or exhibits related to discussion of the public interest. Initial submissions by other members of the public are limited to 50 pages, not including any attachments or exhibits related to discussion of...

  18. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  19. Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin

    2013-10-01

    Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.

  20. Peel-and-stick: mechanism study for efficient fabrication of flexible/transparent thin-film electronics.

    PubMed

    Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin

    2013-10-10

    Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.

  1. Secure content objects

    DOEpatents

    Evans, William D [Cupertino, CA

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  2. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  3. Structured organic materials and devices using low-energy particle beams

    DOEpatents

    Vardeny, Z. Valy; Li, Sergey; Delong, Matthew C.; Jiang, Xiaomei

    2005-09-13

    Organic materials exposed to an electron beam for patterning a substrate (1) to make an optoelectronic organic device which includes a source, a drain, gate dielectric layer (4), and a substrate for emitting light.

  4. Low-frequency 1/f noise in graphene devices

    NASA Astrophysics Data System (ADS)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  5. Low-frequency 1/f noise in graphene devices.

    PubMed

    Balandin, Alexander A

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  6. Annual Conference on Nuclear and Space Radiation Effects, 19th, Las Vegas, NV, July 20-22, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Long, D. M.

    1982-01-01

    The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.

  7. Nuclear and radiological terrorism: continuing education article.

    PubMed

    Anderson, Peter D; Bokor, Gyula

    2013-06-01

    Terrorism involving radioactive materials includes improvised nuclear devices, radiation exposure devices, contamination of food sources, radiation dispersal devices, or an attack on a nuclear power plant or a facility/vehicle that houses radioactive materials. Ionizing radiation removes electrons from atoms and changes the valence of the electrons enabling chemical reactions with elements that normally do not occur. Ionizing radiation includes alpha rays, beta rays, gamma rays, and neutron radiation. The effects of radiation consist of stochastic and deterministic effects. Cancer is the typical example of a stochastic effect of radiation. Deterministic effects include acute radiation syndrome (ARS). The hallmarks of ARS are damage to the skin, gastrointestinal tract, hematopoietic tissue, and in severe cases the neurovascular structures. Radiation produces psychological effects in addition to physiological effects. Radioisotopes relevant to terrorism include titrium, americium 241, cesium 137, cobalt 60, iodine 131, plutonium 238, califormium 252, iridium 192, uranium 235, and strontium 90. Medications used for treating a radiation exposure include antiemetics, colony-stimulating factors, antibiotics, electrolytes, potassium iodine, and chelating agents.

  8. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration.

    PubMed

    Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E

    2018-02-01

    The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  10. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  11. Electronic voltage and current transformers testing device.

    PubMed

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  12. Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays

    PubMed Central

    Jeong, Jaeyoung; Kim, Juho; Song, Kwangsun; Autumn, Kellar; Lee, Jongho

    2014-01-01

    Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional ‘geckoprinted’ microelectronic devices provides a proof of concept of our results in practical applications. PMID:25056216

  13. Next-generation pacemakers: from small devices to biological pacemakers.

    PubMed

    Cingolani, Eugenio; Goldhaber, Joshua I; Marbán, Eduardo

    2018-03-01

    Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.

  14. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics.

    PubMed

    Park, Gayoung; Chung, Hyun-Joong; Kim, Kwanghee; Lim, Seon Ah; Kim, Jiyoung; Kim, Yun-Soung; Liu, Yuhao; Yeo, Woon-Hong; Kim, Rak-Hwan; Kim, Stanley S; Kim, Jong-Seon; Jung, Yei Hwan; Kim, Tae-Il; Yee, Cassian; Rogers, John A; Lee, Kyung-Mi

    2014-04-01

    Recent development of flexible/stretchable integrated electronic sensors and stimulation systems has the potential to establish an important paradigm for implantable electronic devices, where shapes and mechanical properties are matched to those of biological tissues and organs. Demonstrations of tissue and immune biocompatibility are fundamental requirements for application of such kinds of electronics for long-term use in the body. Here, a comprehensive set of experiments studies biocompatibility on four representative flexible/stretchable device platforms, selected on the basis of their versatility and relevance in clinical usage. The devices include flexible silicon field effect transistors (FETs) on polyimide and stretchable silicon FETs, InGaN light-emitting diodes (LEDs), and AlInGaPAs LEDs, each on low modulus silicone substrates. Direct cytotoxicity measured by exposure of a surrogate fibroblast line and leachable toxicity by minimum essential medium extraction testing reveal that all of these devices are non-cytotoxic. In vivo immunologic and tissue biocompatibility testing in mice indicate no local inflammation or systemic immunologic responses after four weeks of subcutaneous implantation. The results show that these new classes of flexible implantable devices are suitable for introduction into clinical studies as long-term implantable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrated circuits for accurate linear analogue electric signal processing

    NASA Astrophysics Data System (ADS)

    Huijsing, J. H.

    1981-11-01

    The main lines in the design of integrated circuits for accurate analog linear electric signal processing in a frequency range including DC are investigated. A categorization of universal active electronic devices is presented on the basis of the connections of one of the terminals of the input and output ports to the common ground potential. The means for quantifying the attributes of four types of universal active electronic devices are included. The design of integrated operational voltage amplifiers (OVA) is discussed. Several important applications in the field of general instrumentation are numerically evaluated, and the design of operatinal floating amplifiers is presented.

  16. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device's gate contact and the existence of an HEMT-unique "two-dimensional electron gas" (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literature.

  17. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  18. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  19. Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun

    2017-09-01

    2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    PubMed

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p < 0.001). Most (>90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  1. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  2. Organic photosensitive devices

    DOEpatents

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  3. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  4. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...

  5. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  6. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  7. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.

    PubMed

    Long, Yun-Ze; Yu, Miao; Sun, Bin; Gu, Chang-Zhi; Fan, Zhiyong

    2012-06-21

    Semiconducting inorganic nanowires (NWs), nanotubes and nanofibers have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics, chemical/biological/optical sensing, and energy harvesting, storage and conversion, etc. Besides the top-down approaches such as conventional lithography technologies, nanowires are commonly grown by the bottom-up approaches such as solution growth, template-guided synthesis, and vapor-liquid-solid process at a relatively low cost. Superior performance has been demonstrated using nanowires devices. However, most of the nanowire devices are limited to the demonstration of single devices, an initial step toward nanoelectronic circuits, not adequate for production on a large scale at low cost. Controlled and uniform assembly of nanowires with high scalability is still one of the major bottleneck challenges towards the materials and device integration for electronics. In this review, we aim to present recent progress toward nanowire device assembly technologies, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field-directed assembly, contact/roll printing, planar growth, bridging method, and electrospinning, etc. And their applications in high-performance, flexible electronics, sensors, photovoltaics, bioelectronic interfaces and nano-resonators are also presented.

  8. Perspectives for Electronic Books in the World Wide Web Age.

    ERIC Educational Resources Information Center

    Bry, Francois; Kraus, Michael

    2002-01-01

    Discusses the rapid growth of the World Wide Web and the lack of use of electronic books and suggests that specialized contents and device independence can make Web-based books compete with print. Topics include enhancing the hypertext model of XML; client-side adaptation, including browsers and navigation; and semantic modeling. (Author/LRW)

  9. Taming Disruptive Technologies, or How To Remain Relevant in the Digital Age.

    ERIC Educational Resources Information Center

    Blackwell, Philip

    2001-01-01

    Discusses electronic books as a disruptive technology, that is, a technology that has appeal to its users but upsets the traditional models. Highlights include a history of print technology; types of electronic books; reader devices; stakeholders, including users, librarians, and publishers; and how vendors can remain relevant. (LRW)

  10. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...

  11. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  12. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  13. Development of Electronics for Low-Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

    2001-01-01

    Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

  14. Power SEMICONDUCTORS—STATE of Art and Future Trends

    NASA Astrophysics Data System (ADS)

    Benda, Vitezslav

    2011-06-01

    The importance of effective energy conversion control, including power generation from renewable and environmentally clean energy sources, increases due to rising energy demand. Power electronic systems for controlling and converting electrical energy have become the workhorse of modern society in many applications, both in industry and at home. Power electronics plays a very important role in traction and can be considered as brawns of robotics and automated manufacturing systems. Power semiconductor devices are the key electronic components used in power electronic systems. Advances in power semiconductor technology have improved the efficiency, size, weight and cost of power electronic systems. At present, IGCTs, IGBTs, and MOSFETs represent modern switching devices. Power integrated circuits (PIC) have been developed for the use of power converters for portable, automotive and aerospace applications. For advanced applications, new materials (SiC and GaN) have been introduced. This paper reviews the state of these devices and elaborates on their potentials in terms of higher voltages, higher power density, and better switching performance.

  15. A summary of the research program in the broad field of electronics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.

  16. Method of making a silicon nanowire device

    DOEpatents

    None, None

    2017-05-23

    There is provided an electronic device and a method for its manufacture. The device comprises an elongate silicon nanowire less than 0.5 .mu.m in cross-sectional dimensions and having a hexagonal cross-sectional shape due to annealing-induced energy relaxation. The method, in examples, includes thinning the nanowire through iterative oxidation and etching of the oxidized portion.

  17. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    NASA Astrophysics Data System (ADS)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  18. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  19. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  20. Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2

    NASA Astrophysics Data System (ADS)

    Kim, Sera; Kim, Jung Ho; Kim, Dohyun; Hwang, Geunwoo; Baik, Jaeyoon; Yang, Heejun; Cho, Suyeon

    2017-06-01

    Monoclinic group 6 transition metal dichalcogenides (TMDs) have been extensively studied for their intriguing 2D physics (e.g. spin Hall insulator) as well as for ohmic homojunction contacts in 2D device applications. A critical prerequisite for those applications is thickness control of the monoclinic 2D materials, which allows subtle engineering of the topological states or electronic bandgaps. Local thickness control enables the realization of clean homojunctions between different electronic states, and novel device operation in a single material. However, conventional fabrication processes, including chemical methods, typically produce non-homogeneous and relatively thick monoclinic TMDs, due to their distorted octahedral structures. Here, we report on a post-patterning technique using laser-irradiation to fabricate homojunctions between two different thickness areas in monoclinic MoTe2. A thickness-dependent electronic change from a metallic to semiconducting state, resulting in an electronic homojunction, was realized by the optical patterning of pristine MoTe2 flakes, and a pre-patterned device channel of monoclinic MoTe2 with a thickness-resolution of 5 nm. Our work provides insight on an optical post-process method for controlling thickness, as a promising approach for fabricating impurity-free 2D TMDs homojunction devices.

  1. Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics.

    PubMed

    Ahmadraji, Termeh; Gonzalez-Macia, Laura; Ritvonen, Tapio; Willert, Andreas; Ylimaula, Satu; Donaghy, David; Tuurala, Saara; Suhonen, Mika; Smart, Dave; Morrin, Aoife; Efremov, Vitaly; Baumann, Reinhard R; Raja, Munira; Kemppainen, Antti; Killard, Anthony J

    2017-07-18

    Organic and printed electronics integration has the potential to revolutionize many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon integrated circuits via pick and place or using organic electronic circuits. The device was capable of measuring 8 μL samples of both hydrogen peroxide (0-5 mM, 2.72 × 10 -6 A·mM -1 ) and total cholesterol in serum from 0 to 9 mM (1.34 × 10 -8 A·mM -1 , r 2 = 0.99, RSD < 10%, n = 3), and the result was output on a semiquantitative linear bar display. The device could operate for 10 min via a printed battery, and display the result for many hours or days. A mobile phone "app" was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.

  2. Interfacing with the brain using organic electronics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Malliaras, George G.

    2015-10-01

    Implantable electrodes are being used for diagnostic purposes, for brain-machine interfaces, and for delivering electrical stimulation to alleviate the symptoms of diseases such as Parkinson's. The field of organic electronics made available devices with a unique combination of attractive properties, including mixed ionic/electronic conduction, mechanical flexibility, enhanced biocompatibility, and capability for drug delivery. I will present examples of organic electrodes, transistors and other devices for recording and stimulation of brain activity and discuss how they can improve our understanding of brain physiology and pathology, and how they can be used to deliver new therapies.

  3. Programmable Analog Memory Resistors For Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Thakoor, Sarita; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Electrical resistance of new solid-state device altered repeatedly by suitable control signals, yet remains at steady value when control signal removed. Resistance set at low value ("on" state), high value ("off" state), or at any convenient intermediate value and left there until new value desired. Circuits of this type particularly useful in nonvolatile, associative electronic memories based on models of neural networks. Such programmable analog memory resistors ideally suited as synaptic interconnects in "self-learning" neural nets. Operation of device depends on electrochromic property of WO3, which when pure is insulator. Potential uses include nonvolatile, erasable, electronically programmable read-only memories.

  4. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  5. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-07-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  6. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells

    NASA Astrophysics Data System (ADS)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K.; Aji, Vivek; Gabor, Nathaniel M.

    2017-12-01

    Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

  7. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  8. Electronic Voltage and Current Transformers Testing Device

    PubMed Central

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510

  9. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  10. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  11. Experimental Determination of the Low-Energy Spectral Component of Cobalt-60 Sources

    DTIC Science & Technology

    1986-04-01

    dependence of the TLD detectors and the dose enhancement due to the lack of electronic equilibrium have been included in the figure. A series of...energy spectrum of cobalt,60 ir- radiators is essential to the proper interpretation of dosimetry and device test data in radiation response testing...of electronic devices and circuits. It is shown that the relative magnitude of the low-energy spec- tral component of cobalt󈨀 gamma radiation can be

  12. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  13. Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.

    2015-01-01

    NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.

  14. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  15. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.

  16. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

  17. High-Tech Conservation: Information-Age Tools Have Revolutionized the Work of Ecologists.

    ERIC Educational Resources Information Center

    Chiles, James R.

    1992-01-01

    Describes a new direction for conservation efforts influenced by the advance of the information age and the introduction of many technologically sophisticated information collecting devices. Devices include microscopic computer chips, miniature electronic components, and Earth-observation satellite. (MCO)

  18. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.

  19. Application of Multipurpose Cadastre to Evaluate Energy Security of Land Parcel (Case Study: Gedung A and Gedung B, Institut Teknologi Sumatra)

    NASA Astrophysics Data System (ADS)

    Alif, S. M.; Nugroho, A. P.; Leksono, B. E.

    2018-03-01

    Energy security has one of its dimensions: Short-term energy security which focuses on the ability of the energy system to react promptly to sudden changes within the supply-demand balance. Non-energy components (such as land parcel) that comprise an energy system are analysed comprehensively with other component to measure energy security related to energy supply. Multipurpose cadastre which is an integrated land information system containing legal, physical, and cultural is used to evaluate energy (electrical energy) security of land parcel. The fundamental component of multipurpose cadastre used to evaluate energy security is attribute data which is the value of land parcel facilities. Other fundamental components (geographic control data, base map data, cadastral data) are used as position information and provide weight in room (part of land parcel) valuation. High value-room means the room is comfortable and/or used productively by its occupant. The method of valuation is by comparing one facility to other facilities. Facilities included in room valuation are relatively static items (such as chair, desk, and cabinet) except lamps and other electronic devices. The room value and number of electronic devices which consume electrical energy are correlated with each other. Consumption of electrical energy of electronic devices in the room with average value remains constant while consumption in other room needs to be evaluated to save the energy. The result of this research shows that room value correlate weakly with number of electronic device in corresponding room. It shows excess energy consumed in low-value room. Although numbers of electronic devices do not always mean the consumption of electrical energy and there are plenty electronic devices, it is recommended for occupant to be careful in utilizing electronic devices in low-value room to minimize energy consumption.

  20. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    NASA Astrophysics Data System (ADS)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.

  1. Views of patients and professionals about electronic multicompartment medication devices: a qualitative study

    PubMed Central

    Hall, Jill; Bond, Christine; Kinnear, Moira; McKinstry, Brian

    2016-01-01

    Objectives To explore the perceived acceptability, advantages and disadvantages of electronic multicompartment medication devices. Design Qualitative study using 8 focus groups and 10 individual semistructured interviews. Recordings were transcribed and analysed thematically. Strategies were employed to ensure the findings were credible and trustworthy. Participants and setting Community pharmacists (n=11), general practitioners (n=9), community nurses (n=12) and social care managers (n=8) were recruited from the National Health Service (NHS) and local authority services. Patients (n=15) who were current conventional or electronic multicompartment medication device users or had medication adherence problems were recruited from community pharmacies. 3 informal carers participated. Results Electronic multicompartment medication devices which prompt the patient to take medication may be beneficial for selected individuals, particularly those with cognitive impairment, but who are not seriously impaired, provided they have a good level of dexterity. They may also assist individuals where it is important that medication is taken at fixed time intervals. These are likely to be people who are being supported to live alone. No single device suited everybody; smaller/lighter devices were preferred but their usefulness was limited by the small number/size of storage compartments. Removing medications was often challenging. Transportability was an important factor for patients and carers. A carer's alert if medication is not taken was problematic with multiple barriers to implementation and no consensus as to who should receive the alert. There was a lack of enthusiasm among professionals, particularly among pharmacists, due to concerns about responsibility and funding for devices as well as ensuring devices met regulatory standards for storage and labelling. Conclusions This study provides indicators of which patients might benefit from an electronic multicompartment medication device as well as the kinds of features to consider when matching a patient with a device. It also highlights other considerations for successful implementation including issues of responsibility, regulation and funding. PMID:27798025

  2. Spreading devices into a 2-D module layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.; Gupta, Vipin P.; Nielson, Gregory N.

    An apparatus, method, and system, the apparatus including a receiving member dimensioned to receive an array of microelectronic devices; and a linkage member coupled to the receiving member, the linkage member configured to move the receiving member in at least two dimensions so as to modify a spacing between the electronic devices within the array of microelectronic devices received by the receiving member. The method including coupling an array of microelectronic devices to an expansion assembly; and expanding the expansion assembly so as to expand the array of microelectronic devices in at least two directions within a single plane. Themore » system including a support member; an expansion assembly coupled to the support member, the expansion assembly having a plurality of receiving members configured to move in at least two dimensions within a single plane; and a plurality of microelectronic devices coupled to each of the plurality of receiving members.« less

  3. Strategies to use tablet computers for collection of electronic patient-reported outcomes.

    PubMed

    Schick-Makaroff, Kara; Molzahn, Anita

    2015-01-22

    Mobile devices are increasingly being used for data collection in research. However, many researchers do not have experience in collecting data electronically. Hence, the purpose of this short report was to identify issues that emerged in a study that incorporated electronic capture of patient-reported outcomes in clinical settings, and strategies used to address the issues. The issues pertaining to electronic patient-reported outcome data collection were captured qualitatively during a study on use of electronic patient-reported outcomes in two home dialysis units. Fifty-six patients completed three surveys on tablet computers, including the Kidney Disease Quality of Life-36, the Edmonton Symptom Assessment Scale, and a satisfaction measure. Issues that arose throughout the research process were recorded during ethics reviews, implementation process, and data collection. Four core issues emerged including logistics of technology, security, institutional and financial support, and electronic design. Although use of mobile devices for data collection has many benefits, it also poses new challenges for researchers. Advance consideration of possible issues that emerge in the process, and strategies that can help address these issues, may prevent disruption and enhance validity of findings.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less

  5. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  6. Insertion device and method for accurate and repeatable target insertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubeli, III, Joseph F.; Shinn, Michelle D.; Bevins, Michael E.

    The present invention discloses a device and a method for inserting and positioning a target within a free electron laser, particle accelerator, or other such device that generates or utilizes a beam of energy or particles. The system includes a three-point registration mechanism that insures angular and translational accuracy and repeatability of positioning upon multiple insertions within the same structure.

  7. Microwave Plasma Based Single-Step Method for Generation of Carbon Nanostructures

    DTIC Science & Technology

    2013-07-01

    Técnico, Technical University of Lisbon, Portugal 2 Mechanical and Aerospace Engeneering , Naval Postgraduate School, Monterey, CA 93943, U.S.A...Plasma environments constitute powerful tools in materials science due to their operation as thermal and chemical reactors. A microwave, atmospheric...applications include electronic devices, transparent conductive films, mechanical devices, chemical sensors, spintronic devices. Moreover, it shows enormous

  8. Reproducible Growth of High-Quality Cubic-SiC Layers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony

    2004-01-01

    Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  9. Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices

    DOE PAGES

    Kaplar, R. J.; Allerman, A. A.; Armstrong, A. M.; ...

    2016-12-20

    “Ultra” wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG > 3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludesmore » with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.« less

  10. Detection and response to unauthorized access to a communication device

    DOEpatents

    Smith, Rhett; Gordon, Colin

    2015-09-08

    A communication gateway consistent with the present disclosure may detect unauthorized physical or electronic access and implement security actions in response thereto. A communication gateway may provide a communication path to an intelligent electronic device (IED) using an IED communications port configured to communicate with the IED. The communication gateway may include a physical intrusion detection port and a network port. The communication gateway may further include control logic configured to evaluate physical intrusion detection signal. The control logic may be configured to determine that the physical intrusion detection signal is indicative of an attempt to obtain unauthorized access to one of the communication gateway, the IED, and a device in communication with the gateway; and take a security action based upon the determination that the indication is indicative of the attempt to gain unauthorized access.

  11. Progress and Prospects in Stretchable Electroluminescent Devices

    NASA Astrophysics Data System (ADS)

    Wang, Jiangxin; Lee, Pooi See

    2017-03-01

    Stretchable electroluminescent (EL) devices are a new form of mechanically deformable electronics that are gaining increasing interests and believed to be one of the essential technologies for next generation lighting and display applications. Apart from the simple bending capability in flexible EL devices, the stretchable EL devices are required to withstand larger mechanical deformations and accommodate stretching strain beyond 10%. The excellent mechanical conformability in these devices enables their applications in rigorous mechanical conditions such as flexing, twisting, stretching, and folding.The stretchable EL devices can be conformably wrapped onto arbitrary curvilinear surface and respond seamlessly to the external or internal forces, leading to unprecedented applications that cannot be addressed with conventional technologies. For example, they are in demand for wide applications in biomedical-related devices or sensors and soft interactive display systems, including activating devices for photosensitive drug, imaging apparatus for internal tissues, electronic skins, interactive input and output devices, robotics, and volumetric displays. With increasingly stringent demand on the mechanical requirements, the fabrication of stretchable EL device is encountering many challenges that are difficult to resolve. In this review, recent progresses in the stretchable EL devices are covered with a focus on the approaches that are adopted to tackle materials and process challenges in stretchable EL devices and delineate the strategies in stretchable electronics. We first introduce the emission mechanisms that have been successfully demonstrated on stretchable EL devices. Limitations and advantages of the different mechanisms for stretchable EL devices are also discussed. Representative reports are reviewed based on different structural and material strategies. Unprecedented applications that have been enabled by the stretchable EL devices are reviewed. Finally, we summarize with our perspectives on the approaches for the stretchable EL devices and our proposals on the future development in these devices.

  12. 21 CFR 876.1620 - Urodynamics measurement system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of the muscles associated with urination. The device system may include transducers, electronic... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urodynamics measurement system. 876.1620 Section... measurement system. (a) Identification. A urodynamics measurement system is a device used to measure volume...

  13. 21 CFR 876.1620 - Urodynamics measurement system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the muscles associated with urination. The device system may include transducers, electronic... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urodynamics measurement system. 876.1620 Section... measurement system. (a) Identification. A urodynamics measurement system is a device used to measure volume...

  14. 21 CFR 876.1620 - Urodynamics measurement system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the muscles associated with urination. The device system may include transducers, electronic... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urodynamics measurement system. 876.1620 Section... measurement system. (a) Identification. A urodynamics measurement system is a device used to measure volume...

  15. 21 CFR 876.1620 - Urodynamics measurement system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the muscles associated with urination. The device system may include transducers, electronic... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urodynamics measurement system. 876.1620 Section... measurement system. (a) Identification. A urodynamics measurement system is a device used to measure volume...

  16. Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Howard, James W., Jr.; Ladbury, Ray L.; Barth, Janet L.; Kniffin, Scott D.; Seidleck, Christina M.; Marshall, Paul W.; Marshall, Cheryl J.; hide

    2000-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. We also present data on the susceptibility of parts to functional degradation resulting from total ionizing dose at low dose rates (0.003-0.33 Rads(Si)/s). Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs), and DC-DC converters, among others.

  17. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  18. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  19. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  20. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    NASA Astrophysics Data System (ADS)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  1. Methods for synchronizing a countdown routine of a timer key and electronic device

    DOEpatents

    Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.

    2015-06-02

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  2. Advancing medical device innovation through collaboration and coordination of structured data capture pilots: Report from the Medical Device Epidemiology Network (MDEpiNet) Specific, Measurable, Achievable, Results-Oriented, Time Bound (SMART) Think Tank.

    PubMed

    Reed, Terrie L; Drozda, Joseph P; Baskin, Kevin M; Tcheng, James; Conway, Karen; Wilson, Natalia; Marinac-Dabic, Danica; Heise, Theodore; Krucoff, Mitchell W

    2017-12-01

    The Medical Device Epidemiology Network (MDEpiNet) is a public private partnership (PPP) that provides a platform for collaboration on medical device evaluation and depth of expertise for supporting pilots to capture, exchange and use device information for improving device safety and protecting public health. The MDEpiNet SMART Think Tank, held in February, 2013, sought to engage expert stakeholders who were committed to improving the capture of device data, including Unique Device Identification (UDI), in key electronic health information. Prior to the Think Tank there was limited collaboration among stakeholders beyond a few single health care organizations engaged in electronic capture and exchange of device data. The Think Tank resulted in what has become two sustainable multi-stakeholder device data capture initiatives, BUILD and VANGUARD. These initiatives continue to mature within the MDEpiNet PPP structure and are well aligned with the goals outlined in recent FDA-initiated National Medical Device Planning Board and Medical Device Registry Task Force white papers as well as the vision for the National Evaluation System for health Technology.%. Published by Elsevier Inc.

  3. From nanoelectronics to nano-spintronics.

    PubMed

    Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming

    2011-01-01

    Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.

  4. Bending induced electrical response variations in ultra-thin flexible chips and device modeling

    NASA Astrophysics Data System (ADS)

    Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder

    2017-09-01

    Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.

  5. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.

  6. Carbon footprint of electronic devices

    NASA Astrophysics Data System (ADS)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  7. Electronic tools for infectious diseases and microbiology

    PubMed Central

    Burdette, Steven D

    2007-01-01

    Electronic tools for infectious diseases and medical microbiology have the ability to change the way the diagnosis and treatment of infectious diseases are approached. Medical information today has the ability to be dynamic, keeping up with the latest research or clinical issues, instead of being static and years behind, as many textbooks are. The ability to rapidly disseminate information around the world opens up the possibility of communicating with people thousands of miles away to quickly and efficiently learn about emerging infections. Electronic tools have expanded beyond the desktop computer and the Internet, and now include personal digital assistants and other portable devices such as cellular phones. These pocket-sized devices have the ability to provide access to clinical information at the point of care. New electronic tools include e-mail listservs, electronic drug databases and search engines that allow focused clinical questions. The goal of the present article is to provide an overview of how electronic tools can impact infectious diseases and microbiology, while providing links and resources to allow users to maximize their efficiency in accessing this information. Links to the mentioned Web sites and programs are provided along with other useful electronic tools. PMID:18978984

  8. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  9. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    PubMed Central

    Cataldo, Sebastiano; Pignataro, Bruno

    2013-01-01

    This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362

  10. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  11. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  12. GaN Initiative for Grid Applications (GIGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -evenmore » for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.« less

  13. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  14. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  15. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...

  16. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  17. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  18. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  19. Multipurpose panel, phase 1, study report. [display utilizing multiplexing and digital techniques

    NASA Technical Reports Server (NTRS)

    Parkin, W.

    1975-01-01

    The feasibility of a multipurpose panel which provides a programmable electronic display for changeable panel nomenclature, multiplexes similar indicator display signals to the signal display, and demultiplexes command signals is examined. Topics discussed include: electronic display technology, miniaturized electronic and memory devices, and data management systems which employ digital address and multiplexing.

  20. Electronic Paint: Understanding Children's Representation through Their Interactions with Digital Paint

    ERIC Educational Resources Information Center

    Matthews, John; Seow, Peter

    2007-01-01

    This article investigates very young children's use of a stylus-driven, electronic painting and drawing on the tablet PC. The authors compare their development in the use of this device with their use of other mark-making media, including those which derive from pencil and paper technologies and also with mouse-driven electronic paintbox programs.…

  1. Deadly distractions.

    PubMed

    Zuzek, Crystal

    2013-04-01

    In 2011, the National Transportation Safety Board urged all states to ban the use of portable electronic devices while driving, including hand-held and hands-free devices. Texting while driving concerns several Texas legislators, who have filed bills, backed by the Texas Medical Association, to ban the practice. TMA physicians recognize that the use of hand-held and hands-free devices and other factors associated with distracted driving affect their patients' safety.

  2. Total-dose radiation effects data for semiconductor devices, volume 1. [radiation resistance of components for the Galileo Project

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.

  3. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  4. Carbon Nanotube Devices Engineered by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Prisbrey, Landon

    This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their sensitivity to electric fields with very small detection volumes. In this work we demonstrate these devices as single-molecule sensors to detect individual N-(3-Dimethylaminopropyl)- N'-ethylcarbodiimide (EDC) molecules in an aqueous environment. An exciting application of these sensors is to study individual macromolecules participating in biological reactions, or undergoing conformational change. However, it is unknown whether the associated electrostatic signals exceed detection limits. We report calculations which reveal that enzymatic processes, such as substrate binding and internal protein dynamics, are detectable at the single-molecule level using existing atomic-sized transistors. Finally, we demonstrate the use of AFM-based engineering to control the function of nanoelectronic devices without creating a point defect in the sidewall of the nanotube. With a biased AFM probe we write charge patterns on a silicon dioxide surface in close proximity to a carbon nanotube device. The written charge induces image charges in the nearby electronics, and can modulate the Fermi level in a nanotube by +/-1 eV. We use this technique to induce a spatially controlled doping charge pattern in the conduction channel, and thereby reconfigure a field-effect transistor into a pn junction. Other simple charge patterns could be used to create other devices. The doping charge persists for days and can be erased and rewritten, offering a new tool for prototyping nanodevices and optimizing electrostatic doping profiles.

  5. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  6. Smart Technology in Lung Disease Clinical Trials.

    PubMed

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.

  7. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors

    NASA Astrophysics Data System (ADS)

    Weber, Walter M.; Mikolajick, Thomas

    2017-06-01

    Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.

  8. Development of a Branched Radio-Frequency Ion Trap for Electron Based Dissociation and Related Applications

    PubMed Central

    Baba, Takashi; Campbell, J. Larry; Le Blanc, J. C. Yves; Baker, Paul R. S.; Hager, James W.; Thomson, Bruce A.

    2017-01-01

    Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap (i.e., a branched ion trap). These devices have the ability to perform electron capture dissociation (ECD) on multiply protonated peptide/proteins; in addition, the electron impact excitation of ions from organics (EIEIO) can be also performed on singly charged molecules using such a device. In this article, we review the development of this technology, in particular on how reaction speed for EIEIO analyses on singly charged ions can be improved. We also overview some unique, recently reported applications in both lipidomics and glycoproteomics. PMID:28630811

  9. Development of a Branched Radio-Frequency Ion Trap for Electron Based Dissociation and Related Applications.

    PubMed

    Baba, Takashi; Campbell, J Larry; Le Blanc, J C Yves; Baker, Paul R S; Hager, James W; Thomson, Bruce A

    2017-01-01

    Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap ( i.e. , a branched ion trap). These devices have the ability to perform electron capture dissociation (ECD) on multiply protonated peptide/proteins; in addition, the electron impact excitation of ions from organics (EIEIO) can be also performed on singly charged molecules using such a device. In this article, we review the development of this technology, in particular on how reaction speed for EIEIO analyses on singly charged ions can be improved. We also overview some unique, recently reported applications in both lipidomics and glycoproteomics.

  10. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  11. Synthesis and Characterization of SF-PPV-I

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Fan, Z.; Taft, C.; Sun, S.

    2001-01-01

    Conjugated electro-active polymers find their potential applications in developing variety inexpensive and flexible shaped electronic and photonic devices, such as photovoltaic or photo/electro light emitting devices. In many of these opto-electronic polymeric materials, certain electron rich donors and electron deficient acceptors are needed in order to fine-tune the electronic or photonic properties of the desired materials and structures. While many donor type of conjugated polymers have been widely studied and developed in the past decades, there are relatively fewer acceptor type of conjugated polymers have been developed. Key acceptor type conjugated polymers developed so far include C60 and CN-PPV, and each has its limitations. Due to the complexity and diversity of variety future electronic materials and structural needs, alternative and synthetically amenable acceptor conjugated polymers need to be developed. In this paper, we present the synthesis and characterization of a new acceptor conjugated polymer, a sulfone derivatized polyphenylenevinylene "SF-PPV".

  12. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  13. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...

  14. Method of electroplating a conversion electron emitting source on implant

    DOEpatents

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  15. Redox active polymer devices and methods of using and manufacturing the same

    DOEpatents

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-06-05

    The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.

  16. Modeling recombination processes and predicting energy conversion efficiency of dye sensitized solar cells from first principles

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Meng, Sheng

    2014-03-01

    We present a set of algorithms based on solo first principles calculations, to accurately calculate key properties of a DSC device including sunlight harvest, electron injection, electron-hole recombination, and open circuit voltages. Two series of D- π-A dyes are adopted as sample dyes. The short circuit current can be predicted by calculating the dyes' photo absorption, and the electron injection and recombination lifetime using real-time time-dependent density functional theory (TDDFT) simulations. Open circuit voltage can be reproduced by calculating energy difference between the quasi-Fermi level of electrons in the semiconductor and the electrolyte redox potential, considering the influence of electron recombination. Based on timescales obtained from real time TDDFT dynamics for excited states, the estimated power conversion efficiency of DSC fits nicely with the experiment, with deviation below 1-2%. Light harvesting efficiency, incident photon-to-electron conversion efficiency and the current-voltage characteristics can also be well reproduced. The predicted efficiency can serve as either an ideal limit for optimizing photovoltaic performance of a given dye, or a virtual device that closely mimicking the performance of a real device under different experimental settings.

  17. 17 CFR 30.13 - Commission certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... securities are traded, which have an effect on the over-all trading of the contract, including circuit... conditions of, and through the electronic trading devices identified in, a Commission staff no-action letter.... access to its electronic trading system without seeking designation as a designated contract market...

  18. 17 CFR 30.13 - Commission certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... securities are traded, which have an effect on the over-all trading of the contract, including circuit... conditions of, and through the electronic trading devices identified in, a Commission staff no-action letter.... access to its electronic trading system without seeking designation as a designated contract market...

  19. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  20. Method for in-situ cleaning of carbon contaminated surfaces

    DOEpatents

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  1. Surface roughness scattering of electrons in bulk mosfets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less

  2. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  3. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  4. Light modulating device

    DOEpatents

    Rauh, R. David; Goldner, Ronald B.

    1989-01-01

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  5. Light modulating device

    DOEpatents

    Rauh, R.D.; Goldner, R.B.

    1989-12-26

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  6. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were imaged. Away from local defects, step bunching was observed to yield step heights of hundreds of angstroms, with possible implications for the uniformity of dopants incorporated in SiC devices during fabrication. The quantitative topographic data from the AFM allow the relevant defect information to be extracted, such as the size and distribution of step bunching and the Burgers vector of screw dislocations. These atomic force microscopy results have furthered the understanding of the dynamic epitaxial SiC growth process. A model describing the observed hillock step bunching has been proposed. This cooperation between researchers involved in crystal growth, electronic device fabrication, and surface structural characterization is likely to continue as atomic force microscopy is used to improve SiC films for high-temperature electronic devices for NASA's advanced turbine engines and space power devices, as well as for future applications in the automotive industry.

  7. Electronic Tongue Containing Redox and Conductivity Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  8. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  9. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  10. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  11. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  12. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  13. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  14. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  15. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  16. 21 CFR 886.4400 - Electronic metal locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic metal locator. 886.4400 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic...

  17. 46 CFR 130.320 - Electronic position-fixing device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position-fixing device. 130.320 Section 130... CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.320 Electronic position-fixing device. Each vessel must be equipped with an electronic position-fixing device satisfactory for...

  18. Subcutaneous Interferon β-1a Administration by Electronic Auto-injector is Associated with High Adherence in Patients with Relapsing Remitting Multiple Sclerosis in a Real-life Study.

    PubMed

    Järvinen, Elina; Multanen, Juha; Atula, Sari

    2017-02-20

    The objective was to investigate adherence measured by an electronic auto-injector device, and self-reported adherence and treatment convenience in subjects with relapsing remitting multiple sclerosis (RRMS), using an electronic auto-injector Rebismart ® to self-inject interferon β-1a. Thirty one patients with RRMS using the electronic auto-injector Rebismart ® for self-injecting interferon β-1a subcutaneously three times weekly were included in a real-life clinical multicenter study for 24 weeks in Finland. Mean adherence reported by the device and mean self-assessment of adherence were studied. Reasons for missing injections and treatment convenience were assessed. Association between adherence and gender and age were studied. The mean adherence calculated from the device data was 93.5%. The mean self-assessment of adherence was 96.6%. The most common reason for missing an injection was forget-fulness. Adherence (measured by the device) was not changed over time. In the high adherence group there were more females and young patients (<30 years of age). The auto-injector was found to substantially ease the treatment by 90% of the patients. The electronic auto-injector was associated with high adherence to treatment. The device was found to ease the patient's treatment and it was perceived as easy to use. It is a convenient tool to assess patient's adherence to treatment.

  19. Thermal electron-tunneling devices as coolers and amplifiers

    NASA Astrophysics Data System (ADS)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  20. Thermal electron-tunneling devices as coolers and amplifiers

    PubMed Central

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109

  1. Finite Element Modeling of Micromachined MEMS Photon Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We havemore » used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.« less

  2. Finite element modeling of micromachined MEMS photon devices

    NASA Astrophysics Data System (ADS)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  3. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  4. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  5. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  6. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  7. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  8. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  9. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  10. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  11. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  12. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  13. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  14. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  15. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  16. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  17. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  18. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  19. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  20. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  1. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  2. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  3. 14 CFR 125.204 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Portable electronic devices. 125.204... Equipment Requirements § 125.204 Portable electronic devices. (a) Except as provided in paragraph (b) of... operation of, any portable electronic device on any U.S.-registered civil aircraft operating under this part...

  4. 14 CFR 121.306 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Portable electronic devices. 121.306... Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate... electronic device on any U.S.-registered civil aircraft operating under this part. (b) Paragraph (a) of this...

  5. 21 CFR 886.5900 - Electronic vision aid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic vision aid. 886.5900 Section 886.5900...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5900 Electronic vision aid. (a) Identification. An electronic vision aid is an AC-powered or battery-powered device that consists of an...

  6. 14 CFR 135.144 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Portable electronic devices. 135.144... Equipment § 135.144 Portable electronic devices. (a) Except as provided in paragraph (b) of this section, no... portable electronic device on any of the following U.S.-registered civil aircraft operating under this part...

  7. 46 CFR 121.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electronic position fixing devices. 121.410 Section 121... AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 121.410 Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position fixing device, capable...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jr., Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.

  9. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  10. Plasma Inter-Particle and Particle-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Patino, Marlene Idy

    An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78°. The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0° over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.

  11. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  12. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    DOEpatents

    Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  13. Total-dose radiation effects data for semiconductor devices, volume 3

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-01-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  14. Hearing Impairments. Tech Use Guide: Using Computer Technology.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    One of nine brief guides for special educators on using computer technology, this guide focuses on advances in electronic aids, computers, telecommunications, and videodiscs to assist students with hearing impairments. Electronic aids include hearing aids, telephone devices for the deaf, teletypes, closed captioning systems for television, and…

  15. Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Kaplar, Robert J.

    2017-02-01

    Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.

  16. Catalysts for use in electrochemical applications and electrodes and devices using same

    DOEpatents

    Ozkan, Umit S.; von Deak, Dieter; Biddinger, Elizabeth

    2015-09-15

    An electrode for reduction of an oxidant including a phosphorus-doped carbon-containing catalyst represented by the chemical formula CN.sub.xP.sub.y, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. A device for producing electricity by facilitating an electrochemical reaction between a fuel and an oxidant. The device including a first electrode for oxidizing the fuel to produce protons and electrons. The device further includes a second electrode in electrical communication with the first electrode when electrically connected to the external circuit. The second electrode includes a phosphorus-doped carbon-containing catalyst for reducing the oxidant and is represented by the chemical formula CN.sub.xP.sub.y, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. The device further includes an electrolyte, such as, a membrane, separating the first electrode from the second electrode.

  17. Views of patients and professionals about electronic multicompartment medication devices: a qualitative study.

    PubMed

    Hall, Jill; Bond, Christine; Kinnear, Moira; McKinstry, Brian

    2016-10-17

    To explore the perceived acceptability, advantages and disadvantages of electronic multicompartment medication devices. Qualitative study using 8 focus groups and 10 individual semistructured interviews. Recordings were transcribed and analysed thematically. Strategies were employed to ensure the findings were credible and trustworthy. Community pharmacists (n=11), general practitioners (n=9), community nurses (n=12) and social care managers (n=8) were recruited from the National Health Service (NHS) and local authority services. Patients (n=15) who were current conventional or electronic multicompartment medication device users or had medication adherence problems were recruited from community pharmacies. 3 informal carers participated. Electronic multicompartment medication devices which prompt the patient to take medication may be beneficial for selected individuals, particularly those with cognitive impairment, but who are not seriously impaired, provided they have a good level of dexterity. They may also assist individuals where it is important that medication is taken at fixed time intervals. These are likely to be people who are being supported to live alone. No single device suited everybody; smaller/lighter devices were preferred but their usefulness was limited by the small number/size of storage compartments. Removing medications was often challenging. Transportability was an important factor for patients and carers. A carer's alert if medication is not taken was problematic with multiple barriers to implementation and no consensus as to who should receive the alert. There was a lack of enthusiasm among professionals, particularly among pharmacists, due to concerns about responsibility and funding for devices as well as ensuring devices met regulatory standards for storage and labelling. This study provides indicators of which patients might benefit from an electronic multicompartment medication device as well as the kinds of features to consider when matching a patient with a device. It also highlights other considerations for successful implementation including issues of responsibility, regulation and funding. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Modeling and Optimization of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applicaitons

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.; Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.

    1996-01-01

    The development of a YBa(sub 2)Cu(sub 3)O(sub 7-(kronecker delta))(YBCO) hot-electron bolometer (HEB) quasioptical mixer for a 2.5 heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of heat diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated....a single sideband temperature of less than 2000k is predicted.

  19. Apparatus, system, and method for synchronizing a timer key

    DOEpatents

    Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A

    2014-04-22

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  20. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors

    NASA Astrophysics Data System (ADS)

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-03-01

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.

  1. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    NASA Astrophysics Data System (ADS)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  2. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  3. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Electronics Devices and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U... importation of certain wireless consumer electronics devices and components thereof by reason of infringement... wireless consumer electronics devices and components thereof that infringe one or more of claims 1, 6, 7, 9...

  4. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  5. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  6. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  7. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  8. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  9. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  10. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  11. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  12. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  13. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  14. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  15. 46 CFR 28.260 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electronic position fixing devices. 28.260 Section 28... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the...

  16. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  17. 14 CFR 91.21 - Portable electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  18. 21 CFR 25.34 - Devices and electronic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Devices and electronic products. 25.34 Section 25... ENVIRONMENTAL IMPACT CONSIDERATIONS Categorical Exclusions § 25.34 Devices and electronic products. The classes... substitutes. (c) Issuance, amendment, or repeal of a standard for a class II medical device or an electronic...

  19. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  20. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less

  1. Non-fullerene electron acceptors for organic photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  2. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  3. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  4. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  5. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  6. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  7. Use and Acceptance of AAC Systems by Children with Angelman Syndrome

    ERIC Educational Resources Information Center

    Calculator, Stephen N.

    2013-01-01

    Background: This investigation of children with Angelman syndrome (AS) examined reported uses of electronic augmentative and alternative communication (AAC) devices (i.e. VOCAs), including speech generating devices, in relation to other aided and unaided methods of communication. Materials and Method: A total of 122 parents of children with AS,…

  8. Comparing Scanning Modes for Youths with Cerebral Palsy. Final Report.

    ERIC Educational Resources Information Center

    Ottenbacher, Kenneth J.; Angelo, Jennifer

    This study of 22 individuals (ages 13-20) with cerebral palsy investigated the use of scanning, an interface technique that allows access to assistive devices such as communication boards, electronic augmentative communication devices, and computers by using a pointer, either a finger or a cursor. This packet of information includes the findings…

  9. Portable Technology Comes of Age

    ERIC Educational Resources Information Center

    Wangemann, Paul; Lewis, Nina; Squires, David A.

    2003-01-01

    The PDA was originally conceived of as a portable handheld electronic device that provided a user with a tool to organize his or her life through easy access to a personal calendar, daily planner, and address book. Over the years, these devices have expanded to include many new functions, which have helped more applications in diverse fields. This…

  10. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  11. 76 FR 51944 - Proposed Information Collection; Comment Request; Southeast Region Bycatch Reduction Device...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ....) fisheries of the exclusive economic zone (EEZ) off the South Atlantic, Caribbean, and Gulf of Mexico under.... Method of Collection Paper applications, electronic reports, and telephone calls are required from participants, and methods of submittal include Internet, electronic forms, and facsimile transmission of paper...

  12. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-885] Certain Portable Electronic Communications... States Code AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2013, under section...

  13. Electronic Combat in Space: Examining the Legality of Fielding a Space-Based Disruptive Electromagnetic Jamming System

    DTIC Science & Technology

    2007-06-15

    particles ( asteroids and meteoroids), energetic charged particles (ions, protons, electrons, etc.), and electromagnetic and ionizing radiation (x-rays...These protocols include a ban on Non-Detectable Fragments; restrictions on the use of Mines , Booby Traps, and Other Devices; prohibitions on certain...

  14. Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Chappell, John; And Others

    This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…

  15. Apparatus for Teaching Physics

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1977-01-01

    Describes physics laboratory equipment including: circuit improvements for an electronic counter-timer, a commercial counter-timer-frequency meter, and a device for demonstrating resonating air columns. (SL)

  16. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  17. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  18. Technologies for Prolonging Cardiac Implantable Electronic Device Longevity.

    PubMed

    Lau, Ernest W

    2017-01-01

    Prolonged longevity of cardiac implantable electronic devices (CIEDs) is needed not only as a passive response to match the prolonging life expectancy of patient recipients, but will also actively prolong their life expectancy by avoiding/deferring the risks (and costs) associated with device replacement. CIEDs are still exclusively powered by nonrechargeable primary batteries, and energy exhaustion is the dominant and an inevitable cause of device replacement. The longevity of a CIED is thus determined by the attrition rate of its finite energy reserve. The energy available from a battery depends on its capacity (total amount of electric charge), chemistry (anode, cathode, and electrolyte), and internal architecture (stacked plate, folded plate, and spiral wound). The energy uses of a CIED vary and include a background current for running electronic circuitry, periodic radiofrequency telemetry, high-voltage capacitor reformation, constant ventricular pacing, and sporadic shocks for the cardiac resynchronization therapy defibrillators. The energy use by a CIED is primarily determined by the patient recipient's clinical needs, but the energy stored in the device battery is entirely under the manufacturer's control. A larger battery capacity generally results in a longer-lasting device, but improved battery chemistry and architecture may allow more space-efficient designs. Armed with the necessary technical knowledge, healthcare professionals and purchasers will be empowered to make judicious selection on device models and maximize the utilization of all their energy-saving features, to prolong device longevity for the benefits of their patients and healthcare systems. © 2016 Wiley Periodicals, Inc.

  19. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  20. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  1. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.

    PubMed

    O'Regan, Brian C; Durrant, James R

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are photoelectrochemical solar cells. Their function is based on photoinduced charge separation at a dye-sensitized interface between a nanocrystalline, mesoporous metal oxide electrode and a redox electrolyte. They have been the subject of substantial academic and commercial research over the last 20 years, motivated by their potential as a low-cost solar energy conversion technology. Substantial progress has been made in enhancing the efficiency, stability, and processability of this technology and, in particular, the interplay between these technology drivers. However, despite intense research efforts, our ability to identify predictive materials and structure/device function relationships and, thus, achieve the rational optimization of materials and device design, remains relatively limited. A key challenge in developing such predictive design tools is the chemical complexity of the device. DSSCs comprise distinct materials components, including metal oxide nanoparticles, a molecular sensitizer dye, and a redox electrolyte, all of which exhibit complex interactions with each other. In particular, the electrolyte alone is chemically complex, including not only a redox couple (almost always iodide/iodine) but also a range of additional additives found empirically to enhance device performance. These molecular solutes make up typically 20% of the electrolyte by volume. As with most molecular systems, they exhibit complex interactions with both themselves and the other device components (e.g., the sensitizer dye and the metal oxide). Moreover, these interactions can be modulated by solar irradiation and device operation. As such, understanding the function of these photoelectrochemical solar cells requires careful consideration of the chemical complexity and its impact upon device operation. In this Account, we focus on the process by which electrons injected into the nanocrystalline electrode are collected by the external electrical circuit in real devices under operating conditions. We first of all summarize device function, including the energetics and kinetics of the key processes, using an "idealized" description, which does not fully account for much of the chemical complexity of the system. We then go on to consider recent advances in our understanding of the impact of these complexities upon the efficiency of electron collection. These include "catalysis" of interfacial recombination losses by surface adsorption processes and the influence of device operating conditions upon the recombination rate constant and conduction band energy, both attributed to changes in the chemical composition of the interface. We go on to discuss appropriate methodologies for quantifying the efficiency of electron collection in devices under operation. Finally, we show that, by taking into account these advances in our understanding of the DSSC function, we are able to recreate the current/voltage curves of both efficient and degraded devices without any fitting parameters and, thus, gain significant insight into the determinants of DSSC performance.

  2. Printed biofuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao

    2016-11-22

    Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy asmore » electrical energy.« less

  3. Muscle contraction during electro-muscular incapacitation: A comparison between square-wave pulses and the TASER(®) X26 Electronic control device.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2011-01-01

    Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. 78 FR 71643 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Electronics Devices and Components Thereof; Commission Determination To Review in Part A Final Initial... sale within the United States after importation of certain wireless consumer electronics devices and... Electronics, Inc. of Seoul, Korea and LG Electronics U.S.A., Inc. of Englewood Cliffs, New Jersey...

  5. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  6. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOEpatents

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  7. Flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  8. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Transmission electron microscope cells for use with liquid samples

    DOEpatents

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  11. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  12. One of several ‘toys’ for smoking: young adult experiences with electronic cigarettes in New York City

    PubMed Central

    McDonald, Emily Anne; Ling, Pamela M.

    2015-01-01

    Objective This qualitative research explores the use of electronic cigarettes and other similar ‘vapor’ delivery devices among young adults in New York City. Methods We employed 17 focus groups followed by 12 semistructured interviews to understand the beliefs, opinions and practices related to the use of electronic cigarettes among young adult smokers (N=87). Results Participants were mainly daily (52%) and non-daily (41%) smokers. While experimentation with electronic cigarette devices was frequently reported, participants related an overall lack of information about the devices and what they did know often reflected messages in e-cigarette marketing campaigns. Participants also used their own bodily sensations as a way to gauge potential risks and benefits of the products. Finally, young adults, steeped in a culture of personal technologies, perceived e-cigarettes as one more ‘toy’ among other technologies integrated into their everyday lives. Discussion E-cigarettes were also frequently used with other tobacco products, including conventional cigarettes. Our research indicates that public health campaigns may be needed to counter current industry marketing and inform the public that electronic cigarettes are currently unregulated, understudied and contain toxicants and carcinogens. PMID:25564287

  13. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  14. Extended papers selected from ESSDERC 2015

    NASA Astrophysics Data System (ADS)

    Grasser, Tibor; Schmitz, Jurriaan; Lemme, Max C.

    2016-11-01

    This special issue of Solid State Electronics includes 28 papers which have been carefully selected from the best presentations given at the 45th European Solid-State Device Research Conference (ESSDERC 2015) held from September 14-18, 2015 in Graz, Austria. These papers cover a wide range of topics related to the research on solid-state devices. These topics are used also to organize the conference submissions and presentations into 7 tracks: CMOS Processes, Devices and Integration; Opto-, Power- and Microwave Devices; Modeling & Simulation; Characterization, Reliability & Yield; Advanced & Emerging Memories; MEMS, Sensors & Display Technologies; Emerging Non-CMOS Devices & Technologies.

  15. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  16. Flexible magnetic thin films and devices

    NASA Astrophysics Data System (ADS)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  17. E-Books Go to College.

    ERIC Educational Resources Information Center

    Bell, Lori; McCoy, Virginia; Peters, Tom

    2002-01-01

    Describes a study that investigated the use of electronic book devices by college students, professors, and librarians. Topics include the use of personal digital assistants (PDAs); challenges for libraries, including policies for PDAs; technological problems with PDAs; and student attitudes. (LRW)

  18. Synthesis and Characterization of a Novel -D-B-A-B- Block Copolymer System for Light Harvesting Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.

  19. Packaging Concerns/Techniques for Large Devices

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2009-01-01

    This slide presentation reviews packaging challenges and options for electronic parts. The presentation includes information about non-hermetic packages, space challenges for packaging and complex package variations.

  20. 78 FR 56245 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Electronics Devices and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U... wireless consumer electronics devices and components thereof imported by respondents Acer, Inc. of Taipei... Communications, Inc. of San Diego, California; LG Electronics, Inc. of Seoul, Korea; LG Electronics U.S.A., Inc...

  1. Electrical properties of AlGaN/GaN HEMTs in stretchable geometries

    NASA Astrophysics Data System (ADS)

    Tompkins, R. P.; Mahaboob, I.; Shahedipour-Sandvik, F.; Lazarus, N.

    2017-10-01

    Many biological materials are naturally soft and stretchable, far more so than crystalline semiconductors. Creating systems that can be placed directly on a surface such as human skin has required new approaches in electronic device design and materials, a field known as stretchable electronics. One common method for fabricating a highly brittle semiconductor device able to survive tens of percent strain is to incorporate stress relief structures ('waves'). Although the mechanical advantages of this approach are well known, the effects on the electrical behavior of a device such as a transistor compared to a more traditional geometry have not been studied. Here, AlGaN/GaN high electron mobility transistors (HEMTs) grown on rigid sapphire substrates were fabricated in a common wavy geometry, a sinusoid, with dimensions similar to those used in stretchable electronics. The study analyzes control parameters available to the designer including gate location along the sinusoid, angle the source-drain contacts make with the gate, as well as variation of the gate length at the peak of the sinusoid. Common electrical parameters such as saturation current density, threshold voltage, and transconductance were compared between the sinusoidal and conventional straight geometries and results found to fall to within experimental uncertainty, suggesting shifting to a stretchable geometry is possible without appreciably degrading semiconductor device performance.

  2. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  3. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  4. Particle-in-Cell Modeling of Magnetron Sputtering Devices

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.

    2017-10-01

    In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.

  5. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2017-07-10

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

  6. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  7. High Density Data Storage, the SONY Data DiscMan Electronic Book, and the Unfolding Multi-Media Revolution.

    ERIC Educational Resources Information Center

    Kountz, John

    1991-01-01

    Description of high density data storage (HDDS) devices focuses on CD-ROMs and explores their impact on libraries, publishing, education, and library communications. Highlights include costs; technical standards; reading devices; authoring systems; robotics; the influence of new technology on the role of libraries; and royalty and copyright issues…

  8. Assistive technology for memory support in dementia.

    PubMed

    Van der Roest, Henriëtte G; Wenborn, Jennifer; Pastink, Channah; Dröes, Rose-Marie; Orrell, Martin

    2017-06-11

    The sustained interest in electronic assistive technology in dementia care has been fuelled by the urgent need to develop useful approaches to help support people with dementia at home. Also the low costs and wide availability of electronic devices make it more feasible to use electronic devices for the benefit of disabled persons. Information Communication Technology (ICT) devices designed to support people with dementia are usually referred to as Assistive Technology (AT) or Electronic Assistive Technology (EAT). By using AT in this review we refer to electronic assistive devices. A range of AT devices has been developed to support people with dementia and their carers to manage their daily activities and to enhance safety, for example electronic pill boxes, picture phones, or mobile tracking devices. Many are commercially available. However, the usefulness and user-friendliness of these devices are often poorly evaluated. Although reviews of (electronic) memory aids do exist, a systematic review of studies focusing on the efficacy of AT for memory support in people with dementia is lacking. Such a review would guide people with dementia and their informal and professional carers in selecting appropriate AT devices. Primary objectiveTo assess the efficacy of AT for memory support in people with dementia in terms of daily performance of personal and instrumental activities of daily living (ADL), level of dependency, and admission to long-term care. Secondary objectiveTo assess the impact of AT on: users (autonomy, usefulness and user-friendliness, adoption of AT); cognitive function and neuropsychiatric symptoms; need for informal and formal care; perceived quality of life; informal carer burden, self-esteem and feelings of competence; formal carer work satisfaction, workload and feelings of competence; and adverse events. We searched ALOIS, the Specialised Register of the Cochrane Dementia and Cognitive Improvement Group (CDCIG), on 10 November 2016. ALOIS is maintained by the Information Specialists of the CDCIG and contains studies in the areas of dementia prevention, dementia treatment and cognitive enhancement in healthy people. We also searched the following list of databases, adapting the search strategy as necessary: Centre for Reviews and Dissemination (CRD) Databases, up to May 2016; The Collection of Computer Science Bibliographies; DBLP Computer Science Bibliography; HCI Bibliography: Human-Computer Interaction Resources; and AgeInfo, all to June 2016; PiCarta; Inspec; Springer Link Lecture Notes; Social Care Online; and IEEE Computer Society Digital Library, all to October 2016; J-STAGE: Japan Science and Technology Information Aggregator, Electronic; and Networked Computer Science Technical Reference Library (NCSTRL), both to November 2016; Computing Research Repository (CoRR) up to December 2016; and OT seeker; and ADEAR, both to February 2017. In addition, we searched Google Scholar and OpenSIGLE for grey literature. We intended to review randomised controlled trials (RCTs) and clustered randomised trials with blinded assessment of outcomes that evaluated an electronic assistive device used with the single aim of supporting memory function in people diagnosed with dementia. The control interventions could either be 'care (or treatment) as usual' or non-technological psychosocial interventions (including interventions that use non-electronic assistive devices) also specifically aimed at supporting memory. Outcome measures included activities of daily living, level of dependency, clinical and care-related outcomes (for example admission to long-term care), perceived quality of life and well-being, and adverse events resulting from the use of AT; as well as the effects of AT on carers. Two review authors independently screened all titles and abstracts identified by the search. We identified no studies which met the inclusion criteria. This review highlights the current lack of high-quality evidence to determine whether AT is effective in supporting people with dementia to manage their memory problems.

  9. Use of Electronic Versus Print Textbooks by Chilean Dental Students: A National Survey.

    PubMed

    Aravena, Pedro Christian; Schulz, Karen; Parra, Annemarie; Perez-Rojas, Francisco; Rosas, Cristian; Cartes-Velásquez, Ricardo

    2017-03-01

    Electronic textbooks have become available in recent decades as replacements or alternatives for print versions. The aim of this descriptive cross-sectional study was to evaluate the use of electronic versus print textbooks by Chilean dental students. The target population was students from 14 Chilean dental schools. The questionnaire was adapted and translated to Spanish from a previous survey used in a similar study. It consisted of the following variables: preferred type, type used, frequency of use, source, electronic devices used to read, and disposal after use. The use of textbooks was analyzed and compared by gender and course (p≤0.05). The final sample consisted of 3,256 students (21.38±2.5 years of age, 50.8% women). Most of the participants reported using both types of texts, with most (63.9%) preferring print over electronic texts, including significantly more women (p<0.001) and first-year students (p<0.001). Most of the participants (82.8%), more women (p<0.001), and with variations over years of study (p<0.001) reported that they printed out their electronic texts, and 91.8% kept their printed material. Most of the students used electronic books on a daily basis (47.3%) or at least twice a week (30.7%). The main source of electronic textbooks was the Internet (43.8%). A personal computer was the most widely used device for reading electronic texts (95.0%), followed by a cell phone (46.4%) and a tablet (24.5%). Overall, these Chilean dental students preferred print over electronic textbooks, despite having available electronic devices.

  10. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  11. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  12. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  13. A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles.

    PubMed

    Ismailov, Usein; Ismailova, Esma; Takamatsu, Seiichi

    2017-03-13

    Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.

  14. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  15. Two-dimensional numerical model for the high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Loret, Dany

    1987-11-01

    A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.

  16. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices... States after importation of certain electronic imaging devices by reason of infringement of certain....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket...

  17. Graphene-on-semiconductor substrates for analog electronics

    DOEpatents

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  18. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  19. Moisture-triggered physically transient electronics

    PubMed Central

    Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang

    2017-01-01

    Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237

  20. Oxide-based thin film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  1. Structure of a radiate pseudocolony associated with an intrauterine contraceptive device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.

    Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin.

  2. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2015-06-01

    We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.

  3. Effect of contact barrier on electron transport in graphene.

    PubMed

    Zhou, Yang-Bo; Han, Bing-Hong; Liao, Zhi-Min; Zhao, Qing; Xu, Jun; Yu, Da-Peng

    2010-01-14

    The influence of the barrier between metal electrodes and graphene on the electrical properties was studied on a two-electrode device. A classical barrier model was used to analyze the current-voltage characteristics. Primary parameters including barrier height and effective resistance were achieved. The electron transport properties under magnetic field were further investigated. An abnormal peak-valley-peak shape of voltage-magnetoresistance curve was observed. The underlying mechanisms were discussed under the consideration of the important influence of the contact barrier. Our results indicate electrical properties of graphene based devices are sensitive to the contact interface.

  4. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.

  5. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  6. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  7. 49 CFR 220.311 - Railroad operating employees in deadhead status.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices... controlling locomotive may use an electronic device only if the employee is not using the device in such a way... controlling locomotive must have each electronic device turned off with any earpiece removed from the ear— (1...

  8. Detection of low frequency external electronic identification devices using commercial panel readers.

    PubMed

    Stewart, S C; Rapnicki, P; Lewis, J R; Perala, M

    2007-09-01

    The ability of a commercially available panel reader system to read International Standards Organization-compliant electronic identification devices under commercial dairy conditions was examined. Full duplex (FDX-B) and half-duplex (HDX) low frequency radio-frequency identification external ear tags were utilized. The study involved 498 Holstein cows in the final 6 wk of gestation. There were 516 total electronic identification devices (n = 334 HDX and n = 182 FDX-B). Eighteen FDX-B were replaced with HDX during the study due to repeated detection failure. There were 6,679 HDX and 3,401 FDX-B device detection attempts. There were 220 (2.2%) unsuccessful and 9,860 (97.8%) successful identification detection attempts. There were 9 unsuccessful detection attempts for HDX (6,670/6,679 = 99.9% successful detection attempts) and 211 unsuccessful detection attempts for FDX-B (3,190/3,401 = 93.8% successful detection attempts). These results demonstrate that this panel system can achieve high detection rates of HDX devices and meet the needs of the most demanding management applications. The FDX-B detection rate was not sufficient for the most demanding applications, requiring a high degree of detection by panel readers. The lower FDX-B rate may not be inherent in the device technology itself, but could be due to other factors, including the particular panel reader utilized or the tuning of the panel reader.

  9. Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures.

    PubMed

    Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang

    2017-08-30

    Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.

  10. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  11. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  12. 77 FR 44671 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2904] Certain Wireless Consumer Electronics Devices and.... International Trade Commission has received a complaint entitled Certain Wireless Consumer Electronics Devices... importation, and the sale within the United States after importation of certain wireless consumer electronics...

  13. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov... mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  14. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  15. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  16. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum corrections do not have a large effect on the IN characteristics of electronic devices without heteroj unction s. On the other hand, ultra-small MOSFETs certainly exhibit important quantum effects that the DG model will include: quantum repulsion of the inversion and gate charges from the oxide interfaces, and quantum tunneling through thin gate oxides. We present initial results of 2-D DG simulations of ultra-small MOSFETs. Subtle but important issues involving the specification of the model, boundary conditions, and interface constraints for DG simulation of MOSFETs will also be illuminated.

  17. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  18. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  19. Electronic medical devices: a primer for pathologists.

    PubMed

    Weitzman, James B

    2003-07-01

    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  20. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations

    NASA Astrophysics Data System (ADS)

    Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan

    2018-02-01

    Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.

  1. Piezoelectric-based hybrid reserve power sources for munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  2. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  3. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  4. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  5. 49 CFR 220.315 - Operational tests and inspections; further restrictions on use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.315 Operational tests and inspections; further restrictions on use of electronic...

  6. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  7. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  8. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  9. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  10. 46 CFR 184.410 - Electronic position fixing devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Electronic position fixing devices. 184.410 Section 184.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... Electronic position fixing devices. A vessel on an oceans route must be equipped with an electronic position...

  11. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  12. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  13. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.

    2014-12-01

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.

  14. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  15. Stuttering

    MedlinePlus

    ... to use over a long period of time. Electronic devices Some people who stutter use electronic devices to help control fluency. For example, one ... in unison with another person. In some people, electronic devices may help improve fluency in a relatively ...

  16. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  17. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.

    PubMed

    Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying

    2015-03-01

    To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  19. Development of UItra-Low Temperature Motor Controllers: Ultra Low Temperatures Evaluation and Characterization of Semiconductor Technologies For The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.

    2003-01-01

    Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).

  20. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gigahertz Electromagnetic Structures via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications.

    PubMed

    Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee

    2017-04-01

    Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  3. Radiation effects in materials for optical interferometric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.

    The effects of ionizing radiation have been investigated in a series of materials commonly used in optical interferometric devices. Included in the study were three glass-ceramics (Zerodur, Cer-Vit 101, and Cer-Vit 142) and one Faraday-rotator glass (SF-57). Each glass-ceramic was irradiated at room temperature with 1.5-MeV electrons from a Van De Graaff accelerator. Similar irradiations were done on the Faraday-rotator glass at room temperature and 77 K. Optical absorption and electron spin resonance measurements provided a monitor of the radiation-induced point defects in all cases. The spectral characteristics and the production and thermal annealing behavior of these defects are described,more » and their possible effect on the performance of optical devices which incorporate these materials is considered.« less

  4. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Encapsulation methods and dielectric layers for organic electrical devices

    DOEpatents

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  6. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Lapp, Anthony Joseph (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Bluethmann, William J. (Inventor); Ridley, Justin S. (Inventor); Junkin, Lucien Q. (Inventor); Ambrose, Robert O. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  7. Waves, particles, and interactions in reduced dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming

    This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport is disorder dominated. The next two experiments study magnetoresistance oscillations in electronic Fabry-Perot interferometers in the integer quantum Hall regime. Two types of resistance oscillations, as a function of perpendicular magnetic field and gate voltages, in two interferometers of different sizes can be distinguished by three experimental signatures. The oscillations observed in the small (2.0 mum2) device are understood to arise from Coulomb blockade, and those observed in the big (18 mum2) device from Aharonov-Bohm interference. Nonlinear transport in the big device reveals a checkerboard-like pattern of conductance oscillations as a function of dc bias and magnetic field. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E⃗ x B⃗ drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.

  8. High-performance green semiconductor devices: materials, designs, and fabrication

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  9. 75 FR 34484 - In the Matter of: Certain Portable Electronic Devices and Related Software; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... of certain portable electronic devices and related software by reason of infringement of certain... after importation of certain portable electronic devices or related software that infringe one or more...

  10. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  11. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  12. Mechanisms of transport and electron transfer at conductive polymer/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Ratcliff, Erin

    Organic semiconductors (OSCs) have incredible prospects for next-generation, flexible electronic devices including bioelectronics, thermoelectrics, opto-electronics, and energy storage and conversion devices. Yet many fundamental challenges still exist. First, solution processing prohibits definitive control over microstructure, which is fundamental for controlling electrical, ionic, and thermal transport properties. Second, OSCs generally suffer from poor electrical conductivities due to a combination of low carriers and low mobility. Third, polymeric semiconductors have potential-dependent, dynamically evolving electronic and chemical states, leading to complex interfacial charge transfer properties in contact with liquids. This talk will focus on the use of alternative synthetic strategies of oxidative chemical vapor deposition and electrochemical deposition to control physical, electronic, and chemical structure. We couple our synthetic efforts with energy-, time-, and spatially resolved spectroelectrochemical and microscopy techniques to understand the critical interfacial chemistry-microstructure-property relationships: first at the macroscale, and then moving towards the nanoscale. In particular, approaches to better understand electron transfer events at polymer/liquid interfaces as a function of: 1.) chemical composition; 2.) electronic density of states (DOS); and 3.) crystallinity and microstructure will be discussed.

  13. Skin-Inspired Electronics: An Emerging Paradigm.

    PubMed

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    Future electronics will take on more important roles in people's lives. They need to allow more intimate contact with human beings to enable advanced health monitoring, disease detection, medical therapies, and human-machine interfacing. However, current electronics are rigid, nondegradable and cannot self-repair, while the human body is soft, dynamic, stretchable, biodegradable, and self-healing. Therefore, it is critical to develop a new class of electronic materials that incorporate skinlike properties, including stretchability for conformable integration, minimal discomfort and suppressed invasive reactions; self-healing for long-term durability under harsh mechanical conditions; and biodegradability for reducing environmental impact and obviating the need for secondary device removal for medical implants. These demands have fueled the development of a new generation of electronic materials, primarily composed of polymers and polymer composites with both high electrical performance and skinlike properties, and consequently led to a new paradigm of electronics, termed "skin-inspired electronics". This Account covers recent important advances in skin-inspired electronics, from basic material developments to device components and proof-of-concept demonstrations for integrated bioelectronics applications. To date, stretchability has been the most prominent focus in this field. In contrast to strain-engineering approaches that extrinsically impart stretchability into inorganic electronics, intrinsically stretchable materials provide a direct route to achieve higher mechanical robustness, higher device density, and scalable fabrication. The key is the introduction of strain-dissipation mechanisms into the material design, which has been realized through molecular engineering (e.g., soft molecular segments, dynamic bonds) and physical engineering (e.g., nanoconfinement effect, geometric design). The material design concepts have led to the successful demonstrations of stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.

  14. Printed Circuit Board Assembly for Use in Space Missions

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor); Vo, Luan (Inventor); Albaijes, Dennis (Inventor)

    2017-01-01

    An electronic assembly for use in space missions that includes a PCB and one or more multi-pin CGA devices coupled to the PCB. The PCB has one or more via-in-pad features and each via-in-pad feature comprises a land pad configured to couple a pin of the one or more multi-pin CGA devices to the via. The PCB also includes a plurality of layers arranged symmetrically in a two-halves configuration above and below a central plane of the PCB.

  15. Outlook and emerging semiconducting materials for ambipolar transistors.

    PubMed

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  18. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  19. Negatively Charged Hydrogen Production in a Multicusp Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Trow, John Robert

    1985-06-01

    High energy neutral beams are necessary for the continued development of magnetically confined fusion plasma devices. Neutral beams based on positive ions are not efficient at beam energies of 100 keV or above, however negative ion based neutral beam systems are efficient, even at high beam energies. Volume production of H('-) has many advantages over the other methods, chiefly: simplicity of design and operation, and no need for alkalai metals. Since volume production requires a low electron temperature ((TURN)1 eV) but also requires molecular intermediates only formed by more energetic electrons (>20 eV), double plasma devices with a separate hot electron region are desirable. Therefore an experiment was undertaken to examine H('-) production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the "magnetic filters" used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H('-) production including numerical estimates, based on the experimental measurements, which indicate H('-) production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included here as a separate chapter. This device is shown to be a viable scheme of H('-) (or D('-)) produc- tion and is worthy of further development. There are several more. quantities which still need to be measured listed in the conclusion, along with suggested improvements. *This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development & Technology Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

  20. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

Top